xref: /openbmc/qemu/hw/ppc/pnv.c (revision 72fa42cfca7060fab00c534e71fc850b194a4c6d)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qemu/units.h"
23 #include "qemu/cutils.h"
24 #include "qapi/error.h"
25 #include "sysemu/qtest.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/numa.h"
28 #include "sysemu/reset.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/cpus.h"
31 #include "sysemu/device_tree.h"
32 #include "sysemu/hw_accel.h"
33 #include "target/ppc/cpu.h"
34 #include "hw/ppc/fdt.h"
35 #include "hw/ppc/ppc.h"
36 #include "hw/ppc/pnv.h"
37 #include "hw/ppc/pnv_core.h"
38 #include "hw/loader.h"
39 #include "hw/nmi.h"
40 #include "qapi/visitor.h"
41 #include "monitor/monitor.h"
42 #include "hw/intc/intc.h"
43 #include "hw/ipmi/ipmi.h"
44 #include "target/ppc/mmu-hash64.h"
45 #include "hw/pci/msi.h"
46 #include "hw/pci-host/pnv_phb.h"
47 #include "hw/pci-host/pnv_phb3.h"
48 #include "hw/pci-host/pnv_phb4.h"
49 
50 #include "hw/ppc/xics.h"
51 #include "hw/qdev-properties.h"
52 #include "hw/ppc/pnv_chip.h"
53 #include "hw/ppc/pnv_xscom.h"
54 #include "hw/ppc/pnv_pnor.h"
55 
56 #include "hw/isa/isa.h"
57 #include "hw/char/serial.h"
58 #include "hw/rtc/mc146818rtc.h"
59 
60 #include <libfdt.h>
61 
62 #define FDT_MAX_SIZE            (1 * MiB)
63 
64 #define FW_FILE_NAME            "skiboot.lid"
65 #define FW_LOAD_ADDR            0x0
66 #define FW_MAX_SIZE             (16 * MiB)
67 
68 #define KERNEL_LOAD_ADDR        0x20000000
69 #define KERNEL_MAX_SIZE         (128 * MiB)
70 #define INITRD_LOAD_ADDR        0x28000000
71 #define INITRD_MAX_SIZE         (128 * MiB)
72 
73 static const char *pnv_chip_core_typename(const PnvChip *o)
74 {
75     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
76     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
77     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
78     const char *core_type = object_class_get_name(object_class_by_name(s));
79     g_free(s);
80     return core_type;
81 }
82 
83 /*
84  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
85  *     4 * 4 sockets * 12 cores * 8 threads = 1536
86  * Let's make it 2^11
87  */
88 #define MAX_CPUS                2048
89 
90 /*
91  * Memory nodes are created by hostboot, one for each range of memory
92  * that has a different "affinity". In practice, it means one range
93  * per chip.
94  */
95 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
96 {
97     char *mem_name;
98     uint64_t mem_reg_property[2];
99     int off;
100 
101     mem_reg_property[0] = cpu_to_be64(start);
102     mem_reg_property[1] = cpu_to_be64(size);
103 
104     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
105     off = fdt_add_subnode(fdt, 0, mem_name);
106     g_free(mem_name);
107 
108     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
109     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
110                        sizeof(mem_reg_property))));
111     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
112 }
113 
114 static int get_cpus_node(void *fdt)
115 {
116     int cpus_offset = fdt_path_offset(fdt, "/cpus");
117 
118     if (cpus_offset < 0) {
119         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
120         if (cpus_offset) {
121             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
122             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
123         }
124     }
125     _FDT(cpus_offset);
126     return cpus_offset;
127 }
128 
129 /*
130  * The PowerNV cores (and threads) need to use real HW ids and not an
131  * incremental index like it has been done on other platforms. This HW
132  * id is stored in the CPU PIR, it is used to create cpu nodes in the
133  * device tree, used in XSCOM to address cores and in interrupt
134  * servers.
135  */
136 static int pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
137 {
138     PowerPCCPU *cpu = pc->threads[0];
139     CPUState *cs = CPU(cpu);
140     DeviceClass *dc = DEVICE_GET_CLASS(cs);
141     int smt_threads = CPU_CORE(pc)->nr_threads;
142     CPUPPCState *env = &cpu->env;
143     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
144     PnvChipClass *pnv_cc = PNV_CHIP_GET_CLASS(chip);
145     g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
146     int i;
147     uint32_t pir;
148     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
149                        0xffffffff, 0xffffffff};
150     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
151     uint32_t cpufreq = 1000000000;
152     uint32_t page_sizes_prop[64];
153     size_t page_sizes_prop_size;
154     int offset;
155     char *nodename;
156     int cpus_offset = get_cpus_node(fdt);
157 
158     pir = pnv_cc->chip_pir(chip, pc->hwid, 0);
159 
160     nodename = g_strdup_printf("%s@%x", dc->fw_name, pir);
161     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
162     _FDT(offset);
163     g_free(nodename);
164 
165     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
166 
167     _FDT((fdt_setprop_cell(fdt, offset, "reg", pir)));
168     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pir)));
169     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
170 
171     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
172     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
173                             env->dcache_line_size)));
174     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
175                             env->dcache_line_size)));
176     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
177                             env->icache_line_size)));
178     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
179                             env->icache_line_size)));
180 
181     if (pcc->l1_dcache_size) {
182         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
183                                pcc->l1_dcache_size)));
184     } else {
185         warn_report("Unknown L1 dcache size for cpu");
186     }
187     if (pcc->l1_icache_size) {
188         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
189                                pcc->l1_icache_size)));
190     } else {
191         warn_report("Unknown L1 icache size for cpu");
192     }
193 
194     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
195     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
196     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
197                            cpu->hash64_opts->slb_size)));
198     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
199     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
200 
201     if (ppc_has_spr(cpu, SPR_PURR)) {
202         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
203     }
204 
205     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
206         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
207                            segs, sizeof(segs))));
208     }
209 
210     /*
211      * Advertise VMX/VSX (vector extensions) if available
212      *   0 / no property == no vector extensions
213      *   1               == VMX / Altivec available
214      *   2               == VSX available
215      */
216     if (env->insns_flags & PPC_ALTIVEC) {
217         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
218 
219         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
220     }
221 
222     /*
223      * Advertise DFP (Decimal Floating Point) if available
224      *   0 / no property == no DFP
225      *   1               == DFP available
226      */
227     if (env->insns_flags2 & PPC2_DFP) {
228         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
229     }
230 
231     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
232                                                       sizeof(page_sizes_prop));
233     if (page_sizes_prop_size) {
234         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
235                            page_sizes_prop, page_sizes_prop_size)));
236     }
237 
238     /* Build interrupt servers properties */
239     for (i = 0; i < smt_threads; i++) {
240         servers_prop[i] = cpu_to_be32(pnv_cc->chip_pir(chip, pc->hwid, i));
241     }
242     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
243                        servers_prop, sizeof(*servers_prop) * smt_threads)));
244 
245     return offset;
246 }
247 
248 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t hwid,
249                        uint32_t nr_threads)
250 {
251     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
252     uint32_t pir = pcc->chip_pir(chip, hwid, 0);
253     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
254     char *name;
255     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
256     uint32_t irange[2], i, rsize;
257     uint64_t *reg;
258     int offset;
259 
260     irange[0] = cpu_to_be32(pir);
261     irange[1] = cpu_to_be32(nr_threads);
262 
263     rsize = sizeof(uint64_t) * 2 * nr_threads;
264     reg = g_malloc(rsize);
265     for (i = 0; i < nr_threads; i++) {
266         /* We know P8 PIR is linear with thread id */
267         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
268         reg[i * 2 + 1] = cpu_to_be64(0x1000);
269     }
270 
271     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
272     offset = fdt_add_subnode(fdt, 0, name);
273     _FDT(offset);
274     g_free(name);
275 
276     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
277     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
278     _FDT((fdt_setprop_string(fdt, offset, "device_type",
279                               "PowerPC-External-Interrupt-Presentation")));
280     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
281     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
282                        irange, sizeof(irange))));
283     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
284     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
285     g_free(reg);
286 }
287 
288 /*
289  * Adds a PnvPHB to the chip on P8.
290  * Implemented here, like for defaults PHBs
291  */
292 PnvChip *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb)
293 {
294     Pnv8Chip *chip8 = PNV8_CHIP(chip);
295 
296     phb->chip = chip;
297 
298     chip8->phbs[chip8->num_phbs] = phb;
299     chip8->num_phbs++;
300     return chip;
301 }
302 
303 /*
304  * Same as spapr pa_features_207 except pnv always enables CI largepages bit.
305  * HTM is always enabled because TCG does implement HTM, it's just a
306  * degenerate implementation.
307  */
308 static const uint8_t pa_features_207[] = { 24, 0,
309                  0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0,
310                  0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
311                  0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
312                  0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
313 
314 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
315 {
316     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
317     int i;
318 
319     pnv_dt_xscom(chip, fdt, 0,
320                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
321                  cpu_to_be64(PNV_XSCOM_SIZE),
322                  compat, sizeof(compat));
323 
324     for (i = 0; i < chip->nr_cores; i++) {
325         PnvCore *pnv_core = chip->cores[i];
326         int offset;
327 
328         offset = pnv_dt_core(chip, pnv_core, fdt);
329 
330         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
331                            pa_features_207, sizeof(pa_features_207))));
332 
333         /* Interrupt Control Presenters (ICP). One per core. */
334         pnv_dt_icp(chip, fdt, pnv_core->hwid, CPU_CORE(pnv_core)->nr_threads);
335     }
336 
337     if (chip->ram_size) {
338         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
339     }
340 }
341 
342 /*
343  * Same as spapr pa_features_300 except pnv always enables CI largepages bit.
344  */
345 static const uint8_t pa_features_300[] = { 66, 0,
346     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
347     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
348     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
349     /* 6: DS207 */
350     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
351     /* 16: Vector */
352     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
353     /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
354     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 18 - 23 */
355     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
356     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
357     /* 32: LE atomic, 34: EBB + ext EBB */
358     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
359     /* 40: Radix MMU */
360     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
361     /* 42: PM, 44: PC RA, 46: SC vec'd */
362     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
363     /* 48: SIMD, 50: QP BFP, 52: String */
364     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
365     /* 54: DecFP, 56: DecI, 58: SHA */
366     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
367     /* 60: NM atomic, 62: RNG */
368     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
369 };
370 
371 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
372 {
373     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
374     int i;
375 
376     pnv_dt_xscom(chip, fdt, 0,
377                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
378                  cpu_to_be64(PNV9_XSCOM_SIZE),
379                  compat, sizeof(compat));
380 
381     for (i = 0; i < chip->nr_cores; i++) {
382         PnvCore *pnv_core = chip->cores[i];
383         int offset;
384 
385         offset = pnv_dt_core(chip, pnv_core, fdt);
386 
387         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
388                            pa_features_300, sizeof(pa_features_300))));
389     }
390 
391     if (chip->ram_size) {
392         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
393     }
394 
395     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
396 }
397 
398 /*
399  * Same as spapr pa_features_31 except pnv always enables CI largepages bit,
400  * always disables copy/paste.
401  */
402 static const uint8_t pa_features_31[] = { 74, 0,
403     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
404     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
405     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
406     /* 6: DS207 */
407     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
408     /* 16: Vector */
409     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
410     /* 18: Vec. Scalar, 20: Vec. XOR */
411     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
412     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
413     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
414     /* 32: LE atomic, 34: EBB + ext EBB */
415     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
416     /* 40: Radix MMU */
417     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
418     /* 42: PM, 44: PC RA, 46: SC vec'd */
419     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
420     /* 48: SIMD, 50: QP BFP, 52: String */
421     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
422     /* 54: DecFP, 56: DecI, 58: SHA */
423     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
424     /* 60: NM atomic, 62: RNG */
425     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
426     /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */
427     0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */
428     /* 72: [P]HASHST/[P]HASHCHK */
429     0x80, 0x00,                         /* 72 - 73 */
430 };
431 
432 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
433 {
434     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
435     int i;
436 
437     pnv_dt_xscom(chip, fdt, 0,
438                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
439                  cpu_to_be64(PNV10_XSCOM_SIZE),
440                  compat, sizeof(compat));
441 
442     for (i = 0; i < chip->nr_cores; i++) {
443         PnvCore *pnv_core = chip->cores[i];
444         int offset;
445 
446         offset = pnv_dt_core(chip, pnv_core, fdt);
447 
448         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
449                            pa_features_31, sizeof(pa_features_31))));
450     }
451 
452     if (chip->ram_size) {
453         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
454     }
455 
456     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
457 }
458 
459 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
460 {
461     uint32_t io_base = d->ioport_id;
462     uint32_t io_regs[] = {
463         cpu_to_be32(1),
464         cpu_to_be32(io_base),
465         cpu_to_be32(2)
466     };
467     char *name;
468     int node;
469 
470     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
471     node = fdt_add_subnode(fdt, lpc_off, name);
472     _FDT(node);
473     g_free(name);
474 
475     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
476     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
477 }
478 
479 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
480 {
481     const char compatible[] = "ns16550\0pnpPNP,501";
482     uint32_t io_base = d->ioport_id;
483     uint32_t io_regs[] = {
484         cpu_to_be32(1),
485         cpu_to_be32(io_base),
486         cpu_to_be32(8)
487     };
488     uint32_t irq;
489     char *name;
490     int node;
491 
492     irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
493 
494     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
495     node = fdt_add_subnode(fdt, lpc_off, name);
496     _FDT(node);
497     g_free(name);
498 
499     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
500     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
501                       sizeof(compatible))));
502 
503     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
504     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
505     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
506     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
507                            fdt_get_phandle(fdt, lpc_off))));
508 
509     /* This is needed by Linux */
510     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
511 }
512 
513 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
514 {
515     const char compatible[] = "bt\0ipmi-bt";
516     uint32_t io_base;
517     uint32_t io_regs[] = {
518         cpu_to_be32(1),
519         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
520         cpu_to_be32(3)
521     };
522     uint32_t irq;
523     char *name;
524     int node;
525 
526     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
527     io_regs[1] = cpu_to_be32(io_base);
528 
529     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
530 
531     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
532     node = fdt_add_subnode(fdt, lpc_off, name);
533     _FDT(node);
534     g_free(name);
535 
536     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
537     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
538                       sizeof(compatible))));
539 
540     /* Mark it as reserved to avoid Linux trying to claim it */
541     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
542     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
543     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
544                            fdt_get_phandle(fdt, lpc_off))));
545 }
546 
547 typedef struct ForeachPopulateArgs {
548     void *fdt;
549     int offset;
550 } ForeachPopulateArgs;
551 
552 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
553 {
554     ForeachPopulateArgs *args = opaque;
555     ISADevice *d = ISA_DEVICE(dev);
556 
557     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
558         pnv_dt_rtc(d, args->fdt, args->offset);
559     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
560         pnv_dt_serial(d, args->fdt, args->offset);
561     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
562         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
563     } else {
564         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
565                      d->ioport_id);
566     }
567 
568     return 0;
569 }
570 
571 /*
572  * The default LPC bus of a multichip system is on chip 0. It's
573  * recognized by the firmware (skiboot) using a "primary" property.
574  */
575 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
576 {
577     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
578     ForeachPopulateArgs args = {
579         .fdt = fdt,
580         .offset = isa_offset,
581     };
582     uint32_t phandle;
583 
584     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
585 
586     phandle = qemu_fdt_alloc_phandle(fdt);
587     assert(phandle > 0);
588     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
589 
590     /*
591      * ISA devices are not necessarily parented to the ISA bus so we
592      * can not use object_child_foreach()
593      */
594     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
595                        &args);
596 }
597 
598 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
599 {
600     int off;
601 
602     off = fdt_add_subnode(fdt, 0, "ibm,opal");
603     off = fdt_add_subnode(fdt, off, "power-mgt");
604 
605     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
606 }
607 
608 static void *pnv_dt_create(MachineState *machine)
609 {
610     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
611     PnvMachineState *pnv = PNV_MACHINE(machine);
612     void *fdt;
613     char *buf;
614     int off;
615     int i;
616 
617     fdt = g_malloc0(FDT_MAX_SIZE);
618     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
619 
620     /* /qemu node */
621     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
622 
623     /* Root node */
624     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
625     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
626     _FDT((fdt_setprop_string(fdt, 0, "model",
627                              "IBM PowerNV (emulated by qemu)")));
628     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
629 
630     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
631     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
632     if (qemu_uuid_set) {
633         _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
634     }
635     g_free(buf);
636 
637     off = fdt_add_subnode(fdt, 0, "chosen");
638     if (machine->kernel_cmdline) {
639         _FDT((fdt_setprop_string(fdt, off, "bootargs",
640                                  machine->kernel_cmdline)));
641     }
642 
643     if (pnv->initrd_size) {
644         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
645         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
646 
647         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
648                                &start_prop, sizeof(start_prop))));
649         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
650                                &end_prop, sizeof(end_prop))));
651     }
652 
653     /* Populate device tree for each chip */
654     for (i = 0; i < pnv->num_chips; i++) {
655         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
656     }
657 
658     /* Populate ISA devices on chip 0 */
659     pnv_dt_isa(pnv, fdt);
660 
661     if (pnv->bmc) {
662         pnv_dt_bmc_sensors(pnv->bmc, fdt);
663     }
664 
665     /* Create an extra node for power management on machines that support it */
666     if (pmc->dt_power_mgt) {
667         pmc->dt_power_mgt(pnv, fdt);
668     }
669 
670     return fdt;
671 }
672 
673 static void pnv_powerdown_notify(Notifier *n, void *opaque)
674 {
675     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
676 
677     if (pnv->bmc) {
678         pnv_bmc_powerdown(pnv->bmc);
679     }
680 }
681 
682 static void pnv_reset(MachineState *machine, ShutdownCause reason)
683 {
684     PnvMachineState *pnv = PNV_MACHINE(machine);
685     IPMIBmc *bmc;
686     void *fdt;
687 
688     qemu_devices_reset(reason);
689 
690     /*
691      * The machine should provide by default an internal BMC simulator.
692      * If not, try to use the BMC device that was provided on the command
693      * line.
694      */
695     bmc = pnv_bmc_find(&error_fatal);
696     if (!pnv->bmc) {
697         if (!bmc) {
698             if (!qtest_enabled()) {
699                 warn_report("machine has no BMC device. Use '-device "
700                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
701                             "to define one");
702             }
703         } else {
704             pnv_bmc_set_pnor(bmc, pnv->pnor);
705             pnv->bmc = bmc;
706         }
707     }
708 
709     fdt = pnv_dt_create(machine);
710 
711     /* Pack resulting tree */
712     _FDT((fdt_pack(fdt)));
713 
714     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
715     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
716 
717     /*
718      * Set machine->fdt for 'dumpdtb' QMP/HMP command. Free
719      * the existing machine->fdt to avoid leaking it during
720      * a reset.
721      */
722     g_free(machine->fdt);
723     machine->fdt = fdt;
724 }
725 
726 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
727 {
728     Pnv8Chip *chip8 = PNV8_CHIP(chip);
729     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL);
730 
731     qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
732     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
733 }
734 
735 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
736 {
737     Pnv8Chip *chip8 = PNV8_CHIP(chip);
738     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C);
739 
740     qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
741     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
742 }
743 
744 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
745 {
746     Pnv9Chip *chip9 = PNV9_CHIP(chip);
747     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC);
748 
749     qdev_connect_gpio_out(DEVICE(&chip9->lpc), 0, irq);
750     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
751 }
752 
753 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
754 {
755     Pnv10Chip *chip10 = PNV10_CHIP(chip);
756     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC);
757 
758     qdev_connect_gpio_out(DEVICE(&chip10->lpc), 0, irq);
759     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
760 }
761 
762 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
763 {
764     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
765 }
766 
767 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
768 {
769     Pnv8Chip *chip8 = PNV8_CHIP(chip);
770     int i;
771 
772     ics_pic_print_info(&chip8->psi.ics, mon);
773 
774     for (i = 0; i < chip8->num_phbs; i++) {
775         PnvPHB *phb = chip8->phbs[i];
776         PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
777 
778         pnv_phb3_msi_pic_print_info(&phb3->msis, mon);
779         ics_pic_print_info(&phb3->lsis, mon);
780     }
781 }
782 
783 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
784 {
785     Monitor *mon = opaque;
786     PnvPHB *phb =  (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB);
787 
788     if (!phb) {
789         return 0;
790     }
791 
792     pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), mon);
793 
794     return 0;
795 }
796 
797 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
798 {
799     Pnv9Chip *chip9 = PNV9_CHIP(chip);
800 
801     pnv_xive_pic_print_info(&chip9->xive, mon);
802     pnv_psi_pic_print_info(&chip9->psi, mon);
803 
804     object_child_foreach_recursive(OBJECT(chip),
805                          pnv_chip_power9_pic_print_info_child, mon);
806 }
807 
808 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
809                                                 uint32_t core_id)
810 {
811     return PNV_XSCOM_EX_BASE(core_id);
812 }
813 
814 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
815                                                 uint32_t core_id)
816 {
817     return PNV9_XSCOM_EC_BASE(core_id);
818 }
819 
820 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
821                                                  uint32_t core_id)
822 {
823     return PNV10_XSCOM_EC_BASE(core_id);
824 }
825 
826 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
827 {
828     PowerPCCPUClass *ppc_default =
829         POWERPC_CPU_CLASS(object_class_by_name(default_type));
830     PowerPCCPUClass *ppc =
831         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
832 
833     return ppc_default->pvr_match(ppc_default, ppc->pvr, false);
834 }
835 
836 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
837 {
838     ISADevice *dev = isa_new("isa-ipmi-bt");
839 
840     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
841     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
842     isa_realize_and_unref(dev, bus, &error_fatal);
843 }
844 
845 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
846 {
847     Pnv10Chip *chip10 = PNV10_CHIP(chip);
848 
849     pnv_xive2_pic_print_info(&chip10->xive, mon);
850     pnv_psi_pic_print_info(&chip10->psi, mon);
851 
852     object_child_foreach_recursive(OBJECT(chip),
853                          pnv_chip_power9_pic_print_info_child, mon);
854 }
855 
856 /* Always give the first 1GB to chip 0 else we won't boot */
857 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
858 {
859     MachineState *machine = MACHINE(pnv);
860     uint64_t ram_per_chip;
861 
862     assert(machine->ram_size >= 1 * GiB);
863 
864     ram_per_chip = machine->ram_size / pnv->num_chips;
865     if (ram_per_chip >= 1 * GiB) {
866         return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
867     }
868 
869     assert(pnv->num_chips > 1);
870 
871     ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
872     return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
873 }
874 
875 static void pnv_init(MachineState *machine)
876 {
877     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
878     PnvMachineState *pnv = PNV_MACHINE(machine);
879     MachineClass *mc = MACHINE_GET_CLASS(machine);
880     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
881     char *fw_filename;
882     long fw_size;
883     uint64_t chip_ram_start = 0;
884     int i;
885     char *chip_typename;
886     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
887     DeviceState *dev;
888 
889     if (kvm_enabled()) {
890         error_report("machine %s does not support the KVM accelerator",
891                      mc->name);
892         exit(EXIT_FAILURE);
893     }
894 
895     /* allocate RAM */
896     if (machine->ram_size < mc->default_ram_size) {
897         char *sz = size_to_str(mc->default_ram_size);
898         error_report("Invalid RAM size, should be bigger than %s", sz);
899         g_free(sz);
900         exit(EXIT_FAILURE);
901     }
902     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
903 
904     /*
905      * Create our simple PNOR device
906      */
907     dev = qdev_new(TYPE_PNV_PNOR);
908     if (pnor) {
909         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
910     }
911     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
912     pnv->pnor = PNV_PNOR(dev);
913 
914     /* load skiboot firmware  */
915     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
916     if (!fw_filename) {
917         error_report("Could not find OPAL firmware '%s'", bios_name);
918         exit(1);
919     }
920 
921     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
922     if (fw_size < 0) {
923         error_report("Could not load OPAL firmware '%s'", fw_filename);
924         exit(1);
925     }
926     g_free(fw_filename);
927 
928     /* load kernel */
929     if (machine->kernel_filename) {
930         long kernel_size;
931 
932         kernel_size = load_image_targphys(machine->kernel_filename,
933                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
934         if (kernel_size < 0) {
935             error_report("Could not load kernel '%s'",
936                          machine->kernel_filename);
937             exit(1);
938         }
939     }
940 
941     /* load initrd */
942     if (machine->initrd_filename) {
943         pnv->initrd_base = INITRD_LOAD_ADDR;
944         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
945                                   pnv->initrd_base, INITRD_MAX_SIZE);
946         if (pnv->initrd_size < 0) {
947             error_report("Could not load initial ram disk '%s'",
948                          machine->initrd_filename);
949             exit(1);
950         }
951     }
952 
953     /* MSIs are supported on this platform */
954     msi_nonbroken = true;
955 
956     /*
957      * Check compatibility of the specified CPU with the machine
958      * default.
959      */
960     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
961         error_report("invalid CPU model '%s' for %s machine",
962                      machine->cpu_type, mc->name);
963         exit(1);
964     }
965 
966     /* Create the processor chips */
967     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
968     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
969                                     i, machine->cpu_type);
970     if (!object_class_by_name(chip_typename)) {
971         error_report("invalid chip model '%.*s' for %s machine",
972                      i, machine->cpu_type, mc->name);
973         exit(1);
974     }
975 
976     pnv->num_chips =
977         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
978 
979     if (machine->smp.threads > 8) {
980         error_report("Cannot support more than 8 threads/core "
981                      "on a powernv machine");
982         exit(1);
983     }
984     if (!is_power_of_2(machine->smp.threads)) {
985         error_report("Cannot support %d threads/core on a powernv"
986                      "machine because it must be a power of 2",
987                      machine->smp.threads);
988         exit(1);
989     }
990     /*
991      * TODO: should we decide on how many chips we can create based
992      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
993      */
994     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
995         error_report("invalid number of chips: '%d'", pnv->num_chips);
996         error_printf(
997             "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
998         exit(1);
999     }
1000 
1001     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
1002     for (i = 0; i < pnv->num_chips; i++) {
1003         char chip_name[32];
1004         Object *chip = OBJECT(qdev_new(chip_typename));
1005         uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
1006 
1007         pnv->chips[i] = PNV_CHIP(chip);
1008 
1009         /* Distribute RAM among the chips  */
1010         object_property_set_int(chip, "ram-start", chip_ram_start,
1011                                 &error_fatal);
1012         object_property_set_int(chip, "ram-size", chip_ram_size,
1013                                 &error_fatal);
1014         chip_ram_start += chip_ram_size;
1015 
1016         snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
1017         object_property_add_child(OBJECT(pnv), chip_name, chip);
1018         object_property_set_int(chip, "chip-id", i, &error_fatal);
1019         object_property_set_int(chip, "nr-cores", machine->smp.cores,
1020                                 &error_fatal);
1021         object_property_set_int(chip, "nr-threads", machine->smp.threads,
1022                                 &error_fatal);
1023         /*
1024          * The POWER8 machine use the XICS interrupt interface.
1025          * Propagate the XICS fabric to the chip and its controllers.
1026          */
1027         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
1028             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
1029         }
1030         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
1031             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
1032                                      &error_abort);
1033         }
1034         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
1035     }
1036     g_free(chip_typename);
1037 
1038     /* Instantiate ISA bus on chip 0 */
1039     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
1040 
1041     /* Create serial port */
1042     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1043 
1044     /* Create an RTC ISA device too */
1045     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
1046 
1047     /*
1048      * Create the machine BMC simulator and the IPMI BT device for
1049      * communication with the BMC
1050      */
1051     if (defaults_enabled()) {
1052         pnv->bmc = pnv_bmc_create(pnv->pnor);
1053         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
1054     }
1055 
1056     /*
1057      * The PNOR is mapped on the LPC FW address space by the BMC.
1058      * Since we can not reach the remote BMC machine with LPC memops,
1059      * map it always for now.
1060      */
1061     memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
1062                                 &pnv->pnor->mmio);
1063 
1064     /*
1065      * OpenPOWER systems use a IPMI SEL Event message to notify the
1066      * host to powerdown
1067      */
1068     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
1069     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
1070 
1071     /*
1072      * Create/Connect any machine-specific I2C devices
1073      */
1074     if (pmc->i2c_init) {
1075         pmc->i2c_init(pnv);
1076     }
1077 }
1078 
1079 /*
1080  *    0:21  Reserved - Read as zeros
1081  *   22:24  Chip ID
1082  *   25:28  Core number
1083  *   29:31  Thread ID
1084  */
1085 static uint32_t pnv_chip_pir_p8(PnvChip *chip, uint32_t core_id,
1086                                 uint32_t thread_id)
1087 {
1088     return (chip->chip_id << 7) | (core_id << 3) | thread_id;
1089 }
1090 
1091 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1092                                         Error **errp)
1093 {
1094     Pnv8Chip *chip8 = PNV8_CHIP(chip);
1095     Error *local_err = NULL;
1096     Object *obj;
1097     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1098 
1099     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
1100     if (local_err) {
1101         error_propagate(errp, local_err);
1102         return;
1103     }
1104 
1105     pnv_cpu->intc = obj;
1106 }
1107 
1108 
1109 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1110 {
1111     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1112 
1113     icp_reset(ICP(pnv_cpu->intc));
1114 }
1115 
1116 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1117 {
1118     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1119 
1120     icp_destroy(ICP(pnv_cpu->intc));
1121     pnv_cpu->intc = NULL;
1122 }
1123 
1124 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1125                                             Monitor *mon)
1126 {
1127     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
1128 }
1129 
1130 /*
1131  *    0:48  Reserved - Read as zeroes
1132  *   49:52  Node ID
1133  *   53:55  Chip ID
1134  *   56     Reserved - Read as zero
1135  *   57:61  Core number
1136  *   62:63  Thread ID
1137  *
1138  * We only care about the lower bits. uint32_t is fine for the moment.
1139  */
1140 static uint32_t pnv_chip_pir_p9(PnvChip *chip, uint32_t core_id,
1141                                 uint32_t thread_id)
1142 {
1143     if (chip->nr_threads == 8) {
1144         return (chip->chip_id << 8) | ((thread_id & 1) << 2) | (core_id << 3) |
1145                (thread_id >> 1);
1146     } else {
1147         return (chip->chip_id << 8) | (core_id << 2) | thread_id;
1148     }
1149 }
1150 
1151 /*
1152  *    0:48  Reserved - Read as zeroes
1153  *   49:52  Node ID
1154  *   53:55  Chip ID
1155  *   56     Reserved - Read as zero
1156  *   57:59  Quad ID
1157  *   60     Core Chiplet Pair ID
1158  *   61:63  Thread/Core Chiplet ID t0-t2
1159  *
1160  * We only care about the lower bits. uint32_t is fine for the moment.
1161  */
1162 static uint32_t pnv_chip_pir_p10(PnvChip *chip, uint32_t core_id,
1163                                  uint32_t thread_id)
1164 {
1165     if (chip->nr_threads == 8) {
1166         return (chip->chip_id << 8) | ((core_id / 4) << 4) |
1167                ((core_id % 2) << 3) | thread_id;
1168     } else {
1169         return (chip->chip_id << 8) | (core_id << 2) | thread_id;
1170     }
1171 }
1172 
1173 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1174                                         Error **errp)
1175 {
1176     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1177     Error *local_err = NULL;
1178     Object *obj;
1179     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1180 
1181     /*
1182      * The core creates its interrupt presenter but the XIVE interrupt
1183      * controller object is initialized afterwards. Hopefully, it's
1184      * only used at runtime.
1185      */
1186     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1187                            &local_err);
1188     if (local_err) {
1189         error_propagate(errp, local_err);
1190         return;
1191     }
1192 
1193     pnv_cpu->intc = obj;
1194 }
1195 
1196 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1197 {
1198     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1199 
1200     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1201 }
1202 
1203 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1204 {
1205     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1206 
1207     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1208     pnv_cpu->intc = NULL;
1209 }
1210 
1211 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1212                                             Monitor *mon)
1213 {
1214     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1215 }
1216 
1217 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1218                                         Error **errp)
1219 {
1220     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1221     Error *local_err = NULL;
1222     Object *obj;
1223     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1224 
1225     /*
1226      * The core creates its interrupt presenter but the XIVE2 interrupt
1227      * controller object is initialized afterwards. Hopefully, it's
1228      * only used at runtime.
1229      */
1230     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
1231                            &local_err);
1232     if (local_err) {
1233         error_propagate(errp, local_err);
1234         return;
1235     }
1236 
1237     pnv_cpu->intc = obj;
1238 }
1239 
1240 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1241 {
1242     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1243 
1244     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1245 }
1246 
1247 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1248 {
1249     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1250 
1251     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1252     pnv_cpu->intc = NULL;
1253 }
1254 
1255 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1256                                              Monitor *mon)
1257 {
1258     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1259 }
1260 
1261 /*
1262  * Allowed core identifiers on a POWER8 Processor Chip :
1263  *
1264  * <EX0 reserved>
1265  *  EX1  - Venice only
1266  *  EX2  - Venice only
1267  *  EX3  - Venice only
1268  *  EX4
1269  *  EX5
1270  *  EX6
1271  * <EX7,8 reserved> <reserved>
1272  *  EX9  - Venice only
1273  *  EX10 - Venice only
1274  *  EX11 - Venice only
1275  *  EX12
1276  *  EX13
1277  *  EX14
1278  * <EX15 reserved>
1279  */
1280 #define POWER8E_CORE_MASK  (0x7070ull)
1281 #define POWER8_CORE_MASK   (0x7e7eull)
1282 
1283 /*
1284  * POWER9 has 24 cores, ids starting at 0x0
1285  */
1286 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1287 
1288 
1289 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1290 
1291 static void pnv_chip_power8_instance_init(Object *obj)
1292 {
1293     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1294     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1295     int i;
1296 
1297     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1298                              (Object **)&chip8->xics,
1299                              object_property_allow_set_link,
1300                              OBJ_PROP_LINK_STRONG);
1301 
1302     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1303 
1304     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1305 
1306     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1307 
1308     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1309 
1310     if (defaults_enabled()) {
1311         chip8->num_phbs = pcc->num_phbs;
1312 
1313         for (i = 0; i < chip8->num_phbs; i++) {
1314             Object *phb = object_new(TYPE_PNV_PHB);
1315 
1316             /*
1317              * We need the chip to parent the PHB to allow the DT
1318              * to build correctly (via pnv_xscom_dt()).
1319              *
1320              * TODO: the PHB should be parented by a PEC device that, at
1321              * this moment, is not modelled powernv8/phb3.
1322              */
1323             object_property_add_child(obj, "phb[*]", phb);
1324             chip8->phbs[i] = PNV_PHB(phb);
1325         }
1326     }
1327 
1328 }
1329 
1330 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1331  {
1332     PnvChip *chip = PNV_CHIP(chip8);
1333     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1334     int i, j;
1335     char *name;
1336 
1337     name = g_strdup_printf("icp-%x", chip->chip_id);
1338     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1339     g_free(name);
1340     memory_region_add_subregion(get_system_memory(), PNV_ICP_BASE(chip),
1341                                 &chip8->icp_mmio);
1342 
1343     /* Map the ICP registers for each thread */
1344     for (i = 0; i < chip->nr_cores; i++) {
1345         PnvCore *pnv_core = chip->cores[i];
1346         int core_hwid = CPU_CORE(pnv_core)->core_id;
1347 
1348         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1349             uint32_t pir = pcc->chip_pir(chip, core_hwid, j);
1350             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1351 
1352             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1353                                         &icp->mmio);
1354         }
1355     }
1356 }
1357 
1358 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1359 {
1360     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1361     PnvChip *chip = PNV_CHIP(dev);
1362     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1363     Pnv8Psi *psi8 = &chip8->psi;
1364     Error *local_err = NULL;
1365     int i;
1366 
1367     assert(chip8->xics);
1368 
1369     /* XSCOM bridge is first */
1370     pnv_xscom_init(chip, PNV_XSCOM_SIZE, PNV_XSCOM_BASE(chip));
1371 
1372     pcc->parent_realize(dev, &local_err);
1373     if (local_err) {
1374         error_propagate(errp, local_err);
1375         return;
1376     }
1377 
1378     /* Processor Service Interface (PSI) Host Bridge */
1379     object_property_set_int(OBJECT(psi8), "bar", PNV_PSIHB_BASE(chip),
1380                             &error_fatal);
1381     object_property_set_link(OBJECT(psi8), ICS_PROP_XICS,
1382                              OBJECT(chip8->xics), &error_abort);
1383     if (!qdev_realize(DEVICE(psi8), NULL, errp)) {
1384         return;
1385     }
1386     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1387                             &PNV_PSI(psi8)->xscom_regs);
1388 
1389     /* Create LPC controller */
1390     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1391     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1392 
1393     chip->fw_mr = &chip8->lpc.isa_fw;
1394     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1395                                             (uint64_t) PNV_XSCOM_BASE(chip),
1396                                             PNV_XSCOM_LPC_BASE);
1397 
1398     /*
1399      * Interrupt Management Area. This is the memory region holding
1400      * all the Interrupt Control Presenter (ICP) registers
1401      */
1402     pnv_chip_icp_realize(chip8, &local_err);
1403     if (local_err) {
1404         error_propagate(errp, local_err);
1405         return;
1406     }
1407 
1408     /* Create the simplified OCC model */
1409     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1410         return;
1411     }
1412     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1413     qdev_connect_gpio_out(DEVICE(&chip8->occ), 0,
1414                           qdev_get_gpio_in(DEVICE(psi8), PSIHB_IRQ_OCC));
1415 
1416     /* OCC SRAM model */
1417     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1418                                 &chip8->occ.sram_regs);
1419 
1420     /* HOMER */
1421     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1422                              &error_abort);
1423     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1424         return;
1425     }
1426     /* Homer Xscom region */
1427     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1428 
1429     /* Homer mmio region */
1430     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1431                                 &chip8->homer.regs);
1432 
1433     /* PHB controllers */
1434     for (i = 0; i < chip8->num_phbs; i++) {
1435         PnvPHB *phb = chip8->phbs[i];
1436 
1437         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1438         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1439                                 &error_fatal);
1440         object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1441                                  &error_fatal);
1442         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1443             return;
1444         }
1445     }
1446 }
1447 
1448 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1449 {
1450     addr &= (PNV_XSCOM_SIZE - 1);
1451     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1452 }
1453 
1454 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1455 {
1456     DeviceClass *dc = DEVICE_CLASS(klass);
1457     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1458 
1459     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1460     k->cores_mask = POWER8E_CORE_MASK;
1461     k->num_phbs = 3;
1462     k->chip_pir = pnv_chip_pir_p8;
1463     k->intc_create = pnv_chip_power8_intc_create;
1464     k->intc_reset = pnv_chip_power8_intc_reset;
1465     k->intc_destroy = pnv_chip_power8_intc_destroy;
1466     k->intc_print_info = pnv_chip_power8_intc_print_info;
1467     k->isa_create = pnv_chip_power8_isa_create;
1468     k->dt_populate = pnv_chip_power8_dt_populate;
1469     k->pic_print_info = pnv_chip_power8_pic_print_info;
1470     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1471     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1472     dc->desc = "PowerNV Chip POWER8E";
1473 
1474     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1475                                     &k->parent_realize);
1476 }
1477 
1478 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1479 {
1480     DeviceClass *dc = DEVICE_CLASS(klass);
1481     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1482 
1483     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1484     k->cores_mask = POWER8_CORE_MASK;
1485     k->num_phbs = 3;
1486     k->chip_pir = pnv_chip_pir_p8;
1487     k->intc_create = pnv_chip_power8_intc_create;
1488     k->intc_reset = pnv_chip_power8_intc_reset;
1489     k->intc_destroy = pnv_chip_power8_intc_destroy;
1490     k->intc_print_info = pnv_chip_power8_intc_print_info;
1491     k->isa_create = pnv_chip_power8_isa_create;
1492     k->dt_populate = pnv_chip_power8_dt_populate;
1493     k->pic_print_info = pnv_chip_power8_pic_print_info;
1494     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1495     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1496     dc->desc = "PowerNV Chip POWER8";
1497 
1498     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1499                                     &k->parent_realize);
1500 }
1501 
1502 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1503 {
1504     DeviceClass *dc = DEVICE_CLASS(klass);
1505     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1506 
1507     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1508     k->cores_mask = POWER8_CORE_MASK;
1509     k->num_phbs = 4;
1510     k->chip_pir = pnv_chip_pir_p8;
1511     k->intc_create = pnv_chip_power8_intc_create;
1512     k->intc_reset = pnv_chip_power8_intc_reset;
1513     k->intc_destroy = pnv_chip_power8_intc_destroy;
1514     k->intc_print_info = pnv_chip_power8_intc_print_info;
1515     k->isa_create = pnv_chip_power8nvl_isa_create;
1516     k->dt_populate = pnv_chip_power8_dt_populate;
1517     k->pic_print_info = pnv_chip_power8_pic_print_info;
1518     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1519     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1520     dc->desc = "PowerNV Chip POWER8NVL";
1521 
1522     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1523                                     &k->parent_realize);
1524 }
1525 
1526 static void pnv_chip_power9_instance_init(Object *obj)
1527 {
1528     PnvChip *chip = PNV_CHIP(obj);
1529     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1530     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1531     int i;
1532 
1533     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1534     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1535                               "xive-fabric");
1536 
1537     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1538 
1539     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1540 
1541     object_initialize_child(obj, "chiptod", &chip9->chiptod, TYPE_PNV9_CHIPTOD);
1542 
1543     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1544 
1545     object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE);
1546 
1547     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1548 
1549     /* Number of PECs is the chip default */
1550     chip->num_pecs = pcc->num_pecs;
1551 
1552     for (i = 0; i < chip->num_pecs; i++) {
1553         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1554                                 TYPE_PNV_PHB4_PEC);
1555     }
1556 
1557     for (i = 0; i < pcc->i2c_num_engines; i++) {
1558         object_initialize_child(obj, "i2c[*]", &chip9->i2c[i], TYPE_PNV_I2C);
1559     }
1560 }
1561 
1562 static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
1563                                       PnvCore *pnv_core,
1564                                       const char *type)
1565 {
1566     char eq_name[32];
1567     int core_id = CPU_CORE(pnv_core)->core_id;
1568 
1569     snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1570     object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1571                                        sizeof(*eq), type,
1572                                        &error_fatal, NULL);
1573 
1574     object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1575     qdev_realize(DEVICE(eq), NULL, &error_fatal);
1576 }
1577 
1578 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1579 {
1580     PnvChip *chip = PNV_CHIP(chip9);
1581     int i;
1582 
1583     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1584     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1585 
1586     for (i = 0; i < chip9->nr_quads; i++) {
1587         PnvQuad *eq = &chip9->quads[i];
1588 
1589         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1590                                   PNV_QUAD_TYPE_NAME("power9"));
1591 
1592         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1593                                 &eq->xscom_regs);
1594     }
1595 }
1596 
1597 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1598 {
1599     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1600     int i;
1601 
1602     for (i = 0; i < chip->num_pecs; i++) {
1603         PnvPhb4PecState *pec = &chip9->pecs[i];
1604         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1605         uint32_t pec_nest_base;
1606         uint32_t pec_pci_base;
1607 
1608         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1609         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1610                                 &error_fatal);
1611         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1612                                  &error_fatal);
1613         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1614             return;
1615         }
1616 
1617         pec_nest_base = pecc->xscom_nest_base(pec);
1618         pec_pci_base = pecc->xscom_pci_base(pec);
1619 
1620         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1621         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1622     }
1623 }
1624 
1625 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1626 {
1627     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1628     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1629     PnvChip *chip = PNV_CHIP(dev);
1630     Pnv9Psi *psi9 = &chip9->psi;
1631     Error *local_err = NULL;
1632     int i;
1633 
1634     /* XSCOM bridge is first */
1635     pnv_xscom_init(chip, PNV9_XSCOM_SIZE, PNV9_XSCOM_BASE(chip));
1636 
1637     pcc->parent_realize(dev, &local_err);
1638     if (local_err) {
1639         error_propagate(errp, local_err);
1640         return;
1641     }
1642 
1643     pnv_chip_quad_realize(chip9, &local_err);
1644     if (local_err) {
1645         error_propagate(errp, local_err);
1646         return;
1647     }
1648 
1649     /* XIVE interrupt controller (POWER9) */
1650     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1651                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1652     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1653                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1654     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1655                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1656     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1657                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1658     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1659                              &error_abort);
1660     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1661         return;
1662     }
1663     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1664                             &chip9->xive.xscom_regs);
1665 
1666     /* Processor Service Interface (PSI) Host Bridge */
1667     object_property_set_int(OBJECT(psi9), "bar", PNV9_PSIHB_BASE(chip),
1668                             &error_fatal);
1669     /* This is the only device with 4k ESB pages */
1670     object_property_set_int(OBJECT(psi9), "shift", XIVE_ESB_4K,
1671                             &error_fatal);
1672     if (!qdev_realize(DEVICE(psi9), NULL, errp)) {
1673         return;
1674     }
1675     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1676                             &PNV_PSI(psi9)->xscom_regs);
1677 
1678     /* LPC */
1679     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1680         return;
1681     }
1682     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1683                                 &chip9->lpc.xscom_regs);
1684 
1685     chip->fw_mr = &chip9->lpc.isa_fw;
1686     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1687                                             (uint64_t) PNV9_LPCM_BASE(chip));
1688 
1689     /* ChipTOD */
1690     object_property_set_bool(OBJECT(&chip9->chiptod), "primary",
1691                              chip->chip_id == 0, &error_abort);
1692     object_property_set_bool(OBJECT(&chip9->chiptod), "secondary",
1693                              chip->chip_id == 1, &error_abort);
1694     object_property_set_link(OBJECT(&chip9->chiptod), "chip", OBJECT(chip),
1695                              &error_abort);
1696     if (!qdev_realize(DEVICE(&chip9->chiptod), NULL, errp)) {
1697         return;
1698     }
1699     pnv_xscom_add_subregion(chip, PNV9_XSCOM_CHIPTOD_BASE,
1700                             &chip9->chiptod.xscom_regs);
1701 
1702     /* Create the simplified OCC model */
1703     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1704         return;
1705     }
1706     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1707     qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in(
1708                               DEVICE(psi9), PSIHB9_IRQ_OCC));
1709 
1710     /* OCC SRAM model */
1711     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1712                                 &chip9->occ.sram_regs);
1713 
1714     /* SBE */
1715     if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) {
1716         return;
1717     }
1718     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE,
1719                             &chip9->sbe.xscom_ctrl_regs);
1720     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE,
1721                             &chip9->sbe.xscom_mbox_regs);
1722     qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in(
1723                               DEVICE(psi9), PSIHB9_IRQ_PSU));
1724 
1725     /* HOMER */
1726     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1727                              &error_abort);
1728     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1729         return;
1730     }
1731     /* Homer Xscom region */
1732     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1733 
1734     /* Homer mmio region */
1735     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1736                                 &chip9->homer.regs);
1737 
1738     /* PEC PHBs */
1739     pnv_chip_power9_pec_realize(chip, &local_err);
1740     if (local_err) {
1741         error_propagate(errp, local_err);
1742         return;
1743     }
1744 
1745     /*
1746      * I2C
1747      */
1748     for (i = 0; i < pcc->i2c_num_engines; i++) {
1749         Object *obj =  OBJECT(&chip9->i2c[i]);
1750 
1751         object_property_set_int(obj, "engine", i + 1, &error_fatal);
1752         object_property_set_int(obj, "num-busses",
1753                                 pcc->i2c_ports_per_engine[i],
1754                                 &error_fatal);
1755         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
1756         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
1757             return;
1758         }
1759         pnv_xscom_add_subregion(chip, PNV9_XSCOM_I2CM_BASE +
1760                                 (chip9->i2c[i].engine - 1) *
1761                                         PNV9_XSCOM_I2CM_SIZE,
1762                                 &chip9->i2c[i].xscom_regs);
1763         qdev_connect_gpio_out(DEVICE(&chip9->i2c[i]), 0,
1764                               qdev_get_gpio_in(DEVICE(psi9),
1765                                                PSIHB9_IRQ_SBE_I2C));
1766     }
1767 }
1768 
1769 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1770 {
1771     addr &= (PNV9_XSCOM_SIZE - 1);
1772     return addr >> 3;
1773 }
1774 
1775 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1776 {
1777     DeviceClass *dc = DEVICE_CLASS(klass);
1778     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1779     static const int i2c_ports_per_engine[PNV9_CHIP_MAX_I2C] = {2, 13, 2, 2};
1780 
1781     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1782     k->cores_mask = POWER9_CORE_MASK;
1783     k->chip_pir = pnv_chip_pir_p9;
1784     k->intc_create = pnv_chip_power9_intc_create;
1785     k->intc_reset = pnv_chip_power9_intc_reset;
1786     k->intc_destroy = pnv_chip_power9_intc_destroy;
1787     k->intc_print_info = pnv_chip_power9_intc_print_info;
1788     k->isa_create = pnv_chip_power9_isa_create;
1789     k->dt_populate = pnv_chip_power9_dt_populate;
1790     k->pic_print_info = pnv_chip_power9_pic_print_info;
1791     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1792     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1793     dc->desc = "PowerNV Chip POWER9";
1794     k->num_pecs = PNV9_CHIP_MAX_PEC;
1795     k->i2c_num_engines = PNV9_CHIP_MAX_I2C;
1796     k->i2c_ports_per_engine = i2c_ports_per_engine;
1797 
1798     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1799                                     &k->parent_realize);
1800 }
1801 
1802 static void pnv_chip_power10_instance_init(Object *obj)
1803 {
1804     PnvChip *chip = PNV_CHIP(obj);
1805     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1806     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1807     int i;
1808 
1809     object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
1810     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
1811                               "xive-fabric");
1812     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1813     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1814     object_initialize_child(obj, "chiptod", &chip10->chiptod,
1815                             TYPE_PNV10_CHIPTOD);
1816     object_initialize_child(obj, "occ",  &chip10->occ, TYPE_PNV10_OCC);
1817     object_initialize_child(obj, "sbe",  &chip10->sbe, TYPE_PNV10_SBE);
1818     object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
1819     object_initialize_child(obj, "n1-chiplet", &chip10->n1_chiplet,
1820                             TYPE_PNV_N1_CHIPLET);
1821 
1822     chip->num_pecs = pcc->num_pecs;
1823 
1824     for (i = 0; i < chip->num_pecs; i++) {
1825         object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
1826                                 TYPE_PNV_PHB5_PEC);
1827     }
1828 
1829     for (i = 0; i < pcc->i2c_num_engines; i++) {
1830         object_initialize_child(obj, "i2c[*]", &chip10->i2c[i], TYPE_PNV_I2C);
1831     }
1832 }
1833 
1834 static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
1835 {
1836     PnvChip *chip = PNV_CHIP(chip10);
1837     int i;
1838 
1839     chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1840     chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
1841 
1842     for (i = 0; i < chip10->nr_quads; i++) {
1843         PnvQuad *eq = &chip10->quads[i];
1844 
1845         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1846                                   PNV_QUAD_TYPE_NAME("power10"));
1847 
1848         pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
1849                                 &eq->xscom_regs);
1850 
1851         pnv_xscom_add_subregion(chip, PNV10_XSCOM_QME_BASE(eq->quad_id),
1852                                 &eq->xscom_qme_regs);
1853     }
1854 }
1855 
1856 static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
1857 {
1858     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1859     int i;
1860 
1861     for (i = 0; i < chip->num_pecs; i++) {
1862         PnvPhb4PecState *pec = &chip10->pecs[i];
1863         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1864         uint32_t pec_nest_base;
1865         uint32_t pec_pci_base;
1866 
1867         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1868         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1869                                 &error_fatal);
1870         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1871                                  &error_fatal);
1872         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1873             return;
1874         }
1875 
1876         pec_nest_base = pecc->xscom_nest_base(pec);
1877         pec_pci_base = pecc->xscom_pci_base(pec);
1878 
1879         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1880         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1881     }
1882 }
1883 
1884 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1885 {
1886     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1887     PnvChip *chip = PNV_CHIP(dev);
1888     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1889     Error *local_err = NULL;
1890     int i;
1891 
1892     /* XSCOM bridge is first */
1893     pnv_xscom_init(chip, PNV10_XSCOM_SIZE, PNV10_XSCOM_BASE(chip));
1894 
1895     pcc->parent_realize(dev, &local_err);
1896     if (local_err) {
1897         error_propagate(errp, local_err);
1898         return;
1899     }
1900 
1901     pnv_chip_power10_quad_realize(chip10, &local_err);
1902     if (local_err) {
1903         error_propagate(errp, local_err);
1904         return;
1905     }
1906 
1907     /* XIVE2 interrupt controller (POWER10) */
1908     object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
1909                             PNV10_XIVE2_IC_BASE(chip), &error_fatal);
1910     object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
1911                             PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
1912     object_property_set_int(OBJECT(&chip10->xive), "end-bar",
1913                             PNV10_XIVE2_END_BASE(chip), &error_fatal);
1914     object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
1915                             PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
1916     object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
1917                             PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
1918     object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
1919                             PNV10_XIVE2_TM_BASE(chip), &error_fatal);
1920     object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
1921                              &error_abort);
1922     if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
1923         return;
1924     }
1925     pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
1926                             &chip10->xive.xscom_regs);
1927 
1928     /* Processor Service Interface (PSI) Host Bridge */
1929     object_property_set_int(OBJECT(&chip10->psi), "bar",
1930                             PNV10_PSIHB_BASE(chip), &error_fatal);
1931     /* PSI can now be configured to use 64k ESB pages on POWER10 */
1932     object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
1933                             &error_fatal);
1934     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1935         return;
1936     }
1937     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1938                             &PNV_PSI(&chip10->psi)->xscom_regs);
1939 
1940     /* LPC */
1941     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1942         return;
1943     }
1944     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1945                                 &chip10->lpc.xscom_regs);
1946 
1947     chip->fw_mr = &chip10->lpc.isa_fw;
1948     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1949                                             (uint64_t) PNV10_LPCM_BASE(chip));
1950 
1951     /* ChipTOD */
1952     object_property_set_bool(OBJECT(&chip10->chiptod), "primary",
1953                              chip->chip_id == 0, &error_abort);
1954     object_property_set_bool(OBJECT(&chip10->chiptod), "secondary",
1955                              chip->chip_id == 1, &error_abort);
1956     object_property_set_link(OBJECT(&chip10->chiptod), "chip", OBJECT(chip),
1957                              &error_abort);
1958     if (!qdev_realize(DEVICE(&chip10->chiptod), NULL, errp)) {
1959         return;
1960     }
1961     pnv_xscom_add_subregion(chip, PNV10_XSCOM_CHIPTOD_BASE,
1962                             &chip10->chiptod.xscom_regs);
1963 
1964     /* Create the simplified OCC model */
1965     if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
1966         return;
1967     }
1968     pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
1969                             &chip10->occ.xscom_regs);
1970     qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in(
1971                               DEVICE(&chip10->psi), PSIHB9_IRQ_OCC));
1972 
1973     /* OCC SRAM model */
1974     memory_region_add_subregion(get_system_memory(),
1975                                 PNV10_OCC_SENSOR_BASE(chip),
1976                                 &chip10->occ.sram_regs);
1977 
1978     /* SBE */
1979     if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) {
1980         return;
1981     }
1982     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE,
1983                             &chip10->sbe.xscom_ctrl_regs);
1984     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE,
1985                             &chip10->sbe.xscom_mbox_regs);
1986     qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in(
1987                               DEVICE(&chip10->psi), PSIHB9_IRQ_PSU));
1988 
1989     /* HOMER */
1990     object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
1991                              &error_abort);
1992     if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
1993         return;
1994     }
1995     /* Homer Xscom region */
1996     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
1997                             &chip10->homer.pba_regs);
1998 
1999     /* Homer mmio region */
2000     memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip),
2001                                 &chip10->homer.regs);
2002 
2003     /* N1 chiplet */
2004     if (!qdev_realize(DEVICE(&chip10->n1_chiplet), NULL, errp)) {
2005         return;
2006     }
2007     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_CHIPLET_CTRL_REGS_BASE,
2008              &chip10->n1_chiplet.nest_pervasive.xscom_ctrl_regs_mr);
2009 
2010     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_EQ_BASE,
2011                            &chip10->n1_chiplet.xscom_pb_eq_mr);
2012 
2013     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_ES_BASE,
2014                            &chip10->n1_chiplet.xscom_pb_es_mr);
2015 
2016     /* PHBs */
2017     pnv_chip_power10_phb_realize(chip, &local_err);
2018     if (local_err) {
2019         error_propagate(errp, local_err);
2020         return;
2021     }
2022 
2023 
2024     /*
2025      * I2C
2026      */
2027     for (i = 0; i < pcc->i2c_num_engines; i++) {
2028         Object *obj =  OBJECT(&chip10->i2c[i]);
2029 
2030         object_property_set_int(obj, "engine", i + 1, &error_fatal);
2031         object_property_set_int(obj, "num-busses",
2032                                 pcc->i2c_ports_per_engine[i],
2033                                 &error_fatal);
2034         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
2035         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
2036             return;
2037         }
2038         pnv_xscom_add_subregion(chip, PNV10_XSCOM_I2CM_BASE +
2039                                 (chip10->i2c[i].engine - 1) *
2040                                         PNV10_XSCOM_I2CM_SIZE,
2041                                 &chip10->i2c[i].xscom_regs);
2042         qdev_connect_gpio_out(DEVICE(&chip10->i2c[i]), 0,
2043                               qdev_get_gpio_in(DEVICE(&chip10->psi),
2044                                                PSIHB9_IRQ_SBE_I2C));
2045     }
2046 
2047 }
2048 
2049 static void pnv_rainier_i2c_init(PnvMachineState *pnv)
2050 {
2051     int i;
2052     for (i = 0; i < pnv->num_chips; i++) {
2053         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2054 
2055         /*
2056          * Add a PCA9552 I2C device for PCIe hotplug control
2057          * to engine 2, bus 1, address 0x63
2058          */
2059         I2CSlave *dev = i2c_slave_create_simple(chip10->i2c[2].busses[1],
2060                                                 "pca9552", 0x63);
2061 
2062         /*
2063          * Connect PCA9552 GPIO pins 0-4 (SLOTx_EN) outputs to GPIO pins 5-9
2064          * (SLOTx_PG) inputs in order to fake the pgood state of PCIe slots
2065          * after hypervisor code sets a SLOTx_EN pin high.
2066          */
2067         qdev_connect_gpio_out(DEVICE(dev), 0, qdev_get_gpio_in(DEVICE(dev), 5));
2068         qdev_connect_gpio_out(DEVICE(dev), 1, qdev_get_gpio_in(DEVICE(dev), 6));
2069         qdev_connect_gpio_out(DEVICE(dev), 2, qdev_get_gpio_in(DEVICE(dev), 7));
2070         qdev_connect_gpio_out(DEVICE(dev), 3, qdev_get_gpio_in(DEVICE(dev), 8));
2071         qdev_connect_gpio_out(DEVICE(dev), 4, qdev_get_gpio_in(DEVICE(dev), 9));
2072 
2073         /*
2074          * Add a PCA9554 I2C device for cable card presence detection
2075          * to engine 2, bus 1, address 0x25
2076          */
2077         i2c_slave_create_simple(chip10->i2c[2].busses[1], "pca9554", 0x25);
2078     }
2079 }
2080 
2081 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
2082 {
2083     addr &= (PNV10_XSCOM_SIZE - 1);
2084     return addr >> 3;
2085 }
2086 
2087 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
2088 {
2089     DeviceClass *dc = DEVICE_CLASS(klass);
2090     PnvChipClass *k = PNV_CHIP_CLASS(klass);
2091     static const int i2c_ports_per_engine[PNV10_CHIP_MAX_I2C] = {14, 14, 2, 16};
2092 
2093     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
2094     k->cores_mask = POWER10_CORE_MASK;
2095     k->chip_pir = pnv_chip_pir_p10;
2096     k->intc_create = pnv_chip_power10_intc_create;
2097     k->intc_reset = pnv_chip_power10_intc_reset;
2098     k->intc_destroy = pnv_chip_power10_intc_destroy;
2099     k->intc_print_info = pnv_chip_power10_intc_print_info;
2100     k->isa_create = pnv_chip_power10_isa_create;
2101     k->dt_populate = pnv_chip_power10_dt_populate;
2102     k->pic_print_info = pnv_chip_power10_pic_print_info;
2103     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
2104     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
2105     dc->desc = "PowerNV Chip POWER10";
2106     k->num_pecs = PNV10_CHIP_MAX_PEC;
2107     k->i2c_num_engines = PNV10_CHIP_MAX_I2C;
2108     k->i2c_ports_per_engine = i2c_ports_per_engine;
2109 
2110     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
2111                                     &k->parent_realize);
2112 }
2113 
2114 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
2115 {
2116     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2117     int cores_max;
2118 
2119     /*
2120      * No custom mask for this chip, let's use the default one from *
2121      * the chip class
2122      */
2123     if (!chip->cores_mask) {
2124         chip->cores_mask = pcc->cores_mask;
2125     }
2126 
2127     /* filter alien core ids ! some are reserved */
2128     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
2129         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
2130                    chip->cores_mask);
2131         return;
2132     }
2133     chip->cores_mask &= pcc->cores_mask;
2134 
2135     /* now that we have a sane layout, let check the number of cores */
2136     cores_max = ctpop64(chip->cores_mask);
2137     if (chip->nr_cores > cores_max) {
2138         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
2139                    cores_max);
2140         return;
2141     }
2142 }
2143 
2144 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
2145 {
2146     Error *error = NULL;
2147     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2148     const char *typename = pnv_chip_core_typename(chip);
2149     int i, core_hwid;
2150     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
2151 
2152     if (!object_class_by_name(typename)) {
2153         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
2154         return;
2155     }
2156 
2157     /* Cores */
2158     pnv_chip_core_sanitize(chip, &error);
2159     if (error) {
2160         error_propagate(errp, error);
2161         return;
2162     }
2163 
2164     chip->cores = g_new0(PnvCore *, chip->nr_cores);
2165 
2166     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
2167              && (i < chip->nr_cores); core_hwid++) {
2168         char core_name[32];
2169         PnvCore *pnv_core;
2170         uint64_t xscom_core_base;
2171 
2172         if (!(chip->cores_mask & (1ull << core_hwid))) {
2173             continue;
2174         }
2175 
2176         pnv_core = PNV_CORE(object_new(typename));
2177 
2178         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
2179         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
2180         chip->cores[i] = pnv_core;
2181         object_property_set_int(OBJECT(pnv_core), "nr-threads",
2182                                 chip->nr_threads, &error_fatal);
2183         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
2184                                 core_hwid, &error_fatal);
2185         object_property_set_int(OBJECT(pnv_core), "hwid", core_hwid,
2186                                 &error_fatal);
2187         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
2188                                 &error_fatal);
2189         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
2190                                  &error_abort);
2191         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
2192 
2193         /* Each core has an XSCOM MMIO region */
2194         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
2195 
2196         pnv_xscom_add_subregion(chip, xscom_core_base,
2197                                 &pnv_core->xscom_regs);
2198         i++;
2199     }
2200 }
2201 
2202 static void pnv_chip_realize(DeviceState *dev, Error **errp)
2203 {
2204     PnvChip *chip = PNV_CHIP(dev);
2205     Error *error = NULL;
2206 
2207     /* Cores */
2208     pnv_chip_core_realize(chip, &error);
2209     if (error) {
2210         error_propagate(errp, error);
2211         return;
2212     }
2213 }
2214 
2215 static Property pnv_chip_properties[] = {
2216     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
2217     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
2218     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
2219     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
2220     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
2221     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
2222     DEFINE_PROP_END_OF_LIST(),
2223 };
2224 
2225 static void pnv_chip_class_init(ObjectClass *klass, void *data)
2226 {
2227     DeviceClass *dc = DEVICE_CLASS(klass);
2228 
2229     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
2230     dc->realize = pnv_chip_realize;
2231     device_class_set_props(dc, pnv_chip_properties);
2232     dc->desc = "PowerNV Chip";
2233 }
2234 
2235 PnvCore *pnv_chip_find_core(PnvChip *chip, uint32_t core_id)
2236 {
2237     int i;
2238 
2239     for (i = 0; i < chip->nr_cores; i++) {
2240         PnvCore *pc = chip->cores[i];
2241         CPUCore *cc = CPU_CORE(pc);
2242 
2243         if (cc->core_id == core_id) {
2244             return pc;
2245         }
2246     }
2247     return NULL;
2248 }
2249 
2250 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
2251 {
2252     int i, j;
2253 
2254     for (i = 0; i < chip->nr_cores; i++) {
2255         PnvCore *pc = chip->cores[i];
2256         CPUCore *cc = CPU_CORE(pc);
2257 
2258         for (j = 0; j < cc->nr_threads; j++) {
2259             if (ppc_cpu_pir(pc->threads[j]) == pir) {
2260                 return pc->threads[j];
2261             }
2262         }
2263     }
2264     return NULL;
2265 }
2266 
2267 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
2268 {
2269     PnvMachineState *pnv = PNV_MACHINE(xi);
2270     int i, j;
2271 
2272     for (i = 0; i < pnv->num_chips; i++) {
2273         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2274 
2275         if (ics_valid_irq(&chip8->psi.ics, irq)) {
2276             return &chip8->psi.ics;
2277         }
2278 
2279         for (j = 0; j < chip8->num_phbs; j++) {
2280             PnvPHB *phb = chip8->phbs[j];
2281             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2282 
2283             if (ics_valid_irq(&phb3->lsis, irq)) {
2284                 return &phb3->lsis;
2285             }
2286 
2287             if (ics_valid_irq(ICS(&phb3->msis), irq)) {
2288                 return ICS(&phb3->msis);
2289             }
2290         }
2291     }
2292     return NULL;
2293 }
2294 
2295 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
2296 {
2297     int i;
2298 
2299     for (i = 0; i < pnv->num_chips; i++) {
2300         PnvChip *chip = pnv->chips[i];
2301         if (chip->chip_id == chip_id) {
2302             return chip;
2303         }
2304     }
2305     return NULL;
2306 }
2307 
2308 static void pnv_ics_resend(XICSFabric *xi)
2309 {
2310     PnvMachineState *pnv = PNV_MACHINE(xi);
2311     int i, j;
2312 
2313     for (i = 0; i < pnv->num_chips; i++) {
2314         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2315 
2316         ics_resend(&chip8->psi.ics);
2317 
2318         for (j = 0; j < chip8->num_phbs; j++) {
2319             PnvPHB *phb = chip8->phbs[j];
2320             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2321 
2322             ics_resend(&phb3->lsis);
2323             ics_resend(ICS(&phb3->msis));
2324         }
2325     }
2326 }
2327 
2328 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
2329 {
2330     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
2331 
2332     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
2333 }
2334 
2335 static void pnv_pic_print_info(InterruptStatsProvider *obj,
2336                                Monitor *mon)
2337 {
2338     PnvMachineState *pnv = PNV_MACHINE(obj);
2339     int i;
2340     CPUState *cs;
2341 
2342     CPU_FOREACH(cs) {
2343         PowerPCCPU *cpu = POWERPC_CPU(cs);
2344 
2345         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
2346         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
2347                                                            mon);
2348     }
2349 
2350     for (i = 0; i < pnv->num_chips; i++) {
2351         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
2352     }
2353 }
2354 
2355 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
2356                          uint8_t nvt_blk, uint32_t nvt_idx,
2357                          bool cam_ignore, uint8_t priority,
2358                          uint32_t logic_serv,
2359                          XiveTCTXMatch *match)
2360 {
2361     PnvMachineState *pnv = PNV_MACHINE(xfb);
2362     int total_count = 0;
2363     int i;
2364 
2365     for (i = 0; i < pnv->num_chips; i++) {
2366         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
2367         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
2368         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2369         int count;
2370 
2371         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2372                                priority, logic_serv, match);
2373 
2374         if (count < 0) {
2375             return count;
2376         }
2377 
2378         total_count += count;
2379     }
2380 
2381     return total_count;
2382 }
2383 
2384 static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
2385                                 uint8_t nvt_blk, uint32_t nvt_idx,
2386                                 bool cam_ignore, uint8_t priority,
2387                                 uint32_t logic_serv,
2388                                 XiveTCTXMatch *match)
2389 {
2390     PnvMachineState *pnv = PNV_MACHINE(xfb);
2391     int total_count = 0;
2392     int i;
2393 
2394     for (i = 0; i < pnv->num_chips; i++) {
2395         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2396         XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
2397         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2398         int count;
2399 
2400         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2401                                priority, logic_serv, match);
2402 
2403         if (count < 0) {
2404             return count;
2405         }
2406 
2407         total_count += count;
2408     }
2409 
2410     return total_count;
2411 }
2412 
2413 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
2414 {
2415     MachineClass *mc = MACHINE_CLASS(oc);
2416     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
2417     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2418     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
2419 
2420     static GlobalProperty phb_compat[] = {
2421         { TYPE_PNV_PHB, "version", "3" },
2422         { TYPE_PNV_PHB_ROOT_PORT, "version", "3" },
2423     };
2424 
2425     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
2426     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
2427     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2428 
2429     xic->icp_get = pnv_icp_get;
2430     xic->ics_get = pnv_ics_get;
2431     xic->ics_resend = pnv_ics_resend;
2432 
2433     pmc->compat = compat;
2434     pmc->compat_size = sizeof(compat);
2435 
2436     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2437 }
2438 
2439 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
2440 {
2441     MachineClass *mc = MACHINE_CLASS(oc);
2442     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2443     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2444     static const char compat[] = "qemu,powernv9\0ibm,powernv";
2445 
2446     static GlobalProperty phb_compat[] = {
2447         { TYPE_PNV_PHB, "version", "4" },
2448         { TYPE_PNV_PHB_ROOT_PORT, "version", "4" },
2449     };
2450 
2451     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
2452     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
2453     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2454 
2455     xfc->match_nvt = pnv_match_nvt;
2456 
2457     pmc->compat = compat;
2458     pmc->compat_size = sizeof(compat);
2459     pmc->dt_power_mgt = pnv_dt_power_mgt;
2460 
2461     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2462 }
2463 
2464 static void pnv_machine_p10_common_class_init(ObjectClass *oc, void *data)
2465 {
2466     MachineClass *mc = MACHINE_CLASS(oc);
2467     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2468     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2469     static const char compat[] = "qemu,powernv10\0ibm,powernv";
2470 
2471     static GlobalProperty phb_compat[] = {
2472         { TYPE_PNV_PHB, "version", "5" },
2473         { TYPE_PNV_PHB_ROOT_PORT, "version", "5" },
2474     };
2475 
2476     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
2477     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2478 
2479     mc->alias = "powernv";
2480 
2481     pmc->compat = compat;
2482     pmc->compat_size = sizeof(compat);
2483     pmc->dt_power_mgt = pnv_dt_power_mgt;
2484 
2485     xfc->match_nvt = pnv10_xive_match_nvt;
2486 
2487     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2488 }
2489 
2490 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
2491 {
2492     MachineClass *mc = MACHINE_CLASS(oc);
2493 
2494     pnv_machine_p10_common_class_init(oc, data);
2495     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
2496 }
2497 
2498 static void pnv_machine_p10_rainier_class_init(ObjectClass *oc, void *data)
2499 {
2500     MachineClass *mc = MACHINE_CLASS(oc);
2501     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2502 
2503     pnv_machine_p10_common_class_init(oc, data);
2504     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10 Rainier";
2505     pmc->i2c_init = pnv_rainier_i2c_init;
2506 }
2507 
2508 static bool pnv_machine_get_hb(Object *obj, Error **errp)
2509 {
2510     PnvMachineState *pnv = PNV_MACHINE(obj);
2511 
2512     return !!pnv->fw_load_addr;
2513 }
2514 
2515 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
2516 {
2517     PnvMachineState *pnv = PNV_MACHINE(obj);
2518 
2519     if (value) {
2520         pnv->fw_load_addr = 0x8000000;
2521     }
2522 }
2523 
2524 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2525 {
2526     CPUPPCState *env = cpu_env(cs);
2527 
2528     cpu_synchronize_state(cs);
2529     ppc_cpu_do_system_reset(cs);
2530     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
2531         /*
2532          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
2533          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
2534          * (PPC_BIT(43)).
2535          */
2536         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
2537             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
2538             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
2539         }
2540     } else {
2541         /*
2542          * For non-powersave system resets, SRR1[42:45] are defined to be
2543          * implementation-dependent. The POWER9 User Manual specifies that
2544          * an external (SCOM driven, which may come from a BMC nmi command or
2545          * another CPU requesting a NMI IPI) system reset exception should be
2546          * 0b0010 (PPC_BIT(44)).
2547          */
2548         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2549     }
2550 }
2551 
2552 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2553 {
2554     CPUState *cs;
2555 
2556     CPU_FOREACH(cs) {
2557         async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2558     }
2559 }
2560 
2561 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2562 {
2563     MachineClass *mc = MACHINE_CLASS(oc);
2564     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2565     NMIClass *nc = NMI_CLASS(oc);
2566 
2567     mc->desc = "IBM PowerNV (Non-Virtualized)";
2568     mc->init = pnv_init;
2569     mc->reset = pnv_reset;
2570     mc->max_cpus = MAX_CPUS;
2571     /* Pnv provides a AHCI device for storage */
2572     mc->block_default_type = IF_IDE;
2573     mc->no_parallel = 1;
2574     mc->default_boot_order = NULL;
2575     /*
2576      * RAM defaults to less than 2048 for 32-bit hosts, and large
2577      * enough to fit the maximum initrd size at it's load address
2578      */
2579     mc->default_ram_size = 1 * GiB;
2580     mc->default_ram_id = "pnv.ram";
2581     ispc->print_info = pnv_pic_print_info;
2582     nc->nmi_monitor_handler = pnv_nmi;
2583 
2584     object_class_property_add_bool(oc, "hb-mode",
2585                                    pnv_machine_get_hb, pnv_machine_set_hb);
2586     object_class_property_set_description(oc, "hb-mode",
2587                               "Use a hostboot like boot loader");
2588 }
2589 
2590 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2591     {                                             \
2592         .name          = type,                    \
2593         .class_init    = class_initfn,            \
2594         .parent        = TYPE_PNV8_CHIP,          \
2595     }
2596 
2597 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2598     {                                             \
2599         .name          = type,                    \
2600         .class_init    = class_initfn,            \
2601         .parent        = TYPE_PNV9_CHIP,          \
2602     }
2603 
2604 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2605     {                                              \
2606         .name          = type,                     \
2607         .class_init    = class_initfn,             \
2608         .parent        = TYPE_PNV10_CHIP,          \
2609     }
2610 
2611 static const TypeInfo types[] = {
2612     {
2613         .name          = MACHINE_TYPE_NAME("powernv10-rainier"),
2614         .parent        = MACHINE_TYPE_NAME("powernv10"),
2615         .class_init    = pnv_machine_p10_rainier_class_init,
2616     },
2617     {
2618         .name          = MACHINE_TYPE_NAME("powernv10"),
2619         .parent        = TYPE_PNV_MACHINE,
2620         .class_init    = pnv_machine_power10_class_init,
2621         .interfaces = (InterfaceInfo[]) {
2622             { TYPE_XIVE_FABRIC },
2623             { },
2624         },
2625     },
2626     {
2627         .name          = MACHINE_TYPE_NAME("powernv9"),
2628         .parent        = TYPE_PNV_MACHINE,
2629         .class_init    = pnv_machine_power9_class_init,
2630         .interfaces = (InterfaceInfo[]) {
2631             { TYPE_XIVE_FABRIC },
2632             { },
2633         },
2634     },
2635     {
2636         .name          = MACHINE_TYPE_NAME("powernv8"),
2637         .parent        = TYPE_PNV_MACHINE,
2638         .class_init    = pnv_machine_power8_class_init,
2639         .interfaces = (InterfaceInfo[]) {
2640             { TYPE_XICS_FABRIC },
2641             { },
2642         },
2643     },
2644     {
2645         .name          = TYPE_PNV_MACHINE,
2646         .parent        = TYPE_MACHINE,
2647         .abstract       = true,
2648         .instance_size = sizeof(PnvMachineState),
2649         .class_init    = pnv_machine_class_init,
2650         .class_size    = sizeof(PnvMachineClass),
2651         .interfaces = (InterfaceInfo[]) {
2652             { TYPE_INTERRUPT_STATS_PROVIDER },
2653             { TYPE_NMI },
2654             { },
2655         },
2656     },
2657     {
2658         .name          = TYPE_PNV_CHIP,
2659         .parent        = TYPE_SYS_BUS_DEVICE,
2660         .class_init    = pnv_chip_class_init,
2661         .instance_size = sizeof(PnvChip),
2662         .class_size    = sizeof(PnvChipClass),
2663         .abstract      = true,
2664     },
2665 
2666     /*
2667      * P10 chip and variants
2668      */
2669     {
2670         .name          = TYPE_PNV10_CHIP,
2671         .parent        = TYPE_PNV_CHIP,
2672         .instance_init = pnv_chip_power10_instance_init,
2673         .instance_size = sizeof(Pnv10Chip),
2674     },
2675     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2676 
2677     /*
2678      * P9 chip and variants
2679      */
2680     {
2681         .name          = TYPE_PNV9_CHIP,
2682         .parent        = TYPE_PNV_CHIP,
2683         .instance_init = pnv_chip_power9_instance_init,
2684         .instance_size = sizeof(Pnv9Chip),
2685     },
2686     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2687 
2688     /*
2689      * P8 chip and variants
2690      */
2691     {
2692         .name          = TYPE_PNV8_CHIP,
2693         .parent        = TYPE_PNV_CHIP,
2694         .instance_init = pnv_chip_power8_instance_init,
2695         .instance_size = sizeof(Pnv8Chip),
2696     },
2697     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2698     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2699     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2700                           pnv_chip_power8nvl_class_init),
2701 };
2702 
2703 DEFINE_TYPES(types)
2704