xref: /openbmc/qemu/hw/ppc/pnv.c (revision d312b62a2e5f1e6c44fe0ba50c784d4b89413cca)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qemu/units.h"
23 #include "qemu/cutils.h"
24 #include "qapi/error.h"
25 #include "sysemu/qtest.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/numa.h"
28 #include "sysemu/reset.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/cpus.h"
31 #include "sysemu/device_tree.h"
32 #include "sysemu/hw_accel.h"
33 #include "target/ppc/cpu.h"
34 #include "hw/ppc/fdt.h"
35 #include "hw/ppc/ppc.h"
36 #include "hw/ppc/pnv.h"
37 #include "hw/ppc/pnv_core.h"
38 #include "hw/loader.h"
39 #include "hw/nmi.h"
40 #include "qapi/visitor.h"
41 #include "qapi/type-helpers.h"
42 #include "monitor/monitor.h"
43 #include "hw/intc/intc.h"
44 #include "hw/ipmi/ipmi.h"
45 #include "target/ppc/mmu-hash64.h"
46 #include "hw/pci/msi.h"
47 #include "hw/pci-host/pnv_phb.h"
48 #include "hw/pci-host/pnv_phb3.h"
49 #include "hw/pci-host/pnv_phb4.h"
50 
51 #include "hw/ppc/xics.h"
52 #include "hw/qdev-properties.h"
53 #include "hw/ppc/pnv_chip.h"
54 #include "hw/ppc/pnv_xscom.h"
55 #include "hw/ppc/pnv_pnor.h"
56 
57 #include "hw/isa/isa.h"
58 #include "hw/char/serial.h"
59 #include "hw/rtc/mc146818rtc.h"
60 
61 #include <libfdt.h>
62 
63 #define FDT_MAX_SIZE            (1 * MiB)
64 
65 #define FW_FILE_NAME            "skiboot.lid"
66 #define FW_LOAD_ADDR            0x0
67 #define FW_MAX_SIZE             (16 * MiB)
68 
69 #define KERNEL_LOAD_ADDR        0x20000000
70 #define KERNEL_MAX_SIZE         (128 * MiB)
71 #define INITRD_LOAD_ADDR        0x28000000
72 #define INITRD_MAX_SIZE         (128 * MiB)
73 
74 static const char *pnv_chip_core_typename(const PnvChip *o)
75 {
76     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
77     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
78     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
79     const char *core_type = object_class_get_name(object_class_by_name(s));
80     g_free(s);
81     return core_type;
82 }
83 
84 /*
85  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
86  *     4 * 4 sockets * 12 cores * 8 threads = 1536
87  * Let's make it 2^11
88  */
89 #define MAX_CPUS                2048
90 
91 /*
92  * Memory nodes are created by hostboot, one for each range of memory
93  * that has a different "affinity". In practice, it means one range
94  * per chip.
95  */
96 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
97 {
98     char *mem_name;
99     uint64_t mem_reg_property[2];
100     int off;
101 
102     mem_reg_property[0] = cpu_to_be64(start);
103     mem_reg_property[1] = cpu_to_be64(size);
104 
105     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
106     off = fdt_add_subnode(fdt, 0, mem_name);
107     g_free(mem_name);
108 
109     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
110     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
111                        sizeof(mem_reg_property))));
112     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
113 }
114 
115 static int get_cpus_node(void *fdt)
116 {
117     int cpus_offset = fdt_path_offset(fdt, "/cpus");
118 
119     if (cpus_offset < 0) {
120         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
121         if (cpus_offset) {
122             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
123             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
124         }
125     }
126     _FDT(cpus_offset);
127     return cpus_offset;
128 }
129 
130 /*
131  * The PowerNV cores (and threads) need to use real HW ids and not an
132  * incremental index like it has been done on other platforms. This HW
133  * id is stored in the CPU PIR, it is used to create cpu nodes in the
134  * device tree, used in XSCOM to address cores and in interrupt
135  * servers.
136  */
137 static int pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
138 {
139     PowerPCCPU *cpu = pc->threads[0];
140     CPUState *cs = CPU(cpu);
141     DeviceClass *dc = DEVICE_GET_CLASS(cs);
142     int smt_threads = CPU_CORE(pc)->nr_threads;
143     CPUPPCState *env = &cpu->env;
144     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
145     PnvChipClass *pnv_cc = PNV_CHIP_GET_CLASS(chip);
146     g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
147     int i;
148     uint32_t pir;
149     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
150                        0xffffffff, 0xffffffff};
151     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
152     uint32_t cpufreq = 1000000000;
153     uint32_t page_sizes_prop[64];
154     size_t page_sizes_prop_size;
155     int offset;
156     char *nodename;
157     int cpus_offset = get_cpus_node(fdt);
158 
159     pir = pnv_cc->chip_pir(chip, pc->hwid, 0);
160 
161     nodename = g_strdup_printf("%s@%x", dc->fw_name, pir);
162     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
163     _FDT(offset);
164     g_free(nodename);
165 
166     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
167 
168     _FDT((fdt_setprop_cell(fdt, offset, "reg", pir)));
169     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pir)));
170     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
171 
172     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
173     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
174                             env->dcache_line_size)));
175     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
176                             env->dcache_line_size)));
177     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
178                             env->icache_line_size)));
179     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
180                             env->icache_line_size)));
181 
182     if (pcc->l1_dcache_size) {
183         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
184                                pcc->l1_dcache_size)));
185     } else {
186         warn_report("Unknown L1 dcache size for cpu");
187     }
188     if (pcc->l1_icache_size) {
189         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
190                                pcc->l1_icache_size)));
191     } else {
192         warn_report("Unknown L1 icache size for cpu");
193     }
194 
195     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
196     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
197     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
198                            cpu->hash64_opts->slb_size)));
199     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
200     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
201 
202     if (ppc_has_spr(cpu, SPR_PURR)) {
203         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
204     }
205 
206     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
207         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
208                            segs, sizeof(segs))));
209     }
210 
211     /*
212      * Advertise VMX/VSX (vector extensions) if available
213      *   0 / no property == no vector extensions
214      *   1               == VMX / Altivec available
215      *   2               == VSX available
216      */
217     if (env->insns_flags & PPC_ALTIVEC) {
218         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
219 
220         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
221     }
222 
223     /*
224      * Advertise DFP (Decimal Floating Point) if available
225      *   0 / no property == no DFP
226      *   1               == DFP available
227      */
228     if (env->insns_flags2 & PPC2_DFP) {
229         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
230     }
231 
232     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
233                                                       sizeof(page_sizes_prop));
234     if (page_sizes_prop_size) {
235         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
236                            page_sizes_prop, page_sizes_prop_size)));
237     }
238 
239     /* Build interrupt servers properties */
240     for (i = 0; i < smt_threads; i++) {
241         servers_prop[i] = cpu_to_be32(pnv_cc->chip_pir(chip, pc->hwid, i));
242     }
243     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
244                        servers_prop, sizeof(*servers_prop) * smt_threads)));
245 
246     return offset;
247 }
248 
249 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t hwid,
250                        uint32_t nr_threads)
251 {
252     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
253     uint32_t pir = pcc->chip_pir(chip, hwid, 0);
254     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
255     char *name;
256     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
257     uint32_t irange[2], i, rsize;
258     uint64_t *reg;
259     int offset;
260 
261     irange[0] = cpu_to_be32(pir);
262     irange[1] = cpu_to_be32(nr_threads);
263 
264     rsize = sizeof(uint64_t) * 2 * nr_threads;
265     reg = g_malloc(rsize);
266     for (i = 0; i < nr_threads; i++) {
267         /* We know P8 PIR is linear with thread id */
268         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
269         reg[i * 2 + 1] = cpu_to_be64(0x1000);
270     }
271 
272     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
273     offset = fdt_add_subnode(fdt, 0, name);
274     _FDT(offset);
275     g_free(name);
276 
277     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
278     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
279     _FDT((fdt_setprop_string(fdt, offset, "device_type",
280                               "PowerPC-External-Interrupt-Presentation")));
281     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
282     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
283                        irange, sizeof(irange))));
284     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
285     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
286     g_free(reg);
287 }
288 
289 /*
290  * Adds a PnvPHB to the chip on P8.
291  * Implemented here, like for defaults PHBs
292  */
293 PnvChip *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb)
294 {
295     Pnv8Chip *chip8 = PNV8_CHIP(chip);
296 
297     phb->chip = chip;
298 
299     chip8->phbs[chip8->num_phbs] = phb;
300     chip8->num_phbs++;
301     return chip;
302 }
303 
304 /*
305  * Same as spapr pa_features_207 except pnv always enables CI largepages bit.
306  * HTM is always enabled because TCG does implement HTM, it's just a
307  * degenerate implementation.
308  */
309 static const uint8_t pa_features_207[] = { 24, 0,
310                  0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0,
311                  0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
312                  0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
313                  0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
314 
315 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
316 {
317     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
318     int i;
319 
320     pnv_dt_xscom(chip, fdt, 0,
321                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
322                  cpu_to_be64(PNV_XSCOM_SIZE),
323                  compat, sizeof(compat));
324 
325     for (i = 0; i < chip->nr_cores; i++) {
326         PnvCore *pnv_core = chip->cores[i];
327         int offset;
328 
329         offset = pnv_dt_core(chip, pnv_core, fdt);
330 
331         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
332                            pa_features_207, sizeof(pa_features_207))));
333 
334         /* Interrupt Control Presenters (ICP). One per core. */
335         pnv_dt_icp(chip, fdt, pnv_core->hwid, CPU_CORE(pnv_core)->nr_threads);
336     }
337 
338     if (chip->ram_size) {
339         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
340     }
341 }
342 
343 /*
344  * Same as spapr pa_features_300 except pnv always enables CI largepages bit.
345  */
346 static const uint8_t pa_features_300[] = { 66, 0,
347     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
348     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
349     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
350     /* 6: DS207 */
351     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
352     /* 16: Vector */
353     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
354     /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
355     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 18 - 23 */
356     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
357     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
358     /* 32: LE atomic, 34: EBB + ext EBB */
359     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
360     /* 40: Radix MMU */
361     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
362     /* 42: PM, 44: PC RA, 46: SC vec'd */
363     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
364     /* 48: SIMD, 50: QP BFP, 52: String */
365     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
366     /* 54: DecFP, 56: DecI, 58: SHA */
367     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
368     /* 60: NM atomic, 62: RNG */
369     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
370 };
371 
372 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
373 {
374     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
375     int i;
376 
377     pnv_dt_xscom(chip, fdt, 0,
378                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
379                  cpu_to_be64(PNV9_XSCOM_SIZE),
380                  compat, sizeof(compat));
381 
382     for (i = 0; i < chip->nr_cores; i++) {
383         PnvCore *pnv_core = chip->cores[i];
384         int offset;
385 
386         offset = pnv_dt_core(chip, pnv_core, fdt);
387 
388         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
389                            pa_features_300, sizeof(pa_features_300))));
390     }
391 
392     if (chip->ram_size) {
393         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
394     }
395 
396     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
397 }
398 
399 /*
400  * Same as spapr pa_features_31 except pnv always enables CI largepages bit,
401  * always disables copy/paste.
402  */
403 static const uint8_t pa_features_31[] = { 74, 0,
404     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
405     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
406     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
407     /* 6: DS207 */
408     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
409     /* 16: Vector */
410     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
411     /* 18: Vec. Scalar, 20: Vec. XOR */
412     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
413     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
414     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
415     /* 32: LE atomic, 34: EBB + ext EBB */
416     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
417     /* 40: Radix MMU */
418     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
419     /* 42: PM, 44: PC RA, 46: SC vec'd */
420     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
421     /* 48: SIMD, 50: QP BFP, 52: String */
422     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
423     /* 54: DecFP, 56: DecI, 58: SHA */
424     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
425     /* 60: NM atomic, 62: RNG */
426     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
427     /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */
428     0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */
429     /* 72: [P]HASHST/[P]HASHCHK */
430     0x80, 0x00,                         /* 72 - 73 */
431 };
432 
433 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
434 {
435     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
436     int i;
437 
438     pnv_dt_xscom(chip, fdt, 0,
439                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
440                  cpu_to_be64(PNV10_XSCOM_SIZE),
441                  compat, sizeof(compat));
442 
443     for (i = 0; i < chip->nr_cores; i++) {
444         PnvCore *pnv_core = chip->cores[i];
445         int offset;
446 
447         offset = pnv_dt_core(chip, pnv_core, fdt);
448 
449         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
450                            pa_features_31, sizeof(pa_features_31))));
451     }
452 
453     if (chip->ram_size) {
454         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
455     }
456 
457     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
458 }
459 
460 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
461 {
462     uint32_t io_base = d->ioport_id;
463     uint32_t io_regs[] = {
464         cpu_to_be32(1),
465         cpu_to_be32(io_base),
466         cpu_to_be32(2)
467     };
468     char *name;
469     int node;
470 
471     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
472     node = fdt_add_subnode(fdt, lpc_off, name);
473     _FDT(node);
474     g_free(name);
475 
476     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
477     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
478 }
479 
480 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
481 {
482     const char compatible[] = "ns16550\0pnpPNP,501";
483     uint32_t io_base = d->ioport_id;
484     uint32_t io_regs[] = {
485         cpu_to_be32(1),
486         cpu_to_be32(io_base),
487         cpu_to_be32(8)
488     };
489     uint32_t irq;
490     char *name;
491     int node;
492 
493     irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
494 
495     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
496     node = fdt_add_subnode(fdt, lpc_off, name);
497     _FDT(node);
498     g_free(name);
499 
500     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
501     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
502                       sizeof(compatible))));
503 
504     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
505     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
506     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
507     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
508                            fdt_get_phandle(fdt, lpc_off))));
509 
510     /* This is needed by Linux */
511     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
512 }
513 
514 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
515 {
516     const char compatible[] = "bt\0ipmi-bt";
517     uint32_t io_base;
518     uint32_t io_regs[] = {
519         cpu_to_be32(1),
520         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
521         cpu_to_be32(3)
522     };
523     uint32_t irq;
524     char *name;
525     int node;
526 
527     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
528     io_regs[1] = cpu_to_be32(io_base);
529 
530     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
531 
532     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
533     node = fdt_add_subnode(fdt, lpc_off, name);
534     _FDT(node);
535     g_free(name);
536 
537     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
538     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
539                       sizeof(compatible))));
540 
541     /* Mark it as reserved to avoid Linux trying to claim it */
542     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
543     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
544     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
545                            fdt_get_phandle(fdt, lpc_off))));
546 }
547 
548 typedef struct ForeachPopulateArgs {
549     void *fdt;
550     int offset;
551 } ForeachPopulateArgs;
552 
553 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
554 {
555     ForeachPopulateArgs *args = opaque;
556     ISADevice *d = ISA_DEVICE(dev);
557 
558     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
559         pnv_dt_rtc(d, args->fdt, args->offset);
560     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
561         pnv_dt_serial(d, args->fdt, args->offset);
562     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
563         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
564     } else {
565         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
566                      d->ioport_id);
567     }
568 
569     return 0;
570 }
571 
572 /*
573  * The default LPC bus of a multichip system is on chip 0. It's
574  * recognized by the firmware (skiboot) using a "primary" property.
575  */
576 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
577 {
578     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
579     ForeachPopulateArgs args = {
580         .fdt = fdt,
581         .offset = isa_offset,
582     };
583     uint32_t phandle;
584 
585     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
586 
587     phandle = qemu_fdt_alloc_phandle(fdt);
588     assert(phandle > 0);
589     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
590 
591     /*
592      * ISA devices are not necessarily parented to the ISA bus so we
593      * can not use object_child_foreach()
594      */
595     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
596                        &args);
597 }
598 
599 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
600 {
601     int off;
602 
603     off = fdt_add_subnode(fdt, 0, "ibm,opal");
604     off = fdt_add_subnode(fdt, off, "power-mgt");
605 
606     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
607 }
608 
609 static void *pnv_dt_create(MachineState *machine)
610 {
611     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
612     PnvMachineState *pnv = PNV_MACHINE(machine);
613     void *fdt;
614     char *buf;
615     int off;
616     int i;
617 
618     fdt = g_malloc0(FDT_MAX_SIZE);
619     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
620 
621     /* /qemu node */
622     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
623 
624     /* Root node */
625     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
626     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
627     _FDT((fdt_setprop_string(fdt, 0, "model",
628                              "IBM PowerNV (emulated by qemu)")));
629     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
630 
631     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
632     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
633     if (qemu_uuid_set) {
634         _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
635     }
636     g_free(buf);
637 
638     off = fdt_add_subnode(fdt, 0, "chosen");
639     if (machine->kernel_cmdline) {
640         _FDT((fdt_setprop_string(fdt, off, "bootargs",
641                                  machine->kernel_cmdline)));
642     }
643 
644     if (pnv->initrd_size) {
645         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
646         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
647 
648         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
649                                &start_prop, sizeof(start_prop))));
650         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
651                                &end_prop, sizeof(end_prop))));
652     }
653 
654     /* Populate device tree for each chip */
655     for (i = 0; i < pnv->num_chips; i++) {
656         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
657     }
658 
659     /* Populate ISA devices on chip 0 */
660     pnv_dt_isa(pnv, fdt);
661 
662     if (pnv->bmc) {
663         pnv_dt_bmc_sensors(pnv->bmc, fdt);
664     }
665 
666     /* Create an extra node for power management on machines that support it */
667     if (pmc->dt_power_mgt) {
668         pmc->dt_power_mgt(pnv, fdt);
669     }
670 
671     return fdt;
672 }
673 
674 static void pnv_powerdown_notify(Notifier *n, void *opaque)
675 {
676     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
677 
678     if (pnv->bmc) {
679         pnv_bmc_powerdown(pnv->bmc);
680     }
681 }
682 
683 static void pnv_reset(MachineState *machine, ShutdownCause reason)
684 {
685     PnvMachineState *pnv = PNV_MACHINE(machine);
686     IPMIBmc *bmc;
687     void *fdt;
688 
689     qemu_devices_reset(reason);
690 
691     /*
692      * The machine should provide by default an internal BMC simulator.
693      * If not, try to use the BMC device that was provided on the command
694      * line.
695      */
696     bmc = pnv_bmc_find(&error_fatal);
697     if (!pnv->bmc) {
698         if (!bmc) {
699             if (!qtest_enabled()) {
700                 warn_report("machine has no BMC device. Use '-device "
701                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
702                             "to define one");
703             }
704         } else {
705             pnv_bmc_set_pnor(bmc, pnv->pnor);
706             pnv->bmc = bmc;
707         }
708     }
709 
710     fdt = pnv_dt_create(machine);
711 
712     /* Pack resulting tree */
713     _FDT((fdt_pack(fdt)));
714 
715     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
716     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
717 
718     /*
719      * Set machine->fdt for 'dumpdtb' QMP/HMP command. Free
720      * the existing machine->fdt to avoid leaking it during
721      * a reset.
722      */
723     g_free(machine->fdt);
724     machine->fdt = fdt;
725 }
726 
727 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
728 {
729     Pnv8Chip *chip8 = PNV8_CHIP(chip);
730     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL);
731 
732     qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
733     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
734 }
735 
736 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
737 {
738     Pnv8Chip *chip8 = PNV8_CHIP(chip);
739     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C);
740 
741     qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
742     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
743 }
744 
745 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
746 {
747     Pnv9Chip *chip9 = PNV9_CHIP(chip);
748     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC);
749 
750     qdev_connect_gpio_out(DEVICE(&chip9->lpc), 0, irq);
751     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
752 }
753 
754 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
755 {
756     Pnv10Chip *chip10 = PNV10_CHIP(chip);
757     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC);
758 
759     qdev_connect_gpio_out(DEVICE(&chip10->lpc), 0, irq);
760     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
761 }
762 
763 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
764 {
765     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
766 }
767 
768 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
769 {
770     Pnv8Chip *chip8 = PNV8_CHIP(chip);
771     int i;
772 
773     g_autoptr(GString) buf = g_string_new("");
774     g_autoptr(HumanReadableText) info = NULL;
775 
776     ics_pic_print_info(&chip8->psi.ics, buf);
777 
778     for (i = 0; i < chip8->num_phbs; i++) {
779         PnvPHB *phb = chip8->phbs[i];
780         PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
781 
782         pnv_phb3_msi_pic_print_info(&phb3->msis, buf);
783         ics_pic_print_info(&phb3->lsis, buf);
784     }
785 
786     info = human_readable_text_from_str(buf);
787     monitor_puts(mon, info->human_readable_text);
788 }
789 
790 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
791 {
792     GString *buf = opaque;
793     PnvPHB *phb =  (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB);
794 
795     if (!phb) {
796         return 0;
797     }
798 
799     pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), buf);
800 
801     return 0;
802 }
803 
804 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
805 {
806     Pnv9Chip *chip9 = PNV9_CHIP(chip);
807     g_autoptr(GString) buf = g_string_new("");
808     g_autoptr(HumanReadableText) info = NULL;
809 
810     pnv_xive_pic_print_info(&chip9->xive, buf);
811     pnv_psi_pic_print_info(&chip9->psi, buf);
812     object_child_foreach_recursive(OBJECT(chip),
813                          pnv_chip_power9_pic_print_info_child, buf);
814 
815     info = human_readable_text_from_str(buf);
816     monitor_puts(mon, info->human_readable_text);
817 }
818 
819 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
820                                                 uint32_t core_id)
821 {
822     return PNV_XSCOM_EX_BASE(core_id);
823 }
824 
825 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
826                                                 uint32_t core_id)
827 {
828     return PNV9_XSCOM_EC_BASE(core_id);
829 }
830 
831 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
832                                                  uint32_t core_id)
833 {
834     return PNV10_XSCOM_EC_BASE(core_id);
835 }
836 
837 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
838 {
839     PowerPCCPUClass *ppc_default =
840         POWERPC_CPU_CLASS(object_class_by_name(default_type));
841     PowerPCCPUClass *ppc =
842         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
843 
844     return ppc_default->pvr_match(ppc_default, ppc->pvr, false);
845 }
846 
847 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
848 {
849     ISADevice *dev = isa_new("isa-ipmi-bt");
850 
851     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
852     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
853     isa_realize_and_unref(dev, bus, &error_fatal);
854 }
855 
856 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
857 {
858     Pnv10Chip *chip10 = PNV10_CHIP(chip);
859     g_autoptr(GString) buf = g_string_new("");
860     g_autoptr(HumanReadableText) info = NULL;
861 
862     pnv_xive2_pic_print_info(&chip10->xive, buf);
863     pnv_psi_pic_print_info(&chip10->psi, buf);
864     object_child_foreach_recursive(OBJECT(chip),
865                          pnv_chip_power9_pic_print_info_child, buf);
866 
867     info = human_readable_text_from_str(buf);
868     monitor_puts(mon, info->human_readable_text);
869 }
870 
871 /* Always give the first 1GB to chip 0 else we won't boot */
872 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
873 {
874     MachineState *machine = MACHINE(pnv);
875     uint64_t ram_per_chip;
876 
877     assert(machine->ram_size >= 1 * GiB);
878 
879     ram_per_chip = machine->ram_size / pnv->num_chips;
880     if (ram_per_chip >= 1 * GiB) {
881         return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
882     }
883 
884     assert(pnv->num_chips > 1);
885 
886     ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
887     return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
888 }
889 
890 static void pnv_init(MachineState *machine)
891 {
892     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
893     PnvMachineState *pnv = PNV_MACHINE(machine);
894     MachineClass *mc = MACHINE_GET_CLASS(machine);
895     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
896     char *fw_filename;
897     long fw_size;
898     uint64_t chip_ram_start = 0;
899     int i;
900     char *chip_typename;
901     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
902     DeviceState *dev;
903 
904     if (kvm_enabled()) {
905         error_report("machine %s does not support the KVM accelerator",
906                      mc->name);
907         exit(EXIT_FAILURE);
908     }
909 
910     /* allocate RAM */
911     if (machine->ram_size < mc->default_ram_size) {
912         char *sz = size_to_str(mc->default_ram_size);
913         error_report("Invalid RAM size, should be bigger than %s", sz);
914         g_free(sz);
915         exit(EXIT_FAILURE);
916     }
917     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
918 
919     /*
920      * Create our simple PNOR device
921      */
922     dev = qdev_new(TYPE_PNV_PNOR);
923     if (pnor) {
924         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
925     }
926     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
927     pnv->pnor = PNV_PNOR(dev);
928 
929     /* load skiboot firmware  */
930     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
931     if (!fw_filename) {
932         error_report("Could not find OPAL firmware '%s'", bios_name);
933         exit(1);
934     }
935 
936     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
937     if (fw_size < 0) {
938         error_report("Could not load OPAL firmware '%s'", fw_filename);
939         exit(1);
940     }
941     g_free(fw_filename);
942 
943     /* load kernel */
944     if (machine->kernel_filename) {
945         long kernel_size;
946 
947         kernel_size = load_image_targphys(machine->kernel_filename,
948                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
949         if (kernel_size < 0) {
950             error_report("Could not load kernel '%s'",
951                          machine->kernel_filename);
952             exit(1);
953         }
954     }
955 
956     /* load initrd */
957     if (machine->initrd_filename) {
958         pnv->initrd_base = INITRD_LOAD_ADDR;
959         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
960                                   pnv->initrd_base, INITRD_MAX_SIZE);
961         if (pnv->initrd_size < 0) {
962             error_report("Could not load initial ram disk '%s'",
963                          machine->initrd_filename);
964             exit(1);
965         }
966     }
967 
968     /* MSIs are supported on this platform */
969     msi_nonbroken = true;
970 
971     /*
972      * Check compatibility of the specified CPU with the machine
973      * default.
974      */
975     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
976         error_report("invalid CPU model '%s' for %s machine",
977                      machine->cpu_type, mc->name);
978         exit(1);
979     }
980 
981     /* Create the processor chips */
982     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
983     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
984                                     i, machine->cpu_type);
985     if (!object_class_by_name(chip_typename)) {
986         error_report("invalid chip model '%.*s' for %s machine",
987                      i, machine->cpu_type, mc->name);
988         exit(1);
989     }
990 
991     pnv->num_chips =
992         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
993 
994     if (machine->smp.threads > 8) {
995         error_report("Cannot support more than 8 threads/core "
996                      "on a powernv machine");
997         exit(1);
998     }
999     if (!is_power_of_2(machine->smp.threads)) {
1000         error_report("Cannot support %d threads/core on a powernv"
1001                      "machine because it must be a power of 2",
1002                      machine->smp.threads);
1003         exit(1);
1004     }
1005     /*
1006      * TODO: should we decide on how many chips we can create based
1007      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1008      */
1009     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
1010         error_report("invalid number of chips: '%d'", pnv->num_chips);
1011         error_printf(
1012             "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
1013         exit(1);
1014     }
1015 
1016     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
1017     for (i = 0; i < pnv->num_chips; i++) {
1018         char chip_name[32];
1019         Object *chip = OBJECT(qdev_new(chip_typename));
1020         uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
1021 
1022         pnv->chips[i] = PNV_CHIP(chip);
1023 
1024         /* Distribute RAM among the chips  */
1025         object_property_set_int(chip, "ram-start", chip_ram_start,
1026                                 &error_fatal);
1027         object_property_set_int(chip, "ram-size", chip_ram_size,
1028                                 &error_fatal);
1029         chip_ram_start += chip_ram_size;
1030 
1031         snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
1032         object_property_add_child(OBJECT(pnv), chip_name, chip);
1033         object_property_set_int(chip, "chip-id", i, &error_fatal);
1034         object_property_set_int(chip, "nr-cores", machine->smp.cores,
1035                                 &error_fatal);
1036         object_property_set_int(chip, "nr-threads", machine->smp.threads,
1037                                 &error_fatal);
1038         /*
1039          * The POWER8 machine use the XICS interrupt interface.
1040          * Propagate the XICS fabric to the chip and its controllers.
1041          */
1042         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
1043             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
1044         }
1045         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
1046             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
1047                                      &error_abort);
1048         }
1049         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
1050     }
1051     g_free(chip_typename);
1052 
1053     /* Instantiate ISA bus on chip 0 */
1054     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
1055 
1056     /* Create serial port */
1057     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1058 
1059     /* Create an RTC ISA device too */
1060     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
1061 
1062     /*
1063      * Create the machine BMC simulator and the IPMI BT device for
1064      * communication with the BMC
1065      */
1066     if (defaults_enabled()) {
1067         pnv->bmc = pnv_bmc_create(pnv->pnor);
1068         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
1069     }
1070 
1071     /*
1072      * The PNOR is mapped on the LPC FW address space by the BMC.
1073      * Since we can not reach the remote BMC machine with LPC memops,
1074      * map it always for now.
1075      */
1076     memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
1077                                 &pnv->pnor->mmio);
1078 
1079     /*
1080      * OpenPOWER systems use a IPMI SEL Event message to notify the
1081      * host to powerdown
1082      */
1083     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
1084     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
1085 
1086     /*
1087      * Create/Connect any machine-specific I2C devices
1088      */
1089     if (pmc->i2c_init) {
1090         pmc->i2c_init(pnv);
1091     }
1092 }
1093 
1094 /*
1095  *    0:21  Reserved - Read as zeros
1096  *   22:24  Chip ID
1097  *   25:28  Core number
1098  *   29:31  Thread ID
1099  */
1100 static uint32_t pnv_chip_pir_p8(PnvChip *chip, uint32_t core_id,
1101                                 uint32_t thread_id)
1102 {
1103     return (chip->chip_id << 7) | (core_id << 3) | thread_id;
1104 }
1105 
1106 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1107                                         Error **errp)
1108 {
1109     Pnv8Chip *chip8 = PNV8_CHIP(chip);
1110     Error *local_err = NULL;
1111     Object *obj;
1112     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1113 
1114     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
1115     if (local_err) {
1116         error_propagate(errp, local_err);
1117         return;
1118     }
1119 
1120     pnv_cpu->intc = obj;
1121 }
1122 
1123 
1124 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1125 {
1126     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1127 
1128     icp_reset(ICP(pnv_cpu->intc));
1129 }
1130 
1131 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1132 {
1133     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1134 
1135     icp_destroy(ICP(pnv_cpu->intc));
1136     pnv_cpu->intc = NULL;
1137 }
1138 
1139 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1140                                             GString *buf)
1141 {
1142     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), buf);
1143 }
1144 
1145 /*
1146  *    0:48  Reserved - Read as zeroes
1147  *   49:52  Node ID
1148  *   53:55  Chip ID
1149  *   56     Reserved - Read as zero
1150  *   57:61  Core number
1151  *   62:63  Thread ID
1152  *
1153  * We only care about the lower bits. uint32_t is fine for the moment.
1154  */
1155 static uint32_t pnv_chip_pir_p9(PnvChip *chip, uint32_t core_id,
1156                                 uint32_t thread_id)
1157 {
1158     if (chip->nr_threads == 8) {
1159         return (chip->chip_id << 8) | ((thread_id & 1) << 2) | (core_id << 3) |
1160                (thread_id >> 1);
1161     } else {
1162         return (chip->chip_id << 8) | (core_id << 2) | thread_id;
1163     }
1164 }
1165 
1166 /*
1167  *    0:48  Reserved - Read as zeroes
1168  *   49:52  Node ID
1169  *   53:55  Chip ID
1170  *   56     Reserved - Read as zero
1171  *   57:59  Quad ID
1172  *   60     Core Chiplet Pair ID
1173  *   61:63  Thread/Core Chiplet ID t0-t2
1174  *
1175  * We only care about the lower bits. uint32_t is fine for the moment.
1176  */
1177 static uint32_t pnv_chip_pir_p10(PnvChip *chip, uint32_t core_id,
1178                                  uint32_t thread_id)
1179 {
1180     if (chip->nr_threads == 8) {
1181         return (chip->chip_id << 8) | ((core_id / 4) << 4) |
1182                ((core_id % 2) << 3) | thread_id;
1183     } else {
1184         return (chip->chip_id << 8) | (core_id << 2) | thread_id;
1185     }
1186 }
1187 
1188 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1189                                         Error **errp)
1190 {
1191     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1192     Error *local_err = NULL;
1193     Object *obj;
1194     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1195 
1196     /*
1197      * The core creates its interrupt presenter but the XIVE interrupt
1198      * controller object is initialized afterwards. Hopefully, it's
1199      * only used at runtime.
1200      */
1201     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1202                            &local_err);
1203     if (local_err) {
1204         error_propagate(errp, local_err);
1205         return;
1206     }
1207 
1208     pnv_cpu->intc = obj;
1209 }
1210 
1211 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1212 {
1213     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1214 
1215     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1216 }
1217 
1218 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1219 {
1220     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1221 
1222     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1223     pnv_cpu->intc = NULL;
1224 }
1225 
1226 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1227                                             GString *buf)
1228 {
1229     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
1230 }
1231 
1232 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1233                                         Error **errp)
1234 {
1235     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1236     Error *local_err = NULL;
1237     Object *obj;
1238     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1239 
1240     /*
1241      * The core creates its interrupt presenter but the XIVE2 interrupt
1242      * controller object is initialized afterwards. Hopefully, it's
1243      * only used at runtime.
1244      */
1245     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
1246                            &local_err);
1247     if (local_err) {
1248         error_propagate(errp, local_err);
1249         return;
1250     }
1251 
1252     pnv_cpu->intc = obj;
1253 }
1254 
1255 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1256 {
1257     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1258 
1259     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1260 }
1261 
1262 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1263 {
1264     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1265 
1266     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1267     pnv_cpu->intc = NULL;
1268 }
1269 
1270 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1271                                              GString *buf)
1272 {
1273     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
1274 }
1275 
1276 /*
1277  * Allowed core identifiers on a POWER8 Processor Chip :
1278  *
1279  * <EX0 reserved>
1280  *  EX1  - Venice only
1281  *  EX2  - Venice only
1282  *  EX3  - Venice only
1283  *  EX4
1284  *  EX5
1285  *  EX6
1286  * <EX7,8 reserved> <reserved>
1287  *  EX9  - Venice only
1288  *  EX10 - Venice only
1289  *  EX11 - Venice only
1290  *  EX12
1291  *  EX13
1292  *  EX14
1293  * <EX15 reserved>
1294  */
1295 #define POWER8E_CORE_MASK  (0x7070ull)
1296 #define POWER8_CORE_MASK   (0x7e7eull)
1297 
1298 /*
1299  * POWER9 has 24 cores, ids starting at 0x0
1300  */
1301 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1302 
1303 
1304 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1305 
1306 static void pnv_chip_power8_instance_init(Object *obj)
1307 {
1308     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1309     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1310     int i;
1311 
1312     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1313                              (Object **)&chip8->xics,
1314                              object_property_allow_set_link,
1315                              OBJ_PROP_LINK_STRONG);
1316 
1317     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1318 
1319     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1320 
1321     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1322 
1323     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1324 
1325     if (defaults_enabled()) {
1326         chip8->num_phbs = pcc->num_phbs;
1327 
1328         for (i = 0; i < chip8->num_phbs; i++) {
1329             Object *phb = object_new(TYPE_PNV_PHB);
1330 
1331             /*
1332              * We need the chip to parent the PHB to allow the DT
1333              * to build correctly (via pnv_xscom_dt()).
1334              *
1335              * TODO: the PHB should be parented by a PEC device that, at
1336              * this moment, is not modelled powernv8/phb3.
1337              */
1338             object_property_add_child(obj, "phb[*]", phb);
1339             chip8->phbs[i] = PNV_PHB(phb);
1340         }
1341     }
1342 
1343 }
1344 
1345 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1346  {
1347     PnvChip *chip = PNV_CHIP(chip8);
1348     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1349     int i, j;
1350     char *name;
1351 
1352     name = g_strdup_printf("icp-%x", chip->chip_id);
1353     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1354     g_free(name);
1355     memory_region_add_subregion(get_system_memory(), PNV_ICP_BASE(chip),
1356                                 &chip8->icp_mmio);
1357 
1358     /* Map the ICP registers for each thread */
1359     for (i = 0; i < chip->nr_cores; i++) {
1360         PnvCore *pnv_core = chip->cores[i];
1361         int core_hwid = CPU_CORE(pnv_core)->core_id;
1362 
1363         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1364             uint32_t pir = pcc->chip_pir(chip, core_hwid, j);
1365             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1366 
1367             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1368                                         &icp->mmio);
1369         }
1370     }
1371 }
1372 
1373 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1374 {
1375     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1376     PnvChip *chip = PNV_CHIP(dev);
1377     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1378     Pnv8Psi *psi8 = &chip8->psi;
1379     Error *local_err = NULL;
1380     int i;
1381 
1382     assert(chip8->xics);
1383 
1384     /* XSCOM bridge is first */
1385     pnv_xscom_init(chip, PNV_XSCOM_SIZE, PNV_XSCOM_BASE(chip));
1386 
1387     pcc->parent_realize(dev, &local_err);
1388     if (local_err) {
1389         error_propagate(errp, local_err);
1390         return;
1391     }
1392 
1393     /* Processor Service Interface (PSI) Host Bridge */
1394     object_property_set_int(OBJECT(psi8), "bar", PNV_PSIHB_BASE(chip),
1395                             &error_fatal);
1396     object_property_set_link(OBJECT(psi8), ICS_PROP_XICS,
1397                              OBJECT(chip8->xics), &error_abort);
1398     if (!qdev_realize(DEVICE(psi8), NULL, errp)) {
1399         return;
1400     }
1401     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1402                             &PNV_PSI(psi8)->xscom_regs);
1403 
1404     /* Create LPC controller */
1405     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1406     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1407 
1408     chip->fw_mr = &chip8->lpc.isa_fw;
1409     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1410                                             (uint64_t) PNV_XSCOM_BASE(chip),
1411                                             PNV_XSCOM_LPC_BASE);
1412 
1413     /*
1414      * Interrupt Management Area. This is the memory region holding
1415      * all the Interrupt Control Presenter (ICP) registers
1416      */
1417     pnv_chip_icp_realize(chip8, &local_err);
1418     if (local_err) {
1419         error_propagate(errp, local_err);
1420         return;
1421     }
1422 
1423     /* Create the simplified OCC model */
1424     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1425         return;
1426     }
1427     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1428     qdev_connect_gpio_out(DEVICE(&chip8->occ), 0,
1429                           qdev_get_gpio_in(DEVICE(psi8), PSIHB_IRQ_OCC));
1430 
1431     /* OCC SRAM model */
1432     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1433                                 &chip8->occ.sram_regs);
1434 
1435     /* HOMER */
1436     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1437                              &error_abort);
1438     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1439         return;
1440     }
1441     /* Homer Xscom region */
1442     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1443 
1444     /* Homer mmio region */
1445     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1446                                 &chip8->homer.regs);
1447 
1448     /* PHB controllers */
1449     for (i = 0; i < chip8->num_phbs; i++) {
1450         PnvPHB *phb = chip8->phbs[i];
1451 
1452         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1453         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1454                                 &error_fatal);
1455         object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1456                                  &error_fatal);
1457         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1458             return;
1459         }
1460     }
1461 }
1462 
1463 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1464 {
1465     addr &= (PNV_XSCOM_SIZE - 1);
1466     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1467 }
1468 
1469 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1470 {
1471     DeviceClass *dc = DEVICE_CLASS(klass);
1472     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1473 
1474     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1475     k->cores_mask = POWER8E_CORE_MASK;
1476     k->num_phbs = 3;
1477     k->chip_pir = pnv_chip_pir_p8;
1478     k->intc_create = pnv_chip_power8_intc_create;
1479     k->intc_reset = pnv_chip_power8_intc_reset;
1480     k->intc_destroy = pnv_chip_power8_intc_destroy;
1481     k->intc_print_info = pnv_chip_power8_intc_print_info;
1482     k->isa_create = pnv_chip_power8_isa_create;
1483     k->dt_populate = pnv_chip_power8_dt_populate;
1484     k->pic_print_info = pnv_chip_power8_pic_print_info;
1485     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1486     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1487     dc->desc = "PowerNV Chip POWER8E";
1488 
1489     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1490                                     &k->parent_realize);
1491 }
1492 
1493 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1494 {
1495     DeviceClass *dc = DEVICE_CLASS(klass);
1496     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1497 
1498     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1499     k->cores_mask = POWER8_CORE_MASK;
1500     k->num_phbs = 3;
1501     k->chip_pir = pnv_chip_pir_p8;
1502     k->intc_create = pnv_chip_power8_intc_create;
1503     k->intc_reset = pnv_chip_power8_intc_reset;
1504     k->intc_destroy = pnv_chip_power8_intc_destroy;
1505     k->intc_print_info = pnv_chip_power8_intc_print_info;
1506     k->isa_create = pnv_chip_power8_isa_create;
1507     k->dt_populate = pnv_chip_power8_dt_populate;
1508     k->pic_print_info = pnv_chip_power8_pic_print_info;
1509     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1510     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1511     dc->desc = "PowerNV Chip POWER8";
1512 
1513     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1514                                     &k->parent_realize);
1515 }
1516 
1517 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1518 {
1519     DeviceClass *dc = DEVICE_CLASS(klass);
1520     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1521 
1522     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1523     k->cores_mask = POWER8_CORE_MASK;
1524     k->num_phbs = 4;
1525     k->chip_pir = pnv_chip_pir_p8;
1526     k->intc_create = pnv_chip_power8_intc_create;
1527     k->intc_reset = pnv_chip_power8_intc_reset;
1528     k->intc_destroy = pnv_chip_power8_intc_destroy;
1529     k->intc_print_info = pnv_chip_power8_intc_print_info;
1530     k->isa_create = pnv_chip_power8nvl_isa_create;
1531     k->dt_populate = pnv_chip_power8_dt_populate;
1532     k->pic_print_info = pnv_chip_power8_pic_print_info;
1533     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1534     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1535     dc->desc = "PowerNV Chip POWER8NVL";
1536 
1537     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1538                                     &k->parent_realize);
1539 }
1540 
1541 static void pnv_chip_power9_instance_init(Object *obj)
1542 {
1543     PnvChip *chip = PNV_CHIP(obj);
1544     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1545     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1546     int i;
1547 
1548     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1549     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1550                               "xive-fabric");
1551 
1552     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1553 
1554     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1555 
1556     object_initialize_child(obj, "chiptod", &chip9->chiptod, TYPE_PNV9_CHIPTOD);
1557 
1558     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1559 
1560     object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE);
1561 
1562     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1563 
1564     /* Number of PECs is the chip default */
1565     chip->num_pecs = pcc->num_pecs;
1566 
1567     for (i = 0; i < chip->num_pecs; i++) {
1568         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1569                                 TYPE_PNV_PHB4_PEC);
1570     }
1571 
1572     for (i = 0; i < pcc->i2c_num_engines; i++) {
1573         object_initialize_child(obj, "i2c[*]", &chip9->i2c[i], TYPE_PNV_I2C);
1574     }
1575 }
1576 
1577 static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
1578                                       PnvCore *pnv_core,
1579                                       const char *type)
1580 {
1581     char eq_name[32];
1582     int core_id = CPU_CORE(pnv_core)->core_id;
1583 
1584     snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1585     object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1586                                        sizeof(*eq), type,
1587                                        &error_fatal, NULL);
1588 
1589     object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1590     qdev_realize(DEVICE(eq), NULL, &error_fatal);
1591 }
1592 
1593 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1594 {
1595     PnvChip *chip = PNV_CHIP(chip9);
1596     int i;
1597 
1598     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1599     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1600 
1601     for (i = 0; i < chip9->nr_quads; i++) {
1602         PnvQuad *eq = &chip9->quads[i];
1603 
1604         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1605                                   PNV_QUAD_TYPE_NAME("power9"));
1606 
1607         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1608                                 &eq->xscom_regs);
1609     }
1610 }
1611 
1612 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1613 {
1614     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1615     int i;
1616 
1617     for (i = 0; i < chip->num_pecs; i++) {
1618         PnvPhb4PecState *pec = &chip9->pecs[i];
1619         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1620         uint32_t pec_nest_base;
1621         uint32_t pec_pci_base;
1622 
1623         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1624         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1625                                 &error_fatal);
1626         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1627                                  &error_fatal);
1628         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1629             return;
1630         }
1631 
1632         pec_nest_base = pecc->xscom_nest_base(pec);
1633         pec_pci_base = pecc->xscom_pci_base(pec);
1634 
1635         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1636         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1637     }
1638 }
1639 
1640 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1641 {
1642     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1643     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1644     PnvChip *chip = PNV_CHIP(dev);
1645     Pnv9Psi *psi9 = &chip9->psi;
1646     Error *local_err = NULL;
1647     int i;
1648 
1649     /* XSCOM bridge is first */
1650     pnv_xscom_init(chip, PNV9_XSCOM_SIZE, PNV9_XSCOM_BASE(chip));
1651 
1652     pcc->parent_realize(dev, &local_err);
1653     if (local_err) {
1654         error_propagate(errp, local_err);
1655         return;
1656     }
1657 
1658     pnv_chip_quad_realize(chip9, &local_err);
1659     if (local_err) {
1660         error_propagate(errp, local_err);
1661         return;
1662     }
1663 
1664     /* XIVE interrupt controller (POWER9) */
1665     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1666                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1667     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1668                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1669     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1670                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1671     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1672                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1673     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1674                              &error_abort);
1675     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1676         return;
1677     }
1678     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1679                             &chip9->xive.xscom_regs);
1680 
1681     /* Processor Service Interface (PSI) Host Bridge */
1682     object_property_set_int(OBJECT(psi9), "bar", PNV9_PSIHB_BASE(chip),
1683                             &error_fatal);
1684     /* This is the only device with 4k ESB pages */
1685     object_property_set_int(OBJECT(psi9), "shift", XIVE_ESB_4K,
1686                             &error_fatal);
1687     if (!qdev_realize(DEVICE(psi9), NULL, errp)) {
1688         return;
1689     }
1690     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1691                             &PNV_PSI(psi9)->xscom_regs);
1692 
1693     /* LPC */
1694     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1695         return;
1696     }
1697     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1698                                 &chip9->lpc.xscom_regs);
1699 
1700     chip->fw_mr = &chip9->lpc.isa_fw;
1701     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1702                                             (uint64_t) PNV9_LPCM_BASE(chip));
1703 
1704     /* ChipTOD */
1705     object_property_set_bool(OBJECT(&chip9->chiptod), "primary",
1706                              chip->chip_id == 0, &error_abort);
1707     object_property_set_bool(OBJECT(&chip9->chiptod), "secondary",
1708                              chip->chip_id == 1, &error_abort);
1709     object_property_set_link(OBJECT(&chip9->chiptod), "chip", OBJECT(chip),
1710                              &error_abort);
1711     if (!qdev_realize(DEVICE(&chip9->chiptod), NULL, errp)) {
1712         return;
1713     }
1714     pnv_xscom_add_subregion(chip, PNV9_XSCOM_CHIPTOD_BASE,
1715                             &chip9->chiptod.xscom_regs);
1716 
1717     /* Create the simplified OCC model */
1718     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1719         return;
1720     }
1721     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1722     qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in(
1723                               DEVICE(psi9), PSIHB9_IRQ_OCC));
1724 
1725     /* OCC SRAM model */
1726     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1727                                 &chip9->occ.sram_regs);
1728 
1729     /* SBE */
1730     if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) {
1731         return;
1732     }
1733     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE,
1734                             &chip9->sbe.xscom_ctrl_regs);
1735     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE,
1736                             &chip9->sbe.xscom_mbox_regs);
1737     qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in(
1738                               DEVICE(psi9), PSIHB9_IRQ_PSU));
1739 
1740     /* HOMER */
1741     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1742                              &error_abort);
1743     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1744         return;
1745     }
1746     /* Homer Xscom region */
1747     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1748 
1749     /* Homer mmio region */
1750     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1751                                 &chip9->homer.regs);
1752 
1753     /* PEC PHBs */
1754     pnv_chip_power9_pec_realize(chip, &local_err);
1755     if (local_err) {
1756         error_propagate(errp, local_err);
1757         return;
1758     }
1759 
1760     /*
1761      * I2C
1762      */
1763     for (i = 0; i < pcc->i2c_num_engines; i++) {
1764         Object *obj =  OBJECT(&chip9->i2c[i]);
1765 
1766         object_property_set_int(obj, "engine", i + 1, &error_fatal);
1767         object_property_set_int(obj, "num-busses",
1768                                 pcc->i2c_ports_per_engine[i],
1769                                 &error_fatal);
1770         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
1771         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
1772             return;
1773         }
1774         pnv_xscom_add_subregion(chip, PNV9_XSCOM_I2CM_BASE +
1775                                 (chip9->i2c[i].engine - 1) *
1776                                         PNV9_XSCOM_I2CM_SIZE,
1777                                 &chip9->i2c[i].xscom_regs);
1778         qdev_connect_gpio_out(DEVICE(&chip9->i2c[i]), 0,
1779                               qdev_get_gpio_in(DEVICE(psi9),
1780                                                PSIHB9_IRQ_SBE_I2C));
1781     }
1782 }
1783 
1784 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1785 {
1786     addr &= (PNV9_XSCOM_SIZE - 1);
1787     return addr >> 3;
1788 }
1789 
1790 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1791 {
1792     DeviceClass *dc = DEVICE_CLASS(klass);
1793     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1794     static const int i2c_ports_per_engine[PNV9_CHIP_MAX_I2C] = {2, 13, 2, 2};
1795 
1796     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1797     k->cores_mask = POWER9_CORE_MASK;
1798     k->chip_pir = pnv_chip_pir_p9;
1799     k->intc_create = pnv_chip_power9_intc_create;
1800     k->intc_reset = pnv_chip_power9_intc_reset;
1801     k->intc_destroy = pnv_chip_power9_intc_destroy;
1802     k->intc_print_info = pnv_chip_power9_intc_print_info;
1803     k->isa_create = pnv_chip_power9_isa_create;
1804     k->dt_populate = pnv_chip_power9_dt_populate;
1805     k->pic_print_info = pnv_chip_power9_pic_print_info;
1806     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1807     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1808     dc->desc = "PowerNV Chip POWER9";
1809     k->num_pecs = PNV9_CHIP_MAX_PEC;
1810     k->i2c_num_engines = PNV9_CHIP_MAX_I2C;
1811     k->i2c_ports_per_engine = i2c_ports_per_engine;
1812 
1813     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1814                                     &k->parent_realize);
1815 }
1816 
1817 static void pnv_chip_power10_instance_init(Object *obj)
1818 {
1819     PnvChip *chip = PNV_CHIP(obj);
1820     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1821     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1822     int i;
1823 
1824     object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
1825     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
1826                               "xive-fabric");
1827     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1828     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1829     object_initialize_child(obj, "chiptod", &chip10->chiptod,
1830                             TYPE_PNV10_CHIPTOD);
1831     object_initialize_child(obj, "occ",  &chip10->occ, TYPE_PNV10_OCC);
1832     object_initialize_child(obj, "sbe",  &chip10->sbe, TYPE_PNV10_SBE);
1833     object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
1834     object_initialize_child(obj, "n1-chiplet", &chip10->n1_chiplet,
1835                             TYPE_PNV_N1_CHIPLET);
1836 
1837     chip->num_pecs = pcc->num_pecs;
1838 
1839     for (i = 0; i < chip->num_pecs; i++) {
1840         object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
1841                                 TYPE_PNV_PHB5_PEC);
1842     }
1843 
1844     for (i = 0; i < pcc->i2c_num_engines; i++) {
1845         object_initialize_child(obj, "i2c[*]", &chip10->i2c[i], TYPE_PNV_I2C);
1846     }
1847 }
1848 
1849 static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
1850 {
1851     PnvChip *chip = PNV_CHIP(chip10);
1852     int i;
1853 
1854     chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1855     chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
1856 
1857     for (i = 0; i < chip10->nr_quads; i++) {
1858         PnvQuad *eq = &chip10->quads[i];
1859 
1860         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1861                                   PNV_QUAD_TYPE_NAME("power10"));
1862 
1863         pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
1864                                 &eq->xscom_regs);
1865 
1866         pnv_xscom_add_subregion(chip, PNV10_XSCOM_QME_BASE(eq->quad_id),
1867                                 &eq->xscom_qme_regs);
1868     }
1869 }
1870 
1871 static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
1872 {
1873     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1874     int i;
1875 
1876     for (i = 0; i < chip->num_pecs; i++) {
1877         PnvPhb4PecState *pec = &chip10->pecs[i];
1878         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1879         uint32_t pec_nest_base;
1880         uint32_t pec_pci_base;
1881 
1882         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1883         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1884                                 &error_fatal);
1885         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1886                                  &error_fatal);
1887         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1888             return;
1889         }
1890 
1891         pec_nest_base = pecc->xscom_nest_base(pec);
1892         pec_pci_base = pecc->xscom_pci_base(pec);
1893 
1894         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1895         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1896     }
1897 }
1898 
1899 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1900 {
1901     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1902     PnvChip *chip = PNV_CHIP(dev);
1903     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1904     Error *local_err = NULL;
1905     int i;
1906 
1907     /* XSCOM bridge is first */
1908     pnv_xscom_init(chip, PNV10_XSCOM_SIZE, PNV10_XSCOM_BASE(chip));
1909 
1910     pcc->parent_realize(dev, &local_err);
1911     if (local_err) {
1912         error_propagate(errp, local_err);
1913         return;
1914     }
1915 
1916     pnv_chip_power10_quad_realize(chip10, &local_err);
1917     if (local_err) {
1918         error_propagate(errp, local_err);
1919         return;
1920     }
1921 
1922     /* XIVE2 interrupt controller (POWER10) */
1923     object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
1924                             PNV10_XIVE2_IC_BASE(chip), &error_fatal);
1925     object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
1926                             PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
1927     object_property_set_int(OBJECT(&chip10->xive), "end-bar",
1928                             PNV10_XIVE2_END_BASE(chip), &error_fatal);
1929     object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
1930                             PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
1931     object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
1932                             PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
1933     object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
1934                             PNV10_XIVE2_TM_BASE(chip), &error_fatal);
1935     object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
1936                              &error_abort);
1937     if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
1938         return;
1939     }
1940     pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
1941                             &chip10->xive.xscom_regs);
1942 
1943     /* Processor Service Interface (PSI) Host Bridge */
1944     object_property_set_int(OBJECT(&chip10->psi), "bar",
1945                             PNV10_PSIHB_BASE(chip), &error_fatal);
1946     /* PSI can now be configured to use 64k ESB pages on POWER10 */
1947     object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
1948                             &error_fatal);
1949     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1950         return;
1951     }
1952     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1953                             &PNV_PSI(&chip10->psi)->xscom_regs);
1954 
1955     /* LPC */
1956     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1957         return;
1958     }
1959     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1960                                 &chip10->lpc.xscom_regs);
1961 
1962     chip->fw_mr = &chip10->lpc.isa_fw;
1963     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1964                                             (uint64_t) PNV10_LPCM_BASE(chip));
1965 
1966     /* ChipTOD */
1967     object_property_set_bool(OBJECT(&chip10->chiptod), "primary",
1968                              chip->chip_id == 0, &error_abort);
1969     object_property_set_bool(OBJECT(&chip10->chiptod), "secondary",
1970                              chip->chip_id == 1, &error_abort);
1971     object_property_set_link(OBJECT(&chip10->chiptod), "chip", OBJECT(chip),
1972                              &error_abort);
1973     if (!qdev_realize(DEVICE(&chip10->chiptod), NULL, errp)) {
1974         return;
1975     }
1976     pnv_xscom_add_subregion(chip, PNV10_XSCOM_CHIPTOD_BASE,
1977                             &chip10->chiptod.xscom_regs);
1978 
1979     /* Create the simplified OCC model */
1980     if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
1981         return;
1982     }
1983     pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
1984                             &chip10->occ.xscom_regs);
1985     qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in(
1986                               DEVICE(&chip10->psi), PSIHB9_IRQ_OCC));
1987 
1988     /* OCC SRAM model */
1989     memory_region_add_subregion(get_system_memory(),
1990                                 PNV10_OCC_SENSOR_BASE(chip),
1991                                 &chip10->occ.sram_regs);
1992 
1993     /* SBE */
1994     if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) {
1995         return;
1996     }
1997     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE,
1998                             &chip10->sbe.xscom_ctrl_regs);
1999     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE,
2000                             &chip10->sbe.xscom_mbox_regs);
2001     qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in(
2002                               DEVICE(&chip10->psi), PSIHB9_IRQ_PSU));
2003 
2004     /* HOMER */
2005     object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
2006                              &error_abort);
2007     if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
2008         return;
2009     }
2010     /* Homer Xscom region */
2011     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
2012                             &chip10->homer.pba_regs);
2013 
2014     /* Homer mmio region */
2015     memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip),
2016                                 &chip10->homer.regs);
2017 
2018     /* N1 chiplet */
2019     if (!qdev_realize(DEVICE(&chip10->n1_chiplet), NULL, errp)) {
2020         return;
2021     }
2022     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_CHIPLET_CTRL_REGS_BASE,
2023              &chip10->n1_chiplet.nest_pervasive.xscom_ctrl_regs_mr);
2024 
2025     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_EQ_BASE,
2026                            &chip10->n1_chiplet.xscom_pb_eq_mr);
2027 
2028     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_ES_BASE,
2029                            &chip10->n1_chiplet.xscom_pb_es_mr);
2030 
2031     /* PHBs */
2032     pnv_chip_power10_phb_realize(chip, &local_err);
2033     if (local_err) {
2034         error_propagate(errp, local_err);
2035         return;
2036     }
2037 
2038 
2039     /*
2040      * I2C
2041      */
2042     for (i = 0; i < pcc->i2c_num_engines; i++) {
2043         Object *obj =  OBJECT(&chip10->i2c[i]);
2044 
2045         object_property_set_int(obj, "engine", i + 1, &error_fatal);
2046         object_property_set_int(obj, "num-busses",
2047                                 pcc->i2c_ports_per_engine[i],
2048                                 &error_fatal);
2049         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
2050         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
2051             return;
2052         }
2053         pnv_xscom_add_subregion(chip, PNV10_XSCOM_I2CM_BASE +
2054                                 (chip10->i2c[i].engine - 1) *
2055                                         PNV10_XSCOM_I2CM_SIZE,
2056                                 &chip10->i2c[i].xscom_regs);
2057         qdev_connect_gpio_out(DEVICE(&chip10->i2c[i]), 0,
2058                               qdev_get_gpio_in(DEVICE(&chip10->psi),
2059                                                PSIHB9_IRQ_SBE_I2C));
2060     }
2061 
2062 }
2063 
2064 static void pnv_rainier_i2c_init(PnvMachineState *pnv)
2065 {
2066     int i;
2067     for (i = 0; i < pnv->num_chips; i++) {
2068         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2069 
2070         /*
2071          * Add a PCA9552 I2C device for PCIe hotplug control
2072          * to engine 2, bus 1, address 0x63
2073          */
2074         I2CSlave *dev = i2c_slave_create_simple(chip10->i2c[2].busses[1],
2075                                                 "pca9552", 0x63);
2076 
2077         /*
2078          * Connect PCA9552 GPIO pins 0-4 (SLOTx_EN) outputs to GPIO pins 5-9
2079          * (SLOTx_PG) inputs in order to fake the pgood state of PCIe slots
2080          * after hypervisor code sets a SLOTx_EN pin high.
2081          */
2082         qdev_connect_gpio_out(DEVICE(dev), 0, qdev_get_gpio_in(DEVICE(dev), 5));
2083         qdev_connect_gpio_out(DEVICE(dev), 1, qdev_get_gpio_in(DEVICE(dev), 6));
2084         qdev_connect_gpio_out(DEVICE(dev), 2, qdev_get_gpio_in(DEVICE(dev), 7));
2085         qdev_connect_gpio_out(DEVICE(dev), 3, qdev_get_gpio_in(DEVICE(dev), 8));
2086         qdev_connect_gpio_out(DEVICE(dev), 4, qdev_get_gpio_in(DEVICE(dev), 9));
2087 
2088         /*
2089          * Add a PCA9554 I2C device for cable card presence detection
2090          * to engine 2, bus 1, address 0x25
2091          */
2092         i2c_slave_create_simple(chip10->i2c[2].busses[1], "pca9554", 0x25);
2093     }
2094 }
2095 
2096 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
2097 {
2098     addr &= (PNV10_XSCOM_SIZE - 1);
2099     return addr >> 3;
2100 }
2101 
2102 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
2103 {
2104     DeviceClass *dc = DEVICE_CLASS(klass);
2105     PnvChipClass *k = PNV_CHIP_CLASS(klass);
2106     static const int i2c_ports_per_engine[PNV10_CHIP_MAX_I2C] = {14, 14, 2, 16};
2107 
2108     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
2109     k->cores_mask = POWER10_CORE_MASK;
2110     k->chip_pir = pnv_chip_pir_p10;
2111     k->intc_create = pnv_chip_power10_intc_create;
2112     k->intc_reset = pnv_chip_power10_intc_reset;
2113     k->intc_destroy = pnv_chip_power10_intc_destroy;
2114     k->intc_print_info = pnv_chip_power10_intc_print_info;
2115     k->isa_create = pnv_chip_power10_isa_create;
2116     k->dt_populate = pnv_chip_power10_dt_populate;
2117     k->pic_print_info = pnv_chip_power10_pic_print_info;
2118     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
2119     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
2120     dc->desc = "PowerNV Chip POWER10";
2121     k->num_pecs = PNV10_CHIP_MAX_PEC;
2122     k->i2c_num_engines = PNV10_CHIP_MAX_I2C;
2123     k->i2c_ports_per_engine = i2c_ports_per_engine;
2124 
2125     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
2126                                     &k->parent_realize);
2127 }
2128 
2129 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
2130 {
2131     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2132     int cores_max;
2133 
2134     /*
2135      * No custom mask for this chip, let's use the default one from *
2136      * the chip class
2137      */
2138     if (!chip->cores_mask) {
2139         chip->cores_mask = pcc->cores_mask;
2140     }
2141 
2142     /* filter alien core ids ! some are reserved */
2143     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
2144         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
2145                    chip->cores_mask);
2146         return;
2147     }
2148     chip->cores_mask &= pcc->cores_mask;
2149 
2150     /* now that we have a sane layout, let check the number of cores */
2151     cores_max = ctpop64(chip->cores_mask);
2152     if (chip->nr_cores > cores_max) {
2153         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
2154                    cores_max);
2155         return;
2156     }
2157 }
2158 
2159 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
2160 {
2161     Error *error = NULL;
2162     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2163     const char *typename = pnv_chip_core_typename(chip);
2164     int i, core_hwid;
2165     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
2166 
2167     if (!object_class_by_name(typename)) {
2168         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
2169         return;
2170     }
2171 
2172     /* Cores */
2173     pnv_chip_core_sanitize(chip, &error);
2174     if (error) {
2175         error_propagate(errp, error);
2176         return;
2177     }
2178 
2179     chip->cores = g_new0(PnvCore *, chip->nr_cores);
2180 
2181     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
2182              && (i < chip->nr_cores); core_hwid++) {
2183         char core_name[32];
2184         PnvCore *pnv_core;
2185         uint64_t xscom_core_base;
2186 
2187         if (!(chip->cores_mask & (1ull << core_hwid))) {
2188             continue;
2189         }
2190 
2191         pnv_core = PNV_CORE(object_new(typename));
2192 
2193         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
2194         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
2195         chip->cores[i] = pnv_core;
2196         object_property_set_int(OBJECT(pnv_core), "nr-threads",
2197                                 chip->nr_threads, &error_fatal);
2198         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
2199                                 core_hwid, &error_fatal);
2200         object_property_set_int(OBJECT(pnv_core), "hwid", core_hwid,
2201                                 &error_fatal);
2202         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
2203                                 &error_fatal);
2204         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
2205                                  &error_abort);
2206         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
2207 
2208         /* Each core has an XSCOM MMIO region */
2209         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
2210 
2211         pnv_xscom_add_subregion(chip, xscom_core_base,
2212                                 &pnv_core->xscom_regs);
2213         i++;
2214     }
2215 }
2216 
2217 static void pnv_chip_realize(DeviceState *dev, Error **errp)
2218 {
2219     PnvChip *chip = PNV_CHIP(dev);
2220     Error *error = NULL;
2221 
2222     /* Cores */
2223     pnv_chip_core_realize(chip, &error);
2224     if (error) {
2225         error_propagate(errp, error);
2226         return;
2227     }
2228 }
2229 
2230 static Property pnv_chip_properties[] = {
2231     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
2232     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
2233     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
2234     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
2235     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
2236     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
2237     DEFINE_PROP_END_OF_LIST(),
2238 };
2239 
2240 static void pnv_chip_class_init(ObjectClass *klass, void *data)
2241 {
2242     DeviceClass *dc = DEVICE_CLASS(klass);
2243 
2244     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
2245     dc->realize = pnv_chip_realize;
2246     device_class_set_props(dc, pnv_chip_properties);
2247     dc->desc = "PowerNV Chip";
2248 }
2249 
2250 PnvCore *pnv_chip_find_core(PnvChip *chip, uint32_t core_id)
2251 {
2252     int i;
2253 
2254     for (i = 0; i < chip->nr_cores; i++) {
2255         PnvCore *pc = chip->cores[i];
2256         CPUCore *cc = CPU_CORE(pc);
2257 
2258         if (cc->core_id == core_id) {
2259             return pc;
2260         }
2261     }
2262     return NULL;
2263 }
2264 
2265 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
2266 {
2267     int i, j;
2268 
2269     for (i = 0; i < chip->nr_cores; i++) {
2270         PnvCore *pc = chip->cores[i];
2271         CPUCore *cc = CPU_CORE(pc);
2272 
2273         for (j = 0; j < cc->nr_threads; j++) {
2274             if (ppc_cpu_pir(pc->threads[j]) == pir) {
2275                 return pc->threads[j];
2276             }
2277         }
2278     }
2279     return NULL;
2280 }
2281 
2282 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
2283 {
2284     PnvMachineState *pnv = PNV_MACHINE(xi);
2285     int i, j;
2286 
2287     for (i = 0; i < pnv->num_chips; i++) {
2288         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2289 
2290         if (ics_valid_irq(&chip8->psi.ics, irq)) {
2291             return &chip8->psi.ics;
2292         }
2293 
2294         for (j = 0; j < chip8->num_phbs; j++) {
2295             PnvPHB *phb = chip8->phbs[j];
2296             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2297 
2298             if (ics_valid_irq(&phb3->lsis, irq)) {
2299                 return &phb3->lsis;
2300             }
2301 
2302             if (ics_valid_irq(ICS(&phb3->msis), irq)) {
2303                 return ICS(&phb3->msis);
2304             }
2305         }
2306     }
2307     return NULL;
2308 }
2309 
2310 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
2311 {
2312     int i;
2313 
2314     for (i = 0; i < pnv->num_chips; i++) {
2315         PnvChip *chip = pnv->chips[i];
2316         if (chip->chip_id == chip_id) {
2317             return chip;
2318         }
2319     }
2320     return NULL;
2321 }
2322 
2323 static void pnv_ics_resend(XICSFabric *xi)
2324 {
2325     PnvMachineState *pnv = PNV_MACHINE(xi);
2326     int i, j;
2327 
2328     for (i = 0; i < pnv->num_chips; i++) {
2329         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2330 
2331         ics_resend(&chip8->psi.ics);
2332 
2333         for (j = 0; j < chip8->num_phbs; j++) {
2334             PnvPHB *phb = chip8->phbs[j];
2335             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2336 
2337             ics_resend(&phb3->lsis);
2338             ics_resend(ICS(&phb3->msis));
2339         }
2340     }
2341 }
2342 
2343 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
2344 {
2345     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
2346 
2347     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
2348 }
2349 
2350 static void pnv_pic_print_info(InterruptStatsProvider *obj,
2351                                Monitor *mon)
2352 {
2353     PnvMachineState *pnv = PNV_MACHINE(obj);
2354     int i;
2355     CPUState *cs;
2356     g_autoptr(GString) buf = g_string_new("");
2357     g_autoptr(HumanReadableText) info = NULL;
2358 
2359     CPU_FOREACH(cs) {
2360         PowerPCCPU *cpu = POWERPC_CPU(cs);
2361 
2362         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
2363         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
2364                                                            buf);
2365     }
2366     info = human_readable_text_from_str(buf);
2367     monitor_puts(mon, info->human_readable_text);
2368 
2369     for (i = 0; i < pnv->num_chips; i++) {
2370         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
2371     }
2372 }
2373 
2374 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
2375                          uint8_t nvt_blk, uint32_t nvt_idx,
2376                          bool cam_ignore, uint8_t priority,
2377                          uint32_t logic_serv,
2378                          XiveTCTXMatch *match)
2379 {
2380     PnvMachineState *pnv = PNV_MACHINE(xfb);
2381     int total_count = 0;
2382     int i;
2383 
2384     for (i = 0; i < pnv->num_chips; i++) {
2385         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
2386         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
2387         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2388         int count;
2389 
2390         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2391                                priority, logic_serv, match);
2392 
2393         if (count < 0) {
2394             return count;
2395         }
2396 
2397         total_count += count;
2398     }
2399 
2400     return total_count;
2401 }
2402 
2403 static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
2404                                 uint8_t nvt_blk, uint32_t nvt_idx,
2405                                 bool cam_ignore, uint8_t priority,
2406                                 uint32_t logic_serv,
2407                                 XiveTCTXMatch *match)
2408 {
2409     PnvMachineState *pnv = PNV_MACHINE(xfb);
2410     int total_count = 0;
2411     int i;
2412 
2413     for (i = 0; i < pnv->num_chips; i++) {
2414         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2415         XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
2416         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2417         int count;
2418 
2419         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2420                                priority, logic_serv, match);
2421 
2422         if (count < 0) {
2423             return count;
2424         }
2425 
2426         total_count += count;
2427     }
2428 
2429     return total_count;
2430 }
2431 
2432 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
2433 {
2434     MachineClass *mc = MACHINE_CLASS(oc);
2435     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
2436     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2437     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
2438 
2439     static GlobalProperty phb_compat[] = {
2440         { TYPE_PNV_PHB, "version", "3" },
2441         { TYPE_PNV_PHB_ROOT_PORT, "version", "3" },
2442     };
2443 
2444     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
2445     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
2446     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2447 
2448     xic->icp_get = pnv_icp_get;
2449     xic->ics_get = pnv_ics_get;
2450     xic->ics_resend = pnv_ics_resend;
2451 
2452     pmc->compat = compat;
2453     pmc->compat_size = sizeof(compat);
2454 
2455     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2456 }
2457 
2458 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
2459 {
2460     MachineClass *mc = MACHINE_CLASS(oc);
2461     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2462     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2463     static const char compat[] = "qemu,powernv9\0ibm,powernv";
2464 
2465     static GlobalProperty phb_compat[] = {
2466         { TYPE_PNV_PHB, "version", "4" },
2467         { TYPE_PNV_PHB_ROOT_PORT, "version", "4" },
2468     };
2469 
2470     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
2471     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
2472     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2473 
2474     xfc->match_nvt = pnv_match_nvt;
2475 
2476     pmc->compat = compat;
2477     pmc->compat_size = sizeof(compat);
2478     pmc->dt_power_mgt = pnv_dt_power_mgt;
2479 
2480     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2481 }
2482 
2483 static void pnv_machine_p10_common_class_init(ObjectClass *oc, void *data)
2484 {
2485     MachineClass *mc = MACHINE_CLASS(oc);
2486     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2487     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2488     static const char compat[] = "qemu,powernv10\0ibm,powernv";
2489 
2490     static GlobalProperty phb_compat[] = {
2491         { TYPE_PNV_PHB, "version", "5" },
2492         { TYPE_PNV_PHB_ROOT_PORT, "version", "5" },
2493     };
2494 
2495     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
2496     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2497 
2498     mc->alias = "powernv";
2499 
2500     pmc->compat = compat;
2501     pmc->compat_size = sizeof(compat);
2502     pmc->dt_power_mgt = pnv_dt_power_mgt;
2503 
2504     xfc->match_nvt = pnv10_xive_match_nvt;
2505 
2506     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2507 }
2508 
2509 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
2510 {
2511     MachineClass *mc = MACHINE_CLASS(oc);
2512 
2513     pnv_machine_p10_common_class_init(oc, data);
2514     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
2515 }
2516 
2517 static void pnv_machine_p10_rainier_class_init(ObjectClass *oc, void *data)
2518 {
2519     MachineClass *mc = MACHINE_CLASS(oc);
2520     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2521 
2522     pnv_machine_p10_common_class_init(oc, data);
2523     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10 Rainier";
2524     pmc->i2c_init = pnv_rainier_i2c_init;
2525 }
2526 
2527 static bool pnv_machine_get_hb(Object *obj, Error **errp)
2528 {
2529     PnvMachineState *pnv = PNV_MACHINE(obj);
2530 
2531     return !!pnv->fw_load_addr;
2532 }
2533 
2534 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
2535 {
2536     PnvMachineState *pnv = PNV_MACHINE(obj);
2537 
2538     if (value) {
2539         pnv->fw_load_addr = 0x8000000;
2540     }
2541 }
2542 
2543 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2544 {
2545     CPUPPCState *env = cpu_env(cs);
2546 
2547     cpu_synchronize_state(cs);
2548     ppc_cpu_do_system_reset(cs);
2549     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
2550         /*
2551          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
2552          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
2553          * (PPC_BIT(43)).
2554          */
2555         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
2556             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
2557             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
2558         }
2559     } else {
2560         /*
2561          * For non-powersave system resets, SRR1[42:45] are defined to be
2562          * implementation-dependent. The POWER9 User Manual specifies that
2563          * an external (SCOM driven, which may come from a BMC nmi command or
2564          * another CPU requesting a NMI IPI) system reset exception should be
2565          * 0b0010 (PPC_BIT(44)).
2566          */
2567         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2568     }
2569 }
2570 
2571 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2572 {
2573     CPUState *cs;
2574 
2575     CPU_FOREACH(cs) {
2576         async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2577     }
2578 }
2579 
2580 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2581 {
2582     MachineClass *mc = MACHINE_CLASS(oc);
2583     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2584     NMIClass *nc = NMI_CLASS(oc);
2585 
2586     mc->desc = "IBM PowerNV (Non-Virtualized)";
2587     mc->init = pnv_init;
2588     mc->reset = pnv_reset;
2589     mc->max_cpus = MAX_CPUS;
2590     /* Pnv provides a AHCI device for storage */
2591     mc->block_default_type = IF_IDE;
2592     mc->no_parallel = 1;
2593     mc->default_boot_order = NULL;
2594     /*
2595      * RAM defaults to less than 2048 for 32-bit hosts, and large
2596      * enough to fit the maximum initrd size at it's load address
2597      */
2598     mc->default_ram_size = 1 * GiB;
2599     mc->default_ram_id = "pnv.ram";
2600     ispc->print_info = pnv_pic_print_info;
2601     nc->nmi_monitor_handler = pnv_nmi;
2602 
2603     object_class_property_add_bool(oc, "hb-mode",
2604                                    pnv_machine_get_hb, pnv_machine_set_hb);
2605     object_class_property_set_description(oc, "hb-mode",
2606                               "Use a hostboot like boot loader");
2607 }
2608 
2609 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2610     {                                             \
2611         .name          = type,                    \
2612         .class_init    = class_initfn,            \
2613         .parent        = TYPE_PNV8_CHIP,          \
2614     }
2615 
2616 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2617     {                                             \
2618         .name          = type,                    \
2619         .class_init    = class_initfn,            \
2620         .parent        = TYPE_PNV9_CHIP,          \
2621     }
2622 
2623 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2624     {                                              \
2625         .name          = type,                     \
2626         .class_init    = class_initfn,             \
2627         .parent        = TYPE_PNV10_CHIP,          \
2628     }
2629 
2630 static const TypeInfo types[] = {
2631     {
2632         .name          = MACHINE_TYPE_NAME("powernv10-rainier"),
2633         .parent        = MACHINE_TYPE_NAME("powernv10"),
2634         .class_init    = pnv_machine_p10_rainier_class_init,
2635     },
2636     {
2637         .name          = MACHINE_TYPE_NAME("powernv10"),
2638         .parent        = TYPE_PNV_MACHINE,
2639         .class_init    = pnv_machine_power10_class_init,
2640         .interfaces = (InterfaceInfo[]) {
2641             { TYPE_XIVE_FABRIC },
2642             { },
2643         },
2644     },
2645     {
2646         .name          = MACHINE_TYPE_NAME("powernv9"),
2647         .parent        = TYPE_PNV_MACHINE,
2648         .class_init    = pnv_machine_power9_class_init,
2649         .interfaces = (InterfaceInfo[]) {
2650             { TYPE_XIVE_FABRIC },
2651             { },
2652         },
2653     },
2654     {
2655         .name          = MACHINE_TYPE_NAME("powernv8"),
2656         .parent        = TYPE_PNV_MACHINE,
2657         .class_init    = pnv_machine_power8_class_init,
2658         .interfaces = (InterfaceInfo[]) {
2659             { TYPE_XICS_FABRIC },
2660             { },
2661         },
2662     },
2663     {
2664         .name          = TYPE_PNV_MACHINE,
2665         .parent        = TYPE_MACHINE,
2666         .abstract       = true,
2667         .instance_size = sizeof(PnvMachineState),
2668         .class_init    = pnv_machine_class_init,
2669         .class_size    = sizeof(PnvMachineClass),
2670         .interfaces = (InterfaceInfo[]) {
2671             { TYPE_INTERRUPT_STATS_PROVIDER },
2672             { TYPE_NMI },
2673             { },
2674         },
2675     },
2676     {
2677         .name          = TYPE_PNV_CHIP,
2678         .parent        = TYPE_SYS_BUS_DEVICE,
2679         .class_init    = pnv_chip_class_init,
2680         .instance_size = sizeof(PnvChip),
2681         .class_size    = sizeof(PnvChipClass),
2682         .abstract      = true,
2683     },
2684 
2685     /*
2686      * P10 chip and variants
2687      */
2688     {
2689         .name          = TYPE_PNV10_CHIP,
2690         .parent        = TYPE_PNV_CHIP,
2691         .instance_init = pnv_chip_power10_instance_init,
2692         .instance_size = sizeof(Pnv10Chip),
2693     },
2694     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2695 
2696     /*
2697      * P9 chip and variants
2698      */
2699     {
2700         .name          = TYPE_PNV9_CHIP,
2701         .parent        = TYPE_PNV_CHIP,
2702         .instance_init = pnv_chip_power9_instance_init,
2703         .instance_size = sizeof(Pnv9Chip),
2704     },
2705     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2706 
2707     /*
2708      * P8 chip and variants
2709      */
2710     {
2711         .name          = TYPE_PNV8_CHIP,
2712         .parent        = TYPE_PNV_CHIP,
2713         .instance_init = pnv_chip_power8_instance_init,
2714         .instance_size = sizeof(Pnv8Chip),
2715     },
2716     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2717     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2718     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2719                           pnv_chip_power8nvl_class_init),
2720 };
2721 
2722 DEFINE_TYPES(types)
2723