xref: /openbmc/qemu/hw/ppc/pnv.c (revision c26504afd5f5cca1addfab5222621bc32a28522f)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qemu/units.h"
23 #include "qemu/cutils.h"
24 #include "qapi/error.h"
25 #include "sysemu/qtest.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/numa.h"
28 #include "sysemu/reset.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/cpus.h"
31 #include "sysemu/device_tree.h"
32 #include "sysemu/hw_accel.h"
33 #include "target/ppc/cpu.h"
34 #include "hw/ppc/fdt.h"
35 #include "hw/ppc/ppc.h"
36 #include "hw/ppc/pnv.h"
37 #include "hw/ppc/pnv_core.h"
38 #include "hw/loader.h"
39 #include "hw/nmi.h"
40 #include "qapi/visitor.h"
41 #include "hw/intc/intc.h"
42 #include "hw/ipmi/ipmi.h"
43 #include "target/ppc/mmu-hash64.h"
44 #include "hw/pci/msi.h"
45 #include "hw/pci-host/pnv_phb.h"
46 #include "hw/pci-host/pnv_phb3.h"
47 #include "hw/pci-host/pnv_phb4.h"
48 
49 #include "hw/ppc/xics.h"
50 #include "hw/qdev-properties.h"
51 #include "hw/ppc/pnv_chip.h"
52 #include "hw/ppc/pnv_xscom.h"
53 #include "hw/ppc/pnv_pnor.h"
54 
55 #include "hw/isa/isa.h"
56 #include "hw/char/serial.h"
57 #include "hw/rtc/mc146818rtc.h"
58 
59 #include <libfdt.h>
60 
61 #define FDT_MAX_SIZE            (1 * MiB)
62 
63 #define FW_FILE_NAME            "skiboot.lid"
64 #define FW_LOAD_ADDR            0x0
65 #define FW_MAX_SIZE             (16 * MiB)
66 
67 #define KERNEL_LOAD_ADDR        0x20000000
68 #define KERNEL_MAX_SIZE         (128 * MiB)
69 #define INITRD_LOAD_ADDR        0x28000000
70 #define INITRD_MAX_SIZE         (128 * MiB)
71 
72 static const char *pnv_chip_core_typename(const PnvChip *o)
73 {
74     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
75     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
76     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
77     const char *core_type = object_class_get_name(object_class_by_name(s));
78     g_free(s);
79     return core_type;
80 }
81 
82 /*
83  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
84  *     4 * 4 sockets * 12 cores * 8 threads = 1536
85  * Let's make it 2^11
86  */
87 #define MAX_CPUS                2048
88 
89 /*
90  * Memory nodes are created by hostboot, one for each range of memory
91  * that has a different "affinity". In practice, it means one range
92  * per chip.
93  */
94 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
95 {
96     char *mem_name;
97     uint64_t mem_reg_property[2];
98     int off;
99 
100     mem_reg_property[0] = cpu_to_be64(start);
101     mem_reg_property[1] = cpu_to_be64(size);
102 
103     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
104     off = fdt_add_subnode(fdt, 0, mem_name);
105     g_free(mem_name);
106 
107     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
108     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
109                        sizeof(mem_reg_property))));
110     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
111 }
112 
113 static int get_cpus_node(void *fdt)
114 {
115     int cpus_offset = fdt_path_offset(fdt, "/cpus");
116 
117     if (cpus_offset < 0) {
118         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
119         if (cpus_offset) {
120             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
121             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
122         }
123     }
124     _FDT(cpus_offset);
125     return cpus_offset;
126 }
127 
128 /*
129  * The PowerNV cores (and threads) need to use real HW ids and not an
130  * incremental index like it has been done on other platforms. This HW
131  * id is stored in the CPU PIR, it is used to create cpu nodes in the
132  * device tree, used in XSCOM to address cores and in interrupt
133  * servers.
134  */
135 static int pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
136 {
137     PowerPCCPU *cpu = pc->threads[0];
138     CPUState *cs = CPU(cpu);
139     DeviceClass *dc = DEVICE_GET_CLASS(cs);
140     int smt_threads = CPU_CORE(pc)->nr_threads;
141     CPUPPCState *env = &cpu->env;
142     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
143     PnvChipClass *pnv_cc = PNV_CHIP_GET_CLASS(chip);
144     g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
145     int i;
146     uint32_t pir;
147     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
148                        0xffffffff, 0xffffffff};
149     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
150     uint32_t cpufreq = 1000000000;
151     uint32_t page_sizes_prop[64];
152     size_t page_sizes_prop_size;
153     int offset;
154     char *nodename;
155     int cpus_offset = get_cpus_node(fdt);
156 
157     pnv_cc->get_pir_tir(chip, pc->hwid, 0, &pir, NULL);
158 
159     nodename = g_strdup_printf("%s@%x", dc->fw_name, pir);
160     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
161     _FDT(offset);
162     g_free(nodename);
163 
164     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
165 
166     _FDT((fdt_setprop_cell(fdt, offset, "reg", pir)));
167     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pir)));
168     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
169 
170     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
171     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
172                             env->dcache_line_size)));
173     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
174                             env->dcache_line_size)));
175     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
176                             env->icache_line_size)));
177     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
178                             env->icache_line_size)));
179 
180     if (pcc->l1_dcache_size) {
181         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
182                                pcc->l1_dcache_size)));
183     } else {
184         warn_report("Unknown L1 dcache size for cpu");
185     }
186     if (pcc->l1_icache_size) {
187         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
188                                pcc->l1_icache_size)));
189     } else {
190         warn_report("Unknown L1 icache size for cpu");
191     }
192 
193     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
194     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
195     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
196                            cpu->hash64_opts->slb_size)));
197     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
198     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
199 
200     if (ppc_has_spr(cpu, SPR_PURR)) {
201         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
202     }
203 
204     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
205         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
206                            segs, sizeof(segs))));
207     }
208 
209     /*
210      * Advertise VMX/VSX (vector extensions) if available
211      *   0 / no property == no vector extensions
212      *   1               == VMX / Altivec available
213      *   2               == VSX available
214      */
215     if (env->insns_flags & PPC_ALTIVEC) {
216         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
217 
218         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
219     }
220 
221     /*
222      * Advertise DFP (Decimal Floating Point) if available
223      *   0 / no property == no DFP
224      *   1               == DFP available
225      */
226     if (env->insns_flags2 & PPC2_DFP) {
227         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
228     }
229 
230     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
231                                                       sizeof(page_sizes_prop));
232     if (page_sizes_prop_size) {
233         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
234                            page_sizes_prop, page_sizes_prop_size)));
235     }
236 
237     /* Build interrupt servers properties */
238     for (i = 0; i < smt_threads; i++) {
239         pnv_cc->get_pir_tir(chip, pc->hwid, i, &pir, NULL);
240         servers_prop[i] = cpu_to_be32(pir);
241     }
242     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
243                        servers_prop, sizeof(*servers_prop) * smt_threads)));
244 
245     return offset;
246 }
247 
248 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t hwid,
249                        uint32_t nr_threads)
250 {
251     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
252     uint32_t pir;
253     uint64_t addr;
254     char *name;
255     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
256     uint32_t irange[2], i, rsize;
257     uint64_t *reg;
258     int offset;
259 
260     pcc->get_pir_tir(chip, hwid, 0, &pir, NULL);
261     addr = PNV_ICP_BASE(chip) | (pir << 12);
262 
263     irange[0] = cpu_to_be32(pir);
264     irange[1] = cpu_to_be32(nr_threads);
265 
266     rsize = sizeof(uint64_t) * 2 * nr_threads;
267     reg = g_malloc(rsize);
268     for (i = 0; i < nr_threads; i++) {
269         /* We know P8 PIR is linear with thread id */
270         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
271         reg[i * 2 + 1] = cpu_to_be64(0x1000);
272     }
273 
274     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
275     offset = fdt_add_subnode(fdt, 0, name);
276     _FDT(offset);
277     g_free(name);
278 
279     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
280     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
281     _FDT((fdt_setprop_string(fdt, offset, "device_type",
282                               "PowerPC-External-Interrupt-Presentation")));
283     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
284     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
285                        irange, sizeof(irange))));
286     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
287     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
288     g_free(reg);
289 }
290 
291 /*
292  * Adds a PnvPHB to the chip on P8.
293  * Implemented here, like for defaults PHBs
294  */
295 PnvChip *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb)
296 {
297     Pnv8Chip *chip8 = PNV8_CHIP(chip);
298 
299     phb->chip = chip;
300 
301     chip8->phbs[chip8->num_phbs] = phb;
302     chip8->num_phbs++;
303     return chip;
304 }
305 
306 /*
307  * Same as spapr pa_features_207 except pnv always enables CI largepages bit.
308  * HTM is always enabled because TCG does implement HTM, it's just a
309  * degenerate implementation.
310  */
311 static const uint8_t pa_features_207[] = { 24, 0,
312                  0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0,
313                  0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
314                  0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
315                  0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
316 
317 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
318 {
319     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
320     int i;
321 
322     pnv_dt_xscom(chip, fdt, 0,
323                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
324                  cpu_to_be64(PNV_XSCOM_SIZE),
325                  compat, sizeof(compat));
326 
327     for (i = 0; i < chip->nr_cores; i++) {
328         PnvCore *pnv_core = chip->cores[i];
329         int offset;
330 
331         offset = pnv_dt_core(chip, pnv_core, fdt);
332 
333         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
334                            pa_features_207, sizeof(pa_features_207))));
335 
336         /* Interrupt Control Presenters (ICP). One per core. */
337         pnv_dt_icp(chip, fdt, pnv_core->hwid, CPU_CORE(pnv_core)->nr_threads);
338     }
339 
340     if (chip->ram_size) {
341         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
342     }
343 }
344 
345 /*
346  * Same as spapr pa_features_300 except pnv always enables CI largepages bit.
347  */
348 static const uint8_t pa_features_300[] = { 66, 0,
349     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
350     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
351     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
352     /* 6: DS207 */
353     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
354     /* 16: Vector */
355     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
356     /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
357     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 18 - 23 */
358     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
359     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
360     /* 32: LE atomic, 34: EBB + ext EBB */
361     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
362     /* 40: Radix MMU */
363     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
364     /* 42: PM, 44: PC RA, 46: SC vec'd */
365     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
366     /* 48: SIMD, 50: QP BFP, 52: String */
367     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
368     /* 54: DecFP, 56: DecI, 58: SHA */
369     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
370     /* 60: NM atomic, 62: RNG */
371     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
372 };
373 
374 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
375 {
376     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
377     int i;
378 
379     pnv_dt_xscom(chip, fdt, 0,
380                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
381                  cpu_to_be64(PNV9_XSCOM_SIZE),
382                  compat, sizeof(compat));
383 
384     for (i = 0; i < chip->nr_cores; i++) {
385         PnvCore *pnv_core = chip->cores[i];
386         int offset;
387 
388         offset = pnv_dt_core(chip, pnv_core, fdt);
389 
390         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
391                            pa_features_300, sizeof(pa_features_300))));
392     }
393 
394     if (chip->ram_size) {
395         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
396     }
397 
398     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
399 }
400 
401 /*
402  * Same as spapr pa_features_31 except pnv always enables CI largepages bit,
403  * always disables copy/paste.
404  */
405 static const uint8_t pa_features_31[] = { 74, 0,
406     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
407     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
408     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
409     /* 6: DS207 */
410     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
411     /* 16: Vector */
412     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
413     /* 18: Vec. Scalar, 20: Vec. XOR */
414     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
415     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
416     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
417     /* 32: LE atomic, 34: EBB + ext EBB */
418     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
419     /* 40: Radix MMU */
420     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
421     /* 42: PM, 44: PC RA, 46: SC vec'd */
422     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
423     /* 48: SIMD, 50: QP BFP, 52: String */
424     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
425     /* 54: DecFP, 56: DecI, 58: SHA */
426     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
427     /* 60: NM atomic, 62: RNG */
428     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
429     /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */
430     0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */
431     /* 72: [P]HASHST/[P]HASHCHK */
432     0x80, 0x00,                         /* 72 - 73 */
433 };
434 
435 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
436 {
437     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
438     int i;
439 
440     pnv_dt_xscom(chip, fdt, 0,
441                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
442                  cpu_to_be64(PNV10_XSCOM_SIZE),
443                  compat, sizeof(compat));
444 
445     for (i = 0; i < chip->nr_cores; i++) {
446         PnvCore *pnv_core = chip->cores[i];
447         int offset;
448 
449         offset = pnv_dt_core(chip, pnv_core, fdt);
450 
451         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
452                            pa_features_31, sizeof(pa_features_31))));
453     }
454 
455     if (chip->ram_size) {
456         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
457     }
458 
459     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
460 }
461 
462 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
463 {
464     uint32_t io_base = d->ioport_id;
465     uint32_t io_regs[] = {
466         cpu_to_be32(1),
467         cpu_to_be32(io_base),
468         cpu_to_be32(2)
469     };
470     char *name;
471     int node;
472 
473     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
474     node = fdt_add_subnode(fdt, lpc_off, name);
475     _FDT(node);
476     g_free(name);
477 
478     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
479     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
480 }
481 
482 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
483 {
484     const char compatible[] = "ns16550\0pnpPNP,501";
485     uint32_t io_base = d->ioport_id;
486     uint32_t io_regs[] = {
487         cpu_to_be32(1),
488         cpu_to_be32(io_base),
489         cpu_to_be32(8)
490     };
491     uint32_t irq;
492     char *name;
493     int node;
494 
495     irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
496 
497     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
498     node = fdt_add_subnode(fdt, lpc_off, name);
499     _FDT(node);
500     g_free(name);
501 
502     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
503     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
504                       sizeof(compatible))));
505 
506     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
507     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
508     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
509     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
510                            fdt_get_phandle(fdt, lpc_off))));
511 
512     /* This is needed by Linux */
513     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
514 }
515 
516 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
517 {
518     const char compatible[] = "bt\0ipmi-bt";
519     uint32_t io_base;
520     uint32_t io_regs[] = {
521         cpu_to_be32(1),
522         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
523         cpu_to_be32(3)
524     };
525     uint32_t irq;
526     char *name;
527     int node;
528 
529     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
530     io_regs[1] = cpu_to_be32(io_base);
531 
532     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
533 
534     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
535     node = fdt_add_subnode(fdt, lpc_off, name);
536     _FDT(node);
537     g_free(name);
538 
539     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
540     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
541                       sizeof(compatible))));
542 
543     /* Mark it as reserved to avoid Linux trying to claim it */
544     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
545     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
546     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
547                            fdt_get_phandle(fdt, lpc_off))));
548 }
549 
550 typedef struct ForeachPopulateArgs {
551     void *fdt;
552     int offset;
553 } ForeachPopulateArgs;
554 
555 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
556 {
557     ForeachPopulateArgs *args = opaque;
558     ISADevice *d = ISA_DEVICE(dev);
559 
560     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
561         pnv_dt_rtc(d, args->fdt, args->offset);
562     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
563         pnv_dt_serial(d, args->fdt, args->offset);
564     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
565         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
566     } else {
567         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
568                      d->ioport_id);
569     }
570 
571     return 0;
572 }
573 
574 /*
575  * The default LPC bus of a multichip system is on chip 0. It's
576  * recognized by the firmware (skiboot) using a "primary" property.
577  */
578 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
579 {
580     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
581     ForeachPopulateArgs args = {
582         .fdt = fdt,
583         .offset = isa_offset,
584     };
585     uint32_t phandle;
586 
587     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
588 
589     phandle = qemu_fdt_alloc_phandle(fdt);
590     assert(phandle > 0);
591     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
592 
593     /*
594      * ISA devices are not necessarily parented to the ISA bus so we
595      * can not use object_child_foreach()
596      */
597     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
598                        &args);
599 }
600 
601 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
602 {
603     int off;
604 
605     off = fdt_add_subnode(fdt, 0, "ibm,opal");
606     off = fdt_add_subnode(fdt, off, "power-mgt");
607 
608     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
609 }
610 
611 static void *pnv_dt_create(MachineState *machine)
612 {
613     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
614     PnvMachineState *pnv = PNV_MACHINE(machine);
615     void *fdt;
616     char *buf;
617     int off;
618     int i;
619 
620     fdt = g_malloc0(FDT_MAX_SIZE);
621     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
622 
623     /* /qemu node */
624     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
625 
626     /* Root node */
627     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
628     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
629     _FDT((fdt_setprop_string(fdt, 0, "model",
630                              "IBM PowerNV (emulated by qemu)")));
631     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
632 
633     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
634     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
635     if (qemu_uuid_set) {
636         _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
637     }
638     g_free(buf);
639 
640     off = fdt_add_subnode(fdt, 0, "chosen");
641     if (machine->kernel_cmdline) {
642         _FDT((fdt_setprop_string(fdt, off, "bootargs",
643                                  machine->kernel_cmdline)));
644     }
645 
646     if (pnv->initrd_size) {
647         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
648         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
649 
650         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
651                                &start_prop, sizeof(start_prop))));
652         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
653                                &end_prop, sizeof(end_prop))));
654     }
655 
656     /* Populate device tree for each chip */
657     for (i = 0; i < pnv->num_chips; i++) {
658         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
659     }
660 
661     /* Populate ISA devices on chip 0 */
662     pnv_dt_isa(pnv, fdt);
663 
664     if (pnv->bmc) {
665         pnv_dt_bmc_sensors(pnv->bmc, fdt);
666     }
667 
668     /* Create an extra node for power management on machines that support it */
669     if (pmc->dt_power_mgt) {
670         pmc->dt_power_mgt(pnv, fdt);
671     }
672 
673     return fdt;
674 }
675 
676 static void pnv_powerdown_notify(Notifier *n, void *opaque)
677 {
678     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
679 
680     if (pnv->bmc) {
681         pnv_bmc_powerdown(pnv->bmc);
682     }
683 }
684 
685 static void pnv_reset(MachineState *machine, ShutdownCause reason)
686 {
687     PnvMachineState *pnv = PNV_MACHINE(machine);
688     IPMIBmc *bmc;
689     void *fdt;
690 
691     qemu_devices_reset(reason);
692 
693     /*
694      * The machine should provide by default an internal BMC simulator.
695      * If not, try to use the BMC device that was provided on the command
696      * line.
697      */
698     bmc = pnv_bmc_find(&error_fatal);
699     if (!pnv->bmc) {
700         if (!bmc) {
701             if (!qtest_enabled()) {
702                 warn_report("machine has no BMC device. Use '-device "
703                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
704                             "to define one");
705             }
706         } else {
707             pnv_bmc_set_pnor(bmc, pnv->pnor);
708             pnv->bmc = bmc;
709         }
710     }
711 
712     fdt = pnv_dt_create(machine);
713 
714     /* Pack resulting tree */
715     _FDT((fdt_pack(fdt)));
716 
717     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
718     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
719 
720     /*
721      * Set machine->fdt for 'dumpdtb' QMP/HMP command. Free
722      * the existing machine->fdt to avoid leaking it during
723      * a reset.
724      */
725     g_free(machine->fdt);
726     machine->fdt = fdt;
727 }
728 
729 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
730 {
731     Pnv8Chip *chip8 = PNV8_CHIP(chip);
732     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL);
733 
734     qdev_connect_gpio_out_named(DEVICE(&chip8->lpc), "LPCHC", 0, irq);
735 
736     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
737 }
738 
739 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
740 {
741     Pnv8Chip *chip8 = PNV8_CHIP(chip);
742     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C);
743 
744     qdev_connect_gpio_out_named(DEVICE(&chip8->lpc), "LPCHC", 0, irq);
745 
746     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
747 }
748 
749 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
750 {
751     Pnv9Chip *chip9 = PNV9_CHIP(chip);
752     qemu_irq irq;
753 
754     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC);
755     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "LPCHC", 0, irq);
756 
757     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ0);
758     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 0, irq);
759     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ1);
760     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 1, irq);
761     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ2);
762     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 2, irq);
763     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ3);
764     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 3, irq);
765 
766     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
767 }
768 
769 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
770 {
771     Pnv10Chip *chip10 = PNV10_CHIP(chip);
772     qemu_irq irq;
773 
774     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC);
775     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "LPCHC", 0, irq);
776 
777     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ0);
778     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 0, irq);
779     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ1);
780     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 1, irq);
781     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ2);
782     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 2, irq);
783     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ3);
784     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 3, irq);
785 
786     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
787 }
788 
789 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
790 {
791     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
792 }
793 
794 static void pnv_chip_power8_pic_print_info(PnvChip *chip, GString *buf)
795 {
796     Pnv8Chip *chip8 = PNV8_CHIP(chip);
797     int i;
798 
799     ics_pic_print_info(&chip8->psi.ics, buf);
800 
801     for (i = 0; i < chip8->num_phbs; i++) {
802         PnvPHB *phb = chip8->phbs[i];
803         PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
804 
805         pnv_phb3_msi_pic_print_info(&phb3->msis, buf);
806         ics_pic_print_info(&phb3->lsis, buf);
807     }
808 }
809 
810 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
811 {
812     GString *buf = opaque;
813     PnvPHB *phb =  (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB);
814 
815     if (!phb) {
816         return 0;
817     }
818 
819     pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), buf);
820 
821     return 0;
822 }
823 
824 static void pnv_chip_power9_pic_print_info(PnvChip *chip, GString *buf)
825 {
826     Pnv9Chip *chip9 = PNV9_CHIP(chip);
827 
828     pnv_xive_pic_print_info(&chip9->xive, buf);
829     pnv_psi_pic_print_info(&chip9->psi, buf);
830     object_child_foreach_recursive(OBJECT(chip),
831                          pnv_chip_power9_pic_print_info_child, buf);
832 }
833 
834 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
835                                                 uint32_t core_id)
836 {
837     return PNV_XSCOM_EX_BASE(core_id);
838 }
839 
840 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
841                                                 uint32_t core_id)
842 {
843     return PNV9_XSCOM_EC_BASE(core_id);
844 }
845 
846 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
847                                                  uint32_t core_id)
848 {
849     return PNV10_XSCOM_EC_BASE(core_id);
850 }
851 
852 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
853 {
854     PowerPCCPUClass *ppc_default =
855         POWERPC_CPU_CLASS(object_class_by_name(default_type));
856     PowerPCCPUClass *ppc =
857         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
858 
859     return ppc_default->pvr_match(ppc_default, ppc->pvr, false);
860 }
861 
862 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
863 {
864     ISADevice *dev = isa_new("isa-ipmi-bt");
865 
866     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
867     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
868     isa_realize_and_unref(dev, bus, &error_fatal);
869 }
870 
871 static void pnv_chip_power10_pic_print_info(PnvChip *chip, GString *buf)
872 {
873     Pnv10Chip *chip10 = PNV10_CHIP(chip);
874 
875     pnv_xive2_pic_print_info(&chip10->xive, buf);
876     pnv_psi_pic_print_info(&chip10->psi, buf);
877     object_child_foreach_recursive(OBJECT(chip),
878                          pnv_chip_power9_pic_print_info_child, buf);
879 }
880 
881 /* Always give the first 1GB to chip 0 else we won't boot */
882 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
883 {
884     MachineState *machine = MACHINE(pnv);
885     uint64_t ram_per_chip;
886 
887     assert(machine->ram_size >= 1 * GiB);
888 
889     ram_per_chip = machine->ram_size / pnv->num_chips;
890     if (ram_per_chip >= 1 * GiB) {
891         return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
892     }
893 
894     assert(pnv->num_chips > 1);
895 
896     ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
897     return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
898 }
899 
900 static void pnv_init(MachineState *machine)
901 {
902     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
903     PnvMachineState *pnv = PNV_MACHINE(machine);
904     MachineClass *mc = MACHINE_GET_CLASS(machine);
905     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
906     int max_smt_threads = pmc->max_smt_threads;
907     char *fw_filename;
908     long fw_size;
909     uint64_t chip_ram_start = 0;
910     int i;
911     char *chip_typename;
912     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
913     DeviceState *dev;
914 
915     if (kvm_enabled()) {
916         error_report("machine %s does not support the KVM accelerator",
917                      mc->name);
918         exit(EXIT_FAILURE);
919     }
920 
921     /* allocate RAM */
922     if (machine->ram_size < mc->default_ram_size) {
923         char *sz = size_to_str(mc->default_ram_size);
924         error_report("Invalid RAM size, should be bigger than %s", sz);
925         g_free(sz);
926         exit(EXIT_FAILURE);
927     }
928     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
929 
930     /*
931      * Create our simple PNOR device
932      */
933     dev = qdev_new(TYPE_PNV_PNOR);
934     if (pnor) {
935         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
936     }
937     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
938     pnv->pnor = PNV_PNOR(dev);
939 
940     /* load skiboot firmware  */
941     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
942     if (!fw_filename) {
943         error_report("Could not find OPAL firmware '%s'", bios_name);
944         exit(1);
945     }
946 
947     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
948     if (fw_size < 0) {
949         error_report("Could not load OPAL firmware '%s'", fw_filename);
950         exit(1);
951     }
952     g_free(fw_filename);
953 
954     /* load kernel */
955     if (machine->kernel_filename) {
956         long kernel_size;
957 
958         kernel_size = load_image_targphys(machine->kernel_filename,
959                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
960         if (kernel_size < 0) {
961             error_report("Could not load kernel '%s'",
962                          machine->kernel_filename);
963             exit(1);
964         }
965     }
966 
967     /* load initrd */
968     if (machine->initrd_filename) {
969         pnv->initrd_base = INITRD_LOAD_ADDR;
970         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
971                                   pnv->initrd_base, INITRD_MAX_SIZE);
972         if (pnv->initrd_size < 0) {
973             error_report("Could not load initial ram disk '%s'",
974                          machine->initrd_filename);
975             exit(1);
976         }
977     }
978 
979     /* MSIs are supported on this platform */
980     msi_nonbroken = true;
981 
982     /*
983      * Check compatibility of the specified CPU with the machine
984      * default.
985      */
986     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
987         error_report("invalid CPU model '%s' for %s machine",
988                      machine->cpu_type, mc->name);
989         exit(1);
990     }
991 
992     /* Create the processor chips */
993     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
994     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
995                                     i, machine->cpu_type);
996     if (!object_class_by_name(chip_typename)) {
997         error_report("invalid chip model '%.*s' for %s machine",
998                      i, machine->cpu_type, mc->name);
999         exit(1);
1000     }
1001 
1002     pnv->num_chips =
1003         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
1004 
1005     if (pnv->big_core) {
1006         if (machine->smp.threads % 2 == 1) {
1007             error_report("Cannot support %d threads with big-core option "
1008                          "because it must be an even number",
1009                          machine->smp.threads);
1010             exit(1);
1011         }
1012         max_smt_threads *= 2;
1013     }
1014 
1015     if (machine->smp.threads > max_smt_threads) {
1016         error_report("Cannot support more than %d threads/core "
1017                      "on %s machine", max_smt_threads, mc->desc);
1018         if (pmc->max_smt_threads == 4) {
1019             error_report("(use big-core=on for 8 threads per core)");
1020         }
1021         exit(1);
1022     }
1023 
1024     if (pnv->big_core) {
1025         /*
1026          * powernv models PnvCore as a SMT4 core. Big-core requires 2xPnvCore
1027          * per core, so adjust topology here. pnv_dt_core() processor
1028          * device-tree and TCG SMT code make the 2 cores appear as one big core
1029          * from software point of view. pnv pervasive models and xscoms tend to
1030          * see the big core as 2 small core halves.
1031          */
1032         machine->smp.cores *= 2;
1033         machine->smp.threads /= 2;
1034     }
1035 
1036     if (!is_power_of_2(machine->smp.threads)) {
1037         error_report("Cannot support %d threads/core on a powernv "
1038                      "machine because it must be a power of 2",
1039                      machine->smp.threads);
1040         exit(1);
1041     }
1042 
1043     /*
1044      * TODO: should we decide on how many chips we can create based
1045      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1046      */
1047     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
1048         error_report("invalid number of chips: '%d'", pnv->num_chips);
1049         error_printf(
1050             "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
1051         exit(1);
1052     }
1053 
1054     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
1055     for (i = 0; i < pnv->num_chips; i++) {
1056         char chip_name[32];
1057         Object *chip = OBJECT(qdev_new(chip_typename));
1058         uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
1059 
1060         pnv->chips[i] = PNV_CHIP(chip);
1061 
1062         /* Distribute RAM among the chips  */
1063         object_property_set_int(chip, "ram-start", chip_ram_start,
1064                                 &error_fatal);
1065         object_property_set_int(chip, "ram-size", chip_ram_size,
1066                                 &error_fatal);
1067         chip_ram_start += chip_ram_size;
1068 
1069         snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
1070         object_property_add_child(OBJECT(pnv), chip_name, chip);
1071         object_property_set_int(chip, "chip-id", i, &error_fatal);
1072         object_property_set_int(chip, "nr-cores", machine->smp.cores,
1073                                 &error_fatal);
1074         object_property_set_int(chip, "nr-threads", machine->smp.threads,
1075                                 &error_fatal);
1076         object_property_set_bool(chip, "big-core", pnv->big_core,
1077                                 &error_fatal);
1078         /*
1079          * The POWER8 machine use the XICS interrupt interface.
1080          * Propagate the XICS fabric to the chip and its controllers.
1081          */
1082         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
1083             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
1084         }
1085         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
1086             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
1087                                      &error_abort);
1088         }
1089         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
1090     }
1091     g_free(chip_typename);
1092 
1093     /* Instantiate ISA bus on chip 0 */
1094     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
1095 
1096     /* Create serial port */
1097     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1098 
1099     /* Create an RTC ISA device too */
1100     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
1101 
1102     /*
1103      * Create the machine BMC simulator and the IPMI BT device for
1104      * communication with the BMC
1105      */
1106     if (defaults_enabled()) {
1107         pnv->bmc = pnv_bmc_create(pnv->pnor);
1108         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
1109     }
1110 
1111     /*
1112      * The PNOR is mapped on the LPC FW address space by the BMC.
1113      * Since we can not reach the remote BMC machine with LPC memops,
1114      * map it always for now.
1115      */
1116     memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
1117                                 &pnv->pnor->mmio);
1118 
1119     /*
1120      * OpenPOWER systems use a IPMI SEL Event message to notify the
1121      * host to powerdown
1122      */
1123     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
1124     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
1125 
1126     /*
1127      * Create/Connect any machine-specific I2C devices
1128      */
1129     if (pmc->i2c_init) {
1130         pmc->i2c_init(pnv);
1131     }
1132 }
1133 
1134 /*
1135  *    0:21  Reserved - Read as zeros
1136  *   22:24  Chip ID
1137  *   25:28  Core number
1138  *   29:31  Thread ID
1139  */
1140 static void pnv_get_pir_tir_p8(PnvChip *chip,
1141                                 uint32_t core_id, uint32_t thread_id,
1142                                 uint32_t *pir, uint32_t *tir)
1143 {
1144     if (pir) {
1145         *pir = (chip->chip_id << 7) | (core_id << 3) | thread_id;
1146     }
1147     if (tir) {
1148         *tir = thread_id;
1149     }
1150 }
1151 
1152 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1153                                         Error **errp)
1154 {
1155     Pnv8Chip *chip8 = PNV8_CHIP(chip);
1156     Error *local_err = NULL;
1157     Object *obj;
1158     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1159 
1160     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
1161     if (local_err) {
1162         error_propagate(errp, local_err);
1163         return;
1164     }
1165 
1166     pnv_cpu->intc = obj;
1167 }
1168 
1169 
1170 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1171 {
1172     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1173 
1174     icp_reset(ICP(pnv_cpu->intc));
1175 }
1176 
1177 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1178 {
1179     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1180 
1181     icp_destroy(ICP(pnv_cpu->intc));
1182     pnv_cpu->intc = NULL;
1183 }
1184 
1185 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1186                                             GString *buf)
1187 {
1188     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), buf);
1189 }
1190 
1191 /*
1192  *    0:48  Reserved - Read as zeroes
1193  *   49:52  Node ID
1194  *   53:55  Chip ID
1195  *   56     Reserved - Read as zero
1196  *   57:61  Core number
1197  *   62:63  Thread ID
1198  *
1199  * We only care about the lower bits. uint32_t is fine for the moment.
1200  */
1201 static void pnv_get_pir_tir_p9(PnvChip *chip,
1202                                 uint32_t core_id, uint32_t thread_id,
1203                                 uint32_t *pir, uint32_t *tir)
1204 {
1205     if (chip->big_core) {
1206         /* Big-core interleaves thread ID between small-cores */
1207         thread_id <<= 1;
1208         thread_id |= core_id & 1;
1209         core_id >>= 1;
1210 
1211         if (pir) {
1212             *pir = (chip->chip_id << 8) | (core_id << 3) | thread_id;
1213         }
1214     } else {
1215         if (pir) {
1216             *pir = (chip->chip_id << 8) | (core_id << 2) | thread_id;
1217         }
1218     }
1219     if (tir) {
1220         *tir = thread_id;
1221     }
1222 }
1223 
1224 /*
1225  *    0:48  Reserved - Read as zeroes
1226  *   49:52  Node ID
1227  *   53:55  Chip ID
1228  *   56     Reserved - Read as zero
1229  *   57:59  Quad ID
1230  *   60     Core Chiplet Pair ID
1231  *   61:63  Thread/Core Chiplet ID t0-t2
1232  *
1233  * We only care about the lower bits. uint32_t is fine for the moment.
1234  */
1235 static void pnv_get_pir_tir_p10(PnvChip *chip,
1236                                 uint32_t core_id, uint32_t thread_id,
1237                                 uint32_t *pir, uint32_t *tir)
1238 {
1239     if (chip->big_core) {
1240         /* Big-core interleaves thread ID between small-cores */
1241         thread_id <<= 1;
1242         thread_id |= core_id & 1;
1243         core_id >>= 1;
1244 
1245         if (pir) {
1246             *pir = (chip->chip_id << 8) | (core_id << 3) | thread_id;
1247         }
1248     } else {
1249         if (pir) {
1250             *pir = (chip->chip_id << 8) | (core_id << 2) | thread_id;
1251         }
1252     }
1253     if (tir) {
1254         *tir = thread_id;
1255     }
1256 }
1257 
1258 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1259                                         Error **errp)
1260 {
1261     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1262     Error *local_err = NULL;
1263     Object *obj;
1264     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1265 
1266     /*
1267      * The core creates its interrupt presenter but the XIVE interrupt
1268      * controller object is initialized afterwards. Hopefully, it's
1269      * only used at runtime.
1270      */
1271     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1272                            &local_err);
1273     if (local_err) {
1274         error_propagate(errp, local_err);
1275         return;
1276     }
1277 
1278     pnv_cpu->intc = obj;
1279 }
1280 
1281 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1282 {
1283     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1284 
1285     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1286 }
1287 
1288 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1289 {
1290     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1291 
1292     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1293     pnv_cpu->intc = NULL;
1294 }
1295 
1296 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1297                                             GString *buf)
1298 {
1299     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
1300 }
1301 
1302 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1303                                         Error **errp)
1304 {
1305     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1306     Error *local_err = NULL;
1307     Object *obj;
1308     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1309 
1310     /*
1311      * The core creates its interrupt presenter but the XIVE2 interrupt
1312      * controller object is initialized afterwards. Hopefully, it's
1313      * only used at runtime.
1314      */
1315     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
1316                            &local_err);
1317     if (local_err) {
1318         error_propagate(errp, local_err);
1319         return;
1320     }
1321 
1322     pnv_cpu->intc = obj;
1323 }
1324 
1325 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1326 {
1327     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1328 
1329     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1330 }
1331 
1332 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1333 {
1334     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1335 
1336     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1337     pnv_cpu->intc = NULL;
1338 }
1339 
1340 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1341                                              GString *buf)
1342 {
1343     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
1344 }
1345 
1346 /*
1347  * Allowed core identifiers on a POWER8 Processor Chip :
1348  *
1349  * <EX0 reserved>
1350  *  EX1  - Venice only
1351  *  EX2  - Venice only
1352  *  EX3  - Venice only
1353  *  EX4
1354  *  EX5
1355  *  EX6
1356  * <EX7,8 reserved> <reserved>
1357  *  EX9  - Venice only
1358  *  EX10 - Venice only
1359  *  EX11 - Venice only
1360  *  EX12
1361  *  EX13
1362  *  EX14
1363  * <EX15 reserved>
1364  */
1365 #define POWER8E_CORE_MASK  (0x7070ull)
1366 #define POWER8_CORE_MASK   (0x7e7eull)
1367 
1368 /*
1369  * POWER9 has 24 cores, ids starting at 0x0
1370  */
1371 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1372 
1373 
1374 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1375 
1376 static void pnv_chip_power8_instance_init(Object *obj)
1377 {
1378     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1379     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1380     int i;
1381 
1382     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1383                              (Object **)&chip8->xics,
1384                              object_property_allow_set_link,
1385                              OBJ_PROP_LINK_STRONG);
1386 
1387     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1388 
1389     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1390 
1391     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1392 
1393     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1394 
1395     if (defaults_enabled()) {
1396         chip8->num_phbs = pcc->num_phbs;
1397 
1398         for (i = 0; i < chip8->num_phbs; i++) {
1399             Object *phb = object_new(TYPE_PNV_PHB);
1400 
1401             /*
1402              * We need the chip to parent the PHB to allow the DT
1403              * to build correctly (via pnv_xscom_dt()).
1404              *
1405              * TODO: the PHB should be parented by a PEC device that, at
1406              * this moment, is not modelled powernv8/phb3.
1407              */
1408             object_property_add_child(obj, "phb[*]", phb);
1409             chip8->phbs[i] = PNV_PHB(phb);
1410         }
1411     }
1412 
1413 }
1414 
1415 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1416  {
1417     PnvChip *chip = PNV_CHIP(chip8);
1418     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1419     int i, j;
1420     char *name;
1421 
1422     name = g_strdup_printf("icp-%x", chip->chip_id);
1423     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1424     g_free(name);
1425     memory_region_add_subregion(get_system_memory(), PNV_ICP_BASE(chip),
1426                                 &chip8->icp_mmio);
1427 
1428     /* Map the ICP registers for each thread */
1429     for (i = 0; i < chip->nr_cores; i++) {
1430         PnvCore *pnv_core = chip->cores[i];
1431         int core_hwid = CPU_CORE(pnv_core)->core_id;
1432 
1433         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1434             uint32_t pir;
1435             PnvICPState *icp;
1436 
1437             pcc->get_pir_tir(chip, core_hwid, j, &pir, NULL);
1438             icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1439 
1440             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1441                                         &icp->mmio);
1442         }
1443     }
1444 }
1445 
1446 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1447 {
1448     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1449     PnvChip *chip = PNV_CHIP(dev);
1450     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1451     Pnv8Psi *psi8 = &chip8->psi;
1452     Error *local_err = NULL;
1453     int i;
1454 
1455     assert(chip8->xics);
1456 
1457     /* XSCOM bridge is first */
1458     pnv_xscom_init(chip, PNV_XSCOM_SIZE, PNV_XSCOM_BASE(chip));
1459 
1460     pcc->parent_realize(dev, &local_err);
1461     if (local_err) {
1462         error_propagate(errp, local_err);
1463         return;
1464     }
1465 
1466     /* Processor Service Interface (PSI) Host Bridge */
1467     object_property_set_int(OBJECT(psi8), "bar", PNV_PSIHB_BASE(chip),
1468                             &error_fatal);
1469     object_property_set_link(OBJECT(psi8), ICS_PROP_XICS,
1470                              OBJECT(chip8->xics), &error_abort);
1471     if (!qdev_realize(DEVICE(psi8), NULL, errp)) {
1472         return;
1473     }
1474     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1475                             &PNV_PSI(psi8)->xscom_regs);
1476 
1477     /* Create LPC controller */
1478     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1479     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1480 
1481     chip->fw_mr = &chip8->lpc.isa_fw;
1482     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1483                                             (uint64_t) PNV_XSCOM_BASE(chip),
1484                                             PNV_XSCOM_LPC_BASE);
1485 
1486     /*
1487      * Interrupt Management Area. This is the memory region holding
1488      * all the Interrupt Control Presenter (ICP) registers
1489      */
1490     pnv_chip_icp_realize(chip8, &local_err);
1491     if (local_err) {
1492         error_propagate(errp, local_err);
1493         return;
1494     }
1495 
1496     /* Create the simplified OCC model */
1497     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1498         return;
1499     }
1500     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1501     qdev_connect_gpio_out(DEVICE(&chip8->occ), 0,
1502                           qdev_get_gpio_in(DEVICE(psi8), PSIHB_IRQ_OCC));
1503 
1504     /* OCC SRAM model */
1505     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1506                                 &chip8->occ.sram_regs);
1507 
1508     /* HOMER */
1509     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1510                              &error_abort);
1511     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1512         return;
1513     }
1514     /* Homer Xscom region */
1515     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1516 
1517     /* Homer mmio region */
1518     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1519                                 &chip8->homer.regs);
1520 
1521     /* PHB controllers */
1522     for (i = 0; i < chip8->num_phbs; i++) {
1523         PnvPHB *phb = chip8->phbs[i];
1524 
1525         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1526         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1527                                 &error_fatal);
1528         object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1529                                  &error_fatal);
1530         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1531             return;
1532         }
1533     }
1534 }
1535 
1536 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1537 {
1538     addr &= (PNV_XSCOM_SIZE - 1);
1539     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1540 }
1541 
1542 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1543 {
1544     DeviceClass *dc = DEVICE_CLASS(klass);
1545     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1546 
1547     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1548     k->cores_mask = POWER8E_CORE_MASK;
1549     k->num_phbs = 3;
1550     k->get_pir_tir = pnv_get_pir_tir_p8;
1551     k->intc_create = pnv_chip_power8_intc_create;
1552     k->intc_reset = pnv_chip_power8_intc_reset;
1553     k->intc_destroy = pnv_chip_power8_intc_destroy;
1554     k->intc_print_info = pnv_chip_power8_intc_print_info;
1555     k->isa_create = pnv_chip_power8_isa_create;
1556     k->dt_populate = pnv_chip_power8_dt_populate;
1557     k->pic_print_info = pnv_chip_power8_pic_print_info;
1558     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1559     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1560     dc->desc = "PowerNV Chip POWER8E";
1561 
1562     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1563                                     &k->parent_realize);
1564 }
1565 
1566 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1567 {
1568     DeviceClass *dc = DEVICE_CLASS(klass);
1569     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1570 
1571     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1572     k->cores_mask = POWER8_CORE_MASK;
1573     k->num_phbs = 3;
1574     k->get_pir_tir = pnv_get_pir_tir_p8;
1575     k->intc_create = pnv_chip_power8_intc_create;
1576     k->intc_reset = pnv_chip_power8_intc_reset;
1577     k->intc_destroy = pnv_chip_power8_intc_destroy;
1578     k->intc_print_info = pnv_chip_power8_intc_print_info;
1579     k->isa_create = pnv_chip_power8_isa_create;
1580     k->dt_populate = pnv_chip_power8_dt_populate;
1581     k->pic_print_info = pnv_chip_power8_pic_print_info;
1582     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1583     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1584     dc->desc = "PowerNV Chip POWER8";
1585 
1586     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1587                                     &k->parent_realize);
1588 }
1589 
1590 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1591 {
1592     DeviceClass *dc = DEVICE_CLASS(klass);
1593     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1594 
1595     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1596     k->cores_mask = POWER8_CORE_MASK;
1597     k->num_phbs = 4;
1598     k->get_pir_tir = pnv_get_pir_tir_p8;
1599     k->intc_create = pnv_chip_power8_intc_create;
1600     k->intc_reset = pnv_chip_power8_intc_reset;
1601     k->intc_destroy = pnv_chip_power8_intc_destroy;
1602     k->intc_print_info = pnv_chip_power8_intc_print_info;
1603     k->isa_create = pnv_chip_power8nvl_isa_create;
1604     k->dt_populate = pnv_chip_power8_dt_populate;
1605     k->pic_print_info = pnv_chip_power8_pic_print_info;
1606     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1607     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1608     dc->desc = "PowerNV Chip POWER8NVL";
1609 
1610     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1611                                     &k->parent_realize);
1612 }
1613 
1614 static void pnv_chip_power9_instance_init(Object *obj)
1615 {
1616     PnvChip *chip = PNV_CHIP(obj);
1617     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1618     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1619     int i;
1620 
1621     object_initialize_child(obj, "adu",  &chip9->adu, TYPE_PNV_ADU);
1622     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1623     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1624                               "xive-fabric");
1625 
1626     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1627 
1628     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1629 
1630     object_initialize_child(obj, "chiptod", &chip9->chiptod, TYPE_PNV9_CHIPTOD);
1631 
1632     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1633 
1634     object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE);
1635 
1636     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1637 
1638     /* Number of PECs is the chip default */
1639     chip->num_pecs = pcc->num_pecs;
1640 
1641     for (i = 0; i < chip->num_pecs; i++) {
1642         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1643                                 TYPE_PNV_PHB4_PEC);
1644     }
1645 
1646     for (i = 0; i < pcc->i2c_num_engines; i++) {
1647         object_initialize_child(obj, "i2c[*]", &chip9->i2c[i], TYPE_PNV_I2C);
1648     }
1649 }
1650 
1651 static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
1652                                       PnvCore *pnv_core,
1653                                       const char *type)
1654 {
1655     char eq_name[32];
1656     int core_id = CPU_CORE(pnv_core)->core_id;
1657 
1658     snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1659     object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1660                                        sizeof(*eq), type,
1661                                        &error_fatal, NULL);
1662 
1663     object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1664     qdev_realize(DEVICE(eq), NULL, &error_fatal);
1665 }
1666 
1667 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1668 {
1669     PnvChip *chip = PNV_CHIP(chip9);
1670     int i;
1671 
1672     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1673     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1674 
1675     for (i = 0; i < chip9->nr_quads; i++) {
1676         PnvQuad *eq = &chip9->quads[i];
1677 
1678         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1679                                   PNV_QUAD_TYPE_NAME("power9"));
1680 
1681         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1682                                 &eq->xscom_regs);
1683     }
1684 }
1685 
1686 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1687 {
1688     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1689     int i;
1690 
1691     for (i = 0; i < chip->num_pecs; i++) {
1692         PnvPhb4PecState *pec = &chip9->pecs[i];
1693         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1694         uint32_t pec_nest_base;
1695         uint32_t pec_pci_base;
1696 
1697         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1698         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1699                                 &error_fatal);
1700         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1701                                  &error_fatal);
1702         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1703             return;
1704         }
1705 
1706         pec_nest_base = pecc->xscom_nest_base(pec);
1707         pec_pci_base = pecc->xscom_pci_base(pec);
1708 
1709         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1710         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1711     }
1712 }
1713 
1714 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1715 {
1716     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1717     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1718     PnvChip *chip = PNV_CHIP(dev);
1719     Pnv9Psi *psi9 = &chip9->psi;
1720     Error *local_err = NULL;
1721     int i;
1722 
1723     /* XSCOM bridge is first */
1724     pnv_xscom_init(chip, PNV9_XSCOM_SIZE, PNV9_XSCOM_BASE(chip));
1725 
1726     pcc->parent_realize(dev, &local_err);
1727     if (local_err) {
1728         error_propagate(errp, local_err);
1729         return;
1730     }
1731 
1732     /* ADU */
1733     object_property_set_link(OBJECT(&chip9->adu), "lpc", OBJECT(&chip9->lpc),
1734                              &error_abort);
1735     if (!qdev_realize(DEVICE(&chip9->adu), NULL, errp)) {
1736         return;
1737     }
1738     pnv_xscom_add_subregion(chip, PNV9_XSCOM_ADU_BASE,
1739                             &chip9->adu.xscom_regs);
1740 
1741     pnv_chip_quad_realize(chip9, &local_err);
1742     if (local_err) {
1743         error_propagate(errp, local_err);
1744         return;
1745     }
1746 
1747     /* XIVE interrupt controller (POWER9) */
1748     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1749                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1750     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1751                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1752     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1753                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1754     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1755                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1756     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1757                              &error_abort);
1758     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1759         return;
1760     }
1761     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1762                             &chip9->xive.xscom_regs);
1763 
1764     /* Processor Service Interface (PSI) Host Bridge */
1765     object_property_set_int(OBJECT(psi9), "bar", PNV9_PSIHB_BASE(chip),
1766                             &error_fatal);
1767     /* This is the only device with 4k ESB pages */
1768     object_property_set_int(OBJECT(psi9), "shift", XIVE_ESB_4K,
1769                             &error_fatal);
1770     if (!qdev_realize(DEVICE(psi9), NULL, errp)) {
1771         return;
1772     }
1773     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1774                             &PNV_PSI(psi9)->xscom_regs);
1775 
1776     /* LPC */
1777     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1778         return;
1779     }
1780     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1781                                 &chip9->lpc.xscom_regs);
1782 
1783     chip->fw_mr = &chip9->lpc.isa_fw;
1784     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1785                                             (uint64_t) PNV9_LPCM_BASE(chip));
1786 
1787     /* ChipTOD */
1788     object_property_set_bool(OBJECT(&chip9->chiptod), "primary",
1789                              chip->chip_id == 0, &error_abort);
1790     object_property_set_bool(OBJECT(&chip9->chiptod), "secondary",
1791                              chip->chip_id == 1, &error_abort);
1792     object_property_set_link(OBJECT(&chip9->chiptod), "chip", OBJECT(chip),
1793                              &error_abort);
1794     if (!qdev_realize(DEVICE(&chip9->chiptod), NULL, errp)) {
1795         return;
1796     }
1797     pnv_xscom_add_subregion(chip, PNV9_XSCOM_CHIPTOD_BASE,
1798                             &chip9->chiptod.xscom_regs);
1799 
1800     /* Create the simplified OCC model */
1801     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1802         return;
1803     }
1804     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1805     qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in(
1806                               DEVICE(psi9), PSIHB9_IRQ_OCC));
1807 
1808     /* OCC SRAM model */
1809     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1810                                 &chip9->occ.sram_regs);
1811 
1812     /* SBE */
1813     if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) {
1814         return;
1815     }
1816     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE,
1817                             &chip9->sbe.xscom_ctrl_regs);
1818     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE,
1819                             &chip9->sbe.xscom_mbox_regs);
1820     qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in(
1821                               DEVICE(psi9), PSIHB9_IRQ_PSU));
1822 
1823     /* HOMER */
1824     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1825                              &error_abort);
1826     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1827         return;
1828     }
1829     /* Homer Xscom region */
1830     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1831 
1832     /* Homer mmio region */
1833     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1834                                 &chip9->homer.regs);
1835 
1836     /* PEC PHBs */
1837     pnv_chip_power9_pec_realize(chip, &local_err);
1838     if (local_err) {
1839         error_propagate(errp, local_err);
1840         return;
1841     }
1842 
1843     /*
1844      * I2C
1845      */
1846     for (i = 0; i < pcc->i2c_num_engines; i++) {
1847         Object *obj =  OBJECT(&chip9->i2c[i]);
1848 
1849         object_property_set_int(obj, "engine", i + 1, &error_fatal);
1850         object_property_set_int(obj, "num-busses",
1851                                 pcc->i2c_ports_per_engine[i],
1852                                 &error_fatal);
1853         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
1854         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
1855             return;
1856         }
1857         pnv_xscom_add_subregion(chip, PNV9_XSCOM_I2CM_BASE +
1858                                 (chip9->i2c[i].engine - 1) *
1859                                         PNV9_XSCOM_I2CM_SIZE,
1860                                 &chip9->i2c[i].xscom_regs);
1861         qdev_connect_gpio_out(DEVICE(&chip9->i2c[i]), 0,
1862                               qdev_get_gpio_in(DEVICE(psi9),
1863                                                PSIHB9_IRQ_SBE_I2C));
1864     }
1865 }
1866 
1867 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1868 {
1869     addr &= (PNV9_XSCOM_SIZE - 1);
1870     return addr >> 3;
1871 }
1872 
1873 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1874 {
1875     DeviceClass *dc = DEVICE_CLASS(klass);
1876     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1877     static const int i2c_ports_per_engine[PNV9_CHIP_MAX_I2C] = {2, 13, 2, 2};
1878 
1879     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1880     k->cores_mask = POWER9_CORE_MASK;
1881     k->get_pir_tir = pnv_get_pir_tir_p9;
1882     k->intc_create = pnv_chip_power9_intc_create;
1883     k->intc_reset = pnv_chip_power9_intc_reset;
1884     k->intc_destroy = pnv_chip_power9_intc_destroy;
1885     k->intc_print_info = pnv_chip_power9_intc_print_info;
1886     k->isa_create = pnv_chip_power9_isa_create;
1887     k->dt_populate = pnv_chip_power9_dt_populate;
1888     k->pic_print_info = pnv_chip_power9_pic_print_info;
1889     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1890     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1891     dc->desc = "PowerNV Chip POWER9";
1892     k->num_pecs = PNV9_CHIP_MAX_PEC;
1893     k->i2c_num_engines = PNV9_CHIP_MAX_I2C;
1894     k->i2c_ports_per_engine = i2c_ports_per_engine;
1895 
1896     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1897                                     &k->parent_realize);
1898 }
1899 
1900 static void pnv_chip_power10_instance_init(Object *obj)
1901 {
1902     PnvChip *chip = PNV_CHIP(obj);
1903     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1904     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1905     int i;
1906 
1907     object_initialize_child(obj, "adu",  &chip10->adu, TYPE_PNV_ADU);
1908     object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
1909     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
1910                               "xive-fabric");
1911     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1912     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1913     object_initialize_child(obj, "chiptod", &chip10->chiptod,
1914                             TYPE_PNV10_CHIPTOD);
1915     object_initialize_child(obj, "occ",  &chip10->occ, TYPE_PNV10_OCC);
1916     object_initialize_child(obj, "sbe",  &chip10->sbe, TYPE_PNV10_SBE);
1917     object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
1918     object_initialize_child(obj, "n1-chiplet", &chip10->n1_chiplet,
1919                             TYPE_PNV_N1_CHIPLET);
1920 
1921     chip->num_pecs = pcc->num_pecs;
1922 
1923     for (i = 0; i < chip->num_pecs; i++) {
1924         object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
1925                                 TYPE_PNV_PHB5_PEC);
1926     }
1927 
1928     for (i = 0; i < pcc->i2c_num_engines; i++) {
1929         object_initialize_child(obj, "i2c[*]", &chip10->i2c[i], TYPE_PNV_I2C);
1930     }
1931 }
1932 
1933 static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
1934 {
1935     PnvChip *chip = PNV_CHIP(chip10);
1936     int i;
1937 
1938     chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1939     chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
1940 
1941     for (i = 0; i < chip10->nr_quads; i++) {
1942         PnvQuad *eq = &chip10->quads[i];
1943 
1944         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1945                                   PNV_QUAD_TYPE_NAME("power10"));
1946 
1947         pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
1948                                 &eq->xscom_regs);
1949 
1950         pnv_xscom_add_subregion(chip, PNV10_XSCOM_QME_BASE(eq->quad_id),
1951                                 &eq->xscom_qme_regs);
1952     }
1953 }
1954 
1955 static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
1956 {
1957     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1958     int i;
1959 
1960     for (i = 0; i < chip->num_pecs; i++) {
1961         PnvPhb4PecState *pec = &chip10->pecs[i];
1962         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1963         uint32_t pec_nest_base;
1964         uint32_t pec_pci_base;
1965 
1966         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1967         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1968                                 &error_fatal);
1969         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1970                                  &error_fatal);
1971         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1972             return;
1973         }
1974 
1975         pec_nest_base = pecc->xscom_nest_base(pec);
1976         pec_pci_base = pecc->xscom_pci_base(pec);
1977 
1978         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1979         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1980     }
1981 }
1982 
1983 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1984 {
1985     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1986     PnvChip *chip = PNV_CHIP(dev);
1987     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1988     Error *local_err = NULL;
1989     int i;
1990 
1991     /* XSCOM bridge is first */
1992     pnv_xscom_init(chip, PNV10_XSCOM_SIZE, PNV10_XSCOM_BASE(chip));
1993 
1994     pcc->parent_realize(dev, &local_err);
1995     if (local_err) {
1996         error_propagate(errp, local_err);
1997         return;
1998     }
1999 
2000     /* ADU */
2001     object_property_set_link(OBJECT(&chip10->adu), "lpc", OBJECT(&chip10->lpc),
2002                              &error_abort);
2003     if (!qdev_realize(DEVICE(&chip10->adu), NULL, errp)) {
2004         return;
2005     }
2006     pnv_xscom_add_subregion(chip, PNV10_XSCOM_ADU_BASE,
2007                             &chip10->adu.xscom_regs);
2008 
2009     pnv_chip_power10_quad_realize(chip10, &local_err);
2010     if (local_err) {
2011         error_propagate(errp, local_err);
2012         return;
2013     }
2014 
2015     /* XIVE2 interrupt controller (POWER10) */
2016     object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
2017                             PNV10_XIVE2_IC_BASE(chip), &error_fatal);
2018     object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
2019                             PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
2020     object_property_set_int(OBJECT(&chip10->xive), "end-bar",
2021                             PNV10_XIVE2_END_BASE(chip), &error_fatal);
2022     object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
2023                             PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
2024     object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
2025                             PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
2026     object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
2027                             PNV10_XIVE2_TM_BASE(chip), &error_fatal);
2028     object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
2029                              &error_abort);
2030     if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
2031         return;
2032     }
2033     pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
2034                             &chip10->xive.xscom_regs);
2035 
2036     /* Processor Service Interface (PSI) Host Bridge */
2037     object_property_set_int(OBJECT(&chip10->psi), "bar",
2038                             PNV10_PSIHB_BASE(chip), &error_fatal);
2039     /* PSI can now be configured to use 64k ESB pages on POWER10 */
2040     object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
2041                             &error_fatal);
2042     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
2043         return;
2044     }
2045     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
2046                             &PNV_PSI(&chip10->psi)->xscom_regs);
2047 
2048     /* LPC */
2049     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
2050         return;
2051     }
2052     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
2053                                 &chip10->lpc.xscom_regs);
2054 
2055     chip->fw_mr = &chip10->lpc.isa_fw;
2056     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
2057                                             (uint64_t) PNV10_LPCM_BASE(chip));
2058 
2059     /* ChipTOD */
2060     object_property_set_bool(OBJECT(&chip10->chiptod), "primary",
2061                              chip->chip_id == 0, &error_abort);
2062     object_property_set_bool(OBJECT(&chip10->chiptod), "secondary",
2063                              chip->chip_id == 1, &error_abort);
2064     object_property_set_link(OBJECT(&chip10->chiptod), "chip", OBJECT(chip),
2065                              &error_abort);
2066     if (!qdev_realize(DEVICE(&chip10->chiptod), NULL, errp)) {
2067         return;
2068     }
2069     pnv_xscom_add_subregion(chip, PNV10_XSCOM_CHIPTOD_BASE,
2070                             &chip10->chiptod.xscom_regs);
2071 
2072     /* Create the simplified OCC model */
2073     if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
2074         return;
2075     }
2076     pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
2077                             &chip10->occ.xscom_regs);
2078     qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in(
2079                               DEVICE(&chip10->psi), PSIHB9_IRQ_OCC));
2080 
2081     /* OCC SRAM model */
2082     memory_region_add_subregion(get_system_memory(),
2083                                 PNV10_OCC_SENSOR_BASE(chip),
2084                                 &chip10->occ.sram_regs);
2085 
2086     /* SBE */
2087     if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) {
2088         return;
2089     }
2090     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE,
2091                             &chip10->sbe.xscom_ctrl_regs);
2092     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE,
2093                             &chip10->sbe.xscom_mbox_regs);
2094     qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in(
2095                               DEVICE(&chip10->psi), PSIHB9_IRQ_PSU));
2096 
2097     /* HOMER */
2098     object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
2099                              &error_abort);
2100     if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
2101         return;
2102     }
2103     /* Homer Xscom region */
2104     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
2105                             &chip10->homer.pba_regs);
2106 
2107     /* Homer mmio region */
2108     memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip),
2109                                 &chip10->homer.regs);
2110 
2111     /* N1 chiplet */
2112     if (!qdev_realize(DEVICE(&chip10->n1_chiplet), NULL, errp)) {
2113         return;
2114     }
2115     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_CHIPLET_CTRL_REGS_BASE,
2116              &chip10->n1_chiplet.nest_pervasive.xscom_ctrl_regs_mr);
2117 
2118     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_EQ_BASE,
2119                            &chip10->n1_chiplet.xscom_pb_eq_mr);
2120 
2121     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_ES_BASE,
2122                            &chip10->n1_chiplet.xscom_pb_es_mr);
2123 
2124     /* PHBs */
2125     pnv_chip_power10_phb_realize(chip, &local_err);
2126     if (local_err) {
2127         error_propagate(errp, local_err);
2128         return;
2129     }
2130 
2131 
2132     /*
2133      * I2C
2134      */
2135     for (i = 0; i < pcc->i2c_num_engines; i++) {
2136         Object *obj =  OBJECT(&chip10->i2c[i]);
2137 
2138         object_property_set_int(obj, "engine", i + 1, &error_fatal);
2139         object_property_set_int(obj, "num-busses",
2140                                 pcc->i2c_ports_per_engine[i],
2141                                 &error_fatal);
2142         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
2143         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
2144             return;
2145         }
2146         pnv_xscom_add_subregion(chip, PNV10_XSCOM_I2CM_BASE +
2147                                 (chip10->i2c[i].engine - 1) *
2148                                         PNV10_XSCOM_I2CM_SIZE,
2149                                 &chip10->i2c[i].xscom_regs);
2150         qdev_connect_gpio_out(DEVICE(&chip10->i2c[i]), 0,
2151                               qdev_get_gpio_in(DEVICE(&chip10->psi),
2152                                                PSIHB9_IRQ_SBE_I2C));
2153     }
2154 
2155 }
2156 
2157 static void pnv_rainier_i2c_init(PnvMachineState *pnv)
2158 {
2159     int i;
2160     for (i = 0; i < pnv->num_chips; i++) {
2161         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2162 
2163         /*
2164          * Add a PCA9552 I2C device for PCIe hotplug control
2165          * to engine 2, bus 1, address 0x63
2166          */
2167         I2CSlave *dev = i2c_slave_create_simple(chip10->i2c[2].busses[1],
2168                                                 "pca9552", 0x63);
2169 
2170         /*
2171          * Connect PCA9552 GPIO pins 0-4 (SLOTx_EN) outputs to GPIO pins 5-9
2172          * (SLOTx_PG) inputs in order to fake the pgood state of PCIe slots
2173          * after hypervisor code sets a SLOTx_EN pin high.
2174          */
2175         qdev_connect_gpio_out(DEVICE(dev), 0, qdev_get_gpio_in(DEVICE(dev), 5));
2176         qdev_connect_gpio_out(DEVICE(dev), 1, qdev_get_gpio_in(DEVICE(dev), 6));
2177         qdev_connect_gpio_out(DEVICE(dev), 2, qdev_get_gpio_in(DEVICE(dev), 7));
2178         qdev_connect_gpio_out(DEVICE(dev), 3, qdev_get_gpio_in(DEVICE(dev), 8));
2179         qdev_connect_gpio_out(DEVICE(dev), 4, qdev_get_gpio_in(DEVICE(dev), 9));
2180 
2181         /*
2182          * Add a PCA9554 I2C device for cable card presence detection
2183          * to engine 2, bus 1, address 0x25
2184          */
2185         i2c_slave_create_simple(chip10->i2c[2].busses[1], "pca9554", 0x25);
2186     }
2187 }
2188 
2189 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
2190 {
2191     addr &= (PNV10_XSCOM_SIZE - 1);
2192     return addr >> 3;
2193 }
2194 
2195 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
2196 {
2197     DeviceClass *dc = DEVICE_CLASS(klass);
2198     PnvChipClass *k = PNV_CHIP_CLASS(klass);
2199     static const int i2c_ports_per_engine[PNV10_CHIP_MAX_I2C] = {14, 14, 2, 16};
2200 
2201     k->chip_cfam_id = 0x220da04980000000ull; /* P10 DD2.0 (with NX) */
2202     k->cores_mask = POWER10_CORE_MASK;
2203     k->get_pir_tir = pnv_get_pir_tir_p10;
2204     k->intc_create = pnv_chip_power10_intc_create;
2205     k->intc_reset = pnv_chip_power10_intc_reset;
2206     k->intc_destroy = pnv_chip_power10_intc_destroy;
2207     k->intc_print_info = pnv_chip_power10_intc_print_info;
2208     k->isa_create = pnv_chip_power10_isa_create;
2209     k->dt_populate = pnv_chip_power10_dt_populate;
2210     k->pic_print_info = pnv_chip_power10_pic_print_info;
2211     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
2212     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
2213     dc->desc = "PowerNV Chip POWER10";
2214     k->num_pecs = PNV10_CHIP_MAX_PEC;
2215     k->i2c_num_engines = PNV10_CHIP_MAX_I2C;
2216     k->i2c_ports_per_engine = i2c_ports_per_engine;
2217 
2218     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
2219                                     &k->parent_realize);
2220 }
2221 
2222 static void pnv_chip_core_sanitize(PnvMachineState *pnv, PnvChip *chip,
2223                                    Error **errp)
2224 {
2225     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2226     int cores_max;
2227 
2228     /*
2229      * No custom mask for this chip, let's use the default one from *
2230      * the chip class
2231      */
2232     if (!chip->cores_mask) {
2233         chip->cores_mask = pcc->cores_mask;
2234     }
2235 
2236     /* filter alien core ids ! some are reserved */
2237     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
2238         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
2239                    chip->cores_mask);
2240         return;
2241     }
2242     chip->cores_mask &= pcc->cores_mask;
2243 
2244     /* Ensure small-cores a paired up in big-core mode */
2245     if (pnv->big_core) {
2246         uint64_t even_cores = chip->cores_mask & 0x5555555555555555ULL;
2247         uint64_t odd_cores = chip->cores_mask & 0xaaaaaaaaaaaaaaaaULL;
2248 
2249         if (even_cores ^ (odd_cores >> 1)) {
2250             error_setg(errp, "warning: unpaired cores in big-core mode !");
2251             return;
2252         }
2253     }
2254 
2255     /* now that we have a sane layout, let check the number of cores */
2256     cores_max = ctpop64(chip->cores_mask);
2257     if (chip->nr_cores > cores_max) {
2258         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
2259                    cores_max);
2260         return;
2261     }
2262 }
2263 
2264 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
2265 {
2266     Error *error = NULL;
2267     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2268     const char *typename = pnv_chip_core_typename(chip);
2269     int i, core_hwid;
2270     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
2271 
2272     if (!object_class_by_name(typename)) {
2273         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
2274         return;
2275     }
2276 
2277     /* Cores */
2278     pnv_chip_core_sanitize(pnv, chip, &error);
2279     if (error) {
2280         error_propagate(errp, error);
2281         return;
2282     }
2283 
2284     chip->cores = g_new0(PnvCore *, chip->nr_cores);
2285 
2286     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
2287              && (i < chip->nr_cores); core_hwid++) {
2288         char core_name[32];
2289         PnvCore *pnv_core;
2290         uint64_t xscom_core_base;
2291 
2292         if (!(chip->cores_mask & (1ull << core_hwid))) {
2293             continue;
2294         }
2295 
2296         pnv_core = PNV_CORE(object_new(typename));
2297 
2298         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
2299         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
2300         chip->cores[i] = pnv_core;
2301         object_property_set_int(OBJECT(pnv_core), "nr-threads",
2302                                 chip->nr_threads, &error_fatal);
2303         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
2304                                 core_hwid, &error_fatal);
2305         object_property_set_int(OBJECT(pnv_core), "hwid", core_hwid,
2306                                 &error_fatal);
2307         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
2308                                 &error_fatal);
2309         object_property_set_bool(OBJECT(pnv_core), "big-core", chip->big_core,
2310                                 &error_fatal);
2311         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
2312                                  &error_abort);
2313         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
2314 
2315         /* Each core has an XSCOM MMIO region */
2316         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
2317 
2318         pnv_xscom_add_subregion(chip, xscom_core_base,
2319                                 &pnv_core->xscom_regs);
2320         i++;
2321     }
2322 }
2323 
2324 static void pnv_chip_realize(DeviceState *dev, Error **errp)
2325 {
2326     PnvChip *chip = PNV_CHIP(dev);
2327     Error *error = NULL;
2328 
2329     /* Cores */
2330     pnv_chip_core_realize(chip, &error);
2331     if (error) {
2332         error_propagate(errp, error);
2333         return;
2334     }
2335 }
2336 
2337 static Property pnv_chip_properties[] = {
2338     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
2339     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
2340     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
2341     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
2342     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
2343     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
2344     DEFINE_PROP_BOOL("big-core", PnvChip, big_core, false),
2345     DEFINE_PROP_END_OF_LIST(),
2346 };
2347 
2348 static void pnv_chip_class_init(ObjectClass *klass, void *data)
2349 {
2350     DeviceClass *dc = DEVICE_CLASS(klass);
2351 
2352     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
2353     dc->realize = pnv_chip_realize;
2354     device_class_set_props(dc, pnv_chip_properties);
2355     dc->desc = "PowerNV Chip";
2356 }
2357 
2358 PnvCore *pnv_chip_find_core(PnvChip *chip, uint32_t core_id)
2359 {
2360     int i;
2361 
2362     for (i = 0; i < chip->nr_cores; i++) {
2363         PnvCore *pc = chip->cores[i];
2364         CPUCore *cc = CPU_CORE(pc);
2365 
2366         if (cc->core_id == core_id) {
2367             return pc;
2368         }
2369     }
2370     return NULL;
2371 }
2372 
2373 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
2374 {
2375     int i, j;
2376 
2377     for (i = 0; i < chip->nr_cores; i++) {
2378         PnvCore *pc = chip->cores[i];
2379         CPUCore *cc = CPU_CORE(pc);
2380 
2381         for (j = 0; j < cc->nr_threads; j++) {
2382             if (ppc_cpu_pir(pc->threads[j]) == pir) {
2383                 return pc->threads[j];
2384             }
2385         }
2386     }
2387     return NULL;
2388 }
2389 
2390 static void pnv_chip_foreach_cpu(PnvChip *chip,
2391                    void (*fn)(PnvChip *chip, PowerPCCPU *cpu, void *opaque),
2392                    void *opaque)
2393 {
2394     int i, j;
2395 
2396     for (i = 0; i < chip->nr_cores; i++) {
2397         PnvCore *pc = chip->cores[i];
2398 
2399         for (j = 0; j < CPU_CORE(pc)->nr_threads; j++) {
2400             fn(chip, pc->threads[j], opaque);
2401         }
2402     }
2403 }
2404 
2405 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
2406 {
2407     PnvMachineState *pnv = PNV_MACHINE(xi);
2408     int i, j;
2409 
2410     for (i = 0; i < pnv->num_chips; i++) {
2411         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2412 
2413         if (ics_valid_irq(&chip8->psi.ics, irq)) {
2414             return &chip8->psi.ics;
2415         }
2416 
2417         for (j = 0; j < chip8->num_phbs; j++) {
2418             PnvPHB *phb = chip8->phbs[j];
2419             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2420 
2421             if (ics_valid_irq(&phb3->lsis, irq)) {
2422                 return &phb3->lsis;
2423             }
2424 
2425             if (ics_valid_irq(ICS(&phb3->msis), irq)) {
2426                 return ICS(&phb3->msis);
2427             }
2428         }
2429     }
2430     return NULL;
2431 }
2432 
2433 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
2434 {
2435     int i;
2436 
2437     for (i = 0; i < pnv->num_chips; i++) {
2438         PnvChip *chip = pnv->chips[i];
2439         if (chip->chip_id == chip_id) {
2440             return chip;
2441         }
2442     }
2443     return NULL;
2444 }
2445 
2446 static void pnv_ics_resend(XICSFabric *xi)
2447 {
2448     PnvMachineState *pnv = PNV_MACHINE(xi);
2449     int i, j;
2450 
2451     for (i = 0; i < pnv->num_chips; i++) {
2452         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2453 
2454         ics_resend(&chip8->psi.ics);
2455 
2456         for (j = 0; j < chip8->num_phbs; j++) {
2457             PnvPHB *phb = chip8->phbs[j];
2458             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2459 
2460             ics_resend(&phb3->lsis);
2461             ics_resend(ICS(&phb3->msis));
2462         }
2463     }
2464 }
2465 
2466 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
2467 {
2468     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
2469 
2470     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
2471 }
2472 
2473 static void pnv_pic_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
2474                                     void *opaque)
2475 {
2476     PNV_CHIP_GET_CLASS(chip)->intc_print_info(chip, cpu, opaque);
2477 }
2478 
2479 static void pnv_pic_print_info(InterruptStatsProvider *obj, GString *buf)
2480 {
2481     PnvMachineState *pnv = PNV_MACHINE(obj);
2482     int i;
2483 
2484     for (i = 0; i < pnv->num_chips; i++) {
2485         PnvChip *chip = pnv->chips[i];
2486 
2487         /* First CPU presenters */
2488         pnv_chip_foreach_cpu(chip, pnv_pic_intc_print_info, buf);
2489 
2490         /* Then other devices, PHB, PSI, XIVE */
2491         PNV_CHIP_GET_CLASS(chip)->pic_print_info(chip, buf);
2492     }
2493 }
2494 
2495 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
2496                          uint8_t nvt_blk, uint32_t nvt_idx,
2497                          bool cam_ignore, uint8_t priority,
2498                          uint32_t logic_serv,
2499                          XiveTCTXMatch *match)
2500 {
2501     PnvMachineState *pnv = PNV_MACHINE(xfb);
2502     int total_count = 0;
2503     int i;
2504 
2505     for (i = 0; i < pnv->num_chips; i++) {
2506         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
2507         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
2508         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2509         int count;
2510 
2511         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2512                                priority, logic_serv, match);
2513 
2514         if (count < 0) {
2515             return count;
2516         }
2517 
2518         total_count += count;
2519     }
2520 
2521     return total_count;
2522 }
2523 
2524 static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
2525                                 uint8_t nvt_blk, uint32_t nvt_idx,
2526                                 bool cam_ignore, uint8_t priority,
2527                                 uint32_t logic_serv,
2528                                 XiveTCTXMatch *match)
2529 {
2530     PnvMachineState *pnv = PNV_MACHINE(xfb);
2531     int total_count = 0;
2532     int i;
2533 
2534     for (i = 0; i < pnv->num_chips; i++) {
2535         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2536         XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
2537         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2538         int count;
2539 
2540         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2541                                priority, logic_serv, match);
2542 
2543         if (count < 0) {
2544             return count;
2545         }
2546 
2547         total_count += count;
2548     }
2549 
2550     return total_count;
2551 }
2552 
2553 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
2554 {
2555     MachineClass *mc = MACHINE_CLASS(oc);
2556     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
2557     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2558     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
2559 
2560     static GlobalProperty phb_compat[] = {
2561         { TYPE_PNV_PHB, "version", "3" },
2562         { TYPE_PNV_PHB_ROOT_PORT, "version", "3" },
2563     };
2564 
2565     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
2566     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
2567     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2568 
2569     xic->icp_get = pnv_icp_get;
2570     xic->ics_get = pnv_ics_get;
2571     xic->ics_resend = pnv_ics_resend;
2572 
2573     pmc->compat = compat;
2574     pmc->compat_size = sizeof(compat);
2575     pmc->max_smt_threads = 8;
2576 
2577     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2578 }
2579 
2580 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
2581 {
2582     MachineClass *mc = MACHINE_CLASS(oc);
2583     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2584     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2585     static const char compat[] = "qemu,powernv9\0ibm,powernv";
2586 
2587     static GlobalProperty phb_compat[] = {
2588         { TYPE_PNV_PHB, "version", "4" },
2589         { TYPE_PNV_PHB_ROOT_PORT, "version", "4" },
2590     };
2591 
2592     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
2593     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
2594     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2595 
2596     xfc->match_nvt = pnv_match_nvt;
2597 
2598     pmc->compat = compat;
2599     pmc->compat_size = sizeof(compat);
2600     pmc->max_smt_threads = 4;
2601     pmc->dt_power_mgt = pnv_dt_power_mgt;
2602 
2603     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2604 }
2605 
2606 static void pnv_machine_p10_common_class_init(ObjectClass *oc, void *data)
2607 {
2608     MachineClass *mc = MACHINE_CLASS(oc);
2609     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2610     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2611     static const char compat[] = "qemu,powernv10\0ibm,powernv";
2612 
2613     static GlobalProperty phb_compat[] = {
2614         { TYPE_PNV_PHB, "version", "5" },
2615         { TYPE_PNV_PHB_ROOT_PORT, "version", "5" },
2616     };
2617 
2618     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
2619     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2620 
2621     mc->alias = "powernv";
2622 
2623     pmc->compat = compat;
2624     pmc->compat_size = sizeof(compat);
2625     pmc->max_smt_threads = 4;
2626     pmc->dt_power_mgt = pnv_dt_power_mgt;
2627 
2628     xfc->match_nvt = pnv10_xive_match_nvt;
2629 
2630     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2631 }
2632 
2633 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
2634 {
2635     MachineClass *mc = MACHINE_CLASS(oc);
2636 
2637     pnv_machine_p10_common_class_init(oc, data);
2638     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
2639 }
2640 
2641 static void pnv_machine_p10_rainier_class_init(ObjectClass *oc, void *data)
2642 {
2643     MachineClass *mc = MACHINE_CLASS(oc);
2644     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2645 
2646     pnv_machine_p10_common_class_init(oc, data);
2647     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10 Rainier";
2648     pmc->i2c_init = pnv_rainier_i2c_init;
2649 }
2650 
2651 static bool pnv_machine_get_hb(Object *obj, Error **errp)
2652 {
2653     PnvMachineState *pnv = PNV_MACHINE(obj);
2654 
2655     return !!pnv->fw_load_addr;
2656 }
2657 
2658 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
2659 {
2660     PnvMachineState *pnv = PNV_MACHINE(obj);
2661 
2662     if (value) {
2663         pnv->fw_load_addr = 0x8000000;
2664     }
2665 }
2666 
2667 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2668 {
2669     CPUPPCState *env = cpu_env(cs);
2670 
2671     cpu_synchronize_state(cs);
2672     ppc_cpu_do_system_reset(cs);
2673     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
2674         /*
2675          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
2676          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
2677          * (PPC_BIT(43)).
2678          */
2679         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
2680             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
2681             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
2682         }
2683     } else {
2684         /*
2685          * For non-powersave system resets, SRR1[42:45] are defined to be
2686          * implementation-dependent. The POWER9 User Manual specifies that
2687          * an external (SCOM driven, which may come from a BMC nmi command or
2688          * another CPU requesting a NMI IPI) system reset exception should be
2689          * 0b0010 (PPC_BIT(44)).
2690          */
2691         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2692     }
2693 }
2694 
2695 static void pnv_cpu_do_nmi(PnvChip *chip, PowerPCCPU *cpu, void *opaque)
2696 {
2697     async_run_on_cpu(CPU(cpu), pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2698 }
2699 
2700 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2701 {
2702     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
2703     int i;
2704 
2705     for (i = 0; i < pnv->num_chips; i++) {
2706         pnv_chip_foreach_cpu(pnv->chips[i], pnv_cpu_do_nmi, NULL);
2707     }
2708 }
2709 
2710 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2711 {
2712     MachineClass *mc = MACHINE_CLASS(oc);
2713     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2714     NMIClass *nc = NMI_CLASS(oc);
2715 
2716     mc->desc = "IBM PowerNV (Non-Virtualized)";
2717     mc->init = pnv_init;
2718     mc->reset = pnv_reset;
2719     mc->max_cpus = MAX_CPUS;
2720     /* Pnv provides a AHCI device for storage */
2721     mc->block_default_type = IF_IDE;
2722     mc->no_parallel = 1;
2723     mc->default_boot_order = NULL;
2724     /*
2725      * RAM defaults to less than 2048 for 32-bit hosts, and large
2726      * enough to fit the maximum initrd size at it's load address
2727      */
2728     mc->default_ram_size = 1 * GiB;
2729     mc->default_ram_id = "pnv.ram";
2730     ispc->print_info = pnv_pic_print_info;
2731     nc->nmi_monitor_handler = pnv_nmi;
2732 
2733     object_class_property_add_bool(oc, "hb-mode",
2734                                    pnv_machine_get_hb, pnv_machine_set_hb);
2735     object_class_property_set_description(oc, "hb-mode",
2736                               "Use a hostboot like boot loader");
2737 }
2738 
2739 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2740     {                                             \
2741         .name          = type,                    \
2742         .class_init    = class_initfn,            \
2743         .parent        = TYPE_PNV8_CHIP,          \
2744     }
2745 
2746 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2747     {                                             \
2748         .name          = type,                    \
2749         .class_init    = class_initfn,            \
2750         .parent        = TYPE_PNV9_CHIP,          \
2751     }
2752 
2753 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2754     {                                              \
2755         .name          = type,                     \
2756         .class_init    = class_initfn,             \
2757         .parent        = TYPE_PNV10_CHIP,          \
2758     }
2759 
2760 static const TypeInfo types[] = {
2761     {
2762         .name          = MACHINE_TYPE_NAME("powernv10-rainier"),
2763         .parent        = MACHINE_TYPE_NAME("powernv10"),
2764         .class_init    = pnv_machine_p10_rainier_class_init,
2765     },
2766     {
2767         .name          = MACHINE_TYPE_NAME("powernv10"),
2768         .parent        = TYPE_PNV_MACHINE,
2769         .class_init    = pnv_machine_power10_class_init,
2770         .interfaces = (InterfaceInfo[]) {
2771             { TYPE_XIVE_FABRIC },
2772             { },
2773         },
2774     },
2775     {
2776         .name          = MACHINE_TYPE_NAME("powernv9"),
2777         .parent        = TYPE_PNV_MACHINE,
2778         .class_init    = pnv_machine_power9_class_init,
2779         .interfaces = (InterfaceInfo[]) {
2780             { TYPE_XIVE_FABRIC },
2781             { },
2782         },
2783     },
2784     {
2785         .name          = MACHINE_TYPE_NAME("powernv8"),
2786         .parent        = TYPE_PNV_MACHINE,
2787         .class_init    = pnv_machine_power8_class_init,
2788         .interfaces = (InterfaceInfo[]) {
2789             { TYPE_XICS_FABRIC },
2790             { },
2791         },
2792     },
2793     {
2794         .name          = TYPE_PNV_MACHINE,
2795         .parent        = TYPE_MACHINE,
2796         .abstract       = true,
2797         .instance_size = sizeof(PnvMachineState),
2798         .class_init    = pnv_machine_class_init,
2799         .class_size    = sizeof(PnvMachineClass),
2800         .interfaces = (InterfaceInfo[]) {
2801             { TYPE_INTERRUPT_STATS_PROVIDER },
2802             { TYPE_NMI },
2803             { },
2804         },
2805     },
2806     {
2807         .name          = TYPE_PNV_CHIP,
2808         .parent        = TYPE_SYS_BUS_DEVICE,
2809         .class_init    = pnv_chip_class_init,
2810         .instance_size = sizeof(PnvChip),
2811         .class_size    = sizeof(PnvChipClass),
2812         .abstract      = true,
2813     },
2814 
2815     /*
2816      * P10 chip and variants
2817      */
2818     {
2819         .name          = TYPE_PNV10_CHIP,
2820         .parent        = TYPE_PNV_CHIP,
2821         .instance_init = pnv_chip_power10_instance_init,
2822         .instance_size = sizeof(Pnv10Chip),
2823     },
2824     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2825 
2826     /*
2827      * P9 chip and variants
2828      */
2829     {
2830         .name          = TYPE_PNV9_CHIP,
2831         .parent        = TYPE_PNV_CHIP,
2832         .instance_init = pnv_chip_power9_instance_init,
2833         .instance_size = sizeof(Pnv9Chip),
2834     },
2835     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2836 
2837     /*
2838      * P8 chip and variants
2839      */
2840     {
2841         .name          = TYPE_PNV8_CHIP,
2842         .parent        = TYPE_PNV_CHIP,
2843         .instance_init = pnv_chip_power8_instance_init,
2844         .instance_size = sizeof(Pnv8Chip),
2845     },
2846     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2847     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2848     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2849                           pnv_chip_power8nvl_class_init),
2850 };
2851 
2852 DEFINE_TYPES(types)
2853