xref: /openbmc/qemu/hw/ppc/pnv.c (revision 94956d7b510d18f4449d1392b86e1a8f3e467612)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qemu/units.h"
23 #include "qemu/cutils.h"
24 #include "qapi/error.h"
25 #include "sysemu/qtest.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/numa.h"
28 #include "sysemu/reset.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/cpus.h"
31 #include "sysemu/device_tree.h"
32 #include "sysemu/hw_accel.h"
33 #include "target/ppc/cpu.h"
34 #include "hw/ppc/fdt.h"
35 #include "hw/ppc/ppc.h"
36 #include "hw/ppc/pnv.h"
37 #include "hw/ppc/pnv_core.h"
38 #include "hw/loader.h"
39 #include "hw/nmi.h"
40 #include "qapi/visitor.h"
41 #include "monitor/monitor.h"
42 #include "hw/intc/intc.h"
43 #include "hw/ipmi/ipmi.h"
44 #include "target/ppc/mmu-hash64.h"
45 #include "hw/pci/msi.h"
46 #include "hw/pci-host/pnv_phb.h"
47 #include "hw/pci-host/pnv_phb3.h"
48 #include "hw/pci-host/pnv_phb4.h"
49 
50 #include "hw/ppc/xics.h"
51 #include "hw/qdev-properties.h"
52 #include "hw/ppc/pnv_chip.h"
53 #include "hw/ppc/pnv_xscom.h"
54 #include "hw/ppc/pnv_pnor.h"
55 
56 #include "hw/isa/isa.h"
57 #include "hw/char/serial.h"
58 #include "hw/rtc/mc146818rtc.h"
59 
60 #include <libfdt.h>
61 
62 #define FDT_MAX_SIZE            (1 * MiB)
63 
64 #define FW_FILE_NAME            "skiboot.lid"
65 #define FW_LOAD_ADDR            0x0
66 #define FW_MAX_SIZE             (16 * MiB)
67 
68 #define KERNEL_LOAD_ADDR        0x20000000
69 #define KERNEL_MAX_SIZE         (128 * MiB)
70 #define INITRD_LOAD_ADDR        0x28000000
71 #define INITRD_MAX_SIZE         (128 * MiB)
72 
73 static const char *pnv_chip_core_typename(const PnvChip *o)
74 {
75     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
76     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
77     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
78     const char *core_type = object_class_get_name(object_class_by_name(s));
79     g_free(s);
80     return core_type;
81 }
82 
83 /*
84  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
85  *     4 * 4 sockets * 12 cores * 8 threads = 1536
86  * Let's make it 2^11
87  */
88 #define MAX_CPUS                2048
89 
90 /*
91  * Memory nodes are created by hostboot, one for each range of memory
92  * that has a different "affinity". In practice, it means one range
93  * per chip.
94  */
95 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
96 {
97     char *mem_name;
98     uint64_t mem_reg_property[2];
99     int off;
100 
101     mem_reg_property[0] = cpu_to_be64(start);
102     mem_reg_property[1] = cpu_to_be64(size);
103 
104     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
105     off = fdt_add_subnode(fdt, 0, mem_name);
106     g_free(mem_name);
107 
108     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
109     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
110                        sizeof(mem_reg_property))));
111     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
112 }
113 
114 static int get_cpus_node(void *fdt)
115 {
116     int cpus_offset = fdt_path_offset(fdt, "/cpus");
117 
118     if (cpus_offset < 0) {
119         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
120         if (cpus_offset) {
121             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
122             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
123         }
124     }
125     _FDT(cpus_offset);
126     return cpus_offset;
127 }
128 
129 /*
130  * The PowerNV cores (and threads) need to use real HW ids and not an
131  * incremental index like it has been done on other platforms. This HW
132  * id is stored in the CPU PIR, it is used to create cpu nodes in the
133  * device tree, used in XSCOM to address cores and in interrupt
134  * servers.
135  */
136 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
137 {
138     PowerPCCPU *cpu = pc->threads[0];
139     CPUState *cs = CPU(cpu);
140     DeviceClass *dc = DEVICE_GET_CLASS(cs);
141     int smt_threads = CPU_CORE(pc)->nr_threads;
142     CPUPPCState *env = &cpu->env;
143     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
144     g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
145     int i;
146     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
147                        0xffffffff, 0xffffffff};
148     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
149     uint32_t cpufreq = 1000000000;
150     uint32_t page_sizes_prop[64];
151     size_t page_sizes_prop_size;
152     const uint8_t pa_features[] = { 24, 0,
153                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
154                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
155                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
156                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
157     int offset;
158     char *nodename;
159     int cpus_offset = get_cpus_node(fdt);
160 
161     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
162     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
163     _FDT(offset);
164     g_free(nodename);
165 
166     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
167 
168     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
169     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
170     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
171 
172     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
173     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
174                             env->dcache_line_size)));
175     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
176                             env->dcache_line_size)));
177     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
178                             env->icache_line_size)));
179     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
180                             env->icache_line_size)));
181 
182     if (pcc->l1_dcache_size) {
183         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
184                                pcc->l1_dcache_size)));
185     } else {
186         warn_report("Unknown L1 dcache size for cpu");
187     }
188     if (pcc->l1_icache_size) {
189         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
190                                pcc->l1_icache_size)));
191     } else {
192         warn_report("Unknown L1 icache size for cpu");
193     }
194 
195     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
196     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
197     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
198                            cpu->hash64_opts->slb_size)));
199     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
200     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
201 
202     if (ppc_has_spr(cpu, SPR_PURR)) {
203         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
204     }
205 
206     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
207         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
208                            segs, sizeof(segs))));
209     }
210 
211     /*
212      * Advertise VMX/VSX (vector extensions) if available
213      *   0 / no property == no vector extensions
214      *   1               == VMX / Altivec available
215      *   2               == VSX available
216      */
217     if (env->insns_flags & PPC_ALTIVEC) {
218         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
219 
220         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
221     }
222 
223     /*
224      * Advertise DFP (Decimal Floating Point) if available
225      *   0 / no property == no DFP
226      *   1               == DFP available
227      */
228     if (env->insns_flags2 & PPC2_DFP) {
229         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
230     }
231 
232     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
233                                                       sizeof(page_sizes_prop));
234     if (page_sizes_prop_size) {
235         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
236                            page_sizes_prop, page_sizes_prop_size)));
237     }
238 
239     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
240                        pa_features, sizeof(pa_features))));
241 
242     /* Build interrupt servers properties */
243     for (i = 0; i < smt_threads; i++) {
244         servers_prop[i] = cpu_to_be32(pc->pir + i);
245     }
246     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
247                        servers_prop, sizeof(*servers_prop) * smt_threads)));
248 }
249 
250 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
251                        uint32_t nr_threads)
252 {
253     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
254     char *name;
255     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
256     uint32_t irange[2], i, rsize;
257     uint64_t *reg;
258     int offset;
259 
260     irange[0] = cpu_to_be32(pir);
261     irange[1] = cpu_to_be32(nr_threads);
262 
263     rsize = sizeof(uint64_t) * 2 * nr_threads;
264     reg = g_malloc(rsize);
265     for (i = 0; i < nr_threads; i++) {
266         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
267         reg[i * 2 + 1] = cpu_to_be64(0x1000);
268     }
269 
270     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
271     offset = fdt_add_subnode(fdt, 0, name);
272     _FDT(offset);
273     g_free(name);
274 
275     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
276     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
277     _FDT((fdt_setprop_string(fdt, offset, "device_type",
278                               "PowerPC-External-Interrupt-Presentation")));
279     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
280     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
281                        irange, sizeof(irange))));
282     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
283     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
284     g_free(reg);
285 }
286 
287 /*
288  * Adds a PnvPHB to the chip on P8.
289  * Implemented here, like for defaults PHBs
290  */
291 PnvChip *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb)
292 {
293     Pnv8Chip *chip8 = PNV8_CHIP(chip);
294 
295     phb->chip = chip;
296 
297     chip8->phbs[chip8->num_phbs] = phb;
298     chip8->num_phbs++;
299     return chip;
300 }
301 
302 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
303 {
304     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
305     int i;
306 
307     pnv_dt_xscom(chip, fdt, 0,
308                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
309                  cpu_to_be64(PNV_XSCOM_SIZE),
310                  compat, sizeof(compat));
311 
312     for (i = 0; i < chip->nr_cores; i++) {
313         PnvCore *pnv_core = chip->cores[i];
314 
315         pnv_dt_core(chip, pnv_core, fdt);
316 
317         /* Interrupt Control Presenters (ICP). One per core. */
318         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
319     }
320 
321     if (chip->ram_size) {
322         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
323     }
324 }
325 
326 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
327 {
328     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
329     int i;
330 
331     pnv_dt_xscom(chip, fdt, 0,
332                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
333                  cpu_to_be64(PNV9_XSCOM_SIZE),
334                  compat, sizeof(compat));
335 
336     for (i = 0; i < chip->nr_cores; i++) {
337         PnvCore *pnv_core = chip->cores[i];
338 
339         pnv_dt_core(chip, pnv_core, fdt);
340     }
341 
342     if (chip->ram_size) {
343         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
344     }
345 
346     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
347 }
348 
349 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
350 {
351     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
352     int i;
353 
354     pnv_dt_xscom(chip, fdt, 0,
355                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
356                  cpu_to_be64(PNV10_XSCOM_SIZE),
357                  compat, sizeof(compat));
358 
359     for (i = 0; i < chip->nr_cores; i++) {
360         PnvCore *pnv_core = chip->cores[i];
361 
362         pnv_dt_core(chip, pnv_core, fdt);
363     }
364 
365     if (chip->ram_size) {
366         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
367     }
368 
369     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
370 }
371 
372 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
373 {
374     uint32_t io_base = d->ioport_id;
375     uint32_t io_regs[] = {
376         cpu_to_be32(1),
377         cpu_to_be32(io_base),
378         cpu_to_be32(2)
379     };
380     char *name;
381     int node;
382 
383     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
384     node = fdt_add_subnode(fdt, lpc_off, name);
385     _FDT(node);
386     g_free(name);
387 
388     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
389     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
390 }
391 
392 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
393 {
394     const char compatible[] = "ns16550\0pnpPNP,501";
395     uint32_t io_base = d->ioport_id;
396     uint32_t io_regs[] = {
397         cpu_to_be32(1),
398         cpu_to_be32(io_base),
399         cpu_to_be32(8)
400     };
401     uint32_t irq;
402     char *name;
403     int node;
404 
405     irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
406 
407     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
408     node = fdt_add_subnode(fdt, lpc_off, name);
409     _FDT(node);
410     g_free(name);
411 
412     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
413     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
414                       sizeof(compatible))));
415 
416     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
417     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
418     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
419     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
420                            fdt_get_phandle(fdt, lpc_off))));
421 
422     /* This is needed by Linux */
423     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
424 }
425 
426 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
427 {
428     const char compatible[] = "bt\0ipmi-bt";
429     uint32_t io_base;
430     uint32_t io_regs[] = {
431         cpu_to_be32(1),
432         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
433         cpu_to_be32(3)
434     };
435     uint32_t irq;
436     char *name;
437     int node;
438 
439     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
440     io_regs[1] = cpu_to_be32(io_base);
441 
442     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
443 
444     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
445     node = fdt_add_subnode(fdt, lpc_off, name);
446     _FDT(node);
447     g_free(name);
448 
449     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
450     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
451                       sizeof(compatible))));
452 
453     /* Mark it as reserved to avoid Linux trying to claim it */
454     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
455     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
456     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
457                            fdt_get_phandle(fdt, lpc_off))));
458 }
459 
460 typedef struct ForeachPopulateArgs {
461     void *fdt;
462     int offset;
463 } ForeachPopulateArgs;
464 
465 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
466 {
467     ForeachPopulateArgs *args = opaque;
468     ISADevice *d = ISA_DEVICE(dev);
469 
470     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
471         pnv_dt_rtc(d, args->fdt, args->offset);
472     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
473         pnv_dt_serial(d, args->fdt, args->offset);
474     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
475         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
476     } else {
477         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
478                      d->ioport_id);
479     }
480 
481     return 0;
482 }
483 
484 /*
485  * The default LPC bus of a multichip system is on chip 0. It's
486  * recognized by the firmware (skiboot) using a "primary" property.
487  */
488 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
489 {
490     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
491     ForeachPopulateArgs args = {
492         .fdt = fdt,
493         .offset = isa_offset,
494     };
495     uint32_t phandle;
496 
497     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
498 
499     phandle = qemu_fdt_alloc_phandle(fdt);
500     assert(phandle > 0);
501     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
502 
503     /*
504      * ISA devices are not necessarily parented to the ISA bus so we
505      * can not use object_child_foreach()
506      */
507     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
508                        &args);
509 }
510 
511 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
512 {
513     int off;
514 
515     off = fdt_add_subnode(fdt, 0, "ibm,opal");
516     off = fdt_add_subnode(fdt, off, "power-mgt");
517 
518     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
519 }
520 
521 static void *pnv_dt_create(MachineState *machine)
522 {
523     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
524     PnvMachineState *pnv = PNV_MACHINE(machine);
525     void *fdt;
526     char *buf;
527     int off;
528     int i;
529 
530     fdt = g_malloc0(FDT_MAX_SIZE);
531     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
532 
533     /* /qemu node */
534     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
535 
536     /* Root node */
537     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
538     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
539     _FDT((fdt_setprop_string(fdt, 0, "model",
540                              "IBM PowerNV (emulated by qemu)")));
541     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
542 
543     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
544     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
545     if (qemu_uuid_set) {
546         _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
547     }
548     g_free(buf);
549 
550     off = fdt_add_subnode(fdt, 0, "chosen");
551     if (machine->kernel_cmdline) {
552         _FDT((fdt_setprop_string(fdt, off, "bootargs",
553                                  machine->kernel_cmdline)));
554     }
555 
556     if (pnv->initrd_size) {
557         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
558         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
559 
560         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
561                                &start_prop, sizeof(start_prop))));
562         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
563                                &end_prop, sizeof(end_prop))));
564     }
565 
566     /* Populate device tree for each chip */
567     for (i = 0; i < pnv->num_chips; i++) {
568         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
569     }
570 
571     /* Populate ISA devices on chip 0 */
572     pnv_dt_isa(pnv, fdt);
573 
574     if (pnv->bmc) {
575         pnv_dt_bmc_sensors(pnv->bmc, fdt);
576     }
577 
578     /* Create an extra node for power management on machines that support it */
579     if (pmc->dt_power_mgt) {
580         pmc->dt_power_mgt(pnv, fdt);
581     }
582 
583     return fdt;
584 }
585 
586 static void pnv_powerdown_notify(Notifier *n, void *opaque)
587 {
588     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
589 
590     if (pnv->bmc) {
591         pnv_bmc_powerdown(pnv->bmc);
592     }
593 }
594 
595 static void pnv_reset(MachineState *machine, ShutdownCause reason)
596 {
597     PnvMachineState *pnv = PNV_MACHINE(machine);
598     IPMIBmc *bmc;
599     void *fdt;
600 
601     qemu_devices_reset(reason);
602 
603     /*
604      * The machine should provide by default an internal BMC simulator.
605      * If not, try to use the BMC device that was provided on the command
606      * line.
607      */
608     bmc = pnv_bmc_find(&error_fatal);
609     if (!pnv->bmc) {
610         if (!bmc) {
611             if (!qtest_enabled()) {
612                 warn_report("machine has no BMC device. Use '-device "
613                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
614                             "to define one");
615             }
616         } else {
617             pnv_bmc_set_pnor(bmc, pnv->pnor);
618             pnv->bmc = bmc;
619         }
620     }
621 
622     fdt = pnv_dt_create(machine);
623 
624     /* Pack resulting tree */
625     _FDT((fdt_pack(fdt)));
626 
627     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
628     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
629 
630     /*
631      * Set machine->fdt for 'dumpdtb' QMP/HMP command. Free
632      * the existing machine->fdt to avoid leaking it during
633      * a reset.
634      */
635     g_free(machine->fdt);
636     machine->fdt = fdt;
637 }
638 
639 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
640 {
641     Pnv8Chip *chip8 = PNV8_CHIP(chip);
642     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL);
643 
644     qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
645     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
646 }
647 
648 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
649 {
650     Pnv8Chip *chip8 = PNV8_CHIP(chip);
651     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C);
652 
653     qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
654     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
655 }
656 
657 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
658 {
659     Pnv9Chip *chip9 = PNV9_CHIP(chip);
660     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC);
661 
662     qdev_connect_gpio_out(DEVICE(&chip9->lpc), 0, irq);
663     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
664 }
665 
666 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
667 {
668     Pnv10Chip *chip10 = PNV10_CHIP(chip);
669     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC);
670 
671     qdev_connect_gpio_out(DEVICE(&chip10->lpc), 0, irq);
672     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
673 }
674 
675 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
676 {
677     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
678 }
679 
680 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
681 {
682     Pnv8Chip *chip8 = PNV8_CHIP(chip);
683     int i;
684 
685     ics_pic_print_info(&chip8->psi.ics, mon);
686 
687     for (i = 0; i < chip8->num_phbs; i++) {
688         PnvPHB *phb = chip8->phbs[i];
689         PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
690 
691         pnv_phb3_msi_pic_print_info(&phb3->msis, mon);
692         ics_pic_print_info(&phb3->lsis, mon);
693     }
694 }
695 
696 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
697 {
698     Monitor *mon = opaque;
699     PnvPHB *phb =  (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB);
700 
701     if (!phb) {
702         return 0;
703     }
704 
705     pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), mon);
706 
707     return 0;
708 }
709 
710 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
711 {
712     Pnv9Chip *chip9 = PNV9_CHIP(chip);
713 
714     pnv_xive_pic_print_info(&chip9->xive, mon);
715     pnv_psi_pic_print_info(&chip9->psi, mon);
716 
717     object_child_foreach_recursive(OBJECT(chip),
718                          pnv_chip_power9_pic_print_info_child, mon);
719 }
720 
721 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
722                                                 uint32_t core_id)
723 {
724     return PNV_XSCOM_EX_BASE(core_id);
725 }
726 
727 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
728                                                 uint32_t core_id)
729 {
730     return PNV9_XSCOM_EC_BASE(core_id);
731 }
732 
733 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
734                                                  uint32_t core_id)
735 {
736     return PNV10_XSCOM_EC_BASE(core_id);
737 }
738 
739 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
740 {
741     PowerPCCPUClass *ppc_default =
742         POWERPC_CPU_CLASS(object_class_by_name(default_type));
743     PowerPCCPUClass *ppc =
744         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
745 
746     return ppc_default->pvr_match(ppc_default, ppc->pvr, false);
747 }
748 
749 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
750 {
751     ISADevice *dev = isa_new("isa-ipmi-bt");
752 
753     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
754     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
755     isa_realize_and_unref(dev, bus, &error_fatal);
756 }
757 
758 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
759 {
760     Pnv10Chip *chip10 = PNV10_CHIP(chip);
761 
762     pnv_xive2_pic_print_info(&chip10->xive, mon);
763     pnv_psi_pic_print_info(&chip10->psi, mon);
764 
765     object_child_foreach_recursive(OBJECT(chip),
766                          pnv_chip_power9_pic_print_info_child, mon);
767 }
768 
769 /* Always give the first 1GB to chip 0 else we won't boot */
770 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
771 {
772     MachineState *machine = MACHINE(pnv);
773     uint64_t ram_per_chip;
774 
775     assert(machine->ram_size >= 1 * GiB);
776 
777     ram_per_chip = machine->ram_size / pnv->num_chips;
778     if (ram_per_chip >= 1 * GiB) {
779         return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
780     }
781 
782     assert(pnv->num_chips > 1);
783 
784     ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
785     return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
786 }
787 
788 static void pnv_init(MachineState *machine)
789 {
790     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
791     PnvMachineState *pnv = PNV_MACHINE(machine);
792     MachineClass *mc = MACHINE_GET_CLASS(machine);
793     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
794     char *fw_filename;
795     long fw_size;
796     uint64_t chip_ram_start = 0;
797     int i;
798     char *chip_typename;
799     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
800     DeviceState *dev;
801 
802     if (kvm_enabled()) {
803         error_report("machine %s does not support the KVM accelerator",
804                      mc->name);
805         exit(EXIT_FAILURE);
806     }
807 
808     /* allocate RAM */
809     if (machine->ram_size < mc->default_ram_size) {
810         char *sz = size_to_str(mc->default_ram_size);
811         error_report("Invalid RAM size, should be bigger than %s", sz);
812         g_free(sz);
813         exit(EXIT_FAILURE);
814     }
815     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
816 
817     /*
818      * Create our simple PNOR device
819      */
820     dev = qdev_new(TYPE_PNV_PNOR);
821     if (pnor) {
822         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
823     }
824     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
825     pnv->pnor = PNV_PNOR(dev);
826 
827     /* load skiboot firmware  */
828     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
829     if (!fw_filename) {
830         error_report("Could not find OPAL firmware '%s'", bios_name);
831         exit(1);
832     }
833 
834     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
835     if (fw_size < 0) {
836         error_report("Could not load OPAL firmware '%s'", fw_filename);
837         exit(1);
838     }
839     g_free(fw_filename);
840 
841     /* load kernel */
842     if (machine->kernel_filename) {
843         long kernel_size;
844 
845         kernel_size = load_image_targphys(machine->kernel_filename,
846                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
847         if (kernel_size < 0) {
848             error_report("Could not load kernel '%s'",
849                          machine->kernel_filename);
850             exit(1);
851         }
852     }
853 
854     /* load initrd */
855     if (machine->initrd_filename) {
856         pnv->initrd_base = INITRD_LOAD_ADDR;
857         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
858                                   pnv->initrd_base, INITRD_MAX_SIZE);
859         if (pnv->initrd_size < 0) {
860             error_report("Could not load initial ram disk '%s'",
861                          machine->initrd_filename);
862             exit(1);
863         }
864     }
865 
866     /* MSIs are supported on this platform */
867     msi_nonbroken = true;
868 
869     /*
870      * Check compatibility of the specified CPU with the machine
871      * default.
872      */
873     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
874         error_report("invalid CPU model '%s' for %s machine",
875                      machine->cpu_type, mc->name);
876         exit(1);
877     }
878 
879     /* Create the processor chips */
880     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
881     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
882                                     i, machine->cpu_type);
883     if (!object_class_by_name(chip_typename)) {
884         error_report("invalid chip model '%.*s' for %s machine",
885                      i, machine->cpu_type, mc->name);
886         exit(1);
887     }
888 
889     pnv->num_chips =
890         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
891 
892     if (machine->smp.threads > 8) {
893         error_report("Cannot support more than 8 threads/core "
894                      "on a powernv machine");
895         exit(1);
896     }
897     if (!is_power_of_2(machine->smp.threads)) {
898         error_report("Cannot support %d threads/core on a powernv"
899                      "machine because it must be a power of 2",
900                      machine->smp.threads);
901         exit(1);
902     }
903     /*
904      * TODO: should we decide on how many chips we can create based
905      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
906      */
907     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
908         error_report("invalid number of chips: '%d'", pnv->num_chips);
909         error_printf(
910             "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
911         exit(1);
912     }
913 
914     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
915     for (i = 0; i < pnv->num_chips; i++) {
916         char chip_name[32];
917         Object *chip = OBJECT(qdev_new(chip_typename));
918         uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
919 
920         pnv->chips[i] = PNV_CHIP(chip);
921 
922         /* Distribute RAM among the chips  */
923         object_property_set_int(chip, "ram-start", chip_ram_start,
924                                 &error_fatal);
925         object_property_set_int(chip, "ram-size", chip_ram_size,
926                                 &error_fatal);
927         chip_ram_start += chip_ram_size;
928 
929         snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
930         object_property_add_child(OBJECT(pnv), chip_name, chip);
931         object_property_set_int(chip, "chip-id", i, &error_fatal);
932         object_property_set_int(chip, "nr-cores", machine->smp.cores,
933                                 &error_fatal);
934         object_property_set_int(chip, "nr-threads", machine->smp.threads,
935                                 &error_fatal);
936         /*
937          * The POWER8 machine use the XICS interrupt interface.
938          * Propagate the XICS fabric to the chip and its controllers.
939          */
940         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
941             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
942         }
943         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
944             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
945                                      &error_abort);
946         }
947         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
948     }
949     g_free(chip_typename);
950 
951     /* Instantiate ISA bus on chip 0 */
952     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
953 
954     /* Create serial port */
955     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
956 
957     /* Create an RTC ISA device too */
958     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
959 
960     /*
961      * Create the machine BMC simulator and the IPMI BT device for
962      * communication with the BMC
963      */
964     if (defaults_enabled()) {
965         pnv->bmc = pnv_bmc_create(pnv->pnor);
966         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
967     }
968 
969     /*
970      * The PNOR is mapped on the LPC FW address space by the BMC.
971      * Since we can not reach the remote BMC machine with LPC memops,
972      * map it always for now.
973      */
974     memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
975                                 &pnv->pnor->mmio);
976 
977     /*
978      * OpenPOWER systems use a IPMI SEL Event message to notify the
979      * host to powerdown
980      */
981     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
982     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
983 
984     /*
985      * Create/Connect any machine-specific I2C devices
986      */
987     if (pmc->i2c_init) {
988         pmc->i2c_init(pnv);
989     }
990 }
991 
992 /*
993  *    0:21  Reserved - Read as zeros
994  *   22:24  Chip ID
995  *   25:28  Core number
996  *   29:31  Thread ID
997  */
998 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
999 {
1000     return (chip->chip_id << 7) | (core_id << 3);
1001 }
1002 
1003 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1004                                         Error **errp)
1005 {
1006     Pnv8Chip *chip8 = PNV8_CHIP(chip);
1007     Error *local_err = NULL;
1008     Object *obj;
1009     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1010 
1011     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
1012     if (local_err) {
1013         error_propagate(errp, local_err);
1014         return;
1015     }
1016 
1017     pnv_cpu->intc = obj;
1018 }
1019 
1020 
1021 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1022 {
1023     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1024 
1025     icp_reset(ICP(pnv_cpu->intc));
1026 }
1027 
1028 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1029 {
1030     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1031 
1032     icp_destroy(ICP(pnv_cpu->intc));
1033     pnv_cpu->intc = NULL;
1034 }
1035 
1036 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1037                                             Monitor *mon)
1038 {
1039     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
1040 }
1041 
1042 /*
1043  *    0:48  Reserved - Read as zeroes
1044  *   49:52  Node ID
1045  *   53:55  Chip ID
1046  *   56     Reserved - Read as zero
1047  *   57:61  Core number
1048  *   62:63  Thread ID
1049  *
1050  * We only care about the lower bits. uint32_t is fine for the moment.
1051  */
1052 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
1053 {
1054     return (chip->chip_id << 8) | (core_id << 2);
1055 }
1056 
1057 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
1058 {
1059     return (chip->chip_id << 8) | (core_id << 2);
1060 }
1061 
1062 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1063                                         Error **errp)
1064 {
1065     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1066     Error *local_err = NULL;
1067     Object *obj;
1068     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1069 
1070     /*
1071      * The core creates its interrupt presenter but the XIVE interrupt
1072      * controller object is initialized afterwards. Hopefully, it's
1073      * only used at runtime.
1074      */
1075     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1076                            &local_err);
1077     if (local_err) {
1078         error_propagate(errp, local_err);
1079         return;
1080     }
1081 
1082     pnv_cpu->intc = obj;
1083 }
1084 
1085 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1086 {
1087     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1088 
1089     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1090 }
1091 
1092 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1093 {
1094     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1095 
1096     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1097     pnv_cpu->intc = NULL;
1098 }
1099 
1100 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1101                                             Monitor *mon)
1102 {
1103     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1104 }
1105 
1106 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1107                                         Error **errp)
1108 {
1109     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1110     Error *local_err = NULL;
1111     Object *obj;
1112     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1113 
1114     /*
1115      * The core creates its interrupt presenter but the XIVE2 interrupt
1116      * controller object is initialized afterwards. Hopefully, it's
1117      * only used at runtime.
1118      */
1119     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
1120                            &local_err);
1121     if (local_err) {
1122         error_propagate(errp, local_err);
1123         return;
1124     }
1125 
1126     pnv_cpu->intc = obj;
1127 }
1128 
1129 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1130 {
1131     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1132 
1133     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1134 }
1135 
1136 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1137 {
1138     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1139 
1140     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1141     pnv_cpu->intc = NULL;
1142 }
1143 
1144 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1145                                              Monitor *mon)
1146 {
1147     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1148 }
1149 
1150 /*
1151  * Allowed core identifiers on a POWER8 Processor Chip :
1152  *
1153  * <EX0 reserved>
1154  *  EX1  - Venice only
1155  *  EX2  - Venice only
1156  *  EX3  - Venice only
1157  *  EX4
1158  *  EX5
1159  *  EX6
1160  * <EX7,8 reserved> <reserved>
1161  *  EX9  - Venice only
1162  *  EX10 - Venice only
1163  *  EX11 - Venice only
1164  *  EX12
1165  *  EX13
1166  *  EX14
1167  * <EX15 reserved>
1168  */
1169 #define POWER8E_CORE_MASK  (0x7070ull)
1170 #define POWER8_CORE_MASK   (0x7e7eull)
1171 
1172 /*
1173  * POWER9 has 24 cores, ids starting at 0x0
1174  */
1175 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1176 
1177 
1178 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1179 
1180 static void pnv_chip_power8_instance_init(Object *obj)
1181 {
1182     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1183     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1184     int i;
1185 
1186     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1187                              (Object **)&chip8->xics,
1188                              object_property_allow_set_link,
1189                              OBJ_PROP_LINK_STRONG);
1190 
1191     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1192 
1193     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1194 
1195     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1196 
1197     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1198 
1199     if (defaults_enabled()) {
1200         chip8->num_phbs = pcc->num_phbs;
1201 
1202         for (i = 0; i < chip8->num_phbs; i++) {
1203             Object *phb = object_new(TYPE_PNV_PHB);
1204 
1205             /*
1206              * We need the chip to parent the PHB to allow the DT
1207              * to build correctly (via pnv_xscom_dt()).
1208              *
1209              * TODO: the PHB should be parented by a PEC device that, at
1210              * this moment, is not modelled powernv8/phb3.
1211              */
1212             object_property_add_child(obj, "phb[*]", phb);
1213             chip8->phbs[i] = PNV_PHB(phb);
1214         }
1215     }
1216 
1217 }
1218 
1219 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1220  {
1221     PnvChip *chip = PNV_CHIP(chip8);
1222     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1223     int i, j;
1224     char *name;
1225 
1226     name = g_strdup_printf("icp-%x", chip->chip_id);
1227     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1228     g_free(name);
1229     memory_region_add_subregion(get_system_memory(), PNV_ICP_BASE(chip),
1230                                 &chip8->icp_mmio);
1231 
1232     /* Map the ICP registers for each thread */
1233     for (i = 0; i < chip->nr_cores; i++) {
1234         PnvCore *pnv_core = chip->cores[i];
1235         int core_hwid = CPU_CORE(pnv_core)->core_id;
1236 
1237         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1238             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1239             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1240 
1241             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1242                                         &icp->mmio);
1243         }
1244     }
1245 }
1246 
1247 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1248 {
1249     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1250     PnvChip *chip = PNV_CHIP(dev);
1251     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1252     Pnv8Psi *psi8 = &chip8->psi;
1253     Error *local_err = NULL;
1254     int i;
1255 
1256     assert(chip8->xics);
1257 
1258     /* XSCOM bridge is first */
1259     pnv_xscom_init(chip, PNV_XSCOM_SIZE, PNV_XSCOM_BASE(chip));
1260 
1261     pcc->parent_realize(dev, &local_err);
1262     if (local_err) {
1263         error_propagate(errp, local_err);
1264         return;
1265     }
1266 
1267     /* Processor Service Interface (PSI) Host Bridge */
1268     object_property_set_int(OBJECT(psi8), "bar", PNV_PSIHB_BASE(chip),
1269                             &error_fatal);
1270     object_property_set_link(OBJECT(psi8), ICS_PROP_XICS,
1271                              OBJECT(chip8->xics), &error_abort);
1272     if (!qdev_realize(DEVICE(psi8), NULL, errp)) {
1273         return;
1274     }
1275     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1276                             &PNV_PSI(psi8)->xscom_regs);
1277 
1278     /* Create LPC controller */
1279     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1280     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1281 
1282     chip->fw_mr = &chip8->lpc.isa_fw;
1283     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1284                                             (uint64_t) PNV_XSCOM_BASE(chip),
1285                                             PNV_XSCOM_LPC_BASE);
1286 
1287     /*
1288      * Interrupt Management Area. This is the memory region holding
1289      * all the Interrupt Control Presenter (ICP) registers
1290      */
1291     pnv_chip_icp_realize(chip8, &local_err);
1292     if (local_err) {
1293         error_propagate(errp, local_err);
1294         return;
1295     }
1296 
1297     /* Create the simplified OCC model */
1298     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1299         return;
1300     }
1301     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1302     qdev_connect_gpio_out(DEVICE(&chip8->occ), 0,
1303                           qdev_get_gpio_in(DEVICE(psi8), PSIHB_IRQ_OCC));
1304 
1305     /* OCC SRAM model */
1306     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1307                                 &chip8->occ.sram_regs);
1308 
1309     /* HOMER */
1310     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1311                              &error_abort);
1312     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1313         return;
1314     }
1315     /* Homer Xscom region */
1316     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1317 
1318     /* Homer mmio region */
1319     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1320                                 &chip8->homer.regs);
1321 
1322     /* PHB controllers */
1323     for (i = 0; i < chip8->num_phbs; i++) {
1324         PnvPHB *phb = chip8->phbs[i];
1325 
1326         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1327         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1328                                 &error_fatal);
1329         object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1330                                  &error_fatal);
1331         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1332             return;
1333         }
1334     }
1335 }
1336 
1337 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1338 {
1339     addr &= (PNV_XSCOM_SIZE - 1);
1340     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1341 }
1342 
1343 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1344 {
1345     DeviceClass *dc = DEVICE_CLASS(klass);
1346     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1347 
1348     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1349     k->cores_mask = POWER8E_CORE_MASK;
1350     k->num_phbs = 3;
1351     k->core_pir = pnv_chip_core_pir_p8;
1352     k->intc_create = pnv_chip_power8_intc_create;
1353     k->intc_reset = pnv_chip_power8_intc_reset;
1354     k->intc_destroy = pnv_chip_power8_intc_destroy;
1355     k->intc_print_info = pnv_chip_power8_intc_print_info;
1356     k->isa_create = pnv_chip_power8_isa_create;
1357     k->dt_populate = pnv_chip_power8_dt_populate;
1358     k->pic_print_info = pnv_chip_power8_pic_print_info;
1359     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1360     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1361     dc->desc = "PowerNV Chip POWER8E";
1362 
1363     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1364                                     &k->parent_realize);
1365 }
1366 
1367 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1368 {
1369     DeviceClass *dc = DEVICE_CLASS(klass);
1370     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1371 
1372     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1373     k->cores_mask = POWER8_CORE_MASK;
1374     k->num_phbs = 3;
1375     k->core_pir = pnv_chip_core_pir_p8;
1376     k->intc_create = pnv_chip_power8_intc_create;
1377     k->intc_reset = pnv_chip_power8_intc_reset;
1378     k->intc_destroy = pnv_chip_power8_intc_destroy;
1379     k->intc_print_info = pnv_chip_power8_intc_print_info;
1380     k->isa_create = pnv_chip_power8_isa_create;
1381     k->dt_populate = pnv_chip_power8_dt_populate;
1382     k->pic_print_info = pnv_chip_power8_pic_print_info;
1383     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1384     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1385     dc->desc = "PowerNV Chip POWER8";
1386 
1387     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1388                                     &k->parent_realize);
1389 }
1390 
1391 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1392 {
1393     DeviceClass *dc = DEVICE_CLASS(klass);
1394     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1395 
1396     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1397     k->cores_mask = POWER8_CORE_MASK;
1398     k->num_phbs = 4;
1399     k->core_pir = pnv_chip_core_pir_p8;
1400     k->intc_create = pnv_chip_power8_intc_create;
1401     k->intc_reset = pnv_chip_power8_intc_reset;
1402     k->intc_destroy = pnv_chip_power8_intc_destroy;
1403     k->intc_print_info = pnv_chip_power8_intc_print_info;
1404     k->isa_create = pnv_chip_power8nvl_isa_create;
1405     k->dt_populate = pnv_chip_power8_dt_populate;
1406     k->pic_print_info = pnv_chip_power8_pic_print_info;
1407     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1408     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1409     dc->desc = "PowerNV Chip POWER8NVL";
1410 
1411     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1412                                     &k->parent_realize);
1413 }
1414 
1415 static void pnv_chip_power9_instance_init(Object *obj)
1416 {
1417     PnvChip *chip = PNV_CHIP(obj);
1418     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1419     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1420     int i;
1421 
1422     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1423     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1424                               "xive-fabric");
1425 
1426     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1427 
1428     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1429 
1430     object_initialize_child(obj, "chiptod", &chip9->chiptod, TYPE_PNV9_CHIPTOD);
1431 
1432     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1433 
1434     object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE);
1435 
1436     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1437 
1438     /* Number of PECs is the chip default */
1439     chip->num_pecs = pcc->num_pecs;
1440 
1441     for (i = 0; i < chip->num_pecs; i++) {
1442         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1443                                 TYPE_PNV_PHB4_PEC);
1444     }
1445 
1446     for (i = 0; i < pcc->i2c_num_engines; i++) {
1447         object_initialize_child(obj, "i2c[*]", &chip9->i2c[i], TYPE_PNV_I2C);
1448     }
1449 }
1450 
1451 static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
1452                                       PnvCore *pnv_core,
1453                                       const char *type)
1454 {
1455     char eq_name[32];
1456     int core_id = CPU_CORE(pnv_core)->core_id;
1457 
1458     snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1459     object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1460                                        sizeof(*eq), type,
1461                                        &error_fatal, NULL);
1462 
1463     object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1464     qdev_realize(DEVICE(eq), NULL, &error_fatal);
1465 }
1466 
1467 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1468 {
1469     PnvChip *chip = PNV_CHIP(chip9);
1470     int i;
1471 
1472     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1473     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1474 
1475     for (i = 0; i < chip9->nr_quads; i++) {
1476         PnvQuad *eq = &chip9->quads[i];
1477 
1478         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1479                                   PNV_QUAD_TYPE_NAME("power9"));
1480 
1481         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1482                                 &eq->xscom_regs);
1483     }
1484 }
1485 
1486 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1487 {
1488     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1489     int i;
1490 
1491     for (i = 0; i < chip->num_pecs; i++) {
1492         PnvPhb4PecState *pec = &chip9->pecs[i];
1493         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1494         uint32_t pec_nest_base;
1495         uint32_t pec_pci_base;
1496 
1497         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1498         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1499                                 &error_fatal);
1500         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1501                                  &error_fatal);
1502         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1503             return;
1504         }
1505 
1506         pec_nest_base = pecc->xscom_nest_base(pec);
1507         pec_pci_base = pecc->xscom_pci_base(pec);
1508 
1509         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1510         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1511     }
1512 }
1513 
1514 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1515 {
1516     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1517     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1518     PnvChip *chip = PNV_CHIP(dev);
1519     Pnv9Psi *psi9 = &chip9->psi;
1520     Error *local_err = NULL;
1521     int i;
1522 
1523     /* XSCOM bridge is first */
1524     pnv_xscom_init(chip, PNV9_XSCOM_SIZE, PNV9_XSCOM_BASE(chip));
1525 
1526     pcc->parent_realize(dev, &local_err);
1527     if (local_err) {
1528         error_propagate(errp, local_err);
1529         return;
1530     }
1531 
1532     pnv_chip_quad_realize(chip9, &local_err);
1533     if (local_err) {
1534         error_propagate(errp, local_err);
1535         return;
1536     }
1537 
1538     /* XIVE interrupt controller (POWER9) */
1539     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1540                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1541     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1542                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1543     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1544                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1545     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1546                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1547     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1548                              &error_abort);
1549     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1550         return;
1551     }
1552     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1553                             &chip9->xive.xscom_regs);
1554 
1555     /* Processor Service Interface (PSI) Host Bridge */
1556     object_property_set_int(OBJECT(psi9), "bar", PNV9_PSIHB_BASE(chip),
1557                             &error_fatal);
1558     /* This is the only device with 4k ESB pages */
1559     object_property_set_int(OBJECT(psi9), "shift", XIVE_ESB_4K,
1560                             &error_fatal);
1561     if (!qdev_realize(DEVICE(psi9), NULL, errp)) {
1562         return;
1563     }
1564     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1565                             &PNV_PSI(psi9)->xscom_regs);
1566 
1567     /* LPC */
1568     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1569         return;
1570     }
1571     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1572                                 &chip9->lpc.xscom_regs);
1573 
1574     chip->fw_mr = &chip9->lpc.isa_fw;
1575     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1576                                             (uint64_t) PNV9_LPCM_BASE(chip));
1577 
1578     /* ChipTOD */
1579     object_property_set_bool(OBJECT(&chip9->chiptod), "primary",
1580                              chip->chip_id == 0, &error_abort);
1581     object_property_set_bool(OBJECT(&chip9->chiptod), "secondary",
1582                              chip->chip_id == 1, &error_abort);
1583     object_property_set_link(OBJECT(&chip9->chiptod), "chip", OBJECT(chip),
1584                              &error_abort);
1585     if (!qdev_realize(DEVICE(&chip9->chiptod), NULL, errp)) {
1586         return;
1587     }
1588     pnv_xscom_add_subregion(chip, PNV9_XSCOM_CHIPTOD_BASE,
1589                             &chip9->chiptod.xscom_regs);
1590 
1591     /* Create the simplified OCC model */
1592     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1593         return;
1594     }
1595     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1596     qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in(
1597                               DEVICE(psi9), PSIHB9_IRQ_OCC));
1598 
1599     /* OCC SRAM model */
1600     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1601                                 &chip9->occ.sram_regs);
1602 
1603     /* SBE */
1604     if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) {
1605         return;
1606     }
1607     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE,
1608                             &chip9->sbe.xscom_ctrl_regs);
1609     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE,
1610                             &chip9->sbe.xscom_mbox_regs);
1611     qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in(
1612                               DEVICE(psi9), PSIHB9_IRQ_PSU));
1613 
1614     /* HOMER */
1615     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1616                              &error_abort);
1617     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1618         return;
1619     }
1620     /* Homer Xscom region */
1621     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1622 
1623     /* Homer mmio region */
1624     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1625                                 &chip9->homer.regs);
1626 
1627     /* PEC PHBs */
1628     pnv_chip_power9_pec_realize(chip, &local_err);
1629     if (local_err) {
1630         error_propagate(errp, local_err);
1631         return;
1632     }
1633 
1634     /*
1635      * I2C
1636      */
1637     for (i = 0; i < pcc->i2c_num_engines; i++) {
1638         Object *obj =  OBJECT(&chip9->i2c[i]);
1639 
1640         object_property_set_int(obj, "engine", i + 1, &error_fatal);
1641         object_property_set_int(obj, "num-busses",
1642                                 pcc->i2c_ports_per_engine[i],
1643                                 &error_fatal);
1644         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
1645         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
1646             return;
1647         }
1648         pnv_xscom_add_subregion(chip, PNV9_XSCOM_I2CM_BASE +
1649                                 (chip9->i2c[i].engine - 1) *
1650                                         PNV9_XSCOM_I2CM_SIZE,
1651                                 &chip9->i2c[i].xscom_regs);
1652         qdev_connect_gpio_out(DEVICE(&chip9->i2c[i]), 0,
1653                               qdev_get_gpio_in(DEVICE(psi9),
1654                                                PSIHB9_IRQ_SBE_I2C));
1655     }
1656 }
1657 
1658 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1659 {
1660     addr &= (PNV9_XSCOM_SIZE - 1);
1661     return addr >> 3;
1662 }
1663 
1664 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1665 {
1666     DeviceClass *dc = DEVICE_CLASS(klass);
1667     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1668     static const int i2c_ports_per_engine[PNV9_CHIP_MAX_I2C] = {2, 13, 2, 2};
1669 
1670     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1671     k->cores_mask = POWER9_CORE_MASK;
1672     k->core_pir = pnv_chip_core_pir_p9;
1673     k->intc_create = pnv_chip_power9_intc_create;
1674     k->intc_reset = pnv_chip_power9_intc_reset;
1675     k->intc_destroy = pnv_chip_power9_intc_destroy;
1676     k->intc_print_info = pnv_chip_power9_intc_print_info;
1677     k->isa_create = pnv_chip_power9_isa_create;
1678     k->dt_populate = pnv_chip_power9_dt_populate;
1679     k->pic_print_info = pnv_chip_power9_pic_print_info;
1680     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1681     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1682     dc->desc = "PowerNV Chip POWER9";
1683     k->num_pecs = PNV9_CHIP_MAX_PEC;
1684     k->i2c_num_engines = PNV9_CHIP_MAX_I2C;
1685     k->i2c_ports_per_engine = i2c_ports_per_engine;
1686 
1687     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1688                                     &k->parent_realize);
1689 }
1690 
1691 static void pnv_chip_power10_instance_init(Object *obj)
1692 {
1693     PnvChip *chip = PNV_CHIP(obj);
1694     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1695     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1696     int i;
1697 
1698     object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
1699     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
1700                               "xive-fabric");
1701     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1702     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1703     object_initialize_child(obj, "chiptod", &chip10->chiptod,
1704                             TYPE_PNV10_CHIPTOD);
1705     object_initialize_child(obj, "occ",  &chip10->occ, TYPE_PNV10_OCC);
1706     object_initialize_child(obj, "sbe",  &chip10->sbe, TYPE_PNV10_SBE);
1707     object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
1708     object_initialize_child(obj, "n1-chiplet", &chip10->n1_chiplet,
1709                             TYPE_PNV_N1_CHIPLET);
1710 
1711     chip->num_pecs = pcc->num_pecs;
1712 
1713     for (i = 0; i < chip->num_pecs; i++) {
1714         object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
1715                                 TYPE_PNV_PHB5_PEC);
1716     }
1717 
1718     for (i = 0; i < pcc->i2c_num_engines; i++) {
1719         object_initialize_child(obj, "i2c[*]", &chip10->i2c[i], TYPE_PNV_I2C);
1720     }
1721 }
1722 
1723 static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
1724 {
1725     PnvChip *chip = PNV_CHIP(chip10);
1726     int i;
1727 
1728     chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1729     chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
1730 
1731     for (i = 0; i < chip10->nr_quads; i++) {
1732         PnvQuad *eq = &chip10->quads[i];
1733 
1734         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1735                                   PNV_QUAD_TYPE_NAME("power10"));
1736 
1737         pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
1738                                 &eq->xscom_regs);
1739 
1740         pnv_xscom_add_subregion(chip, PNV10_XSCOM_QME_BASE(eq->quad_id),
1741                                 &eq->xscom_qme_regs);
1742     }
1743 }
1744 
1745 static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
1746 {
1747     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1748     int i;
1749 
1750     for (i = 0; i < chip->num_pecs; i++) {
1751         PnvPhb4PecState *pec = &chip10->pecs[i];
1752         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1753         uint32_t pec_nest_base;
1754         uint32_t pec_pci_base;
1755 
1756         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1757         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1758                                 &error_fatal);
1759         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1760                                  &error_fatal);
1761         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1762             return;
1763         }
1764 
1765         pec_nest_base = pecc->xscom_nest_base(pec);
1766         pec_pci_base = pecc->xscom_pci_base(pec);
1767 
1768         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1769         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1770     }
1771 }
1772 
1773 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1774 {
1775     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1776     PnvChip *chip = PNV_CHIP(dev);
1777     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1778     Error *local_err = NULL;
1779     int i;
1780 
1781     /* XSCOM bridge is first */
1782     pnv_xscom_init(chip, PNV10_XSCOM_SIZE, PNV10_XSCOM_BASE(chip));
1783 
1784     pcc->parent_realize(dev, &local_err);
1785     if (local_err) {
1786         error_propagate(errp, local_err);
1787         return;
1788     }
1789 
1790     pnv_chip_power10_quad_realize(chip10, &local_err);
1791     if (local_err) {
1792         error_propagate(errp, local_err);
1793         return;
1794     }
1795 
1796     /* XIVE2 interrupt controller (POWER10) */
1797     object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
1798                             PNV10_XIVE2_IC_BASE(chip), &error_fatal);
1799     object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
1800                             PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
1801     object_property_set_int(OBJECT(&chip10->xive), "end-bar",
1802                             PNV10_XIVE2_END_BASE(chip), &error_fatal);
1803     object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
1804                             PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
1805     object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
1806                             PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
1807     object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
1808                             PNV10_XIVE2_TM_BASE(chip), &error_fatal);
1809     object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
1810                              &error_abort);
1811     if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
1812         return;
1813     }
1814     pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
1815                             &chip10->xive.xscom_regs);
1816 
1817     /* Processor Service Interface (PSI) Host Bridge */
1818     object_property_set_int(OBJECT(&chip10->psi), "bar",
1819                             PNV10_PSIHB_BASE(chip), &error_fatal);
1820     /* PSI can now be configured to use 64k ESB pages on POWER10 */
1821     object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
1822                             &error_fatal);
1823     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1824         return;
1825     }
1826     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1827                             &PNV_PSI(&chip10->psi)->xscom_regs);
1828 
1829     /* LPC */
1830     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1831         return;
1832     }
1833     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1834                                 &chip10->lpc.xscom_regs);
1835 
1836     chip->fw_mr = &chip10->lpc.isa_fw;
1837     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1838                                             (uint64_t) PNV10_LPCM_BASE(chip));
1839 
1840     /* ChipTOD */
1841     object_property_set_bool(OBJECT(&chip10->chiptod), "primary",
1842                              chip->chip_id == 0, &error_abort);
1843     object_property_set_bool(OBJECT(&chip10->chiptod), "secondary",
1844                              chip->chip_id == 1, &error_abort);
1845     object_property_set_link(OBJECT(&chip10->chiptod), "chip", OBJECT(chip),
1846                              &error_abort);
1847     if (!qdev_realize(DEVICE(&chip10->chiptod), NULL, errp)) {
1848         return;
1849     }
1850     pnv_xscom_add_subregion(chip, PNV10_XSCOM_CHIPTOD_BASE,
1851                             &chip10->chiptod.xscom_regs);
1852 
1853     /* Create the simplified OCC model */
1854     if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
1855         return;
1856     }
1857     pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
1858                             &chip10->occ.xscom_regs);
1859     qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in(
1860                               DEVICE(&chip10->psi), PSIHB9_IRQ_OCC));
1861 
1862     /* OCC SRAM model */
1863     memory_region_add_subregion(get_system_memory(),
1864                                 PNV10_OCC_SENSOR_BASE(chip),
1865                                 &chip10->occ.sram_regs);
1866 
1867     /* SBE */
1868     if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) {
1869         return;
1870     }
1871     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE,
1872                             &chip10->sbe.xscom_ctrl_regs);
1873     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE,
1874                             &chip10->sbe.xscom_mbox_regs);
1875     qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in(
1876                               DEVICE(&chip10->psi), PSIHB9_IRQ_PSU));
1877 
1878     /* HOMER */
1879     object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
1880                              &error_abort);
1881     if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
1882         return;
1883     }
1884     /* Homer Xscom region */
1885     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
1886                             &chip10->homer.pba_regs);
1887 
1888     /* Homer mmio region */
1889     memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip),
1890                                 &chip10->homer.regs);
1891 
1892     /* N1 chiplet */
1893     if (!qdev_realize(DEVICE(&chip10->n1_chiplet), NULL, errp)) {
1894         return;
1895     }
1896     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_CHIPLET_CTRL_REGS_BASE,
1897              &chip10->n1_chiplet.nest_pervasive.xscom_ctrl_regs_mr);
1898 
1899     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_EQ_BASE,
1900                            &chip10->n1_chiplet.xscom_pb_eq_mr);
1901 
1902     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_ES_BASE,
1903                            &chip10->n1_chiplet.xscom_pb_es_mr);
1904 
1905     /* PHBs */
1906     pnv_chip_power10_phb_realize(chip, &local_err);
1907     if (local_err) {
1908         error_propagate(errp, local_err);
1909         return;
1910     }
1911 
1912 
1913     /*
1914      * I2C
1915      */
1916     for (i = 0; i < pcc->i2c_num_engines; i++) {
1917         Object *obj =  OBJECT(&chip10->i2c[i]);
1918 
1919         object_property_set_int(obj, "engine", i + 1, &error_fatal);
1920         object_property_set_int(obj, "num-busses",
1921                                 pcc->i2c_ports_per_engine[i],
1922                                 &error_fatal);
1923         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
1924         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
1925             return;
1926         }
1927         pnv_xscom_add_subregion(chip, PNV10_XSCOM_I2CM_BASE +
1928                                 (chip10->i2c[i].engine - 1) *
1929                                         PNV10_XSCOM_I2CM_SIZE,
1930                                 &chip10->i2c[i].xscom_regs);
1931         qdev_connect_gpio_out(DEVICE(&chip10->i2c[i]), 0,
1932                               qdev_get_gpio_in(DEVICE(&chip10->psi),
1933                                                PSIHB9_IRQ_SBE_I2C));
1934     }
1935 
1936 }
1937 
1938 static void pnv_rainier_i2c_init(PnvMachineState *pnv)
1939 {
1940     int i;
1941     for (i = 0; i < pnv->num_chips; i++) {
1942         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
1943 
1944         /*
1945          * Add a PCA9552 I2C device for PCIe hotplug control
1946          * to engine 2, bus 1, address 0x63
1947          */
1948         I2CSlave *dev = i2c_slave_create_simple(chip10->i2c[2].busses[1],
1949                                                 "pca9552", 0x63);
1950 
1951         /*
1952          * Connect PCA9552 GPIO pins 0-4 (SLOTx_EN) outputs to GPIO pins 5-9
1953          * (SLOTx_PG) inputs in order to fake the pgood state of PCIe slots
1954          * after hypervisor code sets a SLOTx_EN pin high.
1955          */
1956         qdev_connect_gpio_out(DEVICE(dev), 0, qdev_get_gpio_in(DEVICE(dev), 5));
1957         qdev_connect_gpio_out(DEVICE(dev), 1, qdev_get_gpio_in(DEVICE(dev), 6));
1958         qdev_connect_gpio_out(DEVICE(dev), 2, qdev_get_gpio_in(DEVICE(dev), 7));
1959         qdev_connect_gpio_out(DEVICE(dev), 3, qdev_get_gpio_in(DEVICE(dev), 8));
1960         qdev_connect_gpio_out(DEVICE(dev), 4, qdev_get_gpio_in(DEVICE(dev), 9));
1961 
1962         /*
1963          * Add a PCA9554 I2C device for cable card presence detection
1964          * to engine 2, bus 1, address 0x25
1965          */
1966         i2c_slave_create_simple(chip10->i2c[2].busses[1], "pca9554", 0x25);
1967     }
1968 }
1969 
1970 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1971 {
1972     addr &= (PNV10_XSCOM_SIZE - 1);
1973     return addr >> 3;
1974 }
1975 
1976 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1977 {
1978     DeviceClass *dc = DEVICE_CLASS(klass);
1979     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1980     static const int i2c_ports_per_engine[PNV10_CHIP_MAX_I2C] = {14, 14, 2, 16};
1981 
1982     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1983     k->cores_mask = POWER10_CORE_MASK;
1984     k->core_pir = pnv_chip_core_pir_p10;
1985     k->intc_create = pnv_chip_power10_intc_create;
1986     k->intc_reset = pnv_chip_power10_intc_reset;
1987     k->intc_destroy = pnv_chip_power10_intc_destroy;
1988     k->intc_print_info = pnv_chip_power10_intc_print_info;
1989     k->isa_create = pnv_chip_power10_isa_create;
1990     k->dt_populate = pnv_chip_power10_dt_populate;
1991     k->pic_print_info = pnv_chip_power10_pic_print_info;
1992     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1993     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1994     dc->desc = "PowerNV Chip POWER10";
1995     k->num_pecs = PNV10_CHIP_MAX_PEC;
1996     k->i2c_num_engines = PNV10_CHIP_MAX_I2C;
1997     k->i2c_ports_per_engine = i2c_ports_per_engine;
1998 
1999     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
2000                                     &k->parent_realize);
2001 }
2002 
2003 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
2004 {
2005     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2006     int cores_max;
2007 
2008     /*
2009      * No custom mask for this chip, let's use the default one from *
2010      * the chip class
2011      */
2012     if (!chip->cores_mask) {
2013         chip->cores_mask = pcc->cores_mask;
2014     }
2015 
2016     /* filter alien core ids ! some are reserved */
2017     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
2018         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
2019                    chip->cores_mask);
2020         return;
2021     }
2022     chip->cores_mask &= pcc->cores_mask;
2023 
2024     /* now that we have a sane layout, let check the number of cores */
2025     cores_max = ctpop64(chip->cores_mask);
2026     if (chip->nr_cores > cores_max) {
2027         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
2028                    cores_max);
2029         return;
2030     }
2031 }
2032 
2033 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
2034 {
2035     Error *error = NULL;
2036     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2037     const char *typename = pnv_chip_core_typename(chip);
2038     int i, core_hwid;
2039     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
2040 
2041     if (!object_class_by_name(typename)) {
2042         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
2043         return;
2044     }
2045 
2046     /* Cores */
2047     pnv_chip_core_sanitize(chip, &error);
2048     if (error) {
2049         error_propagate(errp, error);
2050         return;
2051     }
2052 
2053     chip->cores = g_new0(PnvCore *, chip->nr_cores);
2054 
2055     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
2056              && (i < chip->nr_cores); core_hwid++) {
2057         char core_name[32];
2058         PnvCore *pnv_core;
2059         uint64_t xscom_core_base;
2060 
2061         if (!(chip->cores_mask & (1ull << core_hwid))) {
2062             continue;
2063         }
2064 
2065         pnv_core = PNV_CORE(object_new(typename));
2066 
2067         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
2068         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
2069         chip->cores[i] = pnv_core;
2070         object_property_set_int(OBJECT(pnv_core), "nr-threads",
2071                                 chip->nr_threads, &error_fatal);
2072         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
2073                                 core_hwid, &error_fatal);
2074         object_property_set_int(OBJECT(pnv_core), "pir",
2075                                 pcc->core_pir(chip, core_hwid), &error_fatal);
2076         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
2077                                 &error_fatal);
2078         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
2079                                  &error_abort);
2080         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
2081 
2082         /* Each core has an XSCOM MMIO region */
2083         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
2084 
2085         pnv_xscom_add_subregion(chip, xscom_core_base,
2086                                 &pnv_core->xscom_regs);
2087         i++;
2088     }
2089 }
2090 
2091 static void pnv_chip_realize(DeviceState *dev, Error **errp)
2092 {
2093     PnvChip *chip = PNV_CHIP(dev);
2094     Error *error = NULL;
2095 
2096     /* Cores */
2097     pnv_chip_core_realize(chip, &error);
2098     if (error) {
2099         error_propagate(errp, error);
2100         return;
2101     }
2102 }
2103 
2104 static Property pnv_chip_properties[] = {
2105     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
2106     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
2107     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
2108     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
2109     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
2110     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
2111     DEFINE_PROP_END_OF_LIST(),
2112 };
2113 
2114 static void pnv_chip_class_init(ObjectClass *klass, void *data)
2115 {
2116     DeviceClass *dc = DEVICE_CLASS(klass);
2117 
2118     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
2119     dc->realize = pnv_chip_realize;
2120     device_class_set_props(dc, pnv_chip_properties);
2121     dc->desc = "PowerNV Chip";
2122 }
2123 
2124 PnvCore *pnv_chip_find_core(PnvChip *chip, uint32_t core_id)
2125 {
2126     int i;
2127 
2128     for (i = 0; i < chip->nr_cores; i++) {
2129         PnvCore *pc = chip->cores[i];
2130         CPUCore *cc = CPU_CORE(pc);
2131 
2132         if (cc->core_id == core_id) {
2133             return pc;
2134         }
2135     }
2136     return NULL;
2137 }
2138 
2139 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
2140 {
2141     int i, j;
2142 
2143     for (i = 0; i < chip->nr_cores; i++) {
2144         PnvCore *pc = chip->cores[i];
2145         CPUCore *cc = CPU_CORE(pc);
2146 
2147         for (j = 0; j < cc->nr_threads; j++) {
2148             if (ppc_cpu_pir(pc->threads[j]) == pir) {
2149                 return pc->threads[j];
2150             }
2151         }
2152     }
2153     return NULL;
2154 }
2155 
2156 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
2157 {
2158     PnvMachineState *pnv = PNV_MACHINE(xi);
2159     int i, j;
2160 
2161     for (i = 0; i < pnv->num_chips; i++) {
2162         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2163 
2164         if (ics_valid_irq(&chip8->psi.ics, irq)) {
2165             return &chip8->psi.ics;
2166         }
2167 
2168         for (j = 0; j < chip8->num_phbs; j++) {
2169             PnvPHB *phb = chip8->phbs[j];
2170             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2171 
2172             if (ics_valid_irq(&phb3->lsis, irq)) {
2173                 return &phb3->lsis;
2174             }
2175 
2176             if (ics_valid_irq(ICS(&phb3->msis), irq)) {
2177                 return ICS(&phb3->msis);
2178             }
2179         }
2180     }
2181     return NULL;
2182 }
2183 
2184 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
2185 {
2186     int i;
2187 
2188     for (i = 0; i < pnv->num_chips; i++) {
2189         PnvChip *chip = pnv->chips[i];
2190         if (chip->chip_id == chip_id) {
2191             return chip;
2192         }
2193     }
2194     return NULL;
2195 }
2196 
2197 static void pnv_ics_resend(XICSFabric *xi)
2198 {
2199     PnvMachineState *pnv = PNV_MACHINE(xi);
2200     int i, j;
2201 
2202     for (i = 0; i < pnv->num_chips; i++) {
2203         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2204 
2205         ics_resend(&chip8->psi.ics);
2206 
2207         for (j = 0; j < chip8->num_phbs; j++) {
2208             PnvPHB *phb = chip8->phbs[j];
2209             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2210 
2211             ics_resend(&phb3->lsis);
2212             ics_resend(ICS(&phb3->msis));
2213         }
2214     }
2215 }
2216 
2217 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
2218 {
2219     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
2220 
2221     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
2222 }
2223 
2224 static void pnv_pic_print_info(InterruptStatsProvider *obj,
2225                                Monitor *mon)
2226 {
2227     PnvMachineState *pnv = PNV_MACHINE(obj);
2228     int i;
2229     CPUState *cs;
2230 
2231     CPU_FOREACH(cs) {
2232         PowerPCCPU *cpu = POWERPC_CPU(cs);
2233 
2234         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
2235         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
2236                                                            mon);
2237     }
2238 
2239     for (i = 0; i < pnv->num_chips; i++) {
2240         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
2241     }
2242 }
2243 
2244 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
2245                          uint8_t nvt_blk, uint32_t nvt_idx,
2246                          bool cam_ignore, uint8_t priority,
2247                          uint32_t logic_serv,
2248                          XiveTCTXMatch *match)
2249 {
2250     PnvMachineState *pnv = PNV_MACHINE(xfb);
2251     int total_count = 0;
2252     int i;
2253 
2254     for (i = 0; i < pnv->num_chips; i++) {
2255         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
2256         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
2257         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2258         int count;
2259 
2260         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2261                                priority, logic_serv, match);
2262 
2263         if (count < 0) {
2264             return count;
2265         }
2266 
2267         total_count += count;
2268     }
2269 
2270     return total_count;
2271 }
2272 
2273 static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
2274                                 uint8_t nvt_blk, uint32_t nvt_idx,
2275                                 bool cam_ignore, uint8_t priority,
2276                                 uint32_t logic_serv,
2277                                 XiveTCTXMatch *match)
2278 {
2279     PnvMachineState *pnv = PNV_MACHINE(xfb);
2280     int total_count = 0;
2281     int i;
2282 
2283     for (i = 0; i < pnv->num_chips; i++) {
2284         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2285         XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
2286         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2287         int count;
2288 
2289         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2290                                priority, logic_serv, match);
2291 
2292         if (count < 0) {
2293             return count;
2294         }
2295 
2296         total_count += count;
2297     }
2298 
2299     return total_count;
2300 }
2301 
2302 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
2303 {
2304     MachineClass *mc = MACHINE_CLASS(oc);
2305     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
2306     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2307     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
2308 
2309     static GlobalProperty phb_compat[] = {
2310         { TYPE_PNV_PHB, "version", "3" },
2311         { TYPE_PNV_PHB_ROOT_PORT, "version", "3" },
2312     };
2313 
2314     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
2315     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
2316     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2317 
2318     xic->icp_get = pnv_icp_get;
2319     xic->ics_get = pnv_ics_get;
2320     xic->ics_resend = pnv_ics_resend;
2321 
2322     pmc->compat = compat;
2323     pmc->compat_size = sizeof(compat);
2324 
2325     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2326 }
2327 
2328 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
2329 {
2330     MachineClass *mc = MACHINE_CLASS(oc);
2331     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2332     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2333     static const char compat[] = "qemu,powernv9\0ibm,powernv";
2334 
2335     static GlobalProperty phb_compat[] = {
2336         { TYPE_PNV_PHB, "version", "4" },
2337         { TYPE_PNV_PHB_ROOT_PORT, "version", "4" },
2338     };
2339 
2340     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
2341     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
2342     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2343 
2344     xfc->match_nvt = pnv_match_nvt;
2345 
2346     pmc->compat = compat;
2347     pmc->compat_size = sizeof(compat);
2348     pmc->dt_power_mgt = pnv_dt_power_mgt;
2349 
2350     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2351 }
2352 
2353 static void pnv_machine_p10_common_class_init(ObjectClass *oc, void *data)
2354 {
2355     MachineClass *mc = MACHINE_CLASS(oc);
2356     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2357     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2358     static const char compat[] = "qemu,powernv10\0ibm,powernv";
2359 
2360     static GlobalProperty phb_compat[] = {
2361         { TYPE_PNV_PHB, "version", "5" },
2362         { TYPE_PNV_PHB_ROOT_PORT, "version", "5" },
2363     };
2364 
2365     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
2366     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2367 
2368     mc->alias = "powernv";
2369 
2370     pmc->compat = compat;
2371     pmc->compat_size = sizeof(compat);
2372     pmc->dt_power_mgt = pnv_dt_power_mgt;
2373 
2374     xfc->match_nvt = pnv10_xive_match_nvt;
2375 
2376     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2377 }
2378 
2379 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
2380 {
2381     MachineClass *mc = MACHINE_CLASS(oc);
2382 
2383     pnv_machine_p10_common_class_init(oc, data);
2384     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
2385 }
2386 
2387 static void pnv_machine_p10_rainier_class_init(ObjectClass *oc, void *data)
2388 {
2389     MachineClass *mc = MACHINE_CLASS(oc);
2390     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2391 
2392     pnv_machine_p10_common_class_init(oc, data);
2393     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10 Rainier";
2394     pmc->i2c_init = pnv_rainier_i2c_init;
2395 }
2396 
2397 static bool pnv_machine_get_hb(Object *obj, Error **errp)
2398 {
2399     PnvMachineState *pnv = PNV_MACHINE(obj);
2400 
2401     return !!pnv->fw_load_addr;
2402 }
2403 
2404 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
2405 {
2406     PnvMachineState *pnv = PNV_MACHINE(obj);
2407 
2408     if (value) {
2409         pnv->fw_load_addr = 0x8000000;
2410     }
2411 }
2412 
2413 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2414 {
2415     PowerPCCPU *cpu = POWERPC_CPU(cs);
2416     CPUPPCState *env = &cpu->env;
2417 
2418     cpu_synchronize_state(cs);
2419     ppc_cpu_do_system_reset(cs);
2420     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
2421         /*
2422          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
2423          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
2424          * (PPC_BIT(43)).
2425          */
2426         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
2427             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
2428             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
2429         }
2430     } else {
2431         /*
2432          * For non-powersave system resets, SRR1[42:45] are defined to be
2433          * implementation-dependent. The POWER9 User Manual specifies that
2434          * an external (SCOM driven, which may come from a BMC nmi command or
2435          * another CPU requesting a NMI IPI) system reset exception should be
2436          * 0b0010 (PPC_BIT(44)).
2437          */
2438         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2439     }
2440 }
2441 
2442 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2443 {
2444     CPUState *cs;
2445 
2446     CPU_FOREACH(cs) {
2447         async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2448     }
2449 }
2450 
2451 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2452 {
2453     MachineClass *mc = MACHINE_CLASS(oc);
2454     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2455     NMIClass *nc = NMI_CLASS(oc);
2456 
2457     mc->desc = "IBM PowerNV (Non-Virtualized)";
2458     mc->init = pnv_init;
2459     mc->reset = pnv_reset;
2460     mc->max_cpus = MAX_CPUS;
2461     /* Pnv provides a AHCI device for storage */
2462     mc->block_default_type = IF_IDE;
2463     mc->no_parallel = 1;
2464     mc->default_boot_order = NULL;
2465     /*
2466      * RAM defaults to less than 2048 for 32-bit hosts, and large
2467      * enough to fit the maximum initrd size at it's load address
2468      */
2469     mc->default_ram_size = 1 * GiB;
2470     mc->default_ram_id = "pnv.ram";
2471     ispc->print_info = pnv_pic_print_info;
2472     nc->nmi_monitor_handler = pnv_nmi;
2473 
2474     object_class_property_add_bool(oc, "hb-mode",
2475                                    pnv_machine_get_hb, pnv_machine_set_hb);
2476     object_class_property_set_description(oc, "hb-mode",
2477                               "Use a hostboot like boot loader");
2478 }
2479 
2480 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2481     {                                             \
2482         .name          = type,                    \
2483         .class_init    = class_initfn,            \
2484         .parent        = TYPE_PNV8_CHIP,          \
2485     }
2486 
2487 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2488     {                                             \
2489         .name          = type,                    \
2490         .class_init    = class_initfn,            \
2491         .parent        = TYPE_PNV9_CHIP,          \
2492     }
2493 
2494 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2495     {                                              \
2496         .name          = type,                     \
2497         .class_init    = class_initfn,             \
2498         .parent        = TYPE_PNV10_CHIP,          \
2499     }
2500 
2501 static const TypeInfo types[] = {
2502     {
2503         .name          = MACHINE_TYPE_NAME("powernv10-rainier"),
2504         .parent        = MACHINE_TYPE_NAME("powernv10"),
2505         .class_init    = pnv_machine_p10_rainier_class_init,
2506     },
2507     {
2508         .name          = MACHINE_TYPE_NAME("powernv10"),
2509         .parent        = TYPE_PNV_MACHINE,
2510         .class_init    = pnv_machine_power10_class_init,
2511         .interfaces = (InterfaceInfo[]) {
2512             { TYPE_XIVE_FABRIC },
2513             { },
2514         },
2515     },
2516     {
2517         .name          = MACHINE_TYPE_NAME("powernv9"),
2518         .parent        = TYPE_PNV_MACHINE,
2519         .class_init    = pnv_machine_power9_class_init,
2520         .interfaces = (InterfaceInfo[]) {
2521             { TYPE_XIVE_FABRIC },
2522             { },
2523         },
2524     },
2525     {
2526         .name          = MACHINE_TYPE_NAME("powernv8"),
2527         .parent        = TYPE_PNV_MACHINE,
2528         .class_init    = pnv_machine_power8_class_init,
2529         .interfaces = (InterfaceInfo[]) {
2530             { TYPE_XICS_FABRIC },
2531             { },
2532         },
2533     },
2534     {
2535         .name          = TYPE_PNV_MACHINE,
2536         .parent        = TYPE_MACHINE,
2537         .abstract       = true,
2538         .instance_size = sizeof(PnvMachineState),
2539         .class_init    = pnv_machine_class_init,
2540         .class_size    = sizeof(PnvMachineClass),
2541         .interfaces = (InterfaceInfo[]) {
2542             { TYPE_INTERRUPT_STATS_PROVIDER },
2543             { TYPE_NMI },
2544             { },
2545         },
2546     },
2547     {
2548         .name          = TYPE_PNV_CHIP,
2549         .parent        = TYPE_SYS_BUS_DEVICE,
2550         .class_init    = pnv_chip_class_init,
2551         .instance_size = sizeof(PnvChip),
2552         .class_size    = sizeof(PnvChipClass),
2553         .abstract      = true,
2554     },
2555 
2556     /*
2557      * P10 chip and variants
2558      */
2559     {
2560         .name          = TYPE_PNV10_CHIP,
2561         .parent        = TYPE_PNV_CHIP,
2562         .instance_init = pnv_chip_power10_instance_init,
2563         .instance_size = sizeof(Pnv10Chip),
2564     },
2565     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2566 
2567     /*
2568      * P9 chip and variants
2569      */
2570     {
2571         .name          = TYPE_PNV9_CHIP,
2572         .parent        = TYPE_PNV_CHIP,
2573         .instance_init = pnv_chip_power9_instance_init,
2574         .instance_size = sizeof(Pnv9Chip),
2575     },
2576     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2577 
2578     /*
2579      * P8 chip and variants
2580      */
2581     {
2582         .name          = TYPE_PNV8_CHIP,
2583         .parent        = TYPE_PNV_CHIP,
2584         .instance_init = pnv_chip_power8_instance_init,
2585         .instance_size = sizeof(Pnv8Chip),
2586     },
2587     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2588     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2589     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2590                           pnv_chip_power8nvl_class_init),
2591 };
2592 
2593 DEFINE_TYPES(types)
2594