xref: /openbmc/qemu/hw/ppc/pnv.c (revision 24bd283bccb334109f112839ab6867f0192045d6)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qemu/units.h"
23 #include "qemu/cutils.h"
24 #include "qapi/error.h"
25 #include "sysemu/qtest.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/numa.h"
28 #include "sysemu/reset.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/cpus.h"
31 #include "sysemu/device_tree.h"
32 #include "sysemu/hw_accel.h"
33 #include "target/ppc/cpu.h"
34 #include "hw/ppc/fdt.h"
35 #include "hw/ppc/ppc.h"
36 #include "hw/ppc/pnv.h"
37 #include "hw/ppc/pnv_core.h"
38 #include "hw/loader.h"
39 #include "hw/nmi.h"
40 #include "qapi/visitor.h"
41 #include "hw/intc/intc.h"
42 #include "hw/ipmi/ipmi.h"
43 #include "target/ppc/mmu-hash64.h"
44 #include "hw/pci/msi.h"
45 #include "hw/pci-host/pnv_phb.h"
46 #include "hw/pci-host/pnv_phb3.h"
47 #include "hw/pci-host/pnv_phb4.h"
48 
49 #include "hw/ppc/xics.h"
50 #include "hw/qdev-properties.h"
51 #include "hw/ppc/pnv_chip.h"
52 #include "hw/ppc/pnv_xscom.h"
53 #include "hw/ppc/pnv_pnor.h"
54 
55 #include "hw/isa/isa.h"
56 #include "hw/char/serial.h"
57 #include "hw/rtc/mc146818rtc.h"
58 
59 #include <libfdt.h>
60 
61 #define FDT_MAX_SIZE            (1 * MiB)
62 
63 #define FW_FILE_NAME            "skiboot.lid"
64 #define FW_LOAD_ADDR            0x0
65 #define FW_MAX_SIZE             (16 * MiB)
66 
67 #define KERNEL_LOAD_ADDR        0x20000000
68 #define KERNEL_MAX_SIZE         (128 * MiB)
69 #define INITRD_LOAD_ADDR        0x28000000
70 #define INITRD_MAX_SIZE         (128 * MiB)
71 
72 static const char *pnv_chip_core_typename(const PnvChip *o)
73 {
74     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
75     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
76     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
77     const char *core_type = object_class_get_name(object_class_by_name(s));
78     g_free(s);
79     return core_type;
80 }
81 
82 /*
83  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
84  *     4 * 4 sockets * 12 cores * 8 threads = 1536
85  * Let's make it 2^11
86  */
87 #define MAX_CPUS                2048
88 
89 /*
90  * Memory nodes are created by hostboot, one for each range of memory
91  * that has a different "affinity". In practice, it means one range
92  * per chip.
93  */
94 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
95 {
96     char *mem_name;
97     uint64_t mem_reg_property[2];
98     int off;
99 
100     mem_reg_property[0] = cpu_to_be64(start);
101     mem_reg_property[1] = cpu_to_be64(size);
102 
103     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
104     off = fdt_add_subnode(fdt, 0, mem_name);
105     g_free(mem_name);
106 
107     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
108     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
109                        sizeof(mem_reg_property))));
110     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
111 }
112 
113 static int get_cpus_node(void *fdt)
114 {
115     int cpus_offset = fdt_path_offset(fdt, "/cpus");
116 
117     if (cpus_offset < 0) {
118         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
119         if (cpus_offset) {
120             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
121             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
122         }
123     }
124     _FDT(cpus_offset);
125     return cpus_offset;
126 }
127 
128 /*
129  * The PowerNV cores (and threads) need to use real HW ids and not an
130  * incremental index like it has been done on other platforms. This HW
131  * id is stored in the CPU PIR, it is used to create cpu nodes in the
132  * device tree, used in XSCOM to address cores and in interrupt
133  * servers.
134  */
135 static int pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
136 {
137     PowerPCCPU *cpu = pc->threads[0];
138     CPUState *cs = CPU(cpu);
139     DeviceClass *dc = DEVICE_GET_CLASS(cs);
140     int smt_threads = CPU_CORE(pc)->nr_threads;
141     CPUPPCState *env = &cpu->env;
142     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
143     PnvChipClass *pnv_cc = PNV_CHIP_GET_CLASS(chip);
144     g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
145     int i;
146     uint32_t pir;
147     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
148                        0xffffffff, 0xffffffff};
149     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
150     uint32_t cpufreq = 1000000000;
151     uint32_t page_sizes_prop[64];
152     size_t page_sizes_prop_size;
153     int offset;
154     char *nodename;
155     int cpus_offset = get_cpus_node(fdt);
156 
157     pir = pnv_cc->chip_pir(chip, pc->hwid, 0);
158 
159     nodename = g_strdup_printf("%s@%x", dc->fw_name, pir);
160     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
161     _FDT(offset);
162     g_free(nodename);
163 
164     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
165 
166     _FDT((fdt_setprop_cell(fdt, offset, "reg", pir)));
167     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pir)));
168     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
169 
170     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
171     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
172                             env->dcache_line_size)));
173     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
174                             env->dcache_line_size)));
175     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
176                             env->icache_line_size)));
177     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
178                             env->icache_line_size)));
179 
180     if (pcc->l1_dcache_size) {
181         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
182                                pcc->l1_dcache_size)));
183     } else {
184         warn_report("Unknown L1 dcache size for cpu");
185     }
186     if (pcc->l1_icache_size) {
187         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
188                                pcc->l1_icache_size)));
189     } else {
190         warn_report("Unknown L1 icache size for cpu");
191     }
192 
193     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
194     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
195     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
196                            cpu->hash64_opts->slb_size)));
197     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
198     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
199 
200     if (ppc_has_spr(cpu, SPR_PURR)) {
201         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
202     }
203 
204     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
205         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
206                            segs, sizeof(segs))));
207     }
208 
209     /*
210      * Advertise VMX/VSX (vector extensions) if available
211      *   0 / no property == no vector extensions
212      *   1               == VMX / Altivec available
213      *   2               == VSX available
214      */
215     if (env->insns_flags & PPC_ALTIVEC) {
216         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
217 
218         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
219     }
220 
221     /*
222      * Advertise DFP (Decimal Floating Point) if available
223      *   0 / no property == no DFP
224      *   1               == DFP available
225      */
226     if (env->insns_flags2 & PPC2_DFP) {
227         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
228     }
229 
230     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
231                                                       sizeof(page_sizes_prop));
232     if (page_sizes_prop_size) {
233         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
234                            page_sizes_prop, page_sizes_prop_size)));
235     }
236 
237     /* Build interrupt servers properties */
238     for (i = 0; i < smt_threads; i++) {
239         servers_prop[i] = cpu_to_be32(pnv_cc->chip_pir(chip, pc->hwid, i));
240     }
241     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
242                        servers_prop, sizeof(*servers_prop) * smt_threads)));
243 
244     return offset;
245 }
246 
247 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t hwid,
248                        uint32_t nr_threads)
249 {
250     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
251     uint32_t pir = pcc->chip_pir(chip, hwid, 0);
252     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
253     char *name;
254     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
255     uint32_t irange[2], i, rsize;
256     uint64_t *reg;
257     int offset;
258 
259     irange[0] = cpu_to_be32(pir);
260     irange[1] = cpu_to_be32(nr_threads);
261 
262     rsize = sizeof(uint64_t) * 2 * nr_threads;
263     reg = g_malloc(rsize);
264     for (i = 0; i < nr_threads; i++) {
265         /* We know P8 PIR is linear with thread id */
266         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
267         reg[i * 2 + 1] = cpu_to_be64(0x1000);
268     }
269 
270     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
271     offset = fdt_add_subnode(fdt, 0, name);
272     _FDT(offset);
273     g_free(name);
274 
275     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
276     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
277     _FDT((fdt_setprop_string(fdt, offset, "device_type",
278                               "PowerPC-External-Interrupt-Presentation")));
279     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
280     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
281                        irange, sizeof(irange))));
282     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
283     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
284     g_free(reg);
285 }
286 
287 /*
288  * Adds a PnvPHB to the chip on P8.
289  * Implemented here, like for defaults PHBs
290  */
291 PnvChip *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb)
292 {
293     Pnv8Chip *chip8 = PNV8_CHIP(chip);
294 
295     phb->chip = chip;
296 
297     chip8->phbs[chip8->num_phbs] = phb;
298     chip8->num_phbs++;
299     return chip;
300 }
301 
302 /*
303  * Same as spapr pa_features_207 except pnv always enables CI largepages bit.
304  * HTM is always enabled because TCG does implement HTM, it's just a
305  * degenerate implementation.
306  */
307 static const uint8_t pa_features_207[] = { 24, 0,
308                  0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0,
309                  0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
310                  0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
311                  0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
312 
313 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
314 {
315     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
316     int i;
317 
318     pnv_dt_xscom(chip, fdt, 0,
319                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
320                  cpu_to_be64(PNV_XSCOM_SIZE),
321                  compat, sizeof(compat));
322 
323     for (i = 0; i < chip->nr_cores; i++) {
324         PnvCore *pnv_core = chip->cores[i];
325         int offset;
326 
327         offset = pnv_dt_core(chip, pnv_core, fdt);
328 
329         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
330                            pa_features_207, sizeof(pa_features_207))));
331 
332         /* Interrupt Control Presenters (ICP). One per core. */
333         pnv_dt_icp(chip, fdt, pnv_core->hwid, CPU_CORE(pnv_core)->nr_threads);
334     }
335 
336     if (chip->ram_size) {
337         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
338     }
339 }
340 
341 /*
342  * Same as spapr pa_features_300 except pnv always enables CI largepages bit.
343  */
344 static const uint8_t pa_features_300[] = { 66, 0,
345     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
346     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
347     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
348     /* 6: DS207 */
349     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
350     /* 16: Vector */
351     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
352     /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
353     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 18 - 23 */
354     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
355     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
356     /* 32: LE atomic, 34: EBB + ext EBB */
357     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
358     /* 40: Radix MMU */
359     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
360     /* 42: PM, 44: PC RA, 46: SC vec'd */
361     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
362     /* 48: SIMD, 50: QP BFP, 52: String */
363     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
364     /* 54: DecFP, 56: DecI, 58: SHA */
365     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
366     /* 60: NM atomic, 62: RNG */
367     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
368 };
369 
370 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
371 {
372     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
373     int i;
374 
375     pnv_dt_xscom(chip, fdt, 0,
376                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
377                  cpu_to_be64(PNV9_XSCOM_SIZE),
378                  compat, sizeof(compat));
379 
380     for (i = 0; i < chip->nr_cores; i++) {
381         PnvCore *pnv_core = chip->cores[i];
382         int offset;
383 
384         offset = pnv_dt_core(chip, pnv_core, fdt);
385 
386         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
387                            pa_features_300, sizeof(pa_features_300))));
388     }
389 
390     if (chip->ram_size) {
391         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
392     }
393 
394     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
395 }
396 
397 /*
398  * Same as spapr pa_features_31 except pnv always enables CI largepages bit,
399  * always disables copy/paste.
400  */
401 static const uint8_t pa_features_31[] = { 74, 0,
402     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
403     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
404     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
405     /* 6: DS207 */
406     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
407     /* 16: Vector */
408     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
409     /* 18: Vec. Scalar, 20: Vec. XOR */
410     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
411     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
412     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
413     /* 32: LE atomic, 34: EBB + ext EBB */
414     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
415     /* 40: Radix MMU */
416     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
417     /* 42: PM, 44: PC RA, 46: SC vec'd */
418     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
419     /* 48: SIMD, 50: QP BFP, 52: String */
420     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
421     /* 54: DecFP, 56: DecI, 58: SHA */
422     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
423     /* 60: NM atomic, 62: RNG */
424     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
425     /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */
426     0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */
427     /* 72: [P]HASHST/[P]HASHCHK */
428     0x80, 0x00,                         /* 72 - 73 */
429 };
430 
431 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
432 {
433     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
434     int i;
435 
436     pnv_dt_xscom(chip, fdt, 0,
437                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
438                  cpu_to_be64(PNV10_XSCOM_SIZE),
439                  compat, sizeof(compat));
440 
441     for (i = 0; i < chip->nr_cores; i++) {
442         PnvCore *pnv_core = chip->cores[i];
443         int offset;
444 
445         offset = pnv_dt_core(chip, pnv_core, fdt);
446 
447         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
448                            pa_features_31, sizeof(pa_features_31))));
449     }
450 
451     if (chip->ram_size) {
452         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
453     }
454 
455     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
456 }
457 
458 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
459 {
460     uint32_t io_base = d->ioport_id;
461     uint32_t io_regs[] = {
462         cpu_to_be32(1),
463         cpu_to_be32(io_base),
464         cpu_to_be32(2)
465     };
466     char *name;
467     int node;
468 
469     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
470     node = fdt_add_subnode(fdt, lpc_off, name);
471     _FDT(node);
472     g_free(name);
473 
474     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
475     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
476 }
477 
478 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
479 {
480     const char compatible[] = "ns16550\0pnpPNP,501";
481     uint32_t io_base = d->ioport_id;
482     uint32_t io_regs[] = {
483         cpu_to_be32(1),
484         cpu_to_be32(io_base),
485         cpu_to_be32(8)
486     };
487     uint32_t irq;
488     char *name;
489     int node;
490 
491     irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
492 
493     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
494     node = fdt_add_subnode(fdt, lpc_off, name);
495     _FDT(node);
496     g_free(name);
497 
498     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
499     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
500                       sizeof(compatible))));
501 
502     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
503     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
504     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
505     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
506                            fdt_get_phandle(fdt, lpc_off))));
507 
508     /* This is needed by Linux */
509     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
510 }
511 
512 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
513 {
514     const char compatible[] = "bt\0ipmi-bt";
515     uint32_t io_base;
516     uint32_t io_regs[] = {
517         cpu_to_be32(1),
518         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
519         cpu_to_be32(3)
520     };
521     uint32_t irq;
522     char *name;
523     int node;
524 
525     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
526     io_regs[1] = cpu_to_be32(io_base);
527 
528     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
529 
530     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
531     node = fdt_add_subnode(fdt, lpc_off, name);
532     _FDT(node);
533     g_free(name);
534 
535     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
536     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
537                       sizeof(compatible))));
538 
539     /* Mark it as reserved to avoid Linux trying to claim it */
540     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
541     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
542     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
543                            fdt_get_phandle(fdt, lpc_off))));
544 }
545 
546 typedef struct ForeachPopulateArgs {
547     void *fdt;
548     int offset;
549 } ForeachPopulateArgs;
550 
551 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
552 {
553     ForeachPopulateArgs *args = opaque;
554     ISADevice *d = ISA_DEVICE(dev);
555 
556     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
557         pnv_dt_rtc(d, args->fdt, args->offset);
558     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
559         pnv_dt_serial(d, args->fdt, args->offset);
560     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
561         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
562     } else {
563         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
564                      d->ioport_id);
565     }
566 
567     return 0;
568 }
569 
570 /*
571  * The default LPC bus of a multichip system is on chip 0. It's
572  * recognized by the firmware (skiboot) using a "primary" property.
573  */
574 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
575 {
576     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
577     ForeachPopulateArgs args = {
578         .fdt = fdt,
579         .offset = isa_offset,
580     };
581     uint32_t phandle;
582 
583     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
584 
585     phandle = qemu_fdt_alloc_phandle(fdt);
586     assert(phandle > 0);
587     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
588 
589     /*
590      * ISA devices are not necessarily parented to the ISA bus so we
591      * can not use object_child_foreach()
592      */
593     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
594                        &args);
595 }
596 
597 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
598 {
599     int off;
600 
601     off = fdt_add_subnode(fdt, 0, "ibm,opal");
602     off = fdt_add_subnode(fdt, off, "power-mgt");
603 
604     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
605 }
606 
607 static void *pnv_dt_create(MachineState *machine)
608 {
609     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
610     PnvMachineState *pnv = PNV_MACHINE(machine);
611     void *fdt;
612     char *buf;
613     int off;
614     int i;
615 
616     fdt = g_malloc0(FDT_MAX_SIZE);
617     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
618 
619     /* /qemu node */
620     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
621 
622     /* Root node */
623     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
624     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
625     _FDT((fdt_setprop_string(fdt, 0, "model",
626                              "IBM PowerNV (emulated by qemu)")));
627     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
628 
629     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
630     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
631     if (qemu_uuid_set) {
632         _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
633     }
634     g_free(buf);
635 
636     off = fdt_add_subnode(fdt, 0, "chosen");
637     if (machine->kernel_cmdline) {
638         _FDT((fdt_setprop_string(fdt, off, "bootargs",
639                                  machine->kernel_cmdline)));
640     }
641 
642     if (pnv->initrd_size) {
643         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
644         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
645 
646         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
647                                &start_prop, sizeof(start_prop))));
648         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
649                                &end_prop, sizeof(end_prop))));
650     }
651 
652     /* Populate device tree for each chip */
653     for (i = 0; i < pnv->num_chips; i++) {
654         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
655     }
656 
657     /* Populate ISA devices on chip 0 */
658     pnv_dt_isa(pnv, fdt);
659 
660     if (pnv->bmc) {
661         pnv_dt_bmc_sensors(pnv->bmc, fdt);
662     }
663 
664     /* Create an extra node for power management on machines that support it */
665     if (pmc->dt_power_mgt) {
666         pmc->dt_power_mgt(pnv, fdt);
667     }
668 
669     return fdt;
670 }
671 
672 static void pnv_powerdown_notify(Notifier *n, void *opaque)
673 {
674     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
675 
676     if (pnv->bmc) {
677         pnv_bmc_powerdown(pnv->bmc);
678     }
679 }
680 
681 static void pnv_reset(MachineState *machine, ShutdownCause reason)
682 {
683     PnvMachineState *pnv = PNV_MACHINE(machine);
684     IPMIBmc *bmc;
685     void *fdt;
686 
687     qemu_devices_reset(reason);
688 
689     /*
690      * The machine should provide by default an internal BMC simulator.
691      * If not, try to use the BMC device that was provided on the command
692      * line.
693      */
694     bmc = pnv_bmc_find(&error_fatal);
695     if (!pnv->bmc) {
696         if (!bmc) {
697             if (!qtest_enabled()) {
698                 warn_report("machine has no BMC device. Use '-device "
699                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
700                             "to define one");
701             }
702         } else {
703             pnv_bmc_set_pnor(bmc, pnv->pnor);
704             pnv->bmc = bmc;
705         }
706     }
707 
708     fdt = pnv_dt_create(machine);
709 
710     /* Pack resulting tree */
711     _FDT((fdt_pack(fdt)));
712 
713     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
714     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
715 
716     /*
717      * Set machine->fdt for 'dumpdtb' QMP/HMP command. Free
718      * the existing machine->fdt to avoid leaking it during
719      * a reset.
720      */
721     g_free(machine->fdt);
722     machine->fdt = fdt;
723 }
724 
725 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
726 {
727     Pnv8Chip *chip8 = PNV8_CHIP(chip);
728     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL);
729 
730     qdev_connect_gpio_out_named(DEVICE(&chip8->lpc), "LPCHC", 0, irq);
731 
732     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
733 }
734 
735 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
736 {
737     Pnv8Chip *chip8 = PNV8_CHIP(chip);
738     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C);
739 
740     qdev_connect_gpio_out_named(DEVICE(&chip8->lpc), "LPCHC", 0, irq);
741 
742     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
743 }
744 
745 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
746 {
747     Pnv9Chip *chip9 = PNV9_CHIP(chip);
748     qemu_irq irq;
749 
750     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC);
751     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "LPCHC", 0, irq);
752 
753     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ0);
754     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 0, irq);
755     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ1);
756     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 1, irq);
757     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ2);
758     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 2, irq);
759     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ3);
760     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 3, irq);
761 
762     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
763 }
764 
765 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
766 {
767     Pnv10Chip *chip10 = PNV10_CHIP(chip);
768     qemu_irq irq;
769 
770     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC);
771     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "LPCHC", 0, irq);
772 
773     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ0);
774     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 0, irq);
775     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ1);
776     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 1, irq);
777     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ2);
778     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 2, irq);
779     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ3);
780     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 3, irq);
781 
782     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
783 }
784 
785 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
786 {
787     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
788 }
789 
790 static void pnv_chip_power8_pic_print_info(PnvChip *chip, GString *buf)
791 {
792     Pnv8Chip *chip8 = PNV8_CHIP(chip);
793     int i;
794 
795     ics_pic_print_info(&chip8->psi.ics, buf);
796 
797     for (i = 0; i < chip8->num_phbs; i++) {
798         PnvPHB *phb = chip8->phbs[i];
799         PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
800 
801         pnv_phb3_msi_pic_print_info(&phb3->msis, buf);
802         ics_pic_print_info(&phb3->lsis, buf);
803     }
804 }
805 
806 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
807 {
808     GString *buf = opaque;
809     PnvPHB *phb =  (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB);
810 
811     if (!phb) {
812         return 0;
813     }
814 
815     pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), buf);
816 
817     return 0;
818 }
819 
820 static void pnv_chip_power9_pic_print_info(PnvChip *chip, GString *buf)
821 {
822     Pnv9Chip *chip9 = PNV9_CHIP(chip);
823 
824     pnv_xive_pic_print_info(&chip9->xive, buf);
825     pnv_psi_pic_print_info(&chip9->psi, buf);
826     object_child_foreach_recursive(OBJECT(chip),
827                          pnv_chip_power9_pic_print_info_child, buf);
828 }
829 
830 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
831                                                 uint32_t core_id)
832 {
833     return PNV_XSCOM_EX_BASE(core_id);
834 }
835 
836 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
837                                                 uint32_t core_id)
838 {
839     return PNV9_XSCOM_EC_BASE(core_id);
840 }
841 
842 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
843                                                  uint32_t core_id)
844 {
845     return PNV10_XSCOM_EC_BASE(core_id);
846 }
847 
848 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
849 {
850     PowerPCCPUClass *ppc_default =
851         POWERPC_CPU_CLASS(object_class_by_name(default_type));
852     PowerPCCPUClass *ppc =
853         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
854 
855     return ppc_default->pvr_match(ppc_default, ppc->pvr, false);
856 }
857 
858 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
859 {
860     ISADevice *dev = isa_new("isa-ipmi-bt");
861 
862     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
863     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
864     isa_realize_and_unref(dev, bus, &error_fatal);
865 }
866 
867 static void pnv_chip_power10_pic_print_info(PnvChip *chip, GString *buf)
868 {
869     Pnv10Chip *chip10 = PNV10_CHIP(chip);
870 
871     pnv_xive2_pic_print_info(&chip10->xive, buf);
872     pnv_psi_pic_print_info(&chip10->psi, buf);
873     object_child_foreach_recursive(OBJECT(chip),
874                          pnv_chip_power9_pic_print_info_child, buf);
875 }
876 
877 /* Always give the first 1GB to chip 0 else we won't boot */
878 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
879 {
880     MachineState *machine = MACHINE(pnv);
881     uint64_t ram_per_chip;
882 
883     assert(machine->ram_size >= 1 * GiB);
884 
885     ram_per_chip = machine->ram_size / pnv->num_chips;
886     if (ram_per_chip >= 1 * GiB) {
887         return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
888     }
889 
890     assert(pnv->num_chips > 1);
891 
892     ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
893     return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
894 }
895 
896 static void pnv_init(MachineState *machine)
897 {
898     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
899     PnvMachineState *pnv = PNV_MACHINE(machine);
900     MachineClass *mc = MACHINE_GET_CLASS(machine);
901     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
902     char *fw_filename;
903     long fw_size;
904     uint64_t chip_ram_start = 0;
905     int i;
906     char *chip_typename;
907     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
908     DeviceState *dev;
909 
910     if (kvm_enabled()) {
911         error_report("machine %s does not support the KVM accelerator",
912                      mc->name);
913         exit(EXIT_FAILURE);
914     }
915 
916     /* allocate RAM */
917     if (machine->ram_size < mc->default_ram_size) {
918         char *sz = size_to_str(mc->default_ram_size);
919         error_report("Invalid RAM size, should be bigger than %s", sz);
920         g_free(sz);
921         exit(EXIT_FAILURE);
922     }
923     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
924 
925     /*
926      * Create our simple PNOR device
927      */
928     dev = qdev_new(TYPE_PNV_PNOR);
929     if (pnor) {
930         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
931     }
932     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
933     pnv->pnor = PNV_PNOR(dev);
934 
935     /* load skiboot firmware  */
936     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
937     if (!fw_filename) {
938         error_report("Could not find OPAL firmware '%s'", bios_name);
939         exit(1);
940     }
941 
942     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
943     if (fw_size < 0) {
944         error_report("Could not load OPAL firmware '%s'", fw_filename);
945         exit(1);
946     }
947     g_free(fw_filename);
948 
949     /* load kernel */
950     if (machine->kernel_filename) {
951         long kernel_size;
952 
953         kernel_size = load_image_targphys(machine->kernel_filename,
954                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
955         if (kernel_size < 0) {
956             error_report("Could not load kernel '%s'",
957                          machine->kernel_filename);
958             exit(1);
959         }
960     }
961 
962     /* load initrd */
963     if (machine->initrd_filename) {
964         pnv->initrd_base = INITRD_LOAD_ADDR;
965         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
966                                   pnv->initrd_base, INITRD_MAX_SIZE);
967         if (pnv->initrd_size < 0) {
968             error_report("Could not load initial ram disk '%s'",
969                          machine->initrd_filename);
970             exit(1);
971         }
972     }
973 
974     /* MSIs are supported on this platform */
975     msi_nonbroken = true;
976 
977     /*
978      * Check compatibility of the specified CPU with the machine
979      * default.
980      */
981     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
982         error_report("invalid CPU model '%s' for %s machine",
983                      machine->cpu_type, mc->name);
984         exit(1);
985     }
986 
987     /* Create the processor chips */
988     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
989     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
990                                     i, machine->cpu_type);
991     if (!object_class_by_name(chip_typename)) {
992         error_report("invalid chip model '%.*s' for %s machine",
993                      i, machine->cpu_type, mc->name);
994         exit(1);
995     }
996 
997     pnv->num_chips =
998         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
999 
1000     if (machine->smp.threads > 8) {
1001         error_report("Cannot support more than 8 threads/core "
1002                      "on a powernv machine");
1003         exit(1);
1004     }
1005     if (!is_power_of_2(machine->smp.threads)) {
1006         error_report("Cannot support %d threads/core on a powernv"
1007                      "machine because it must be a power of 2",
1008                      machine->smp.threads);
1009         exit(1);
1010     }
1011     /*
1012      * TODO: should we decide on how many chips we can create based
1013      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1014      */
1015     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
1016         error_report("invalid number of chips: '%d'", pnv->num_chips);
1017         error_printf(
1018             "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
1019         exit(1);
1020     }
1021 
1022     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
1023     for (i = 0; i < pnv->num_chips; i++) {
1024         char chip_name[32];
1025         Object *chip = OBJECT(qdev_new(chip_typename));
1026         uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
1027 
1028         pnv->chips[i] = PNV_CHIP(chip);
1029 
1030         /* Distribute RAM among the chips  */
1031         object_property_set_int(chip, "ram-start", chip_ram_start,
1032                                 &error_fatal);
1033         object_property_set_int(chip, "ram-size", chip_ram_size,
1034                                 &error_fatal);
1035         chip_ram_start += chip_ram_size;
1036 
1037         snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
1038         object_property_add_child(OBJECT(pnv), chip_name, chip);
1039         object_property_set_int(chip, "chip-id", i, &error_fatal);
1040         object_property_set_int(chip, "nr-cores", machine->smp.cores,
1041                                 &error_fatal);
1042         object_property_set_int(chip, "nr-threads", machine->smp.threads,
1043                                 &error_fatal);
1044         /*
1045          * The POWER8 machine use the XICS interrupt interface.
1046          * Propagate the XICS fabric to the chip and its controllers.
1047          */
1048         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
1049             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
1050         }
1051         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
1052             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
1053                                      &error_abort);
1054         }
1055         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
1056     }
1057     g_free(chip_typename);
1058 
1059     /* Instantiate ISA bus on chip 0 */
1060     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
1061 
1062     /* Create serial port */
1063     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1064 
1065     /* Create an RTC ISA device too */
1066     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
1067 
1068     /*
1069      * Create the machine BMC simulator and the IPMI BT device for
1070      * communication with the BMC
1071      */
1072     if (defaults_enabled()) {
1073         pnv->bmc = pnv_bmc_create(pnv->pnor);
1074         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
1075     }
1076 
1077     /*
1078      * The PNOR is mapped on the LPC FW address space by the BMC.
1079      * Since we can not reach the remote BMC machine with LPC memops,
1080      * map it always for now.
1081      */
1082     memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
1083                                 &pnv->pnor->mmio);
1084 
1085     /*
1086      * OpenPOWER systems use a IPMI SEL Event message to notify the
1087      * host to powerdown
1088      */
1089     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
1090     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
1091 
1092     /*
1093      * Create/Connect any machine-specific I2C devices
1094      */
1095     if (pmc->i2c_init) {
1096         pmc->i2c_init(pnv);
1097     }
1098 }
1099 
1100 /*
1101  *    0:21  Reserved - Read as zeros
1102  *   22:24  Chip ID
1103  *   25:28  Core number
1104  *   29:31  Thread ID
1105  */
1106 static uint32_t pnv_chip_pir_p8(PnvChip *chip, uint32_t core_id,
1107                                 uint32_t thread_id)
1108 {
1109     return (chip->chip_id << 7) | (core_id << 3) | thread_id;
1110 }
1111 
1112 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1113                                         Error **errp)
1114 {
1115     Pnv8Chip *chip8 = PNV8_CHIP(chip);
1116     Error *local_err = NULL;
1117     Object *obj;
1118     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1119 
1120     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
1121     if (local_err) {
1122         error_propagate(errp, local_err);
1123         return;
1124     }
1125 
1126     pnv_cpu->intc = obj;
1127 }
1128 
1129 
1130 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1131 {
1132     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1133 
1134     icp_reset(ICP(pnv_cpu->intc));
1135 }
1136 
1137 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1138 {
1139     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1140 
1141     icp_destroy(ICP(pnv_cpu->intc));
1142     pnv_cpu->intc = NULL;
1143 }
1144 
1145 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1146                                             GString *buf)
1147 {
1148     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), buf);
1149 }
1150 
1151 /*
1152  *    0:48  Reserved - Read as zeroes
1153  *   49:52  Node ID
1154  *   53:55  Chip ID
1155  *   56     Reserved - Read as zero
1156  *   57:61  Core number
1157  *   62:63  Thread ID
1158  *
1159  * We only care about the lower bits. uint32_t is fine for the moment.
1160  */
1161 static uint32_t pnv_chip_pir_p9(PnvChip *chip, uint32_t core_id,
1162                                 uint32_t thread_id)
1163 {
1164     if (chip->nr_threads == 8) {
1165         return (chip->chip_id << 8) | ((thread_id & 1) << 2) | (core_id << 3) |
1166                (thread_id >> 1);
1167     } else {
1168         return (chip->chip_id << 8) | (core_id << 2) | thread_id;
1169     }
1170 }
1171 
1172 /*
1173  *    0:48  Reserved - Read as zeroes
1174  *   49:52  Node ID
1175  *   53:55  Chip ID
1176  *   56     Reserved - Read as zero
1177  *   57:59  Quad ID
1178  *   60     Core Chiplet Pair ID
1179  *   61:63  Thread/Core Chiplet ID t0-t2
1180  *
1181  * We only care about the lower bits. uint32_t is fine for the moment.
1182  */
1183 static uint32_t pnv_chip_pir_p10(PnvChip *chip, uint32_t core_id,
1184                                  uint32_t thread_id)
1185 {
1186     if (chip->nr_threads == 8) {
1187         return (chip->chip_id << 8) | ((core_id / 4) << 4) |
1188                ((core_id % 2) << 3) | thread_id;
1189     } else {
1190         return (chip->chip_id << 8) | (core_id << 2) | thread_id;
1191     }
1192 }
1193 
1194 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1195                                         Error **errp)
1196 {
1197     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1198     Error *local_err = NULL;
1199     Object *obj;
1200     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1201 
1202     /*
1203      * The core creates its interrupt presenter but the XIVE interrupt
1204      * controller object is initialized afterwards. Hopefully, it's
1205      * only used at runtime.
1206      */
1207     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1208                            &local_err);
1209     if (local_err) {
1210         error_propagate(errp, local_err);
1211         return;
1212     }
1213 
1214     pnv_cpu->intc = obj;
1215 }
1216 
1217 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1218 {
1219     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1220 
1221     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1222 }
1223 
1224 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1225 {
1226     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1227 
1228     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1229     pnv_cpu->intc = NULL;
1230 }
1231 
1232 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1233                                             GString *buf)
1234 {
1235     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
1236 }
1237 
1238 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1239                                         Error **errp)
1240 {
1241     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1242     Error *local_err = NULL;
1243     Object *obj;
1244     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1245 
1246     /*
1247      * The core creates its interrupt presenter but the XIVE2 interrupt
1248      * controller object is initialized afterwards. Hopefully, it's
1249      * only used at runtime.
1250      */
1251     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
1252                            &local_err);
1253     if (local_err) {
1254         error_propagate(errp, local_err);
1255         return;
1256     }
1257 
1258     pnv_cpu->intc = obj;
1259 }
1260 
1261 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1262 {
1263     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1264 
1265     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1266 }
1267 
1268 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1269 {
1270     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1271 
1272     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1273     pnv_cpu->intc = NULL;
1274 }
1275 
1276 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1277                                              GString *buf)
1278 {
1279     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
1280 }
1281 
1282 /*
1283  * Allowed core identifiers on a POWER8 Processor Chip :
1284  *
1285  * <EX0 reserved>
1286  *  EX1  - Venice only
1287  *  EX2  - Venice only
1288  *  EX3  - Venice only
1289  *  EX4
1290  *  EX5
1291  *  EX6
1292  * <EX7,8 reserved> <reserved>
1293  *  EX9  - Venice only
1294  *  EX10 - Venice only
1295  *  EX11 - Venice only
1296  *  EX12
1297  *  EX13
1298  *  EX14
1299  * <EX15 reserved>
1300  */
1301 #define POWER8E_CORE_MASK  (0x7070ull)
1302 #define POWER8_CORE_MASK   (0x7e7eull)
1303 
1304 /*
1305  * POWER9 has 24 cores, ids starting at 0x0
1306  */
1307 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1308 
1309 
1310 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1311 
1312 static void pnv_chip_power8_instance_init(Object *obj)
1313 {
1314     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1315     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1316     int i;
1317 
1318     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1319                              (Object **)&chip8->xics,
1320                              object_property_allow_set_link,
1321                              OBJ_PROP_LINK_STRONG);
1322 
1323     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1324 
1325     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1326 
1327     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1328 
1329     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1330 
1331     if (defaults_enabled()) {
1332         chip8->num_phbs = pcc->num_phbs;
1333 
1334         for (i = 0; i < chip8->num_phbs; i++) {
1335             Object *phb = object_new(TYPE_PNV_PHB);
1336 
1337             /*
1338              * We need the chip to parent the PHB to allow the DT
1339              * to build correctly (via pnv_xscom_dt()).
1340              *
1341              * TODO: the PHB should be parented by a PEC device that, at
1342              * this moment, is not modelled powernv8/phb3.
1343              */
1344             object_property_add_child(obj, "phb[*]", phb);
1345             chip8->phbs[i] = PNV_PHB(phb);
1346         }
1347     }
1348 
1349 }
1350 
1351 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1352  {
1353     PnvChip *chip = PNV_CHIP(chip8);
1354     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1355     int i, j;
1356     char *name;
1357 
1358     name = g_strdup_printf("icp-%x", chip->chip_id);
1359     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1360     g_free(name);
1361     memory_region_add_subregion(get_system_memory(), PNV_ICP_BASE(chip),
1362                                 &chip8->icp_mmio);
1363 
1364     /* Map the ICP registers for each thread */
1365     for (i = 0; i < chip->nr_cores; i++) {
1366         PnvCore *pnv_core = chip->cores[i];
1367         int core_hwid = CPU_CORE(pnv_core)->core_id;
1368 
1369         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1370             uint32_t pir = pcc->chip_pir(chip, core_hwid, j);
1371             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1372 
1373             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1374                                         &icp->mmio);
1375         }
1376     }
1377 }
1378 
1379 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1380 {
1381     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1382     PnvChip *chip = PNV_CHIP(dev);
1383     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1384     Pnv8Psi *psi8 = &chip8->psi;
1385     Error *local_err = NULL;
1386     int i;
1387 
1388     assert(chip8->xics);
1389 
1390     /* XSCOM bridge is first */
1391     pnv_xscom_init(chip, PNV_XSCOM_SIZE, PNV_XSCOM_BASE(chip));
1392 
1393     pcc->parent_realize(dev, &local_err);
1394     if (local_err) {
1395         error_propagate(errp, local_err);
1396         return;
1397     }
1398 
1399     /* Processor Service Interface (PSI) Host Bridge */
1400     object_property_set_int(OBJECT(psi8), "bar", PNV_PSIHB_BASE(chip),
1401                             &error_fatal);
1402     object_property_set_link(OBJECT(psi8), ICS_PROP_XICS,
1403                              OBJECT(chip8->xics), &error_abort);
1404     if (!qdev_realize(DEVICE(psi8), NULL, errp)) {
1405         return;
1406     }
1407     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1408                             &PNV_PSI(psi8)->xscom_regs);
1409 
1410     /* Create LPC controller */
1411     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1412     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1413 
1414     chip->fw_mr = &chip8->lpc.isa_fw;
1415     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1416                                             (uint64_t) PNV_XSCOM_BASE(chip),
1417                                             PNV_XSCOM_LPC_BASE);
1418 
1419     /*
1420      * Interrupt Management Area. This is the memory region holding
1421      * all the Interrupt Control Presenter (ICP) registers
1422      */
1423     pnv_chip_icp_realize(chip8, &local_err);
1424     if (local_err) {
1425         error_propagate(errp, local_err);
1426         return;
1427     }
1428 
1429     /* Create the simplified OCC model */
1430     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1431         return;
1432     }
1433     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1434     qdev_connect_gpio_out(DEVICE(&chip8->occ), 0,
1435                           qdev_get_gpio_in(DEVICE(psi8), PSIHB_IRQ_OCC));
1436 
1437     /* OCC SRAM model */
1438     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1439                                 &chip8->occ.sram_regs);
1440 
1441     /* HOMER */
1442     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1443                              &error_abort);
1444     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1445         return;
1446     }
1447     /* Homer Xscom region */
1448     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1449 
1450     /* Homer mmio region */
1451     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1452                                 &chip8->homer.regs);
1453 
1454     /* PHB controllers */
1455     for (i = 0; i < chip8->num_phbs; i++) {
1456         PnvPHB *phb = chip8->phbs[i];
1457 
1458         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1459         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1460                                 &error_fatal);
1461         object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1462                                  &error_fatal);
1463         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1464             return;
1465         }
1466     }
1467 }
1468 
1469 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1470 {
1471     addr &= (PNV_XSCOM_SIZE - 1);
1472     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1473 }
1474 
1475 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1476 {
1477     DeviceClass *dc = DEVICE_CLASS(klass);
1478     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1479 
1480     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1481     k->cores_mask = POWER8E_CORE_MASK;
1482     k->num_phbs = 3;
1483     k->chip_pir = pnv_chip_pir_p8;
1484     k->intc_create = pnv_chip_power8_intc_create;
1485     k->intc_reset = pnv_chip_power8_intc_reset;
1486     k->intc_destroy = pnv_chip_power8_intc_destroy;
1487     k->intc_print_info = pnv_chip_power8_intc_print_info;
1488     k->isa_create = pnv_chip_power8_isa_create;
1489     k->dt_populate = pnv_chip_power8_dt_populate;
1490     k->pic_print_info = pnv_chip_power8_pic_print_info;
1491     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1492     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1493     dc->desc = "PowerNV Chip POWER8E";
1494 
1495     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1496                                     &k->parent_realize);
1497 }
1498 
1499 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1500 {
1501     DeviceClass *dc = DEVICE_CLASS(klass);
1502     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1503 
1504     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1505     k->cores_mask = POWER8_CORE_MASK;
1506     k->num_phbs = 3;
1507     k->chip_pir = pnv_chip_pir_p8;
1508     k->intc_create = pnv_chip_power8_intc_create;
1509     k->intc_reset = pnv_chip_power8_intc_reset;
1510     k->intc_destroy = pnv_chip_power8_intc_destroy;
1511     k->intc_print_info = pnv_chip_power8_intc_print_info;
1512     k->isa_create = pnv_chip_power8_isa_create;
1513     k->dt_populate = pnv_chip_power8_dt_populate;
1514     k->pic_print_info = pnv_chip_power8_pic_print_info;
1515     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1516     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1517     dc->desc = "PowerNV Chip POWER8";
1518 
1519     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1520                                     &k->parent_realize);
1521 }
1522 
1523 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1524 {
1525     DeviceClass *dc = DEVICE_CLASS(klass);
1526     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1527 
1528     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1529     k->cores_mask = POWER8_CORE_MASK;
1530     k->num_phbs = 4;
1531     k->chip_pir = pnv_chip_pir_p8;
1532     k->intc_create = pnv_chip_power8_intc_create;
1533     k->intc_reset = pnv_chip_power8_intc_reset;
1534     k->intc_destroy = pnv_chip_power8_intc_destroy;
1535     k->intc_print_info = pnv_chip_power8_intc_print_info;
1536     k->isa_create = pnv_chip_power8nvl_isa_create;
1537     k->dt_populate = pnv_chip_power8_dt_populate;
1538     k->pic_print_info = pnv_chip_power8_pic_print_info;
1539     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1540     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1541     dc->desc = "PowerNV Chip POWER8NVL";
1542 
1543     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1544                                     &k->parent_realize);
1545 }
1546 
1547 static void pnv_chip_power9_instance_init(Object *obj)
1548 {
1549     PnvChip *chip = PNV_CHIP(obj);
1550     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1551     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1552     int i;
1553 
1554     object_initialize_child(obj, "adu",  &chip9->adu, TYPE_PNV_ADU);
1555     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1556     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1557                               "xive-fabric");
1558 
1559     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1560 
1561     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1562 
1563     object_initialize_child(obj, "chiptod", &chip9->chiptod, TYPE_PNV9_CHIPTOD);
1564 
1565     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1566 
1567     object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE);
1568 
1569     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1570 
1571     /* Number of PECs is the chip default */
1572     chip->num_pecs = pcc->num_pecs;
1573 
1574     for (i = 0; i < chip->num_pecs; i++) {
1575         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1576                                 TYPE_PNV_PHB4_PEC);
1577     }
1578 
1579     for (i = 0; i < pcc->i2c_num_engines; i++) {
1580         object_initialize_child(obj, "i2c[*]", &chip9->i2c[i], TYPE_PNV_I2C);
1581     }
1582 }
1583 
1584 static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
1585                                       PnvCore *pnv_core,
1586                                       const char *type)
1587 {
1588     char eq_name[32];
1589     int core_id = CPU_CORE(pnv_core)->core_id;
1590 
1591     snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1592     object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1593                                        sizeof(*eq), type,
1594                                        &error_fatal, NULL);
1595 
1596     object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1597     qdev_realize(DEVICE(eq), NULL, &error_fatal);
1598 }
1599 
1600 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1601 {
1602     PnvChip *chip = PNV_CHIP(chip9);
1603     int i;
1604 
1605     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1606     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1607 
1608     for (i = 0; i < chip9->nr_quads; i++) {
1609         PnvQuad *eq = &chip9->quads[i];
1610 
1611         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1612                                   PNV_QUAD_TYPE_NAME("power9"));
1613 
1614         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1615                                 &eq->xscom_regs);
1616     }
1617 }
1618 
1619 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1620 {
1621     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1622     int i;
1623 
1624     for (i = 0; i < chip->num_pecs; i++) {
1625         PnvPhb4PecState *pec = &chip9->pecs[i];
1626         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1627         uint32_t pec_nest_base;
1628         uint32_t pec_pci_base;
1629 
1630         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1631         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1632                                 &error_fatal);
1633         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1634                                  &error_fatal);
1635         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1636             return;
1637         }
1638 
1639         pec_nest_base = pecc->xscom_nest_base(pec);
1640         pec_pci_base = pecc->xscom_pci_base(pec);
1641 
1642         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1643         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1644     }
1645 }
1646 
1647 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1648 {
1649     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1650     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1651     PnvChip *chip = PNV_CHIP(dev);
1652     Pnv9Psi *psi9 = &chip9->psi;
1653     Error *local_err = NULL;
1654     int i;
1655 
1656     /* XSCOM bridge is first */
1657     pnv_xscom_init(chip, PNV9_XSCOM_SIZE, PNV9_XSCOM_BASE(chip));
1658 
1659     pcc->parent_realize(dev, &local_err);
1660     if (local_err) {
1661         error_propagate(errp, local_err);
1662         return;
1663     }
1664 
1665     /* ADU */
1666     object_property_set_link(OBJECT(&chip9->adu), "lpc", OBJECT(&chip9->lpc),
1667                              &error_abort);
1668     if (!qdev_realize(DEVICE(&chip9->adu), NULL, errp)) {
1669         return;
1670     }
1671     pnv_xscom_add_subregion(chip, PNV9_XSCOM_ADU_BASE,
1672                             &chip9->adu.xscom_regs);
1673 
1674     pnv_chip_quad_realize(chip9, &local_err);
1675     if (local_err) {
1676         error_propagate(errp, local_err);
1677         return;
1678     }
1679 
1680     /* XIVE interrupt controller (POWER9) */
1681     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1682                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1683     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1684                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1685     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1686                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1687     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1688                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1689     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1690                              &error_abort);
1691     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1692         return;
1693     }
1694     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1695                             &chip9->xive.xscom_regs);
1696 
1697     /* Processor Service Interface (PSI) Host Bridge */
1698     object_property_set_int(OBJECT(psi9), "bar", PNV9_PSIHB_BASE(chip),
1699                             &error_fatal);
1700     /* This is the only device with 4k ESB pages */
1701     object_property_set_int(OBJECT(psi9), "shift", XIVE_ESB_4K,
1702                             &error_fatal);
1703     if (!qdev_realize(DEVICE(psi9), NULL, errp)) {
1704         return;
1705     }
1706     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1707                             &PNV_PSI(psi9)->xscom_regs);
1708 
1709     /* LPC */
1710     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1711         return;
1712     }
1713     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1714                                 &chip9->lpc.xscom_regs);
1715 
1716     chip->fw_mr = &chip9->lpc.isa_fw;
1717     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1718                                             (uint64_t) PNV9_LPCM_BASE(chip));
1719 
1720     /* ChipTOD */
1721     object_property_set_bool(OBJECT(&chip9->chiptod), "primary",
1722                              chip->chip_id == 0, &error_abort);
1723     object_property_set_bool(OBJECT(&chip9->chiptod), "secondary",
1724                              chip->chip_id == 1, &error_abort);
1725     object_property_set_link(OBJECT(&chip9->chiptod), "chip", OBJECT(chip),
1726                              &error_abort);
1727     if (!qdev_realize(DEVICE(&chip9->chiptod), NULL, errp)) {
1728         return;
1729     }
1730     pnv_xscom_add_subregion(chip, PNV9_XSCOM_CHIPTOD_BASE,
1731                             &chip9->chiptod.xscom_regs);
1732 
1733     /* Create the simplified OCC model */
1734     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1735         return;
1736     }
1737     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1738     qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in(
1739                               DEVICE(psi9), PSIHB9_IRQ_OCC));
1740 
1741     /* OCC SRAM model */
1742     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1743                                 &chip9->occ.sram_regs);
1744 
1745     /* SBE */
1746     if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) {
1747         return;
1748     }
1749     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE,
1750                             &chip9->sbe.xscom_ctrl_regs);
1751     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE,
1752                             &chip9->sbe.xscom_mbox_regs);
1753     qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in(
1754                               DEVICE(psi9), PSIHB9_IRQ_PSU));
1755 
1756     /* HOMER */
1757     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1758                              &error_abort);
1759     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1760         return;
1761     }
1762     /* Homer Xscom region */
1763     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1764 
1765     /* Homer mmio region */
1766     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1767                                 &chip9->homer.regs);
1768 
1769     /* PEC PHBs */
1770     pnv_chip_power9_pec_realize(chip, &local_err);
1771     if (local_err) {
1772         error_propagate(errp, local_err);
1773         return;
1774     }
1775 
1776     /*
1777      * I2C
1778      */
1779     for (i = 0; i < pcc->i2c_num_engines; i++) {
1780         Object *obj =  OBJECT(&chip9->i2c[i]);
1781 
1782         object_property_set_int(obj, "engine", i + 1, &error_fatal);
1783         object_property_set_int(obj, "num-busses",
1784                                 pcc->i2c_ports_per_engine[i],
1785                                 &error_fatal);
1786         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
1787         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
1788             return;
1789         }
1790         pnv_xscom_add_subregion(chip, PNV9_XSCOM_I2CM_BASE +
1791                                 (chip9->i2c[i].engine - 1) *
1792                                         PNV9_XSCOM_I2CM_SIZE,
1793                                 &chip9->i2c[i].xscom_regs);
1794         qdev_connect_gpio_out(DEVICE(&chip9->i2c[i]), 0,
1795                               qdev_get_gpio_in(DEVICE(psi9),
1796                                                PSIHB9_IRQ_SBE_I2C));
1797     }
1798 }
1799 
1800 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1801 {
1802     addr &= (PNV9_XSCOM_SIZE - 1);
1803     return addr >> 3;
1804 }
1805 
1806 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1807 {
1808     DeviceClass *dc = DEVICE_CLASS(klass);
1809     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1810     static const int i2c_ports_per_engine[PNV9_CHIP_MAX_I2C] = {2, 13, 2, 2};
1811 
1812     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1813     k->cores_mask = POWER9_CORE_MASK;
1814     k->chip_pir = pnv_chip_pir_p9;
1815     k->intc_create = pnv_chip_power9_intc_create;
1816     k->intc_reset = pnv_chip_power9_intc_reset;
1817     k->intc_destroy = pnv_chip_power9_intc_destroy;
1818     k->intc_print_info = pnv_chip_power9_intc_print_info;
1819     k->isa_create = pnv_chip_power9_isa_create;
1820     k->dt_populate = pnv_chip_power9_dt_populate;
1821     k->pic_print_info = pnv_chip_power9_pic_print_info;
1822     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1823     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1824     dc->desc = "PowerNV Chip POWER9";
1825     k->num_pecs = PNV9_CHIP_MAX_PEC;
1826     k->i2c_num_engines = PNV9_CHIP_MAX_I2C;
1827     k->i2c_ports_per_engine = i2c_ports_per_engine;
1828 
1829     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1830                                     &k->parent_realize);
1831 }
1832 
1833 static void pnv_chip_power10_instance_init(Object *obj)
1834 {
1835     PnvChip *chip = PNV_CHIP(obj);
1836     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1837     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1838     int i;
1839 
1840     object_initialize_child(obj, "adu",  &chip10->adu, TYPE_PNV_ADU);
1841     object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
1842     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
1843                               "xive-fabric");
1844     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1845     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1846     object_initialize_child(obj, "chiptod", &chip10->chiptod,
1847                             TYPE_PNV10_CHIPTOD);
1848     object_initialize_child(obj, "occ",  &chip10->occ, TYPE_PNV10_OCC);
1849     object_initialize_child(obj, "sbe",  &chip10->sbe, TYPE_PNV10_SBE);
1850     object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
1851     object_initialize_child(obj, "n1-chiplet", &chip10->n1_chiplet,
1852                             TYPE_PNV_N1_CHIPLET);
1853 
1854     chip->num_pecs = pcc->num_pecs;
1855 
1856     for (i = 0; i < chip->num_pecs; i++) {
1857         object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
1858                                 TYPE_PNV_PHB5_PEC);
1859     }
1860 
1861     for (i = 0; i < pcc->i2c_num_engines; i++) {
1862         object_initialize_child(obj, "i2c[*]", &chip10->i2c[i], TYPE_PNV_I2C);
1863     }
1864 }
1865 
1866 static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
1867 {
1868     PnvChip *chip = PNV_CHIP(chip10);
1869     int i;
1870 
1871     chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1872     chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
1873 
1874     for (i = 0; i < chip10->nr_quads; i++) {
1875         PnvQuad *eq = &chip10->quads[i];
1876 
1877         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1878                                   PNV_QUAD_TYPE_NAME("power10"));
1879 
1880         pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
1881                                 &eq->xscom_regs);
1882 
1883         pnv_xscom_add_subregion(chip, PNV10_XSCOM_QME_BASE(eq->quad_id),
1884                                 &eq->xscom_qme_regs);
1885     }
1886 }
1887 
1888 static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
1889 {
1890     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1891     int i;
1892 
1893     for (i = 0; i < chip->num_pecs; i++) {
1894         PnvPhb4PecState *pec = &chip10->pecs[i];
1895         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1896         uint32_t pec_nest_base;
1897         uint32_t pec_pci_base;
1898 
1899         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1900         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1901                                 &error_fatal);
1902         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1903                                  &error_fatal);
1904         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1905             return;
1906         }
1907 
1908         pec_nest_base = pecc->xscom_nest_base(pec);
1909         pec_pci_base = pecc->xscom_pci_base(pec);
1910 
1911         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1912         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1913     }
1914 }
1915 
1916 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1917 {
1918     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1919     PnvChip *chip = PNV_CHIP(dev);
1920     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1921     Error *local_err = NULL;
1922     int i;
1923 
1924     /* XSCOM bridge is first */
1925     pnv_xscom_init(chip, PNV10_XSCOM_SIZE, PNV10_XSCOM_BASE(chip));
1926 
1927     pcc->parent_realize(dev, &local_err);
1928     if (local_err) {
1929         error_propagate(errp, local_err);
1930         return;
1931     }
1932 
1933     /* ADU */
1934     object_property_set_link(OBJECT(&chip10->adu), "lpc", OBJECT(&chip10->lpc),
1935                              &error_abort);
1936     if (!qdev_realize(DEVICE(&chip10->adu), NULL, errp)) {
1937         return;
1938     }
1939     pnv_xscom_add_subregion(chip, PNV10_XSCOM_ADU_BASE,
1940                             &chip10->adu.xscom_regs);
1941 
1942     pnv_chip_power10_quad_realize(chip10, &local_err);
1943     if (local_err) {
1944         error_propagate(errp, local_err);
1945         return;
1946     }
1947 
1948     /* XIVE2 interrupt controller (POWER10) */
1949     object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
1950                             PNV10_XIVE2_IC_BASE(chip), &error_fatal);
1951     object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
1952                             PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
1953     object_property_set_int(OBJECT(&chip10->xive), "end-bar",
1954                             PNV10_XIVE2_END_BASE(chip), &error_fatal);
1955     object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
1956                             PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
1957     object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
1958                             PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
1959     object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
1960                             PNV10_XIVE2_TM_BASE(chip), &error_fatal);
1961     object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
1962                              &error_abort);
1963     if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
1964         return;
1965     }
1966     pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
1967                             &chip10->xive.xscom_regs);
1968 
1969     /* Processor Service Interface (PSI) Host Bridge */
1970     object_property_set_int(OBJECT(&chip10->psi), "bar",
1971                             PNV10_PSIHB_BASE(chip), &error_fatal);
1972     /* PSI can now be configured to use 64k ESB pages on POWER10 */
1973     object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
1974                             &error_fatal);
1975     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1976         return;
1977     }
1978     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1979                             &PNV_PSI(&chip10->psi)->xscom_regs);
1980 
1981     /* LPC */
1982     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1983         return;
1984     }
1985     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1986                                 &chip10->lpc.xscom_regs);
1987 
1988     chip->fw_mr = &chip10->lpc.isa_fw;
1989     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1990                                             (uint64_t) PNV10_LPCM_BASE(chip));
1991 
1992     /* ChipTOD */
1993     object_property_set_bool(OBJECT(&chip10->chiptod), "primary",
1994                              chip->chip_id == 0, &error_abort);
1995     object_property_set_bool(OBJECT(&chip10->chiptod), "secondary",
1996                              chip->chip_id == 1, &error_abort);
1997     object_property_set_link(OBJECT(&chip10->chiptod), "chip", OBJECT(chip),
1998                              &error_abort);
1999     if (!qdev_realize(DEVICE(&chip10->chiptod), NULL, errp)) {
2000         return;
2001     }
2002     pnv_xscom_add_subregion(chip, PNV10_XSCOM_CHIPTOD_BASE,
2003                             &chip10->chiptod.xscom_regs);
2004 
2005     /* Create the simplified OCC model */
2006     if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
2007         return;
2008     }
2009     pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
2010                             &chip10->occ.xscom_regs);
2011     qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in(
2012                               DEVICE(&chip10->psi), PSIHB9_IRQ_OCC));
2013 
2014     /* OCC SRAM model */
2015     memory_region_add_subregion(get_system_memory(),
2016                                 PNV10_OCC_SENSOR_BASE(chip),
2017                                 &chip10->occ.sram_regs);
2018 
2019     /* SBE */
2020     if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) {
2021         return;
2022     }
2023     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE,
2024                             &chip10->sbe.xscom_ctrl_regs);
2025     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE,
2026                             &chip10->sbe.xscom_mbox_regs);
2027     qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in(
2028                               DEVICE(&chip10->psi), PSIHB9_IRQ_PSU));
2029 
2030     /* HOMER */
2031     object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
2032                              &error_abort);
2033     if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
2034         return;
2035     }
2036     /* Homer Xscom region */
2037     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
2038                             &chip10->homer.pba_regs);
2039 
2040     /* Homer mmio region */
2041     memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip),
2042                                 &chip10->homer.regs);
2043 
2044     /* N1 chiplet */
2045     if (!qdev_realize(DEVICE(&chip10->n1_chiplet), NULL, errp)) {
2046         return;
2047     }
2048     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_CHIPLET_CTRL_REGS_BASE,
2049              &chip10->n1_chiplet.nest_pervasive.xscom_ctrl_regs_mr);
2050 
2051     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_EQ_BASE,
2052                            &chip10->n1_chiplet.xscom_pb_eq_mr);
2053 
2054     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_ES_BASE,
2055                            &chip10->n1_chiplet.xscom_pb_es_mr);
2056 
2057     /* PHBs */
2058     pnv_chip_power10_phb_realize(chip, &local_err);
2059     if (local_err) {
2060         error_propagate(errp, local_err);
2061         return;
2062     }
2063 
2064 
2065     /*
2066      * I2C
2067      */
2068     for (i = 0; i < pcc->i2c_num_engines; i++) {
2069         Object *obj =  OBJECT(&chip10->i2c[i]);
2070 
2071         object_property_set_int(obj, "engine", i + 1, &error_fatal);
2072         object_property_set_int(obj, "num-busses",
2073                                 pcc->i2c_ports_per_engine[i],
2074                                 &error_fatal);
2075         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
2076         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
2077             return;
2078         }
2079         pnv_xscom_add_subregion(chip, PNV10_XSCOM_I2CM_BASE +
2080                                 (chip10->i2c[i].engine - 1) *
2081                                         PNV10_XSCOM_I2CM_SIZE,
2082                                 &chip10->i2c[i].xscom_regs);
2083         qdev_connect_gpio_out(DEVICE(&chip10->i2c[i]), 0,
2084                               qdev_get_gpio_in(DEVICE(&chip10->psi),
2085                                                PSIHB9_IRQ_SBE_I2C));
2086     }
2087 
2088 }
2089 
2090 static void pnv_rainier_i2c_init(PnvMachineState *pnv)
2091 {
2092     int i;
2093     for (i = 0; i < pnv->num_chips; i++) {
2094         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2095 
2096         /*
2097          * Add a PCA9552 I2C device for PCIe hotplug control
2098          * to engine 2, bus 1, address 0x63
2099          */
2100         I2CSlave *dev = i2c_slave_create_simple(chip10->i2c[2].busses[1],
2101                                                 "pca9552", 0x63);
2102 
2103         /*
2104          * Connect PCA9552 GPIO pins 0-4 (SLOTx_EN) outputs to GPIO pins 5-9
2105          * (SLOTx_PG) inputs in order to fake the pgood state of PCIe slots
2106          * after hypervisor code sets a SLOTx_EN pin high.
2107          */
2108         qdev_connect_gpio_out(DEVICE(dev), 0, qdev_get_gpio_in(DEVICE(dev), 5));
2109         qdev_connect_gpio_out(DEVICE(dev), 1, qdev_get_gpio_in(DEVICE(dev), 6));
2110         qdev_connect_gpio_out(DEVICE(dev), 2, qdev_get_gpio_in(DEVICE(dev), 7));
2111         qdev_connect_gpio_out(DEVICE(dev), 3, qdev_get_gpio_in(DEVICE(dev), 8));
2112         qdev_connect_gpio_out(DEVICE(dev), 4, qdev_get_gpio_in(DEVICE(dev), 9));
2113 
2114         /*
2115          * Add a PCA9554 I2C device for cable card presence detection
2116          * to engine 2, bus 1, address 0x25
2117          */
2118         i2c_slave_create_simple(chip10->i2c[2].busses[1], "pca9554", 0x25);
2119     }
2120 }
2121 
2122 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
2123 {
2124     addr &= (PNV10_XSCOM_SIZE - 1);
2125     return addr >> 3;
2126 }
2127 
2128 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
2129 {
2130     DeviceClass *dc = DEVICE_CLASS(klass);
2131     PnvChipClass *k = PNV_CHIP_CLASS(klass);
2132     static const int i2c_ports_per_engine[PNV10_CHIP_MAX_I2C] = {14, 14, 2, 16};
2133 
2134     k->chip_cfam_id = 0x220da04980000000ull; /* P10 DD2.0 (with NX) */
2135     k->cores_mask = POWER10_CORE_MASK;
2136     k->chip_pir = pnv_chip_pir_p10;
2137     k->intc_create = pnv_chip_power10_intc_create;
2138     k->intc_reset = pnv_chip_power10_intc_reset;
2139     k->intc_destroy = pnv_chip_power10_intc_destroy;
2140     k->intc_print_info = pnv_chip_power10_intc_print_info;
2141     k->isa_create = pnv_chip_power10_isa_create;
2142     k->dt_populate = pnv_chip_power10_dt_populate;
2143     k->pic_print_info = pnv_chip_power10_pic_print_info;
2144     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
2145     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
2146     dc->desc = "PowerNV Chip POWER10";
2147     k->num_pecs = PNV10_CHIP_MAX_PEC;
2148     k->i2c_num_engines = PNV10_CHIP_MAX_I2C;
2149     k->i2c_ports_per_engine = i2c_ports_per_engine;
2150 
2151     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
2152                                     &k->parent_realize);
2153 }
2154 
2155 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
2156 {
2157     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2158     int cores_max;
2159 
2160     /*
2161      * No custom mask for this chip, let's use the default one from *
2162      * the chip class
2163      */
2164     if (!chip->cores_mask) {
2165         chip->cores_mask = pcc->cores_mask;
2166     }
2167 
2168     /* filter alien core ids ! some are reserved */
2169     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
2170         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
2171                    chip->cores_mask);
2172         return;
2173     }
2174     chip->cores_mask &= pcc->cores_mask;
2175 
2176     /* now that we have a sane layout, let check the number of cores */
2177     cores_max = ctpop64(chip->cores_mask);
2178     if (chip->nr_cores > cores_max) {
2179         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
2180                    cores_max);
2181         return;
2182     }
2183 }
2184 
2185 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
2186 {
2187     Error *error = NULL;
2188     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2189     const char *typename = pnv_chip_core_typename(chip);
2190     int i, core_hwid;
2191     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
2192 
2193     if (!object_class_by_name(typename)) {
2194         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
2195         return;
2196     }
2197 
2198     /* Cores */
2199     pnv_chip_core_sanitize(chip, &error);
2200     if (error) {
2201         error_propagate(errp, error);
2202         return;
2203     }
2204 
2205     chip->cores = g_new0(PnvCore *, chip->nr_cores);
2206 
2207     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
2208              && (i < chip->nr_cores); core_hwid++) {
2209         char core_name[32];
2210         PnvCore *pnv_core;
2211         uint64_t xscom_core_base;
2212 
2213         if (!(chip->cores_mask & (1ull << core_hwid))) {
2214             continue;
2215         }
2216 
2217         pnv_core = PNV_CORE(object_new(typename));
2218 
2219         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
2220         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
2221         chip->cores[i] = pnv_core;
2222         object_property_set_int(OBJECT(pnv_core), "nr-threads",
2223                                 chip->nr_threads, &error_fatal);
2224         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
2225                                 core_hwid, &error_fatal);
2226         object_property_set_int(OBJECT(pnv_core), "hwid", core_hwid,
2227                                 &error_fatal);
2228         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
2229                                 &error_fatal);
2230         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
2231                                  &error_abort);
2232         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
2233 
2234         /* Each core has an XSCOM MMIO region */
2235         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
2236 
2237         pnv_xscom_add_subregion(chip, xscom_core_base,
2238                                 &pnv_core->xscom_regs);
2239         i++;
2240     }
2241 }
2242 
2243 static void pnv_chip_realize(DeviceState *dev, Error **errp)
2244 {
2245     PnvChip *chip = PNV_CHIP(dev);
2246     Error *error = NULL;
2247 
2248     /* Cores */
2249     pnv_chip_core_realize(chip, &error);
2250     if (error) {
2251         error_propagate(errp, error);
2252         return;
2253     }
2254 }
2255 
2256 static Property pnv_chip_properties[] = {
2257     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
2258     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
2259     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
2260     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
2261     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
2262     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
2263     DEFINE_PROP_END_OF_LIST(),
2264 };
2265 
2266 static void pnv_chip_class_init(ObjectClass *klass, void *data)
2267 {
2268     DeviceClass *dc = DEVICE_CLASS(klass);
2269 
2270     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
2271     dc->realize = pnv_chip_realize;
2272     device_class_set_props(dc, pnv_chip_properties);
2273     dc->desc = "PowerNV Chip";
2274 }
2275 
2276 PnvCore *pnv_chip_find_core(PnvChip *chip, uint32_t core_id)
2277 {
2278     int i;
2279 
2280     for (i = 0; i < chip->nr_cores; i++) {
2281         PnvCore *pc = chip->cores[i];
2282         CPUCore *cc = CPU_CORE(pc);
2283 
2284         if (cc->core_id == core_id) {
2285             return pc;
2286         }
2287     }
2288     return NULL;
2289 }
2290 
2291 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
2292 {
2293     int i, j;
2294 
2295     for (i = 0; i < chip->nr_cores; i++) {
2296         PnvCore *pc = chip->cores[i];
2297         CPUCore *cc = CPU_CORE(pc);
2298 
2299         for (j = 0; j < cc->nr_threads; j++) {
2300             if (ppc_cpu_pir(pc->threads[j]) == pir) {
2301                 return pc->threads[j];
2302             }
2303         }
2304     }
2305     return NULL;
2306 }
2307 
2308 static void pnv_chip_foreach_cpu(PnvChip *chip,
2309                    void (*fn)(PnvChip *chip, PowerPCCPU *cpu, void *opaque),
2310                    void *opaque)
2311 {
2312     int i, j;
2313 
2314     for (i = 0; i < chip->nr_cores; i++) {
2315         PnvCore *pc = chip->cores[i];
2316 
2317         for (j = 0; j < CPU_CORE(pc)->nr_threads; j++) {
2318             fn(chip, pc->threads[j], opaque);
2319         }
2320     }
2321 }
2322 
2323 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
2324 {
2325     PnvMachineState *pnv = PNV_MACHINE(xi);
2326     int i, j;
2327 
2328     for (i = 0; i < pnv->num_chips; i++) {
2329         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2330 
2331         if (ics_valid_irq(&chip8->psi.ics, irq)) {
2332             return &chip8->psi.ics;
2333         }
2334 
2335         for (j = 0; j < chip8->num_phbs; j++) {
2336             PnvPHB *phb = chip8->phbs[j];
2337             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2338 
2339             if (ics_valid_irq(&phb3->lsis, irq)) {
2340                 return &phb3->lsis;
2341             }
2342 
2343             if (ics_valid_irq(ICS(&phb3->msis), irq)) {
2344                 return ICS(&phb3->msis);
2345             }
2346         }
2347     }
2348     return NULL;
2349 }
2350 
2351 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
2352 {
2353     int i;
2354 
2355     for (i = 0; i < pnv->num_chips; i++) {
2356         PnvChip *chip = pnv->chips[i];
2357         if (chip->chip_id == chip_id) {
2358             return chip;
2359         }
2360     }
2361     return NULL;
2362 }
2363 
2364 static void pnv_ics_resend(XICSFabric *xi)
2365 {
2366     PnvMachineState *pnv = PNV_MACHINE(xi);
2367     int i, j;
2368 
2369     for (i = 0; i < pnv->num_chips; i++) {
2370         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2371 
2372         ics_resend(&chip8->psi.ics);
2373 
2374         for (j = 0; j < chip8->num_phbs; j++) {
2375             PnvPHB *phb = chip8->phbs[j];
2376             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2377 
2378             ics_resend(&phb3->lsis);
2379             ics_resend(ICS(&phb3->msis));
2380         }
2381     }
2382 }
2383 
2384 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
2385 {
2386     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
2387 
2388     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
2389 }
2390 
2391 static void pnv_pic_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
2392                                     void *opaque)
2393 {
2394     PNV_CHIP_GET_CLASS(chip)->intc_print_info(chip, cpu, opaque);
2395 }
2396 
2397 static void pnv_pic_print_info(InterruptStatsProvider *obj, GString *buf)
2398 {
2399     PnvMachineState *pnv = PNV_MACHINE(obj);
2400     int i;
2401 
2402     for (i = 0; i < pnv->num_chips; i++) {
2403         PnvChip *chip = pnv->chips[i];
2404 
2405         /* First CPU presenters */
2406         pnv_chip_foreach_cpu(chip, pnv_pic_intc_print_info, buf);
2407 
2408         /* Then other devices, PHB, PSI, XIVE */
2409         PNV_CHIP_GET_CLASS(chip)->pic_print_info(chip, buf);
2410     }
2411 }
2412 
2413 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
2414                          uint8_t nvt_blk, uint32_t nvt_idx,
2415                          bool cam_ignore, uint8_t priority,
2416                          uint32_t logic_serv,
2417                          XiveTCTXMatch *match)
2418 {
2419     PnvMachineState *pnv = PNV_MACHINE(xfb);
2420     int total_count = 0;
2421     int i;
2422 
2423     for (i = 0; i < pnv->num_chips; i++) {
2424         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
2425         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
2426         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2427         int count;
2428 
2429         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2430                                priority, logic_serv, match);
2431 
2432         if (count < 0) {
2433             return count;
2434         }
2435 
2436         total_count += count;
2437     }
2438 
2439     return total_count;
2440 }
2441 
2442 static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
2443                                 uint8_t nvt_blk, uint32_t nvt_idx,
2444                                 bool cam_ignore, uint8_t priority,
2445                                 uint32_t logic_serv,
2446                                 XiveTCTXMatch *match)
2447 {
2448     PnvMachineState *pnv = PNV_MACHINE(xfb);
2449     int total_count = 0;
2450     int i;
2451 
2452     for (i = 0; i < pnv->num_chips; i++) {
2453         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2454         XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
2455         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2456         int count;
2457 
2458         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2459                                priority, logic_serv, match);
2460 
2461         if (count < 0) {
2462             return count;
2463         }
2464 
2465         total_count += count;
2466     }
2467 
2468     return total_count;
2469 }
2470 
2471 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
2472 {
2473     MachineClass *mc = MACHINE_CLASS(oc);
2474     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
2475     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2476     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
2477 
2478     static GlobalProperty phb_compat[] = {
2479         { TYPE_PNV_PHB, "version", "3" },
2480         { TYPE_PNV_PHB_ROOT_PORT, "version", "3" },
2481     };
2482 
2483     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
2484     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
2485     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2486 
2487     xic->icp_get = pnv_icp_get;
2488     xic->ics_get = pnv_ics_get;
2489     xic->ics_resend = pnv_ics_resend;
2490 
2491     pmc->compat = compat;
2492     pmc->compat_size = sizeof(compat);
2493 
2494     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2495 }
2496 
2497 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
2498 {
2499     MachineClass *mc = MACHINE_CLASS(oc);
2500     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2501     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2502     static const char compat[] = "qemu,powernv9\0ibm,powernv";
2503 
2504     static GlobalProperty phb_compat[] = {
2505         { TYPE_PNV_PHB, "version", "4" },
2506         { TYPE_PNV_PHB_ROOT_PORT, "version", "4" },
2507     };
2508 
2509     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
2510     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
2511     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2512 
2513     xfc->match_nvt = pnv_match_nvt;
2514 
2515     pmc->compat = compat;
2516     pmc->compat_size = sizeof(compat);
2517     pmc->dt_power_mgt = pnv_dt_power_mgt;
2518 
2519     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2520 }
2521 
2522 static void pnv_machine_p10_common_class_init(ObjectClass *oc, void *data)
2523 {
2524     MachineClass *mc = MACHINE_CLASS(oc);
2525     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2526     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2527     static const char compat[] = "qemu,powernv10\0ibm,powernv";
2528 
2529     static GlobalProperty phb_compat[] = {
2530         { TYPE_PNV_PHB, "version", "5" },
2531         { TYPE_PNV_PHB_ROOT_PORT, "version", "5" },
2532     };
2533 
2534     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
2535     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2536 
2537     mc->alias = "powernv";
2538 
2539     pmc->compat = compat;
2540     pmc->compat_size = sizeof(compat);
2541     pmc->dt_power_mgt = pnv_dt_power_mgt;
2542 
2543     xfc->match_nvt = pnv10_xive_match_nvt;
2544 
2545     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2546 }
2547 
2548 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
2549 {
2550     MachineClass *mc = MACHINE_CLASS(oc);
2551 
2552     pnv_machine_p10_common_class_init(oc, data);
2553     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
2554 }
2555 
2556 static void pnv_machine_p10_rainier_class_init(ObjectClass *oc, void *data)
2557 {
2558     MachineClass *mc = MACHINE_CLASS(oc);
2559     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2560 
2561     pnv_machine_p10_common_class_init(oc, data);
2562     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10 Rainier";
2563     pmc->i2c_init = pnv_rainier_i2c_init;
2564 }
2565 
2566 static bool pnv_machine_get_hb(Object *obj, Error **errp)
2567 {
2568     PnvMachineState *pnv = PNV_MACHINE(obj);
2569 
2570     return !!pnv->fw_load_addr;
2571 }
2572 
2573 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
2574 {
2575     PnvMachineState *pnv = PNV_MACHINE(obj);
2576 
2577     if (value) {
2578         pnv->fw_load_addr = 0x8000000;
2579     }
2580 }
2581 
2582 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2583 {
2584     CPUPPCState *env = cpu_env(cs);
2585 
2586     cpu_synchronize_state(cs);
2587     ppc_cpu_do_system_reset(cs);
2588     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
2589         /*
2590          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
2591          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
2592          * (PPC_BIT(43)).
2593          */
2594         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
2595             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
2596             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
2597         }
2598     } else {
2599         /*
2600          * For non-powersave system resets, SRR1[42:45] are defined to be
2601          * implementation-dependent. The POWER9 User Manual specifies that
2602          * an external (SCOM driven, which may come from a BMC nmi command or
2603          * another CPU requesting a NMI IPI) system reset exception should be
2604          * 0b0010 (PPC_BIT(44)).
2605          */
2606         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2607     }
2608 }
2609 
2610 static void pnv_cpu_do_nmi(PnvChip *chip, PowerPCCPU *cpu, void *opaque)
2611 {
2612     async_run_on_cpu(CPU(cpu), pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2613 }
2614 
2615 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2616 {
2617     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
2618     int i;
2619 
2620     for (i = 0; i < pnv->num_chips; i++) {
2621         pnv_chip_foreach_cpu(pnv->chips[i], pnv_cpu_do_nmi, NULL);
2622     }
2623 }
2624 
2625 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2626 {
2627     MachineClass *mc = MACHINE_CLASS(oc);
2628     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2629     NMIClass *nc = NMI_CLASS(oc);
2630 
2631     mc->desc = "IBM PowerNV (Non-Virtualized)";
2632     mc->init = pnv_init;
2633     mc->reset = pnv_reset;
2634     mc->max_cpus = MAX_CPUS;
2635     /* Pnv provides a AHCI device for storage */
2636     mc->block_default_type = IF_IDE;
2637     mc->no_parallel = 1;
2638     mc->default_boot_order = NULL;
2639     /*
2640      * RAM defaults to less than 2048 for 32-bit hosts, and large
2641      * enough to fit the maximum initrd size at it's load address
2642      */
2643     mc->default_ram_size = 1 * GiB;
2644     mc->default_ram_id = "pnv.ram";
2645     ispc->print_info = pnv_pic_print_info;
2646     nc->nmi_monitor_handler = pnv_nmi;
2647 
2648     object_class_property_add_bool(oc, "hb-mode",
2649                                    pnv_machine_get_hb, pnv_machine_set_hb);
2650     object_class_property_set_description(oc, "hb-mode",
2651                               "Use a hostboot like boot loader");
2652 }
2653 
2654 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2655     {                                             \
2656         .name          = type,                    \
2657         .class_init    = class_initfn,            \
2658         .parent        = TYPE_PNV8_CHIP,          \
2659     }
2660 
2661 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2662     {                                             \
2663         .name          = type,                    \
2664         .class_init    = class_initfn,            \
2665         .parent        = TYPE_PNV9_CHIP,          \
2666     }
2667 
2668 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2669     {                                              \
2670         .name          = type,                     \
2671         .class_init    = class_initfn,             \
2672         .parent        = TYPE_PNV10_CHIP,          \
2673     }
2674 
2675 static const TypeInfo types[] = {
2676     {
2677         .name          = MACHINE_TYPE_NAME("powernv10-rainier"),
2678         .parent        = MACHINE_TYPE_NAME("powernv10"),
2679         .class_init    = pnv_machine_p10_rainier_class_init,
2680     },
2681     {
2682         .name          = MACHINE_TYPE_NAME("powernv10"),
2683         .parent        = TYPE_PNV_MACHINE,
2684         .class_init    = pnv_machine_power10_class_init,
2685         .interfaces = (InterfaceInfo[]) {
2686             { TYPE_XIVE_FABRIC },
2687             { },
2688         },
2689     },
2690     {
2691         .name          = MACHINE_TYPE_NAME("powernv9"),
2692         .parent        = TYPE_PNV_MACHINE,
2693         .class_init    = pnv_machine_power9_class_init,
2694         .interfaces = (InterfaceInfo[]) {
2695             { TYPE_XIVE_FABRIC },
2696             { },
2697         },
2698     },
2699     {
2700         .name          = MACHINE_TYPE_NAME("powernv8"),
2701         .parent        = TYPE_PNV_MACHINE,
2702         .class_init    = pnv_machine_power8_class_init,
2703         .interfaces = (InterfaceInfo[]) {
2704             { TYPE_XICS_FABRIC },
2705             { },
2706         },
2707     },
2708     {
2709         .name          = TYPE_PNV_MACHINE,
2710         .parent        = TYPE_MACHINE,
2711         .abstract       = true,
2712         .instance_size = sizeof(PnvMachineState),
2713         .class_init    = pnv_machine_class_init,
2714         .class_size    = sizeof(PnvMachineClass),
2715         .interfaces = (InterfaceInfo[]) {
2716             { TYPE_INTERRUPT_STATS_PROVIDER },
2717             { TYPE_NMI },
2718             { },
2719         },
2720     },
2721     {
2722         .name          = TYPE_PNV_CHIP,
2723         .parent        = TYPE_SYS_BUS_DEVICE,
2724         .class_init    = pnv_chip_class_init,
2725         .instance_size = sizeof(PnvChip),
2726         .class_size    = sizeof(PnvChipClass),
2727         .abstract      = true,
2728     },
2729 
2730     /*
2731      * P10 chip and variants
2732      */
2733     {
2734         .name          = TYPE_PNV10_CHIP,
2735         .parent        = TYPE_PNV_CHIP,
2736         .instance_init = pnv_chip_power10_instance_init,
2737         .instance_size = sizeof(Pnv10Chip),
2738     },
2739     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2740 
2741     /*
2742      * P9 chip and variants
2743      */
2744     {
2745         .name          = TYPE_PNV9_CHIP,
2746         .parent        = TYPE_PNV_CHIP,
2747         .instance_init = pnv_chip_power9_instance_init,
2748         .instance_size = sizeof(Pnv9Chip),
2749     },
2750     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2751 
2752     /*
2753      * P8 chip and variants
2754      */
2755     {
2756         .name          = TYPE_PNV8_CHIP,
2757         .parent        = TYPE_PNV_CHIP,
2758         .instance_init = pnv_chip_power8_instance_init,
2759         .instance_size = sizeof(Pnv8Chip),
2760     },
2761     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2762     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2763     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2764                           pnv_chip_power8nvl_class_init),
2765 };
2766 
2767 DEFINE_TYPES(types)
2768