xref: /openbmc/qemu/hw/ppc/ppc.c (revision 6e99f5741ff1b408ea76e6caf2bd4f76df4060e9)
1 /*
2  * QEMU generic PowerPC hardware System Emulator
3  *
4  * Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include "qemu-common.h"
26 #include "cpu.h"
27 #include "hw/hw.h"
28 #include "hw/ppc/ppc.h"
29 #include "hw/ppc/ppc_e500.h"
30 #include "qemu/timer.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/cpus.h"
33 #include "hw/timer/m48t59.h"
34 #include "qemu/log.h"
35 #include "qemu/error-report.h"
36 #include "qapi/error.h"
37 #include "hw/loader.h"
38 #include "sysemu/kvm.h"
39 #include "kvm_ppc.h"
40 #include "trace.h"
41 
42 //#define PPC_DEBUG_IRQ
43 //#define PPC_DEBUG_TB
44 
45 #ifdef PPC_DEBUG_IRQ
46 #  define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
47 #else
48 #  define LOG_IRQ(...) do { } while (0)
49 #endif
50 
51 
52 #ifdef PPC_DEBUG_TB
53 #  define LOG_TB(...) qemu_log(__VA_ARGS__)
54 #else
55 #  define LOG_TB(...) do { } while (0)
56 #endif
57 
58 static void cpu_ppc_tb_stop (CPUPPCState *env);
59 static void cpu_ppc_tb_start (CPUPPCState *env);
60 
61 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
62 {
63     CPUState *cs = CPU(cpu);
64     CPUPPCState *env = &cpu->env;
65     unsigned int old_pending = env->pending_interrupts;
66 
67     if (level) {
68         env->pending_interrupts |= 1 << n_IRQ;
69         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
70     } else {
71         env->pending_interrupts &= ~(1 << n_IRQ);
72         if (env->pending_interrupts == 0) {
73             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
74         }
75     }
76 
77     if (old_pending != env->pending_interrupts) {
78 #ifdef CONFIG_KVM
79         kvmppc_set_interrupt(cpu, n_IRQ, level);
80 #endif
81     }
82 
83     LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
84                 "req %08x\n", __func__, env, n_IRQ, level,
85                 env->pending_interrupts, CPU(cpu)->interrupt_request);
86 }
87 
88 /* PowerPC 6xx / 7xx internal IRQ controller */
89 static void ppc6xx_set_irq(void *opaque, int pin, int level)
90 {
91     PowerPCCPU *cpu = opaque;
92     CPUPPCState *env = &cpu->env;
93     int cur_level;
94 
95     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
96                 env, pin, level);
97     cur_level = (env->irq_input_state >> pin) & 1;
98     /* Don't generate spurious events */
99     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
100         CPUState *cs = CPU(cpu);
101 
102         switch (pin) {
103         case PPC6xx_INPUT_TBEN:
104             /* Level sensitive - active high */
105             LOG_IRQ("%s: %s the time base\n",
106                         __func__, level ? "start" : "stop");
107             if (level) {
108                 cpu_ppc_tb_start(env);
109             } else {
110                 cpu_ppc_tb_stop(env);
111             }
112         case PPC6xx_INPUT_INT:
113             /* Level sensitive - active high */
114             LOG_IRQ("%s: set the external IRQ state to %d\n",
115                         __func__, level);
116             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
117             break;
118         case PPC6xx_INPUT_SMI:
119             /* Level sensitive - active high */
120             LOG_IRQ("%s: set the SMI IRQ state to %d\n",
121                         __func__, level);
122             ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
123             break;
124         case PPC6xx_INPUT_MCP:
125             /* Negative edge sensitive */
126             /* XXX: TODO: actual reaction may depends on HID0 status
127              *            603/604/740/750: check HID0[EMCP]
128              */
129             if (cur_level == 1 && level == 0) {
130                 LOG_IRQ("%s: raise machine check state\n",
131                             __func__);
132                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
133             }
134             break;
135         case PPC6xx_INPUT_CKSTP_IN:
136             /* Level sensitive - active low */
137             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
138             /* XXX: Note that the only way to restart the CPU is to reset it */
139             if (level) {
140                 LOG_IRQ("%s: stop the CPU\n", __func__);
141                 cs->halted = 1;
142             }
143             break;
144         case PPC6xx_INPUT_HRESET:
145             /* Level sensitive - active low */
146             if (level) {
147                 LOG_IRQ("%s: reset the CPU\n", __func__);
148                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
149             }
150             break;
151         case PPC6xx_INPUT_SRESET:
152             LOG_IRQ("%s: set the RESET IRQ state to %d\n",
153                         __func__, level);
154             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
155             break;
156         default:
157             /* Unknown pin - do nothing */
158             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
159             return;
160         }
161         if (level)
162             env->irq_input_state |= 1 << pin;
163         else
164             env->irq_input_state &= ~(1 << pin);
165     }
166 }
167 
168 void ppc6xx_irq_init(PowerPCCPU *cpu)
169 {
170     CPUPPCState *env = &cpu->env;
171 
172     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
173                                                   PPC6xx_INPUT_NB);
174 }
175 
176 #if defined(TARGET_PPC64)
177 /* PowerPC 970 internal IRQ controller */
178 static void ppc970_set_irq(void *opaque, int pin, int level)
179 {
180     PowerPCCPU *cpu = opaque;
181     CPUPPCState *env = &cpu->env;
182     int cur_level;
183 
184     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
185                 env, pin, level);
186     cur_level = (env->irq_input_state >> pin) & 1;
187     /* Don't generate spurious events */
188     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
189         CPUState *cs = CPU(cpu);
190 
191         switch (pin) {
192         case PPC970_INPUT_INT:
193             /* Level sensitive - active high */
194             LOG_IRQ("%s: set the external IRQ state to %d\n",
195                         __func__, level);
196             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
197             break;
198         case PPC970_INPUT_THINT:
199             /* Level sensitive - active high */
200             LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
201                         level);
202             ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
203             break;
204         case PPC970_INPUT_MCP:
205             /* Negative edge sensitive */
206             /* XXX: TODO: actual reaction may depends on HID0 status
207              *            603/604/740/750: check HID0[EMCP]
208              */
209             if (cur_level == 1 && level == 0) {
210                 LOG_IRQ("%s: raise machine check state\n",
211                             __func__);
212                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
213             }
214             break;
215         case PPC970_INPUT_CKSTP:
216             /* Level sensitive - active low */
217             /* XXX: TODO: relay the signal to CKSTP_OUT pin */
218             if (level) {
219                 LOG_IRQ("%s: stop the CPU\n", __func__);
220                 cs->halted = 1;
221             } else {
222                 LOG_IRQ("%s: restart the CPU\n", __func__);
223                 cs->halted = 0;
224                 qemu_cpu_kick(cs);
225             }
226             break;
227         case PPC970_INPUT_HRESET:
228             /* Level sensitive - active low */
229             if (level) {
230                 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
231             }
232             break;
233         case PPC970_INPUT_SRESET:
234             LOG_IRQ("%s: set the RESET IRQ state to %d\n",
235                         __func__, level);
236             ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
237             break;
238         case PPC970_INPUT_TBEN:
239             LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
240                         level);
241             /* XXX: TODO */
242             break;
243         default:
244             /* Unknown pin - do nothing */
245             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
246             return;
247         }
248         if (level)
249             env->irq_input_state |= 1 << pin;
250         else
251             env->irq_input_state &= ~(1 << pin);
252     }
253 }
254 
255 void ppc970_irq_init(PowerPCCPU *cpu)
256 {
257     CPUPPCState *env = &cpu->env;
258 
259     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
260                                                   PPC970_INPUT_NB);
261 }
262 
263 /* POWER7 internal IRQ controller */
264 static void power7_set_irq(void *opaque, int pin, int level)
265 {
266     PowerPCCPU *cpu = opaque;
267     CPUPPCState *env = &cpu->env;
268 
269     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
270                 env, pin, level);
271 
272     switch (pin) {
273     case POWER7_INPUT_INT:
274         /* Level sensitive - active high */
275         LOG_IRQ("%s: set the external IRQ state to %d\n",
276                 __func__, level);
277         ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
278         break;
279     default:
280         /* Unknown pin - do nothing */
281         LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
282         return;
283     }
284     if (level) {
285         env->irq_input_state |= 1 << pin;
286     } else {
287         env->irq_input_state &= ~(1 << pin);
288     }
289 }
290 
291 void ppcPOWER7_irq_init(PowerPCCPU *cpu)
292 {
293     CPUPPCState *env = &cpu->env;
294 
295     env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
296                                                   POWER7_INPUT_NB);
297 }
298 #endif /* defined(TARGET_PPC64) */
299 
300 /* PowerPC 40x internal IRQ controller */
301 static void ppc40x_set_irq(void *opaque, int pin, int level)
302 {
303     PowerPCCPU *cpu = opaque;
304     CPUPPCState *env = &cpu->env;
305     int cur_level;
306 
307     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
308                 env, pin, level);
309     cur_level = (env->irq_input_state >> pin) & 1;
310     /* Don't generate spurious events */
311     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
312         CPUState *cs = CPU(cpu);
313 
314         switch (pin) {
315         case PPC40x_INPUT_RESET_SYS:
316             if (level) {
317                 LOG_IRQ("%s: reset the PowerPC system\n",
318                             __func__);
319                 ppc40x_system_reset(cpu);
320             }
321             break;
322         case PPC40x_INPUT_RESET_CHIP:
323             if (level) {
324                 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
325                 ppc40x_chip_reset(cpu);
326             }
327             break;
328         case PPC40x_INPUT_RESET_CORE:
329             /* XXX: TODO: update DBSR[MRR] */
330             if (level) {
331                 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
332                 ppc40x_core_reset(cpu);
333             }
334             break;
335         case PPC40x_INPUT_CINT:
336             /* Level sensitive - active high */
337             LOG_IRQ("%s: set the critical IRQ state to %d\n",
338                         __func__, level);
339             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
340             break;
341         case PPC40x_INPUT_INT:
342             /* Level sensitive - active high */
343             LOG_IRQ("%s: set the external IRQ state to %d\n",
344                         __func__, level);
345             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
346             break;
347         case PPC40x_INPUT_HALT:
348             /* Level sensitive - active low */
349             if (level) {
350                 LOG_IRQ("%s: stop the CPU\n", __func__);
351                 cs->halted = 1;
352             } else {
353                 LOG_IRQ("%s: restart the CPU\n", __func__);
354                 cs->halted = 0;
355                 qemu_cpu_kick(cs);
356             }
357             break;
358         case PPC40x_INPUT_DEBUG:
359             /* Level sensitive - active high */
360             LOG_IRQ("%s: set the debug pin state to %d\n",
361                         __func__, level);
362             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
363             break;
364         default:
365             /* Unknown pin - do nothing */
366             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
367             return;
368         }
369         if (level)
370             env->irq_input_state |= 1 << pin;
371         else
372             env->irq_input_state &= ~(1 << pin);
373     }
374 }
375 
376 void ppc40x_irq_init(PowerPCCPU *cpu)
377 {
378     CPUPPCState *env = &cpu->env;
379 
380     env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
381                                                   cpu, PPC40x_INPUT_NB);
382 }
383 
384 /* PowerPC E500 internal IRQ controller */
385 static void ppce500_set_irq(void *opaque, int pin, int level)
386 {
387     PowerPCCPU *cpu = opaque;
388     CPUPPCState *env = &cpu->env;
389     int cur_level;
390 
391     LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
392                 env, pin, level);
393     cur_level = (env->irq_input_state >> pin) & 1;
394     /* Don't generate spurious events */
395     if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
396         switch (pin) {
397         case PPCE500_INPUT_MCK:
398             if (level) {
399                 LOG_IRQ("%s: reset the PowerPC system\n",
400                             __func__);
401                 qemu_system_reset_request();
402             }
403             break;
404         case PPCE500_INPUT_RESET_CORE:
405             if (level) {
406                 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
407                 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
408             }
409             break;
410         case PPCE500_INPUT_CINT:
411             /* Level sensitive - active high */
412             LOG_IRQ("%s: set the critical IRQ state to %d\n",
413                         __func__, level);
414             ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
415             break;
416         case PPCE500_INPUT_INT:
417             /* Level sensitive - active high */
418             LOG_IRQ("%s: set the core IRQ state to %d\n",
419                         __func__, level);
420             ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
421             break;
422         case PPCE500_INPUT_DEBUG:
423             /* Level sensitive - active high */
424             LOG_IRQ("%s: set the debug pin state to %d\n",
425                         __func__, level);
426             ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
427             break;
428         default:
429             /* Unknown pin - do nothing */
430             LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
431             return;
432         }
433         if (level)
434             env->irq_input_state |= 1 << pin;
435         else
436             env->irq_input_state &= ~(1 << pin);
437     }
438 }
439 
440 void ppce500_irq_init(PowerPCCPU *cpu)
441 {
442     CPUPPCState *env = &cpu->env;
443 
444     env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
445                                                   cpu, PPCE500_INPUT_NB);
446 }
447 
448 /* Enable or Disable the E500 EPR capability */
449 void ppce500_set_mpic_proxy(bool enabled)
450 {
451     CPUState *cs;
452 
453     CPU_FOREACH(cs) {
454         PowerPCCPU *cpu = POWERPC_CPU(cs);
455 
456         cpu->env.mpic_proxy = enabled;
457         if (kvm_enabled()) {
458             kvmppc_set_mpic_proxy(cpu, enabled);
459         }
460     }
461 }
462 
463 /*****************************************************************************/
464 /* PowerPC time base and decrementer emulation */
465 
466 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
467 {
468     /* TB time in tb periods */
469     return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
470 }
471 
472 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
473 {
474     ppc_tb_t *tb_env = env->tb_env;
475     uint64_t tb;
476 
477     if (kvm_enabled()) {
478         return env->spr[SPR_TBL];
479     }
480 
481     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
482     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
483 
484     return tb;
485 }
486 
487 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
488 {
489     ppc_tb_t *tb_env = env->tb_env;
490     uint64_t tb;
491 
492     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
493     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
494 
495     return tb >> 32;
496 }
497 
498 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
499 {
500     if (kvm_enabled()) {
501         return env->spr[SPR_TBU];
502     }
503 
504     return _cpu_ppc_load_tbu(env);
505 }
506 
507 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
508                                     int64_t *tb_offsetp, uint64_t value)
509 {
510     *tb_offsetp = value -
511         muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
512 
513     LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
514                 __func__, value, *tb_offsetp);
515 }
516 
517 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
518 {
519     ppc_tb_t *tb_env = env->tb_env;
520     uint64_t tb;
521 
522     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
523     tb &= 0xFFFFFFFF00000000ULL;
524     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
525                      &tb_env->tb_offset, tb | (uint64_t)value);
526 }
527 
528 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
529 {
530     ppc_tb_t *tb_env = env->tb_env;
531     uint64_t tb;
532 
533     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
534     tb &= 0x00000000FFFFFFFFULL;
535     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
536                      &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
537 }
538 
539 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
540 {
541     _cpu_ppc_store_tbu(env, value);
542 }
543 
544 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
545 {
546     ppc_tb_t *tb_env = env->tb_env;
547     uint64_t tb;
548 
549     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
550     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
551 
552     return tb;
553 }
554 
555 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
556 {
557     ppc_tb_t *tb_env = env->tb_env;
558     uint64_t tb;
559 
560     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
561     LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
562 
563     return tb >> 32;
564 }
565 
566 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
567 {
568     ppc_tb_t *tb_env = env->tb_env;
569     uint64_t tb;
570 
571     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
572     tb &= 0xFFFFFFFF00000000ULL;
573     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
574                      &tb_env->atb_offset, tb | (uint64_t)value);
575 }
576 
577 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
578 {
579     ppc_tb_t *tb_env = env->tb_env;
580     uint64_t tb;
581 
582     tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
583     tb &= 0x00000000FFFFFFFFULL;
584     cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
585                      &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
586 }
587 
588 static void cpu_ppc_tb_stop (CPUPPCState *env)
589 {
590     ppc_tb_t *tb_env = env->tb_env;
591     uint64_t tb, atb, vmclk;
592 
593     /* If the time base is already frozen, do nothing */
594     if (tb_env->tb_freq != 0) {
595         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
596         /* Get the time base */
597         tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
598         /* Get the alternate time base */
599         atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
600         /* Store the time base value (ie compute the current offset) */
601         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
602         /* Store the alternate time base value (compute the current offset) */
603         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
604         /* Set the time base frequency to zero */
605         tb_env->tb_freq = 0;
606         /* Now, the time bases are frozen to tb_offset / atb_offset value */
607     }
608 }
609 
610 static void cpu_ppc_tb_start (CPUPPCState *env)
611 {
612     ppc_tb_t *tb_env = env->tb_env;
613     uint64_t tb, atb, vmclk;
614 
615     /* If the time base is not frozen, do nothing */
616     if (tb_env->tb_freq == 0) {
617         vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
618         /* Get the time base from tb_offset */
619         tb = tb_env->tb_offset;
620         /* Get the alternate time base from atb_offset */
621         atb = tb_env->atb_offset;
622         /* Restore the tb frequency from the decrementer frequency */
623         tb_env->tb_freq = tb_env->decr_freq;
624         /* Store the time base value */
625         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
626         /* Store the alternate time base value */
627         cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
628     }
629 }
630 
631 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
632 {
633     ppc_tb_t *tb_env = env->tb_env;
634     int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
635     return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
636 }
637 
638 static inline uint32_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
639 {
640     ppc_tb_t *tb_env = env->tb_env;
641     uint32_t decr;
642     int64_t diff;
643 
644     diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
645     if (diff >= 0) {
646         decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
647     } else if (tb_env->flags & PPC_TIMER_BOOKE) {
648         decr = 0;
649     }  else {
650         decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
651     }
652     LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
653 
654     return decr;
655 }
656 
657 uint32_t cpu_ppc_load_decr (CPUPPCState *env)
658 {
659     ppc_tb_t *tb_env = env->tb_env;
660 
661     if (kvm_enabled()) {
662         return env->spr[SPR_DECR];
663     }
664 
665     return _cpu_ppc_load_decr(env, tb_env->decr_next);
666 }
667 
668 uint32_t cpu_ppc_load_hdecr (CPUPPCState *env)
669 {
670     ppc_tb_t *tb_env = env->tb_env;
671 
672     return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
673 }
674 
675 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
676 {
677     ppc_tb_t *tb_env = env->tb_env;
678     uint64_t diff;
679 
680     diff = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - tb_env->purr_start;
681 
682     return tb_env->purr_load +
683         muldiv64(diff, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
684 }
685 
686 /* When decrementer expires,
687  * all we need to do is generate or queue a CPU exception
688  */
689 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
690 {
691     /* Raise it */
692     LOG_TB("raise decrementer exception\n");
693     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
694 }
695 
696 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
697 {
698     ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
699 }
700 
701 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
702 {
703     CPUPPCState *env = &cpu->env;
704 
705     /* Raise it */
706     LOG_TB("raise hv decrementer exception\n");
707 
708     /* The architecture specifies that we don't deliver HDEC
709      * interrupts in a PM state. Not only they don't cause a
710      * wakeup but they also get effectively discarded.
711      */
712     if (!env->in_pm_state) {
713         ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
714     }
715 }
716 
717 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
718 {
719     ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
720 }
721 
722 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
723                                  QEMUTimer *timer,
724                                  void (*raise_excp)(void *),
725                                  void (*lower_excp)(PowerPCCPU *),
726                                  uint32_t decr, uint32_t value)
727 {
728     CPUPPCState *env = &cpu->env;
729     ppc_tb_t *tb_env = env->tb_env;
730     uint64_t now, next;
731 
732     LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
733                 decr, value);
734 
735     if (kvm_enabled()) {
736         /* KVM handles decrementer exceptions, we don't need our own timer */
737         return;
738     }
739 
740     /*
741      * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
742      * interrupt.
743      *
744      * If we get a really small DEC value, we can assume that by the time we
745      * handled it we should inject an interrupt already.
746      *
747      * On MSB level based DEC implementations the MSB always means the interrupt
748      * is pending, so raise it on those.
749      *
750      * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
751      * an edge interrupt, so raise it here too.
752      */
753     if ((value < 3) ||
754         ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && (value & 0x80000000)) ||
755         ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && (value & 0x80000000)
756           && !(decr & 0x80000000))) {
757         (*raise_excp)(cpu);
758         return;
759     }
760 
761     /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
762     if (!(value & 0x80000000) && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
763         (*lower_excp)(cpu);
764     }
765 
766     /* Calculate the next timer event */
767     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
768     next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
769     *nextp = next;
770 
771     /* Adjust timer */
772     timer_mod(timer, next);
773 }
774 
775 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, uint32_t decr,
776                                        uint32_t value)
777 {
778     ppc_tb_t *tb_env = cpu->env.tb_env;
779 
780     __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
781                          tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
782                          value);
783 }
784 
785 void cpu_ppc_store_decr (CPUPPCState *env, uint32_t value)
786 {
787     PowerPCCPU *cpu = ppc_env_get_cpu(env);
788 
789     _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value);
790 }
791 
792 static void cpu_ppc_decr_cb(void *opaque)
793 {
794     PowerPCCPU *cpu = opaque;
795 
796     cpu_ppc_decr_excp(cpu);
797 }
798 
799 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, uint32_t hdecr,
800                                         uint32_t value)
801 {
802     ppc_tb_t *tb_env = cpu->env.tb_env;
803 
804     if (tb_env->hdecr_timer != NULL) {
805         __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
806                              tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
807                              hdecr, value);
808     }
809 }
810 
811 void cpu_ppc_store_hdecr (CPUPPCState *env, uint32_t value)
812 {
813     PowerPCCPU *cpu = ppc_env_get_cpu(env);
814 
815     _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value);
816 }
817 
818 static void cpu_ppc_hdecr_cb(void *opaque)
819 {
820     PowerPCCPU *cpu = opaque;
821 
822     cpu_ppc_hdecr_excp(cpu);
823 }
824 
825 static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
826 {
827     ppc_tb_t *tb_env = cpu->env.tb_env;
828 
829     tb_env->purr_load = value;
830     tb_env->purr_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
831 }
832 
833 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
834 {
835     CPUPPCState *env = opaque;
836     PowerPCCPU *cpu = ppc_env_get_cpu(env);
837     ppc_tb_t *tb_env = env->tb_env;
838 
839     tb_env->tb_freq = freq;
840     tb_env->decr_freq = freq;
841     /* There is a bug in Linux 2.4 kernels:
842      * if a decrementer exception is pending when it enables msr_ee at startup,
843      * it's not ready to handle it...
844      */
845     _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
846     _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
847     cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
848 }
849 
850 static void timebase_pre_save(void *opaque)
851 {
852     PPCTimebase *tb = opaque;
853     uint64_t ticks = cpu_get_host_ticks();
854     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
855 
856     if (!first_ppc_cpu->env.tb_env) {
857         error_report("No timebase object");
858         return;
859     }
860 
861     tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
862     /*
863      * tb_offset is only expected to be changed by migration so
864      * there is no need to update it from KVM here
865      */
866     tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
867 }
868 
869 static int timebase_post_load(void *opaque, int version_id)
870 {
871     PPCTimebase *tb_remote = opaque;
872     CPUState *cpu;
873     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
874     int64_t tb_off_adj, tb_off, ns_diff;
875     int64_t migration_duration_ns, migration_duration_tb, guest_tb, host_ns;
876     unsigned long freq;
877 
878     if (!first_ppc_cpu->env.tb_env) {
879         error_report("No timebase object");
880         return -1;
881     }
882 
883     freq = first_ppc_cpu->env.tb_env->tb_freq;
884     /*
885      * Calculate timebase on the destination side of migration.
886      * The destination timebase must be not less than the source timebase.
887      * We try to adjust timebase by downtime if host clocks are not
888      * too much out of sync (1 second for now).
889      */
890     host_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
891     ns_diff = MAX(0, host_ns - tb_remote->time_of_the_day_ns);
892     migration_duration_ns = MIN(NANOSECONDS_PER_SECOND, ns_diff);
893     migration_duration_tb = muldiv64(freq, migration_duration_ns,
894                                      NANOSECONDS_PER_SECOND);
895     guest_tb = tb_remote->guest_timebase + MIN(0, migration_duration_tb);
896 
897     tb_off_adj = guest_tb - cpu_get_host_ticks();
898 
899     tb_off = first_ppc_cpu->env.tb_env->tb_offset;
900     trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
901                         (tb_off_adj - tb_off) / freq);
902 
903     /* Set new offset to all CPUs */
904     CPU_FOREACH(cpu) {
905         PowerPCCPU *pcpu = POWERPC_CPU(cpu);
906         pcpu->env.tb_env->tb_offset = tb_off_adj;
907     }
908 
909     return 0;
910 }
911 
912 const VMStateDescription vmstate_ppc_timebase = {
913     .name = "timebase",
914     .version_id = 1,
915     .minimum_version_id = 1,
916     .minimum_version_id_old = 1,
917     .pre_save = timebase_pre_save,
918     .post_load = timebase_post_load,
919     .fields      = (VMStateField []) {
920         VMSTATE_UINT64(guest_timebase, PPCTimebase),
921         VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
922         VMSTATE_END_OF_LIST()
923     },
924 };
925 
926 /* Set up (once) timebase frequency (in Hz) */
927 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
928 {
929     PowerPCCPU *cpu = ppc_env_get_cpu(env);
930     ppc_tb_t *tb_env;
931 
932     tb_env = g_malloc0(sizeof(ppc_tb_t));
933     env->tb_env = tb_env;
934     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
935     if (env->insns_flags & PPC_SEGMENT_64B) {
936         /* All Book3S 64bit CPUs implement level based DEC logic */
937         tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
938     }
939     /* Create new timer */
940     tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
941     if (env->has_hv_mode) {
942         tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
943                                                 cpu);
944     } else {
945         tb_env->hdecr_timer = NULL;
946     }
947     cpu_ppc_set_tb_clk(env, freq);
948 
949     return &cpu_ppc_set_tb_clk;
950 }
951 
952 /* Specific helpers for POWER & PowerPC 601 RTC */
953 #if 0
954 static clk_setup_cb cpu_ppc601_rtc_init (CPUPPCState *env)
955 {
956     return cpu_ppc_tb_init(env, 7812500);
957 }
958 #endif
959 
960 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
961 {
962     _cpu_ppc_store_tbu(env, value);
963 }
964 
965 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
966 {
967     return _cpu_ppc_load_tbu(env);
968 }
969 
970 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
971 {
972     cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
973 }
974 
975 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
976 {
977     return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
978 }
979 
980 /*****************************************************************************/
981 /* PowerPC 40x timers */
982 
983 /* PIT, FIT & WDT */
984 typedef struct ppc40x_timer_t ppc40x_timer_t;
985 struct ppc40x_timer_t {
986     uint64_t pit_reload;  /* PIT auto-reload value        */
987     uint64_t fit_next;    /* Tick for next FIT interrupt  */
988     QEMUTimer *fit_timer;
989     uint64_t wdt_next;    /* Tick for next WDT interrupt  */
990     QEMUTimer *wdt_timer;
991 
992     /* 405 have the PIT, 440 have a DECR.  */
993     unsigned int decr_excp;
994 };
995 
996 /* Fixed interval timer */
997 static void cpu_4xx_fit_cb (void *opaque)
998 {
999     PowerPCCPU *cpu;
1000     CPUPPCState *env;
1001     ppc_tb_t *tb_env;
1002     ppc40x_timer_t *ppc40x_timer;
1003     uint64_t now, next;
1004 
1005     env = opaque;
1006     cpu = ppc_env_get_cpu(env);
1007     tb_env = env->tb_env;
1008     ppc40x_timer = tb_env->opaque;
1009     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1010     switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1011     case 0:
1012         next = 1 << 9;
1013         break;
1014     case 1:
1015         next = 1 << 13;
1016         break;
1017     case 2:
1018         next = 1 << 17;
1019         break;
1020     case 3:
1021         next = 1 << 21;
1022         break;
1023     default:
1024         /* Cannot occur, but makes gcc happy */
1025         return;
1026     }
1027     next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
1028     if (next == now)
1029         next++;
1030     timer_mod(ppc40x_timer->fit_timer, next);
1031     env->spr[SPR_40x_TSR] |= 1 << 26;
1032     if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1033         ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1034     }
1035     LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1036            (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1037            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1038 }
1039 
1040 /* Programmable interval timer */
1041 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1042 {
1043     ppc40x_timer_t *ppc40x_timer;
1044     uint64_t now, next;
1045 
1046     ppc40x_timer = tb_env->opaque;
1047     if (ppc40x_timer->pit_reload <= 1 ||
1048         !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1049         (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1050         /* Stop PIT */
1051         LOG_TB("%s: stop PIT\n", __func__);
1052         timer_del(tb_env->decr_timer);
1053     } else {
1054         LOG_TB("%s: start PIT %016" PRIx64 "\n",
1055                     __func__, ppc40x_timer->pit_reload);
1056         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1057         next = now + muldiv64(ppc40x_timer->pit_reload,
1058                               NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1059         if (is_excp)
1060             next += tb_env->decr_next - now;
1061         if (next == now)
1062             next++;
1063         timer_mod(tb_env->decr_timer, next);
1064         tb_env->decr_next = next;
1065     }
1066 }
1067 
1068 static void cpu_4xx_pit_cb (void *opaque)
1069 {
1070     PowerPCCPU *cpu;
1071     CPUPPCState *env;
1072     ppc_tb_t *tb_env;
1073     ppc40x_timer_t *ppc40x_timer;
1074 
1075     env = opaque;
1076     cpu = ppc_env_get_cpu(env);
1077     tb_env = env->tb_env;
1078     ppc40x_timer = tb_env->opaque;
1079     env->spr[SPR_40x_TSR] |= 1 << 27;
1080     if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1081         ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1082     }
1083     start_stop_pit(env, tb_env, 1);
1084     LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
1085            "%016" PRIx64 "\n", __func__,
1086            (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1087            (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1088            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1089            ppc40x_timer->pit_reload);
1090 }
1091 
1092 /* Watchdog timer */
1093 static void cpu_4xx_wdt_cb (void *opaque)
1094 {
1095     PowerPCCPU *cpu;
1096     CPUPPCState *env;
1097     ppc_tb_t *tb_env;
1098     ppc40x_timer_t *ppc40x_timer;
1099     uint64_t now, next;
1100 
1101     env = opaque;
1102     cpu = ppc_env_get_cpu(env);
1103     tb_env = env->tb_env;
1104     ppc40x_timer = tb_env->opaque;
1105     now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1106     switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1107     case 0:
1108         next = 1 << 17;
1109         break;
1110     case 1:
1111         next = 1 << 21;
1112         break;
1113     case 2:
1114         next = 1 << 25;
1115         break;
1116     case 3:
1117         next = 1 << 29;
1118         break;
1119     default:
1120         /* Cannot occur, but makes gcc happy */
1121         return;
1122     }
1123     next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1124     if (next == now)
1125         next++;
1126     LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1127            env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1128     switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1129     case 0x0:
1130     case 0x1:
1131         timer_mod(ppc40x_timer->wdt_timer, next);
1132         ppc40x_timer->wdt_next = next;
1133         env->spr[SPR_40x_TSR] |= 1U << 31;
1134         break;
1135     case 0x2:
1136         timer_mod(ppc40x_timer->wdt_timer, next);
1137         ppc40x_timer->wdt_next = next;
1138         env->spr[SPR_40x_TSR] |= 1 << 30;
1139         if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1140             ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1141         }
1142         break;
1143     case 0x3:
1144         env->spr[SPR_40x_TSR] &= ~0x30000000;
1145         env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1146         switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1147         case 0x0:
1148             /* No reset */
1149             break;
1150         case 0x1: /* Core reset */
1151             ppc40x_core_reset(cpu);
1152             break;
1153         case 0x2: /* Chip reset */
1154             ppc40x_chip_reset(cpu);
1155             break;
1156         case 0x3: /* System reset */
1157             ppc40x_system_reset(cpu);
1158             break;
1159         }
1160     }
1161 }
1162 
1163 void store_40x_pit (CPUPPCState *env, target_ulong val)
1164 {
1165     ppc_tb_t *tb_env;
1166     ppc40x_timer_t *ppc40x_timer;
1167 
1168     tb_env = env->tb_env;
1169     ppc40x_timer = tb_env->opaque;
1170     LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1171     ppc40x_timer->pit_reload = val;
1172     start_stop_pit(env, tb_env, 0);
1173 }
1174 
1175 target_ulong load_40x_pit (CPUPPCState *env)
1176 {
1177     return cpu_ppc_load_decr(env);
1178 }
1179 
1180 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1181 {
1182     CPUPPCState *env = opaque;
1183     ppc_tb_t *tb_env = env->tb_env;
1184 
1185     LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1186                 freq);
1187     tb_env->tb_freq = freq;
1188     tb_env->decr_freq = freq;
1189     /* XXX: we should also update all timers */
1190 }
1191 
1192 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1193                                   unsigned int decr_excp)
1194 {
1195     ppc_tb_t *tb_env;
1196     ppc40x_timer_t *ppc40x_timer;
1197 
1198     tb_env = g_malloc0(sizeof(ppc_tb_t));
1199     env->tb_env = tb_env;
1200     tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1201     ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1202     tb_env->tb_freq = freq;
1203     tb_env->decr_freq = freq;
1204     tb_env->opaque = ppc40x_timer;
1205     LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1206     if (ppc40x_timer != NULL) {
1207         /* We use decr timer for PIT */
1208         tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1209         ppc40x_timer->fit_timer =
1210             timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1211         ppc40x_timer->wdt_timer =
1212             timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1213         ppc40x_timer->decr_excp = decr_excp;
1214     }
1215 
1216     return &ppc_40x_set_tb_clk;
1217 }
1218 
1219 /*****************************************************************************/
1220 /* Embedded PowerPC Device Control Registers */
1221 typedef struct ppc_dcrn_t ppc_dcrn_t;
1222 struct ppc_dcrn_t {
1223     dcr_read_cb dcr_read;
1224     dcr_write_cb dcr_write;
1225     void *opaque;
1226 };
1227 
1228 /* XXX: on 460, DCR addresses are 32 bits wide,
1229  *      using DCRIPR to get the 22 upper bits of the DCR address
1230  */
1231 #define DCRN_NB 1024
1232 struct ppc_dcr_t {
1233     ppc_dcrn_t dcrn[DCRN_NB];
1234     int (*read_error)(int dcrn);
1235     int (*write_error)(int dcrn);
1236 };
1237 
1238 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1239 {
1240     ppc_dcrn_t *dcr;
1241 
1242     if (dcrn < 0 || dcrn >= DCRN_NB)
1243         goto error;
1244     dcr = &dcr_env->dcrn[dcrn];
1245     if (dcr->dcr_read == NULL)
1246         goto error;
1247     *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1248 
1249     return 0;
1250 
1251  error:
1252     if (dcr_env->read_error != NULL)
1253         return (*dcr_env->read_error)(dcrn);
1254 
1255     return -1;
1256 }
1257 
1258 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1259 {
1260     ppc_dcrn_t *dcr;
1261 
1262     if (dcrn < 0 || dcrn >= DCRN_NB)
1263         goto error;
1264     dcr = &dcr_env->dcrn[dcrn];
1265     if (dcr->dcr_write == NULL)
1266         goto error;
1267     (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1268 
1269     return 0;
1270 
1271  error:
1272     if (dcr_env->write_error != NULL)
1273         return (*dcr_env->write_error)(dcrn);
1274 
1275     return -1;
1276 }
1277 
1278 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1279                       dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1280 {
1281     ppc_dcr_t *dcr_env;
1282     ppc_dcrn_t *dcr;
1283 
1284     dcr_env = env->dcr_env;
1285     if (dcr_env == NULL)
1286         return -1;
1287     if (dcrn < 0 || dcrn >= DCRN_NB)
1288         return -1;
1289     dcr = &dcr_env->dcrn[dcrn];
1290     if (dcr->opaque != NULL ||
1291         dcr->dcr_read != NULL ||
1292         dcr->dcr_write != NULL)
1293         return -1;
1294     dcr->opaque = opaque;
1295     dcr->dcr_read = dcr_read;
1296     dcr->dcr_write = dcr_write;
1297 
1298     return 0;
1299 }
1300 
1301 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1302                   int (*write_error)(int dcrn))
1303 {
1304     ppc_dcr_t *dcr_env;
1305 
1306     dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1307     dcr_env->read_error = read_error;
1308     dcr_env->write_error = write_error;
1309     env->dcr_env = dcr_env;
1310 
1311     return 0;
1312 }
1313 
1314 /*****************************************************************************/
1315 /* Debug port */
1316 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1317 {
1318     addr &= 0xF;
1319     switch (addr) {
1320     case 0:
1321         printf("%c", val);
1322         break;
1323     case 1:
1324         printf("\n");
1325         fflush(stdout);
1326         break;
1327     case 2:
1328         printf("Set loglevel to %04" PRIx32 "\n", val);
1329         qemu_set_log(val | 0x100);
1330         break;
1331     }
1332 }
1333 
1334 /* CPU device-tree ID helpers */
1335 int ppc_get_vcpu_dt_id(PowerPCCPU *cpu)
1336 {
1337     return cpu->cpu_dt_id;
1338 }
1339 
1340 PowerPCCPU *ppc_get_vcpu_by_dt_id(int cpu_dt_id)
1341 {
1342     CPUState *cs;
1343 
1344     CPU_FOREACH(cs) {
1345         PowerPCCPU *cpu = POWERPC_CPU(cs);
1346 
1347         if (cpu->cpu_dt_id == cpu_dt_id) {
1348             return cpu;
1349         }
1350     }
1351 
1352     return NULL;
1353 }
1354 
1355 void ppc_cpu_parse_features(const char *cpu_model)
1356 {
1357     CPUClass *cc;
1358     ObjectClass *oc;
1359     const char *typename;
1360     gchar **model_pieces;
1361 
1362     model_pieces = g_strsplit(cpu_model, ",", 2);
1363     if (!model_pieces[0]) {
1364         error_report("Invalid/empty CPU model name");
1365         exit(1);
1366     }
1367 
1368     oc = cpu_class_by_name(TYPE_POWERPC_CPU, model_pieces[0]);
1369     if (oc == NULL) {
1370         error_report("Unable to find CPU definition: %s", model_pieces[0]);
1371         exit(1);
1372     }
1373 
1374     typename = object_class_get_name(oc);
1375     cc = CPU_CLASS(oc);
1376     cc->parse_features(typename, model_pieces[1], &error_fatal);
1377     g_strfreev(model_pieces);
1378 }
1379