xref: /openbmc/qemu/hw/ppc/pnv_core.c (revision 806ab537ac4705bcf0c577382f0e3f90c6edcd14)
1 /*
2  * QEMU PowerPC PowerNV CPU Core model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public License
8  * as published by the Free Software Foundation; either version 2.1 of
9  * the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful, but
12  * WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "sysemu/reset.h"
22 #include "qapi/error.h"
23 #include "qemu/log.h"
24 #include "qemu/module.h"
25 #include "target/ppc/cpu.h"
26 #include "hw/ppc/ppc.h"
27 #include "hw/ppc/pnv.h"
28 #include "hw/ppc/pnv_chip.h"
29 #include "hw/ppc/pnv_core.h"
30 #include "hw/ppc/pnv_xscom.h"
31 #include "hw/ppc/xics.h"
32 #include "hw/qdev-properties.h"
33 #include "helper_regs.h"
34 
35 static const char *pnv_core_cpu_typename(PnvCore *pc)
36 {
37     const char *core_type = object_class_get_name(object_get_class(OBJECT(pc)));
38     int len = strlen(core_type) - strlen(PNV_CORE_TYPE_SUFFIX);
39     char *s = g_strdup_printf(POWERPC_CPU_TYPE_NAME("%.*s"), len, core_type);
40     const char *cpu_type = object_class_get_name(object_class_by_name(s));
41     g_free(s);
42     return cpu_type;
43 }
44 
45 static void pnv_core_cpu_reset(PnvCore *pc, PowerPCCPU *cpu)
46 {
47     CPUState *cs = CPU(cpu);
48     CPUPPCState *env = &cpu->env;
49     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(pc->chip);
50 
51     cpu_reset(cs);
52 
53     /*
54      * the skiboot firmware elects a primary thread to initialize the
55      * system and it can be any.
56      */
57     env->gpr[3] = PNV_FDT_ADDR;
58     env->nip = 0x10;
59     env->msr |= MSR_HVB; /* Hypervisor mode */
60     env->spr[SPR_HRMOR] = pc->hrmor;
61     if (pc->big_core) {
62         /* Clear "small core" bit on Power9/10 (this is set in default PVR) */
63         env->spr[SPR_PVR] &= ~PPC_BIT(51);
64     }
65     hreg_compute_hflags(env);
66     ppc_maybe_interrupt(env);
67 
68     cpu_ppc_tb_reset(env);
69 
70     pcc->intc_reset(pc->chip, cpu);
71 }
72 
73 /*
74  * These values are read by the PowerNV HW monitors under Linux
75  */
76 #define PNV_XSCOM_EX_DTS_RESULT0     0x50000
77 #define PNV_XSCOM_EX_DTS_RESULT1     0x50001
78 
79 static uint64_t pnv_core_power8_xscom_read(void *opaque, hwaddr addr,
80                                            unsigned int width)
81 {
82     uint32_t offset = addr >> 3;
83     uint64_t val = 0;
84 
85     /* The result should be 38 C */
86     switch (offset) {
87     case PNV_XSCOM_EX_DTS_RESULT0:
88         val = 0x26f024f023f0000ull;
89         break;
90     case PNV_XSCOM_EX_DTS_RESULT1:
91         val = 0x24f000000000000ull;
92         break;
93     default:
94         qemu_log_mask(LOG_UNIMP, "%s: unimp read 0x%08x\n", __func__,
95                       offset);
96     }
97 
98     return val;
99 }
100 
101 static void pnv_core_power8_xscom_write(void *opaque, hwaddr addr, uint64_t val,
102                                         unsigned int width)
103 {
104     uint32_t offset = addr >> 3;
105 
106     qemu_log_mask(LOG_UNIMP, "%s: unimp write 0x%08x\n", __func__,
107                   offset);
108 }
109 
110 static const MemoryRegionOps pnv_core_power8_xscom_ops = {
111     .read = pnv_core_power8_xscom_read,
112     .write = pnv_core_power8_xscom_write,
113     .valid.min_access_size = 8,
114     .valid.max_access_size = 8,
115     .impl.min_access_size = 8,
116     .impl.max_access_size = 8,
117     .endianness = DEVICE_BIG_ENDIAN,
118 };
119 
120 
121 /*
122  * POWER9 core controls
123  */
124 #define PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_HYP 0xf010d
125 #define PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_OTR 0xf010a
126 
127 #define PNV9_XSCOM_EC_CORE_THREAD_STATE    0x10ab3
128 
129 static uint64_t pnv_core_power9_xscom_read(void *opaque, hwaddr addr,
130                                            unsigned int width)
131 {
132     uint32_t offset = addr >> 3;
133     uint64_t val = 0;
134 
135     /* The result should be 38 C */
136     switch (offset) {
137     case PNV_XSCOM_EX_DTS_RESULT0:
138         val = 0x26f024f023f0000ull;
139         break;
140     case PNV_XSCOM_EX_DTS_RESULT1:
141         val = 0x24f000000000000ull;
142         break;
143     case PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_HYP:
144     case PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_OTR:
145         val = 0x0;
146         break;
147     case PNV9_XSCOM_EC_CORE_THREAD_STATE:
148         val = 0;
149         break;
150     default:
151         qemu_log_mask(LOG_UNIMP, "%s: unimp read 0x%08x\n", __func__,
152                       offset);
153     }
154 
155     return val;
156 }
157 
158 static void pnv_core_power9_xscom_write(void *opaque, hwaddr addr, uint64_t val,
159                                         unsigned int width)
160 {
161     uint32_t offset = addr >> 3;
162 
163     switch (offset) {
164     case PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_HYP:
165     case PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_OTR:
166         break;
167     default:
168         qemu_log_mask(LOG_UNIMP, "%s: unimp write 0x%08x\n", __func__,
169                       offset);
170     }
171 }
172 
173 static const MemoryRegionOps pnv_core_power9_xscom_ops = {
174     .read = pnv_core_power9_xscom_read,
175     .write = pnv_core_power9_xscom_write,
176     .valid.min_access_size = 8,
177     .valid.max_access_size = 8,
178     .impl.min_access_size = 8,
179     .impl.max_access_size = 8,
180     .endianness = DEVICE_BIG_ENDIAN,
181 };
182 
183 /*
184  * POWER10 core controls
185  */
186 
187 #define PNV10_XSCOM_EC_CORE_THREAD_STATE    0x412
188 #define PNV10_XSCOM_EC_CORE_THREAD_INFO     0x413
189 #define PNV10_XSCOM_EC_CORE_DIRECT_CONTROLS 0x449
190 #define PNV10_XSCOM_EC_CORE_RAS_STATUS      0x454
191 
192 static uint64_t pnv_core_power10_xscom_read(void *opaque, hwaddr addr,
193                                            unsigned int width)
194 {
195     PnvCore *pc = PNV_CORE(opaque);
196     int nr_threads = CPU_CORE(pc)->nr_threads;
197     int i;
198     uint32_t offset = addr >> 3;
199     uint64_t val = 0;
200 
201     switch (offset) {
202     case PNV10_XSCOM_EC_CORE_THREAD_STATE:
203         for (i = 0; i < nr_threads; i++) {
204             PowerPCCPU *cpu = pc->threads[i];
205             CPUState *cs = CPU(cpu);
206 
207             if (cs->halted) {
208                 val |= PPC_BIT(56 + i);
209             }
210         }
211         if (pc->lpar_per_core) {
212             val |= PPC_BIT(62);
213         }
214         break;
215     case PNV10_XSCOM_EC_CORE_THREAD_INFO:
216         break;
217     case PNV10_XSCOM_EC_CORE_RAS_STATUS:
218         for (i = 0; i < nr_threads; i++) {
219             PowerPCCPU *cpu = pc->threads[i];
220             CPUPPCState *env = &cpu->env;
221             if (env->quiesced) {
222                 val |= PPC_BIT(0 + 8 * i) | PPC_BIT(1 + 8 * i);
223             }
224         }
225         break;
226     default:
227         qemu_log_mask(LOG_UNIMP, "%s: unimp read 0x%08x\n", __func__,
228                       offset);
229     }
230 
231     return val;
232 }
233 
234 static void pnv_core_power10_xscom_write(void *opaque, hwaddr addr,
235                                          uint64_t val, unsigned int width)
236 {
237     PnvCore *pc = PNV_CORE(opaque);
238     int nr_threads = CPU_CORE(pc)->nr_threads;
239     int i;
240     uint32_t offset = addr >> 3;
241 
242     switch (offset) {
243     case PNV10_XSCOM_EC_CORE_DIRECT_CONTROLS:
244         for (i = 0; i < nr_threads; i++) {
245             PowerPCCPU *cpu = pc->threads[i];
246             CPUState *cs = CPU(cpu);
247             CPUPPCState *env = &cpu->env;
248 
249             if (val & PPC_BIT(7 + 8 * i)) { /* stop */
250                 val &= ~PPC_BIT(7 + 8 * i);
251                 cpu_pause(cs);
252                 env->quiesced = true;
253             }
254             if (val & PPC_BIT(6 + 8 * i)) { /* start */
255                 val &= ~PPC_BIT(6 + 8 * i);
256                 env->quiesced = false;
257                 cpu_resume(cs);
258             }
259             if (val & PPC_BIT(4 + 8 * i)) { /* sreset */
260                 val &= ~PPC_BIT(4 + 8 * i);
261                 env->quiesced = false;
262                 pnv_cpu_do_nmi_resume(cs);
263             }
264             if (val & PPC_BIT(3 + 8 * i)) { /* clear maint */
265                 env->quiesced = false;
266                 /*
267                  * Hardware has very particular cases for where clear maint
268                  * must be used and where start must be used to resume a
269                  * thread. These are not modelled exactly, just treat
270                  * this and start the same.
271                  */
272                 val &= ~PPC_BIT(3 + 8 * i);
273                 cpu_resume(cs);
274             }
275         }
276         if (val) {
277             qemu_log_mask(LOG_UNIMP, "%s: unimp bits in DIRECT_CONTROLS "
278                                      "0x%016" PRIx64 "\n", __func__, val);
279         }
280         break;
281 
282     default:
283         qemu_log_mask(LOG_UNIMP, "%s: unimp write 0x%08x\n", __func__,
284                       offset);
285     }
286 }
287 
288 static const MemoryRegionOps pnv_core_power10_xscom_ops = {
289     .read = pnv_core_power10_xscom_read,
290     .write = pnv_core_power10_xscom_write,
291     .valid.min_access_size = 8,
292     .valid.max_access_size = 8,
293     .impl.min_access_size = 8,
294     .impl.max_access_size = 8,
295     .endianness = DEVICE_BIG_ENDIAN,
296 };
297 
298 static void pnv_core_cpu_realize(PnvCore *pc, PowerPCCPU *cpu, Error **errp,
299                                  int thread_index)
300 {
301     CPUPPCState *env = &cpu->env;
302     int core_hwid;
303     ppc_spr_t *pir_spr = &env->spr_cb[SPR_PIR];
304     ppc_spr_t *tir_spr = &env->spr_cb[SPR_TIR];
305     uint32_t pir, tir;
306     Error *local_err = NULL;
307     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(pc->chip);
308 
309     if (!qdev_realize(DEVICE(cpu), NULL, errp)) {
310         return;
311     }
312 
313     pcc->intc_create(pc->chip, cpu, &local_err);
314     if (local_err) {
315         error_propagate(errp, local_err);
316         return;
317     }
318 
319     core_hwid = object_property_get_uint(OBJECT(pc), "hwid", &error_abort);
320 
321     pcc->get_pir_tir(pc->chip, core_hwid, thread_index, &pir, &tir);
322     pir_spr->default_value = pir;
323     tir_spr->default_value = tir;
324 
325     env->chip_index = pc->chip->chip_id;
326 
327     if (pc->big_core) {
328         /* 2 "small cores" get the same core index for SMT operations */
329         env->core_index = core_hwid >> 1;
330     } else {
331         env->core_index = core_hwid;
332     }
333 
334     if (pc->lpar_per_core) {
335         cpu_ppc_set_1lpar(cpu);
336     }
337 
338     /* Set time-base frequency to 512 MHz */
339     cpu_ppc_tb_init(env, PNV_TIMEBASE_FREQ);
340 }
341 
342 static void pnv_core_reset(void *dev)
343 {
344     CPUCore *cc = CPU_CORE(dev);
345     PnvCore *pc = PNV_CORE(dev);
346     int i;
347 
348     for (i = 0; i < cc->nr_threads; i++) {
349         pnv_core_cpu_reset(pc, pc->threads[i]);
350     }
351 }
352 
353 static void pnv_core_realize(DeviceState *dev, Error **errp)
354 {
355     PnvCore *pc = PNV_CORE(OBJECT(dev));
356     PnvCoreClass *pcc = PNV_CORE_GET_CLASS(pc);
357     CPUCore *cc = CPU_CORE(OBJECT(dev));
358     const char *typename = pnv_core_cpu_typename(pc);
359     Error *local_err = NULL;
360     void *obj;
361     int i, j;
362     char name[32];
363 
364     assert(pc->chip);
365 
366     pc->threads = g_new(PowerPCCPU *, cc->nr_threads);
367     for (i = 0; i < cc->nr_threads; i++) {
368         PowerPCCPU *cpu;
369         PnvCPUState *pnv_cpu;
370 
371         obj = object_new(typename);
372         cpu = POWERPC_CPU(obj);
373 
374         pc->threads[i] = POWERPC_CPU(obj);
375         if (cc->nr_threads > 1) {
376             cpu->env.has_smt_siblings = true;
377         }
378 
379         snprintf(name, sizeof(name), "thread[%d]", i);
380         object_property_add_child(OBJECT(pc), name, obj);
381 
382         cpu->machine_data = g_new0(PnvCPUState, 1);
383         pnv_cpu = pnv_cpu_state(cpu);
384         pnv_cpu->pnv_core = pc;
385 
386         object_unref(obj);
387     }
388 
389     for (j = 0; j < cc->nr_threads; j++) {
390         pnv_core_cpu_realize(pc, pc->threads[j], &local_err, j);
391         if (local_err) {
392             goto err;
393         }
394     }
395 
396     snprintf(name, sizeof(name), "xscom-core.%d", cc->core_id);
397     pnv_xscom_region_init(&pc->xscom_regs, OBJECT(dev), pcc->xscom_ops,
398                           pc, name, pcc->xscom_size);
399 
400     qemu_register_reset(pnv_core_reset, pc);
401     return;
402 
403 err:
404     while (--i >= 0) {
405         obj = OBJECT(pc->threads[i]);
406         object_unparent(obj);
407     }
408     g_free(pc->threads);
409     error_propagate(errp, local_err);
410 }
411 
412 static void pnv_core_cpu_unrealize(PnvCore *pc, PowerPCCPU *cpu)
413 {
414     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
415     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(pc->chip);
416 
417     pcc->intc_destroy(pc->chip, cpu);
418     cpu_remove_sync(CPU(cpu));
419     cpu->machine_data = NULL;
420     g_free(pnv_cpu);
421     object_unparent(OBJECT(cpu));
422 }
423 
424 static void pnv_core_unrealize(DeviceState *dev)
425 {
426     PnvCore *pc = PNV_CORE(dev);
427     CPUCore *cc = CPU_CORE(dev);
428     int i;
429 
430     qemu_unregister_reset(pnv_core_reset, pc);
431 
432     for (i = 0; i < cc->nr_threads; i++) {
433         pnv_core_cpu_unrealize(pc, pc->threads[i]);
434     }
435     g_free(pc->threads);
436 }
437 
438 static Property pnv_core_properties[] = {
439     DEFINE_PROP_UINT32("hwid", PnvCore, hwid, 0),
440     DEFINE_PROP_UINT64("hrmor", PnvCore, hrmor, 0),
441     DEFINE_PROP_BOOL("big-core", PnvCore, big_core, false),
442     DEFINE_PROP_BOOL("quirk-tb-big-core", PnvCore, tod_state.big_core_quirk,
443                      false),
444     DEFINE_PROP_BOOL("lpar-per-core", PnvCore, lpar_per_core, false),
445     DEFINE_PROP_LINK("chip", PnvCore, chip, TYPE_PNV_CHIP, PnvChip *),
446     DEFINE_PROP_END_OF_LIST(),
447 };
448 
449 static void pnv_core_power8_class_init(ObjectClass *oc, void *data)
450 {
451     PnvCoreClass *pcc = PNV_CORE_CLASS(oc);
452 
453     pcc->xscom_ops = &pnv_core_power8_xscom_ops;
454     pcc->xscom_size = PNV_XSCOM_EX_SIZE;
455 }
456 
457 static void pnv_core_power9_class_init(ObjectClass *oc, void *data)
458 {
459     PnvCoreClass *pcc = PNV_CORE_CLASS(oc);
460 
461     pcc->xscom_ops = &pnv_core_power9_xscom_ops;
462     pcc->xscom_size = PNV_XSCOM_EX_SIZE;
463 }
464 
465 static void pnv_core_power10_class_init(ObjectClass *oc, void *data)
466 {
467     PnvCoreClass *pcc = PNV_CORE_CLASS(oc);
468 
469     pcc->xscom_ops = &pnv_core_power10_xscom_ops;
470     pcc->xscom_size = PNV10_XSCOM_EC_SIZE;
471 }
472 
473 static void pnv_core_class_init(ObjectClass *oc, void *data)
474 {
475     DeviceClass *dc = DEVICE_CLASS(oc);
476 
477     dc->realize = pnv_core_realize;
478     dc->unrealize = pnv_core_unrealize;
479     device_class_set_props(dc, pnv_core_properties);
480     dc->user_creatable = false;
481 }
482 
483 #define DEFINE_PNV_CORE_TYPE(family, cpu_model) \
484     {                                           \
485         .parent = TYPE_PNV_CORE,                \
486         .name = PNV_CORE_TYPE_NAME(cpu_model),  \
487         .class_init = pnv_core_##family##_class_init, \
488     }
489 
490 static const TypeInfo pnv_core_infos[] = {
491     {
492         .name           = TYPE_PNV_CORE,
493         .parent         = TYPE_CPU_CORE,
494         .instance_size  = sizeof(PnvCore),
495         .class_size     = sizeof(PnvCoreClass),
496         .class_init = pnv_core_class_init,
497         .abstract       = true,
498     },
499     DEFINE_PNV_CORE_TYPE(power8, "power8e_v2.1"),
500     DEFINE_PNV_CORE_TYPE(power8, "power8_v2.0"),
501     DEFINE_PNV_CORE_TYPE(power8, "power8nvl_v1.0"),
502     DEFINE_PNV_CORE_TYPE(power9, "power9_v2.2"),
503     DEFINE_PNV_CORE_TYPE(power10, "power10_v2.0"),
504 };
505 
506 DEFINE_TYPES(pnv_core_infos)
507 
508 /*
509  * POWER9 Quads
510  */
511 
512 #define P9X_EX_NCU_SPEC_BAR                     0x11010
513 
514 static uint64_t pnv_quad_power9_xscom_read(void *opaque, hwaddr addr,
515                                            unsigned int width)
516 {
517     uint32_t offset = addr >> 3;
518     uint64_t val = -1;
519 
520     switch (offset) {
521     case P9X_EX_NCU_SPEC_BAR:
522     case P9X_EX_NCU_SPEC_BAR + 0x400: /* Second EX */
523         val = 0;
524         break;
525     default:
526         qemu_log_mask(LOG_UNIMP, "%s: unimp read 0x%08x\n", __func__,
527                       offset);
528     }
529 
530     return val;
531 }
532 
533 static void pnv_quad_power9_xscom_write(void *opaque, hwaddr addr, uint64_t val,
534                                         unsigned int width)
535 {
536     uint32_t offset = addr >> 3;
537 
538     switch (offset) {
539     case P9X_EX_NCU_SPEC_BAR:
540     case P9X_EX_NCU_SPEC_BAR + 0x400: /* Second EX */
541         break;
542     default:
543         qemu_log_mask(LOG_UNIMP, "%s: unimp write 0x%08x\n", __func__,
544                   offset);
545     }
546 }
547 
548 static const MemoryRegionOps pnv_quad_power9_xscom_ops = {
549     .read = pnv_quad_power9_xscom_read,
550     .write = pnv_quad_power9_xscom_write,
551     .valid.min_access_size = 8,
552     .valid.max_access_size = 8,
553     .impl.min_access_size = 8,
554     .impl.max_access_size = 8,
555     .endianness = DEVICE_BIG_ENDIAN,
556 };
557 
558 /*
559  * POWER10 Quads
560  */
561 
562 static uint64_t pnv_quad_power10_xscom_read(void *opaque, hwaddr addr,
563                                             unsigned int width)
564 {
565     uint32_t offset = addr >> 3;
566     uint64_t val = -1;
567 
568     switch (offset) {
569     default:
570         qemu_log_mask(LOG_UNIMP, "%s: unimp read 0x%08x\n", __func__,
571                       offset);
572     }
573 
574     return val;
575 }
576 
577 static void pnv_quad_power10_xscom_write(void *opaque, hwaddr addr,
578                                          uint64_t val, unsigned int width)
579 {
580     uint32_t offset = addr >> 3;
581 
582     switch (offset) {
583     default:
584         qemu_log_mask(LOG_UNIMP, "%s: unimp write 0x%08x\n", __func__,
585                       offset);
586     }
587 }
588 
589 static const MemoryRegionOps pnv_quad_power10_xscom_ops = {
590     .read = pnv_quad_power10_xscom_read,
591     .write = pnv_quad_power10_xscom_write,
592     .valid.min_access_size = 8,
593     .valid.max_access_size = 8,
594     .impl.min_access_size = 8,
595     .impl.max_access_size = 8,
596     .endianness = DEVICE_BIG_ENDIAN,
597 };
598 
599 #define P10_QME_SPWU_HYP 0x83c
600 #define P10_QME_SSH_HYP  0x82c
601 
602 static uint64_t pnv_qme_power10_xscom_read(void *opaque, hwaddr addr,
603                                             unsigned int width)
604 {
605     PnvQuad *eq = PNV_QUAD(opaque);
606     uint32_t offset = addr >> 3;
607     uint64_t val = -1;
608 
609     /*
610      * Forth nibble selects the core within a quad, mask it to process read
611      * for any core.
612      */
613     switch (offset & ~PPC_BITMASK32(16, 19)) {
614     case P10_QME_SSH_HYP:
615         val = 0;
616         if (eq->special_wakeup_done) {
617             val |= PPC_BIT(1); /* SPWU DONE */
618             val |= PPC_BIT(4); /* SSH SPWU DONE */
619         }
620         break;
621     default:
622         qemu_log_mask(LOG_UNIMP, "%s: unimp read 0x%08x\n", __func__,
623                       offset);
624     }
625 
626     return val;
627 }
628 
629 static void pnv_qme_power10_xscom_write(void *opaque, hwaddr addr,
630                                          uint64_t val, unsigned int width)
631 {
632     PnvQuad *eq = PNV_QUAD(opaque);
633     uint32_t offset = addr >> 3;
634     bool set;
635     int i;
636 
637     switch (offset & ~PPC_BITMASK32(16, 19)) {
638     case P10_QME_SPWU_HYP:
639         set = !!(val & PPC_BIT(0));
640         eq->special_wakeup_done = set;
641         for (i = 0; i < 4; i++) {
642             /* These bits select cores in the quad */
643             if (offset & PPC_BIT32(16 + i)) {
644                 eq->special_wakeup[i] = set;
645             }
646         }
647         break;
648     default:
649         qemu_log_mask(LOG_UNIMP, "%s: unimp write 0x%08x\n", __func__,
650                       offset);
651     }
652 }
653 
654 static const MemoryRegionOps pnv_qme_power10_xscom_ops = {
655     .read = pnv_qme_power10_xscom_read,
656     .write = pnv_qme_power10_xscom_write,
657     .valid.min_access_size = 8,
658     .valid.max_access_size = 8,
659     .impl.min_access_size = 8,
660     .impl.max_access_size = 8,
661     .endianness = DEVICE_BIG_ENDIAN,
662 };
663 
664 static void pnv_quad_power9_realize(DeviceState *dev, Error **errp)
665 {
666     PnvQuad *eq = PNV_QUAD(dev);
667     PnvQuadClass *pqc = PNV_QUAD_GET_CLASS(eq);
668     char name[32];
669 
670     snprintf(name, sizeof(name), "xscom-quad.%d", eq->quad_id);
671     pnv_xscom_region_init(&eq->xscom_regs, OBJECT(dev),
672                           pqc->xscom_ops,
673                           eq, name,
674                           pqc->xscom_size);
675 }
676 
677 static void pnv_quad_power10_realize(DeviceState *dev, Error **errp)
678 {
679     PnvQuad *eq = PNV_QUAD(dev);
680     PnvQuadClass *pqc = PNV_QUAD_GET_CLASS(eq);
681     char name[32];
682 
683     snprintf(name, sizeof(name), "xscom-quad.%d", eq->quad_id);
684     pnv_xscom_region_init(&eq->xscom_regs, OBJECT(dev),
685                           pqc->xscom_ops,
686                           eq, name,
687                           pqc->xscom_size);
688 
689     snprintf(name, sizeof(name), "xscom-qme.%d", eq->quad_id);
690     pnv_xscom_region_init(&eq->xscom_qme_regs, OBJECT(dev),
691                           pqc->xscom_qme_ops,
692                           eq, name,
693                           pqc->xscom_qme_size);
694 }
695 
696 static Property pnv_quad_properties[] = {
697     DEFINE_PROP_UINT32("quad-id", PnvQuad, quad_id, 0),
698     DEFINE_PROP_END_OF_LIST(),
699 };
700 
701 static void pnv_quad_power9_class_init(ObjectClass *oc, void *data)
702 {
703     PnvQuadClass *pqc = PNV_QUAD_CLASS(oc);
704     DeviceClass *dc = DEVICE_CLASS(oc);
705 
706     dc->realize = pnv_quad_power9_realize;
707 
708     pqc->xscom_ops = &pnv_quad_power9_xscom_ops;
709     pqc->xscom_size = PNV9_XSCOM_EQ_SIZE;
710 }
711 
712 static void pnv_quad_power10_class_init(ObjectClass *oc, void *data)
713 {
714     PnvQuadClass *pqc = PNV_QUAD_CLASS(oc);
715     DeviceClass *dc = DEVICE_CLASS(oc);
716 
717     dc->realize = pnv_quad_power10_realize;
718 
719     pqc->xscom_ops = &pnv_quad_power10_xscom_ops;
720     pqc->xscom_size = PNV10_XSCOM_EQ_SIZE;
721 
722     pqc->xscom_qme_ops = &pnv_qme_power10_xscom_ops;
723     pqc->xscom_qme_size = PNV10_XSCOM_QME_SIZE;
724 }
725 
726 static void pnv_quad_class_init(ObjectClass *oc, void *data)
727 {
728     DeviceClass *dc = DEVICE_CLASS(oc);
729 
730     device_class_set_props(dc, pnv_quad_properties);
731     dc->user_creatable = false;
732 }
733 
734 static const TypeInfo pnv_quad_infos[] = {
735     {
736         .name          = TYPE_PNV_QUAD,
737         .parent        = TYPE_DEVICE,
738         .instance_size = sizeof(PnvQuad),
739         .class_size    = sizeof(PnvQuadClass),
740         .class_init    = pnv_quad_class_init,
741         .abstract      = true,
742     },
743     {
744         .parent = TYPE_PNV_QUAD,
745         .name = PNV_QUAD_TYPE_NAME("power9"),
746         .class_init = pnv_quad_power9_class_init,
747     },
748     {
749         .parent = TYPE_PNV_QUAD,
750         .name = PNV_QUAD_TYPE_NAME("power10"),
751         .class_init = pnv_quad_power10_class_init,
752     },
753 };
754 
755 DEFINE_TYPES(pnv_quad_infos);
756