xref: /openbmc/qemu/hw/ppc/pnv.c (revision 05a248715cef192336a594afed812871a52efc1f)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/datadir.h"
23 #include "qemu/units.h"
24 #include "qemu/cutils.h"
25 #include "qapi/error.h"
26 #include "sysemu/qtest.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/numa.h"
29 #include "sysemu/reset.h"
30 #include "sysemu/runstate.h"
31 #include "sysemu/cpus.h"
32 #include "sysemu/device_tree.h"
33 #include "sysemu/hw_accel.h"
34 #include "target/ppc/cpu.h"
35 #include "hw/ppc/fdt.h"
36 #include "hw/ppc/ppc.h"
37 #include "hw/ppc/pnv.h"
38 #include "hw/ppc/pnv_core.h"
39 #include "hw/loader.h"
40 #include "hw/nmi.h"
41 #include "qapi/visitor.h"
42 #include "monitor/monitor.h"
43 #include "hw/intc/intc.h"
44 #include "hw/ipmi/ipmi.h"
45 #include "target/ppc/mmu-hash64.h"
46 #include "hw/pci/msi.h"
47 
48 #include "hw/ppc/xics.h"
49 #include "hw/qdev-properties.h"
50 #include "hw/ppc/pnv_xscom.h"
51 #include "hw/ppc/pnv_pnor.h"
52 
53 #include "hw/isa/isa.h"
54 #include "hw/char/serial.h"
55 #include "hw/rtc/mc146818rtc.h"
56 
57 #include <libfdt.h>
58 
59 #define FDT_MAX_SIZE            (1 * MiB)
60 
61 #define FW_FILE_NAME            "skiboot.lid"
62 #define FW_LOAD_ADDR            0x0
63 #define FW_MAX_SIZE             (16 * MiB)
64 
65 #define KERNEL_LOAD_ADDR        0x20000000
66 #define KERNEL_MAX_SIZE         (128 * MiB)
67 #define INITRD_LOAD_ADDR        0x28000000
68 #define INITRD_MAX_SIZE         (128 * MiB)
69 
70 static const char *pnv_chip_core_typename(const PnvChip *o)
71 {
72     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
73     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
74     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
75     const char *core_type = object_class_get_name(object_class_by_name(s));
76     g_free(s);
77     return core_type;
78 }
79 
80 /*
81  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
82  *     4 * 4 sockets * 12 cores * 8 threads = 1536
83  * Let's make it 2^11
84  */
85 #define MAX_CPUS                2048
86 
87 /*
88  * Memory nodes are created by hostboot, one for each range of memory
89  * that has a different "affinity". In practice, it means one range
90  * per chip.
91  */
92 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
93 {
94     char *mem_name;
95     uint64_t mem_reg_property[2];
96     int off;
97 
98     mem_reg_property[0] = cpu_to_be64(start);
99     mem_reg_property[1] = cpu_to_be64(size);
100 
101     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
102     off = fdt_add_subnode(fdt, 0, mem_name);
103     g_free(mem_name);
104 
105     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
106     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
107                        sizeof(mem_reg_property))));
108     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
109 }
110 
111 static int get_cpus_node(void *fdt)
112 {
113     int cpus_offset = fdt_path_offset(fdt, "/cpus");
114 
115     if (cpus_offset < 0) {
116         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
117         if (cpus_offset) {
118             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
119             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
120         }
121     }
122     _FDT(cpus_offset);
123     return cpus_offset;
124 }
125 
126 /*
127  * The PowerNV cores (and threads) need to use real HW ids and not an
128  * incremental index like it has been done on other platforms. This HW
129  * id is stored in the CPU PIR, it is used to create cpu nodes in the
130  * device tree, used in XSCOM to address cores and in interrupt
131  * servers.
132  */
133 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
134 {
135     PowerPCCPU *cpu = pc->threads[0];
136     CPUState *cs = CPU(cpu);
137     DeviceClass *dc = DEVICE_GET_CLASS(cs);
138     int smt_threads = CPU_CORE(pc)->nr_threads;
139     CPUPPCState *env = &cpu->env;
140     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
141     uint32_t servers_prop[smt_threads];
142     int i;
143     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
144                        0xffffffff, 0xffffffff};
145     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
146     uint32_t cpufreq = 1000000000;
147     uint32_t page_sizes_prop[64];
148     size_t page_sizes_prop_size;
149     const uint8_t pa_features[] = { 24, 0,
150                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
151                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
152                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
153                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
154     int offset;
155     char *nodename;
156     int cpus_offset = get_cpus_node(fdt);
157 
158     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
159     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
160     _FDT(offset);
161     g_free(nodename);
162 
163     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
164 
165     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
166     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
167     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
168 
169     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
170     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
171                             env->dcache_line_size)));
172     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
173                             env->dcache_line_size)));
174     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
175                             env->icache_line_size)));
176     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
177                             env->icache_line_size)));
178 
179     if (pcc->l1_dcache_size) {
180         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
181                                pcc->l1_dcache_size)));
182     } else {
183         warn_report("Unknown L1 dcache size for cpu");
184     }
185     if (pcc->l1_icache_size) {
186         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
187                                pcc->l1_icache_size)));
188     } else {
189         warn_report("Unknown L1 icache size for cpu");
190     }
191 
192     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
193     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
194     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
195                            cpu->hash64_opts->slb_size)));
196     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
197     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
198 
199     if (ppc_has_spr(cpu, SPR_PURR)) {
200         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
201     }
202 
203     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
204         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
205                            segs, sizeof(segs))));
206     }
207 
208     /*
209      * Advertise VMX/VSX (vector extensions) if available
210      *   0 / no property == no vector extensions
211      *   1               == VMX / Altivec available
212      *   2               == VSX available
213      */
214     if (env->insns_flags & PPC_ALTIVEC) {
215         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
216 
217         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
218     }
219 
220     /*
221      * Advertise DFP (Decimal Floating Point) if available
222      *   0 / no property == no DFP
223      *   1               == DFP available
224      */
225     if (env->insns_flags2 & PPC2_DFP) {
226         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
227     }
228 
229     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
230                                                       sizeof(page_sizes_prop));
231     if (page_sizes_prop_size) {
232         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
233                            page_sizes_prop, page_sizes_prop_size)));
234     }
235 
236     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
237                        pa_features, sizeof(pa_features))));
238 
239     /* Build interrupt servers properties */
240     for (i = 0; i < smt_threads; i++) {
241         servers_prop[i] = cpu_to_be32(pc->pir + i);
242     }
243     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
244                        servers_prop, sizeof(servers_prop))));
245 }
246 
247 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
248                        uint32_t nr_threads)
249 {
250     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
251     char *name;
252     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
253     uint32_t irange[2], i, rsize;
254     uint64_t *reg;
255     int offset;
256 
257     irange[0] = cpu_to_be32(pir);
258     irange[1] = cpu_to_be32(nr_threads);
259 
260     rsize = sizeof(uint64_t) * 2 * nr_threads;
261     reg = g_malloc(rsize);
262     for (i = 0; i < nr_threads; i++) {
263         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
264         reg[i * 2 + 1] = cpu_to_be64(0x1000);
265     }
266 
267     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
268     offset = fdt_add_subnode(fdt, 0, name);
269     _FDT(offset);
270     g_free(name);
271 
272     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
273     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
274     _FDT((fdt_setprop_string(fdt, offset, "device_type",
275                               "PowerPC-External-Interrupt-Presentation")));
276     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
277     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
278                        irange, sizeof(irange))));
279     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
280     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
281     g_free(reg);
282 }
283 
284 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
285 {
286     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
287     int i;
288 
289     pnv_dt_xscom(chip, fdt, 0,
290                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
291                  cpu_to_be64(PNV_XSCOM_SIZE),
292                  compat, sizeof(compat));
293 
294     for (i = 0; i < chip->nr_cores; i++) {
295         PnvCore *pnv_core = chip->cores[i];
296 
297         pnv_dt_core(chip, pnv_core, fdt);
298 
299         /* Interrupt Control Presenters (ICP). One per core. */
300         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
301     }
302 
303     if (chip->ram_size) {
304         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
305     }
306 }
307 
308 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
309 {
310     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
311     int i;
312 
313     pnv_dt_xscom(chip, fdt, 0,
314                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
315                  cpu_to_be64(PNV9_XSCOM_SIZE),
316                  compat, sizeof(compat));
317 
318     for (i = 0; i < chip->nr_cores; i++) {
319         PnvCore *pnv_core = chip->cores[i];
320 
321         pnv_dt_core(chip, pnv_core, fdt);
322     }
323 
324     if (chip->ram_size) {
325         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
326     }
327 
328     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
329 }
330 
331 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
332 {
333     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
334     int i;
335 
336     pnv_dt_xscom(chip, fdt, 0,
337                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
338                  cpu_to_be64(PNV10_XSCOM_SIZE),
339                  compat, sizeof(compat));
340 
341     for (i = 0; i < chip->nr_cores; i++) {
342         PnvCore *pnv_core = chip->cores[i];
343 
344         pnv_dt_core(chip, pnv_core, fdt);
345     }
346 
347     if (chip->ram_size) {
348         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
349     }
350 
351     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
352 }
353 
354 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
355 {
356     uint32_t io_base = d->ioport_id;
357     uint32_t io_regs[] = {
358         cpu_to_be32(1),
359         cpu_to_be32(io_base),
360         cpu_to_be32(2)
361     };
362     char *name;
363     int node;
364 
365     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
366     node = fdt_add_subnode(fdt, lpc_off, name);
367     _FDT(node);
368     g_free(name);
369 
370     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
371     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
372 }
373 
374 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
375 {
376     const char compatible[] = "ns16550\0pnpPNP,501";
377     uint32_t io_base = d->ioport_id;
378     uint32_t io_regs[] = {
379         cpu_to_be32(1),
380         cpu_to_be32(io_base),
381         cpu_to_be32(8)
382     };
383     char *name;
384     int node;
385 
386     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
387     node = fdt_add_subnode(fdt, lpc_off, name);
388     _FDT(node);
389     g_free(name);
390 
391     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
392     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
393                       sizeof(compatible))));
394 
395     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
396     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
397     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
398     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
399                            fdt_get_phandle(fdt, lpc_off))));
400 
401     /* This is needed by Linux */
402     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
403 }
404 
405 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
406 {
407     const char compatible[] = "bt\0ipmi-bt";
408     uint32_t io_base;
409     uint32_t io_regs[] = {
410         cpu_to_be32(1),
411         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
412         cpu_to_be32(3)
413     };
414     uint32_t irq;
415     char *name;
416     int node;
417 
418     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
419     io_regs[1] = cpu_to_be32(io_base);
420 
421     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
422 
423     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
424     node = fdt_add_subnode(fdt, lpc_off, name);
425     _FDT(node);
426     g_free(name);
427 
428     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
429     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
430                       sizeof(compatible))));
431 
432     /* Mark it as reserved to avoid Linux trying to claim it */
433     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
434     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
435     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
436                            fdt_get_phandle(fdt, lpc_off))));
437 }
438 
439 typedef struct ForeachPopulateArgs {
440     void *fdt;
441     int offset;
442 } ForeachPopulateArgs;
443 
444 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
445 {
446     ForeachPopulateArgs *args = opaque;
447     ISADevice *d = ISA_DEVICE(dev);
448 
449     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
450         pnv_dt_rtc(d, args->fdt, args->offset);
451     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
452         pnv_dt_serial(d, args->fdt, args->offset);
453     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
454         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
455     } else {
456         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
457                      d->ioport_id);
458     }
459 
460     return 0;
461 }
462 
463 /*
464  * The default LPC bus of a multichip system is on chip 0. It's
465  * recognized by the firmware (skiboot) using a "primary" property.
466  */
467 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
468 {
469     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
470     ForeachPopulateArgs args = {
471         .fdt = fdt,
472         .offset = isa_offset,
473     };
474     uint32_t phandle;
475 
476     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
477 
478     phandle = qemu_fdt_alloc_phandle(fdt);
479     assert(phandle > 0);
480     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
481 
482     /*
483      * ISA devices are not necessarily parented to the ISA bus so we
484      * can not use object_child_foreach()
485      */
486     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
487                        &args);
488 }
489 
490 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
491 {
492     int off;
493 
494     off = fdt_add_subnode(fdt, 0, "ibm,opal");
495     off = fdt_add_subnode(fdt, off, "power-mgt");
496 
497     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
498 }
499 
500 static void *pnv_dt_create(MachineState *machine)
501 {
502     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
503     PnvMachineState *pnv = PNV_MACHINE(machine);
504     void *fdt;
505     char *buf;
506     int off;
507     int i;
508 
509     fdt = g_malloc0(FDT_MAX_SIZE);
510     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
511 
512     /* /qemu node */
513     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
514 
515     /* Root node */
516     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
517     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
518     _FDT((fdt_setprop_string(fdt, 0, "model",
519                              "IBM PowerNV (emulated by qemu)")));
520     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
521 
522     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
523     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
524     if (qemu_uuid_set) {
525         _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
526     }
527     g_free(buf);
528 
529     off = fdt_add_subnode(fdt, 0, "chosen");
530     if (machine->kernel_cmdline) {
531         _FDT((fdt_setprop_string(fdt, off, "bootargs",
532                                  machine->kernel_cmdline)));
533     }
534 
535     if (pnv->initrd_size) {
536         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
537         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
538 
539         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
540                                &start_prop, sizeof(start_prop))));
541         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
542                                &end_prop, sizeof(end_prop))));
543     }
544 
545     /* Populate device tree for each chip */
546     for (i = 0; i < pnv->num_chips; i++) {
547         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
548     }
549 
550     /* Populate ISA devices on chip 0 */
551     pnv_dt_isa(pnv, fdt);
552 
553     if (pnv->bmc) {
554         pnv_dt_bmc_sensors(pnv->bmc, fdt);
555     }
556 
557     /* Create an extra node for power management on machines that support it */
558     if (pmc->dt_power_mgt) {
559         pmc->dt_power_mgt(pnv, fdt);
560     }
561 
562     return fdt;
563 }
564 
565 static void pnv_powerdown_notify(Notifier *n, void *opaque)
566 {
567     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
568 
569     if (pnv->bmc) {
570         pnv_bmc_powerdown(pnv->bmc);
571     }
572 }
573 
574 static void pnv_reset(MachineState *machine)
575 {
576     PnvMachineState *pnv = PNV_MACHINE(machine);
577     IPMIBmc *bmc;
578     void *fdt;
579 
580     qemu_devices_reset();
581 
582     /*
583      * The machine should provide by default an internal BMC simulator.
584      * If not, try to use the BMC device that was provided on the command
585      * line.
586      */
587     bmc = pnv_bmc_find(&error_fatal);
588     if (!pnv->bmc) {
589         if (!bmc) {
590             if (!qtest_enabled()) {
591                 warn_report("machine has no BMC device. Use '-device "
592                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
593                             "to define one");
594             }
595         } else {
596             pnv_bmc_set_pnor(bmc, pnv->pnor);
597             pnv->bmc = bmc;
598         }
599     }
600 
601     fdt = pnv_dt_create(machine);
602 
603     /* Pack resulting tree */
604     _FDT((fdt_pack(fdt)));
605 
606     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
607     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
608 
609     g_free(fdt);
610 }
611 
612 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
613 {
614     Pnv8Chip *chip8 = PNV8_CHIP(chip);
615     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
616 }
617 
618 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
619 {
620     Pnv8Chip *chip8 = PNV8_CHIP(chip);
621     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
622 }
623 
624 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
625 {
626     Pnv9Chip *chip9 = PNV9_CHIP(chip);
627     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
628 }
629 
630 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
631 {
632     Pnv10Chip *chip10 = PNV10_CHIP(chip);
633     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
634 }
635 
636 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
637 {
638     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
639 }
640 
641 static int pnv_chip_power8_pic_print_info_child(Object *child, void *opaque)
642 {
643     Monitor *mon = opaque;
644     PnvPHB3 *phb3 = (PnvPHB3 *) object_dynamic_cast(child, TYPE_PNV_PHB3);
645 
646     if (phb3) {
647         pnv_phb3_msi_pic_print_info(&phb3->msis, mon);
648         ics_pic_print_info(&phb3->lsis, mon);
649     }
650     return 0;
651 }
652 
653 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
654 {
655     Pnv8Chip *chip8 = PNV8_CHIP(chip);
656 
657     ics_pic_print_info(&chip8->psi.ics, mon);
658     object_child_foreach(OBJECT(chip),
659                          pnv_chip_power8_pic_print_info_child, mon);
660 }
661 
662 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
663 {
664     Monitor *mon = opaque;
665     PnvPHB4 *phb4 = (PnvPHB4 *) object_dynamic_cast(child, TYPE_PNV_PHB4);
666 
667     if (phb4) {
668         pnv_phb4_pic_print_info(phb4, mon);
669     }
670     return 0;
671 }
672 
673 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
674 {
675     Pnv9Chip *chip9 = PNV9_CHIP(chip);
676 
677     pnv_xive_pic_print_info(&chip9->xive, mon);
678     pnv_psi_pic_print_info(&chip9->psi, mon);
679 
680     object_child_foreach_recursive(OBJECT(chip),
681                          pnv_chip_power9_pic_print_info_child, mon);
682 }
683 
684 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
685                                                 uint32_t core_id)
686 {
687     return PNV_XSCOM_EX_BASE(core_id);
688 }
689 
690 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
691                                                 uint32_t core_id)
692 {
693     return PNV9_XSCOM_EC_BASE(core_id);
694 }
695 
696 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
697                                                  uint32_t core_id)
698 {
699     return PNV10_XSCOM_EC_BASE(core_id);
700 }
701 
702 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
703 {
704     PowerPCCPUClass *ppc_default =
705         POWERPC_CPU_CLASS(object_class_by_name(default_type));
706     PowerPCCPUClass *ppc =
707         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
708 
709     return ppc_default->pvr_match(ppc_default, ppc->pvr);
710 }
711 
712 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
713 {
714     ISADevice *dev = isa_new("isa-ipmi-bt");
715 
716     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
717     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
718     isa_realize_and_unref(dev, bus, &error_fatal);
719 }
720 
721 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
722 {
723     Pnv10Chip *chip10 = PNV10_CHIP(chip);
724 
725     pnv_psi_pic_print_info(&chip10->psi, mon);
726 }
727 
728 /* Always give the first 1GB to chip 0 else we won't boot */
729 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
730 {
731     MachineState *machine = MACHINE(pnv);
732     uint64_t ram_per_chip;
733 
734     assert(machine->ram_size >= 1 * GiB);
735 
736     ram_per_chip = machine->ram_size / pnv->num_chips;
737     if (ram_per_chip >= 1 * GiB) {
738         return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
739     }
740 
741     assert(pnv->num_chips > 1);
742 
743     ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
744     return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
745 }
746 
747 static void pnv_init(MachineState *machine)
748 {
749     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
750     PnvMachineState *pnv = PNV_MACHINE(machine);
751     MachineClass *mc = MACHINE_GET_CLASS(machine);
752     char *fw_filename;
753     long fw_size;
754     uint64_t chip_ram_start = 0;
755     int i;
756     char *chip_typename;
757     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
758     DeviceState *dev;
759 
760     if (kvm_enabled()) {
761         error_report("The powernv machine does not work with KVM acceleration");
762         exit(EXIT_FAILURE);
763     }
764 
765     /* allocate RAM */
766     if (machine->ram_size < mc->default_ram_size) {
767         char *sz = size_to_str(mc->default_ram_size);
768         error_report("Invalid RAM size, should be bigger than %s", sz);
769         g_free(sz);
770         exit(EXIT_FAILURE);
771     }
772     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
773 
774     /*
775      * Create our simple PNOR device
776      */
777     dev = qdev_new(TYPE_PNV_PNOR);
778     if (pnor) {
779         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
780     }
781     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
782     pnv->pnor = PNV_PNOR(dev);
783 
784     /* load skiboot firmware  */
785     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
786     if (!fw_filename) {
787         error_report("Could not find OPAL firmware '%s'", bios_name);
788         exit(1);
789     }
790 
791     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
792     if (fw_size < 0) {
793         error_report("Could not load OPAL firmware '%s'", fw_filename);
794         exit(1);
795     }
796     g_free(fw_filename);
797 
798     /* load kernel */
799     if (machine->kernel_filename) {
800         long kernel_size;
801 
802         kernel_size = load_image_targphys(machine->kernel_filename,
803                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
804         if (kernel_size < 0) {
805             error_report("Could not load kernel '%s'",
806                          machine->kernel_filename);
807             exit(1);
808         }
809     }
810 
811     /* load initrd */
812     if (machine->initrd_filename) {
813         pnv->initrd_base = INITRD_LOAD_ADDR;
814         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
815                                   pnv->initrd_base, INITRD_MAX_SIZE);
816         if (pnv->initrd_size < 0) {
817             error_report("Could not load initial ram disk '%s'",
818                          machine->initrd_filename);
819             exit(1);
820         }
821     }
822 
823     /* MSIs are supported on this platform */
824     msi_nonbroken = true;
825 
826     /*
827      * Check compatibility of the specified CPU with the machine
828      * default.
829      */
830     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
831         error_report("invalid CPU model '%s' for %s machine",
832                      machine->cpu_type, mc->name);
833         exit(1);
834     }
835 
836     /* Create the processor chips */
837     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
838     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
839                                     i, machine->cpu_type);
840     if (!object_class_by_name(chip_typename)) {
841         error_report("invalid chip model '%.*s' for %s machine",
842                      i, machine->cpu_type, mc->name);
843         exit(1);
844     }
845 
846     pnv->num_chips =
847         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
848     /*
849      * TODO: should we decide on how many chips we can create based
850      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
851      */
852     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
853         error_report("invalid number of chips: '%d'", pnv->num_chips);
854         error_printf(
855             "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
856         exit(1);
857     }
858 
859     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
860     for (i = 0; i < pnv->num_chips; i++) {
861         char chip_name[32];
862         Object *chip = OBJECT(qdev_new(chip_typename));
863         uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
864 
865         pnv->chips[i] = PNV_CHIP(chip);
866 
867         /* Distribute RAM among the chips  */
868         object_property_set_int(chip, "ram-start", chip_ram_start,
869                                 &error_fatal);
870         object_property_set_int(chip, "ram-size", chip_ram_size,
871                                 &error_fatal);
872         chip_ram_start += chip_ram_size;
873 
874         snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
875         object_property_add_child(OBJECT(pnv), chip_name, chip);
876         object_property_set_int(chip, "chip-id", i, &error_fatal);
877         object_property_set_int(chip, "nr-cores", machine->smp.cores,
878                                 &error_fatal);
879         object_property_set_int(chip, "nr-threads", machine->smp.threads,
880                                 &error_fatal);
881         /*
882          * The POWER8 machine use the XICS interrupt interface.
883          * Propagate the XICS fabric to the chip and its controllers.
884          */
885         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
886             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
887         }
888         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
889             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
890                                      &error_abort);
891         }
892         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
893     }
894     g_free(chip_typename);
895 
896     /* Instantiate ISA bus on chip 0 */
897     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
898 
899     /* Create serial port */
900     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
901 
902     /* Create an RTC ISA device too */
903     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
904 
905     /*
906      * Create the machine BMC simulator and the IPMI BT device for
907      * communication with the BMC
908      */
909     if (defaults_enabled()) {
910         pnv->bmc = pnv_bmc_create(pnv->pnor);
911         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
912     }
913 
914     /*
915      * The PNOR is mapped on the LPC FW address space by the BMC.
916      * Since we can not reach the remote BMC machine with LPC memops,
917      * map it always for now.
918      */
919     memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
920                                 &pnv->pnor->mmio);
921 
922     /*
923      * OpenPOWER systems use a IPMI SEL Event message to notify the
924      * host to powerdown
925      */
926     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
927     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
928 }
929 
930 /*
931  *    0:21  Reserved - Read as zeros
932  *   22:24  Chip ID
933  *   25:28  Core number
934  *   29:31  Thread ID
935  */
936 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
937 {
938     return (chip->chip_id << 7) | (core_id << 3);
939 }
940 
941 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
942                                         Error **errp)
943 {
944     Pnv8Chip *chip8 = PNV8_CHIP(chip);
945     Error *local_err = NULL;
946     Object *obj;
947     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
948 
949     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
950     if (local_err) {
951         error_propagate(errp, local_err);
952         return;
953     }
954 
955     pnv_cpu->intc = obj;
956 }
957 
958 
959 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
960 {
961     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
962 
963     icp_reset(ICP(pnv_cpu->intc));
964 }
965 
966 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
967 {
968     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
969 
970     icp_destroy(ICP(pnv_cpu->intc));
971     pnv_cpu->intc = NULL;
972 }
973 
974 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
975                                             Monitor *mon)
976 {
977     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
978 }
979 
980 /*
981  *    0:48  Reserved - Read as zeroes
982  *   49:52  Node ID
983  *   53:55  Chip ID
984  *   56     Reserved - Read as zero
985  *   57:61  Core number
986  *   62:63  Thread ID
987  *
988  * We only care about the lower bits. uint32_t is fine for the moment.
989  */
990 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
991 {
992     return (chip->chip_id << 8) | (core_id << 2);
993 }
994 
995 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
996 {
997     return (chip->chip_id << 8) | (core_id << 2);
998 }
999 
1000 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1001                                         Error **errp)
1002 {
1003     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1004     Error *local_err = NULL;
1005     Object *obj;
1006     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1007 
1008     /*
1009      * The core creates its interrupt presenter but the XIVE interrupt
1010      * controller object is initialized afterwards. Hopefully, it's
1011      * only used at runtime.
1012      */
1013     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1014                            &local_err);
1015     if (local_err) {
1016         error_propagate(errp, local_err);
1017         return;
1018     }
1019 
1020     pnv_cpu->intc = obj;
1021 }
1022 
1023 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1024 {
1025     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1026 
1027     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1028 }
1029 
1030 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1031 {
1032     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1033 
1034     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1035     pnv_cpu->intc = NULL;
1036 }
1037 
1038 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1039                                             Monitor *mon)
1040 {
1041     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1042 }
1043 
1044 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1045                                         Error **errp)
1046 {
1047     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1048 
1049     /* Will be defined when the interrupt controller is */
1050     pnv_cpu->intc = NULL;
1051 }
1052 
1053 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1054 {
1055     ;
1056 }
1057 
1058 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1059 {
1060     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1061 
1062     pnv_cpu->intc = NULL;
1063 }
1064 
1065 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1066                                              Monitor *mon)
1067 {
1068 }
1069 
1070 /*
1071  * Allowed core identifiers on a POWER8 Processor Chip :
1072  *
1073  * <EX0 reserved>
1074  *  EX1  - Venice only
1075  *  EX2  - Venice only
1076  *  EX3  - Venice only
1077  *  EX4
1078  *  EX5
1079  *  EX6
1080  * <EX7,8 reserved> <reserved>
1081  *  EX9  - Venice only
1082  *  EX10 - Venice only
1083  *  EX11 - Venice only
1084  *  EX12
1085  *  EX13
1086  *  EX14
1087  * <EX15 reserved>
1088  */
1089 #define POWER8E_CORE_MASK  (0x7070ull)
1090 #define POWER8_CORE_MASK   (0x7e7eull)
1091 
1092 /*
1093  * POWER9 has 24 cores, ids starting at 0x0
1094  */
1095 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1096 
1097 
1098 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1099 
1100 static void pnv_chip_power8_instance_init(Object *obj)
1101 {
1102     PnvChip *chip = PNV_CHIP(obj);
1103     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1104     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1105     int i;
1106 
1107     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1108                              (Object **)&chip8->xics,
1109                              object_property_allow_set_link,
1110                              OBJ_PROP_LINK_STRONG);
1111 
1112     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1113 
1114     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1115 
1116     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1117 
1118     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1119 
1120     for (i = 0; i < pcc->num_phbs; i++) {
1121         object_initialize_child(obj, "phb[*]", &chip8->phbs[i], TYPE_PNV_PHB3);
1122     }
1123 
1124     /*
1125      * Number of PHBs is the chip default
1126      */
1127     chip->num_phbs = pcc->num_phbs;
1128 }
1129 
1130 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1131  {
1132     PnvChip *chip = PNV_CHIP(chip8);
1133     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1134     int i, j;
1135     char *name;
1136 
1137     name = g_strdup_printf("icp-%x", chip->chip_id);
1138     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1139     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1140     g_free(name);
1141 
1142     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1143 
1144     /* Map the ICP registers for each thread */
1145     for (i = 0; i < chip->nr_cores; i++) {
1146         PnvCore *pnv_core = chip->cores[i];
1147         int core_hwid = CPU_CORE(pnv_core)->core_id;
1148 
1149         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1150             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1151             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1152 
1153             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1154                                         &icp->mmio);
1155         }
1156     }
1157 }
1158 
1159 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1160 {
1161     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1162     PnvChip *chip = PNV_CHIP(dev);
1163     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1164     Pnv8Psi *psi8 = &chip8->psi;
1165     Error *local_err = NULL;
1166     int i;
1167 
1168     assert(chip8->xics);
1169 
1170     /* XSCOM bridge is first */
1171     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1172     if (local_err) {
1173         error_propagate(errp, local_err);
1174         return;
1175     }
1176     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1177 
1178     pcc->parent_realize(dev, &local_err);
1179     if (local_err) {
1180         error_propagate(errp, local_err);
1181         return;
1182     }
1183 
1184     /* Processor Service Interface (PSI) Host Bridge */
1185     object_property_set_int(OBJECT(&chip8->psi), "bar", PNV_PSIHB_BASE(chip),
1186                             &error_fatal);
1187     object_property_set_link(OBJECT(&chip8->psi), ICS_PROP_XICS,
1188                              OBJECT(chip8->xics), &error_abort);
1189     if (!qdev_realize(DEVICE(&chip8->psi), NULL, errp)) {
1190         return;
1191     }
1192     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1193                             &PNV_PSI(psi8)->xscom_regs);
1194 
1195     /* Create LPC controller */
1196     object_property_set_link(OBJECT(&chip8->lpc), "psi", OBJECT(&chip8->psi),
1197                              &error_abort);
1198     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1199     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1200 
1201     chip->fw_mr = &chip8->lpc.isa_fw;
1202     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1203                                             (uint64_t) PNV_XSCOM_BASE(chip),
1204                                             PNV_XSCOM_LPC_BASE);
1205 
1206     /*
1207      * Interrupt Management Area. This is the memory region holding
1208      * all the Interrupt Control Presenter (ICP) registers
1209      */
1210     pnv_chip_icp_realize(chip8, &local_err);
1211     if (local_err) {
1212         error_propagate(errp, local_err);
1213         return;
1214     }
1215 
1216     /* Create the simplified OCC model */
1217     object_property_set_link(OBJECT(&chip8->occ), "psi", OBJECT(&chip8->psi),
1218                              &error_abort);
1219     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1220         return;
1221     }
1222     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1223 
1224     /* OCC SRAM model */
1225     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1226                                 &chip8->occ.sram_regs);
1227 
1228     /* HOMER */
1229     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1230                              &error_abort);
1231     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1232         return;
1233     }
1234     /* Homer Xscom region */
1235     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1236 
1237     /* Homer mmio region */
1238     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1239                                 &chip8->homer.regs);
1240 
1241     /* PHB3 controllers */
1242     for (i = 0; i < chip->num_phbs; i++) {
1243         PnvPHB3 *phb = &chip8->phbs[i];
1244 
1245         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1246         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1247                                 &error_fatal);
1248         object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1249                                  &error_fatal);
1250         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1251             return;
1252         }
1253     }
1254 }
1255 
1256 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1257 {
1258     addr &= (PNV_XSCOM_SIZE - 1);
1259     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1260 }
1261 
1262 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1263 {
1264     DeviceClass *dc = DEVICE_CLASS(klass);
1265     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1266 
1267     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1268     k->cores_mask = POWER8E_CORE_MASK;
1269     k->num_phbs = 3;
1270     k->core_pir = pnv_chip_core_pir_p8;
1271     k->intc_create = pnv_chip_power8_intc_create;
1272     k->intc_reset = pnv_chip_power8_intc_reset;
1273     k->intc_destroy = pnv_chip_power8_intc_destroy;
1274     k->intc_print_info = pnv_chip_power8_intc_print_info;
1275     k->isa_create = pnv_chip_power8_isa_create;
1276     k->dt_populate = pnv_chip_power8_dt_populate;
1277     k->pic_print_info = pnv_chip_power8_pic_print_info;
1278     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1279     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1280     dc->desc = "PowerNV Chip POWER8E";
1281 
1282     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1283                                     &k->parent_realize);
1284 }
1285 
1286 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1287 {
1288     DeviceClass *dc = DEVICE_CLASS(klass);
1289     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1290 
1291     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1292     k->cores_mask = POWER8_CORE_MASK;
1293     k->num_phbs = 3;
1294     k->core_pir = pnv_chip_core_pir_p8;
1295     k->intc_create = pnv_chip_power8_intc_create;
1296     k->intc_reset = pnv_chip_power8_intc_reset;
1297     k->intc_destroy = pnv_chip_power8_intc_destroy;
1298     k->intc_print_info = pnv_chip_power8_intc_print_info;
1299     k->isa_create = pnv_chip_power8_isa_create;
1300     k->dt_populate = pnv_chip_power8_dt_populate;
1301     k->pic_print_info = pnv_chip_power8_pic_print_info;
1302     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1303     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1304     dc->desc = "PowerNV Chip POWER8";
1305 
1306     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1307                                     &k->parent_realize);
1308 }
1309 
1310 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1311 {
1312     DeviceClass *dc = DEVICE_CLASS(klass);
1313     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1314 
1315     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1316     k->cores_mask = POWER8_CORE_MASK;
1317     k->num_phbs = 4;
1318     k->core_pir = pnv_chip_core_pir_p8;
1319     k->intc_create = pnv_chip_power8_intc_create;
1320     k->intc_reset = pnv_chip_power8_intc_reset;
1321     k->intc_destroy = pnv_chip_power8_intc_destroy;
1322     k->intc_print_info = pnv_chip_power8_intc_print_info;
1323     k->isa_create = pnv_chip_power8nvl_isa_create;
1324     k->dt_populate = pnv_chip_power8_dt_populate;
1325     k->pic_print_info = pnv_chip_power8_pic_print_info;
1326     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1327     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1328     dc->desc = "PowerNV Chip POWER8NVL";
1329 
1330     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1331                                     &k->parent_realize);
1332 }
1333 
1334 static void pnv_chip_power9_instance_init(Object *obj)
1335 {
1336     PnvChip *chip = PNV_CHIP(obj);
1337     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1338     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1339     int i;
1340 
1341     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1342     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1343                               "xive-fabric");
1344 
1345     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1346 
1347     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1348 
1349     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1350 
1351     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1352 
1353     /* Number of PECs is the chip default */
1354     chip->num_pecs = pcc->num_pecs;
1355 
1356     for (i = 0; i < chip->num_pecs; i++) {
1357         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1358                                 TYPE_PNV_PHB4_PEC);
1359     }
1360 }
1361 
1362 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1363 {
1364     PnvChip *chip = PNV_CHIP(chip9);
1365     int i;
1366 
1367     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1368     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1369 
1370     for (i = 0; i < chip9->nr_quads; i++) {
1371         char eq_name[32];
1372         PnvQuad *eq = &chip9->quads[i];
1373         PnvCore *pnv_core = chip->cores[i * 4];
1374         int core_id = CPU_CORE(pnv_core)->core_id;
1375 
1376         snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1377         object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1378                                            sizeof(*eq), TYPE_PNV_QUAD,
1379                                            &error_fatal, NULL);
1380 
1381         object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1382         qdev_realize(DEVICE(eq), NULL, &error_fatal);
1383 
1384         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1385                                 &eq->xscom_regs);
1386     }
1387 }
1388 
1389 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1390 {
1391     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1392     int i;
1393 
1394     for (i = 0; i < chip->num_pecs; i++) {
1395         PnvPhb4PecState *pec = &chip9->pecs[i];
1396         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1397         uint32_t pec_nest_base;
1398         uint32_t pec_pci_base;
1399 
1400         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1401         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1402                                 &error_fatal);
1403         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1404                                  &error_fatal);
1405         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1406             return;
1407         }
1408 
1409         pec_nest_base = pecc->xscom_nest_base(pec);
1410         pec_pci_base = pecc->xscom_pci_base(pec);
1411 
1412         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1413         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1414     }
1415 }
1416 
1417 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1418 {
1419     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1420     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1421     PnvChip *chip = PNV_CHIP(dev);
1422     Pnv9Psi *psi9 = &chip9->psi;
1423     Error *local_err = NULL;
1424 
1425     /* XSCOM bridge is first */
1426     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1427     if (local_err) {
1428         error_propagate(errp, local_err);
1429         return;
1430     }
1431     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1432 
1433     pcc->parent_realize(dev, &local_err);
1434     if (local_err) {
1435         error_propagate(errp, local_err);
1436         return;
1437     }
1438 
1439     pnv_chip_quad_realize(chip9, &local_err);
1440     if (local_err) {
1441         error_propagate(errp, local_err);
1442         return;
1443     }
1444 
1445     /* XIVE interrupt controller (POWER9) */
1446     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1447                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1448     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1449                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1450     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1451                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1452     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1453                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1454     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1455                              &error_abort);
1456     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1457         return;
1458     }
1459     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1460                             &chip9->xive.xscom_regs);
1461 
1462     /* Processor Service Interface (PSI) Host Bridge */
1463     object_property_set_int(OBJECT(&chip9->psi), "bar", PNV9_PSIHB_BASE(chip),
1464                             &error_fatal);
1465     if (!qdev_realize(DEVICE(&chip9->psi), NULL, errp)) {
1466         return;
1467     }
1468     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1469                             &PNV_PSI(psi9)->xscom_regs);
1470 
1471     /* LPC */
1472     object_property_set_link(OBJECT(&chip9->lpc), "psi", OBJECT(&chip9->psi),
1473                              &error_abort);
1474     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1475         return;
1476     }
1477     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1478                                 &chip9->lpc.xscom_regs);
1479 
1480     chip->fw_mr = &chip9->lpc.isa_fw;
1481     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1482                                             (uint64_t) PNV9_LPCM_BASE(chip));
1483 
1484     /* Create the simplified OCC model */
1485     object_property_set_link(OBJECT(&chip9->occ), "psi", OBJECT(&chip9->psi),
1486                              &error_abort);
1487     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1488         return;
1489     }
1490     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1491 
1492     /* OCC SRAM model */
1493     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1494                                 &chip9->occ.sram_regs);
1495 
1496     /* HOMER */
1497     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1498                              &error_abort);
1499     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1500         return;
1501     }
1502     /* Homer Xscom region */
1503     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1504 
1505     /* Homer mmio region */
1506     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1507                                 &chip9->homer.regs);
1508 
1509     /* PEC PHBs */
1510     pnv_chip_power9_pec_realize(chip, &local_err);
1511     if (local_err) {
1512         error_propagate(errp, local_err);
1513         return;
1514     }
1515 }
1516 
1517 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1518 {
1519     addr &= (PNV9_XSCOM_SIZE - 1);
1520     return addr >> 3;
1521 }
1522 
1523 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1524 {
1525     DeviceClass *dc = DEVICE_CLASS(klass);
1526     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1527 
1528     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1529     k->cores_mask = POWER9_CORE_MASK;
1530     k->core_pir = pnv_chip_core_pir_p9;
1531     k->intc_create = pnv_chip_power9_intc_create;
1532     k->intc_reset = pnv_chip_power9_intc_reset;
1533     k->intc_destroy = pnv_chip_power9_intc_destroy;
1534     k->intc_print_info = pnv_chip_power9_intc_print_info;
1535     k->isa_create = pnv_chip_power9_isa_create;
1536     k->dt_populate = pnv_chip_power9_dt_populate;
1537     k->pic_print_info = pnv_chip_power9_pic_print_info;
1538     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1539     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1540     dc->desc = "PowerNV Chip POWER9";
1541     k->num_pecs = PNV9_CHIP_MAX_PEC;
1542 
1543     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1544                                     &k->parent_realize);
1545 }
1546 
1547 static void pnv_chip_power10_instance_init(Object *obj)
1548 {
1549     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1550 
1551     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1552     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1553 }
1554 
1555 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1556 {
1557     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1558     PnvChip *chip = PNV_CHIP(dev);
1559     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1560     Error *local_err = NULL;
1561 
1562     /* XSCOM bridge is first */
1563     pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1564     if (local_err) {
1565         error_propagate(errp, local_err);
1566         return;
1567     }
1568     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1569 
1570     pcc->parent_realize(dev, &local_err);
1571     if (local_err) {
1572         error_propagate(errp, local_err);
1573         return;
1574     }
1575 
1576     /* Processor Service Interface (PSI) Host Bridge */
1577     object_property_set_int(OBJECT(&chip10->psi), "bar",
1578                             PNV10_PSIHB_BASE(chip), &error_fatal);
1579     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1580         return;
1581     }
1582     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1583                             &PNV_PSI(&chip10->psi)->xscom_regs);
1584 
1585     /* LPC */
1586     object_property_set_link(OBJECT(&chip10->lpc), "psi",
1587                              OBJECT(&chip10->psi), &error_abort);
1588     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1589         return;
1590     }
1591     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1592                                 &chip10->lpc.xscom_regs);
1593 
1594     chip->fw_mr = &chip10->lpc.isa_fw;
1595     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1596                                             (uint64_t) PNV10_LPCM_BASE(chip));
1597 }
1598 
1599 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1600 {
1601     addr &= (PNV10_XSCOM_SIZE - 1);
1602     return addr >> 3;
1603 }
1604 
1605 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1606 {
1607     DeviceClass *dc = DEVICE_CLASS(klass);
1608     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1609 
1610     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1611     k->cores_mask = POWER10_CORE_MASK;
1612     k->core_pir = pnv_chip_core_pir_p10;
1613     k->intc_create = pnv_chip_power10_intc_create;
1614     k->intc_reset = pnv_chip_power10_intc_reset;
1615     k->intc_destroy = pnv_chip_power10_intc_destroy;
1616     k->intc_print_info = pnv_chip_power10_intc_print_info;
1617     k->isa_create = pnv_chip_power10_isa_create;
1618     k->dt_populate = pnv_chip_power10_dt_populate;
1619     k->pic_print_info = pnv_chip_power10_pic_print_info;
1620     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1621     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1622     dc->desc = "PowerNV Chip POWER10";
1623 
1624     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1625                                     &k->parent_realize);
1626 }
1627 
1628 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1629 {
1630     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1631     int cores_max;
1632 
1633     /*
1634      * No custom mask for this chip, let's use the default one from *
1635      * the chip class
1636      */
1637     if (!chip->cores_mask) {
1638         chip->cores_mask = pcc->cores_mask;
1639     }
1640 
1641     /* filter alien core ids ! some are reserved */
1642     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1643         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1644                    chip->cores_mask);
1645         return;
1646     }
1647     chip->cores_mask &= pcc->cores_mask;
1648 
1649     /* now that we have a sane layout, let check the number of cores */
1650     cores_max = ctpop64(chip->cores_mask);
1651     if (chip->nr_cores > cores_max) {
1652         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1653                    cores_max);
1654         return;
1655     }
1656 }
1657 
1658 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1659 {
1660     Error *error = NULL;
1661     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1662     const char *typename = pnv_chip_core_typename(chip);
1663     int i, core_hwid;
1664     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1665 
1666     if (!object_class_by_name(typename)) {
1667         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1668         return;
1669     }
1670 
1671     /* Cores */
1672     pnv_chip_core_sanitize(chip, &error);
1673     if (error) {
1674         error_propagate(errp, error);
1675         return;
1676     }
1677 
1678     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1679 
1680     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1681              && (i < chip->nr_cores); core_hwid++) {
1682         char core_name[32];
1683         PnvCore *pnv_core;
1684         uint64_t xscom_core_base;
1685 
1686         if (!(chip->cores_mask & (1ull << core_hwid))) {
1687             continue;
1688         }
1689 
1690         pnv_core = PNV_CORE(object_new(typename));
1691 
1692         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1693         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
1694         chip->cores[i] = pnv_core;
1695         object_property_set_int(OBJECT(pnv_core), "nr-threads",
1696                                 chip->nr_threads, &error_fatal);
1697         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
1698                                 core_hwid, &error_fatal);
1699         object_property_set_int(OBJECT(pnv_core), "pir",
1700                                 pcc->core_pir(chip, core_hwid), &error_fatal);
1701         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
1702                                 &error_fatal);
1703         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
1704                                  &error_abort);
1705         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
1706 
1707         /* Each core has an XSCOM MMIO region */
1708         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1709 
1710         pnv_xscom_add_subregion(chip, xscom_core_base,
1711                                 &pnv_core->xscom_regs);
1712         i++;
1713     }
1714 }
1715 
1716 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1717 {
1718     PnvChip *chip = PNV_CHIP(dev);
1719     Error *error = NULL;
1720 
1721     /* Cores */
1722     pnv_chip_core_realize(chip, &error);
1723     if (error) {
1724         error_propagate(errp, error);
1725         return;
1726     }
1727 }
1728 
1729 static Property pnv_chip_properties[] = {
1730     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1731     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1732     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1733     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1734     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1735     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1736     DEFINE_PROP_END_OF_LIST(),
1737 };
1738 
1739 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1740 {
1741     DeviceClass *dc = DEVICE_CLASS(klass);
1742 
1743     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1744     dc->realize = pnv_chip_realize;
1745     device_class_set_props(dc, pnv_chip_properties);
1746     dc->desc = "PowerNV Chip";
1747 }
1748 
1749 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1750 {
1751     int i, j;
1752 
1753     for (i = 0; i < chip->nr_cores; i++) {
1754         PnvCore *pc = chip->cores[i];
1755         CPUCore *cc = CPU_CORE(pc);
1756 
1757         for (j = 0; j < cc->nr_threads; j++) {
1758             if (ppc_cpu_pir(pc->threads[j]) == pir) {
1759                 return pc->threads[j];
1760             }
1761         }
1762     }
1763     return NULL;
1764 }
1765 
1766 typedef struct ForeachPhb3Args {
1767     int irq;
1768     ICSState *ics;
1769 } ForeachPhb3Args;
1770 
1771 static int pnv_ics_get_child(Object *child, void *opaque)
1772 {
1773     ForeachPhb3Args *args = opaque;
1774     PnvPHB3 *phb3 = (PnvPHB3 *) object_dynamic_cast(child, TYPE_PNV_PHB3);
1775 
1776     if (phb3) {
1777         if (ics_valid_irq(&phb3->lsis, args->irq)) {
1778             args->ics = &phb3->lsis;
1779         }
1780         if (ics_valid_irq(ICS(&phb3->msis), args->irq)) {
1781             args->ics = ICS(&phb3->msis);
1782         }
1783     }
1784     return args->ics ? 1 : 0;
1785 }
1786 
1787 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1788 {
1789     PnvMachineState *pnv = PNV_MACHINE(xi);
1790     ForeachPhb3Args args = { irq, NULL };
1791     int i;
1792 
1793     for (i = 0; i < pnv->num_chips; i++) {
1794         PnvChip *chip = pnv->chips[i];
1795         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1796 
1797         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1798             return &chip8->psi.ics;
1799         }
1800 
1801         object_child_foreach(OBJECT(chip), pnv_ics_get_child, &args);
1802         if (args.ics) {
1803             return args.ics;
1804         }
1805     }
1806     return NULL;
1807 }
1808 
1809 static int pnv_ics_resend_child(Object *child, void *opaque)
1810 {
1811     PnvPHB3 *phb3 = (PnvPHB3 *) object_dynamic_cast(child, TYPE_PNV_PHB3);
1812 
1813     if (phb3) {
1814         ics_resend(&phb3->lsis);
1815         ics_resend(ICS(&phb3->msis));
1816     }
1817     return 0;
1818 }
1819 
1820 static void pnv_ics_resend(XICSFabric *xi)
1821 {
1822     PnvMachineState *pnv = PNV_MACHINE(xi);
1823     int i;
1824 
1825     for (i = 0; i < pnv->num_chips; i++) {
1826         PnvChip *chip = pnv->chips[i];
1827         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1828 
1829         ics_resend(&chip8->psi.ics);
1830         object_child_foreach(OBJECT(chip), pnv_ics_resend_child, NULL);
1831     }
1832 }
1833 
1834 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1835 {
1836     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1837 
1838     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1839 }
1840 
1841 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1842                                Monitor *mon)
1843 {
1844     PnvMachineState *pnv = PNV_MACHINE(obj);
1845     int i;
1846     CPUState *cs;
1847 
1848     CPU_FOREACH(cs) {
1849         PowerPCCPU *cpu = POWERPC_CPU(cs);
1850 
1851         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1852         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1853                                                            mon);
1854     }
1855 
1856     for (i = 0; i < pnv->num_chips; i++) {
1857         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1858     }
1859 }
1860 
1861 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1862                          uint8_t nvt_blk, uint32_t nvt_idx,
1863                          bool cam_ignore, uint8_t priority,
1864                          uint32_t logic_serv,
1865                          XiveTCTXMatch *match)
1866 {
1867     PnvMachineState *pnv = PNV_MACHINE(xfb);
1868     int total_count = 0;
1869     int i;
1870 
1871     for (i = 0; i < pnv->num_chips; i++) {
1872         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1873         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1874         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1875         int count;
1876 
1877         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1878                                priority, logic_serv, match);
1879 
1880         if (count < 0) {
1881             return count;
1882         }
1883 
1884         total_count += count;
1885     }
1886 
1887     return total_count;
1888 }
1889 
1890 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1891 {
1892     MachineClass *mc = MACHINE_CLASS(oc);
1893     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1894     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1895     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1896 
1897     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1898     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1899 
1900     xic->icp_get = pnv_icp_get;
1901     xic->ics_get = pnv_ics_get;
1902     xic->ics_resend = pnv_ics_resend;
1903 
1904     pmc->compat = compat;
1905     pmc->compat_size = sizeof(compat);
1906 }
1907 
1908 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1909 {
1910     MachineClass *mc = MACHINE_CLASS(oc);
1911     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1912     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1913     static const char compat[] = "qemu,powernv9\0ibm,powernv";
1914 
1915     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1916     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1917     xfc->match_nvt = pnv_match_nvt;
1918 
1919     mc->alias = "powernv";
1920 
1921     pmc->compat = compat;
1922     pmc->compat_size = sizeof(compat);
1923     pmc->dt_power_mgt = pnv_dt_power_mgt;
1924 }
1925 
1926 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1927 {
1928     MachineClass *mc = MACHINE_CLASS(oc);
1929     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1930     static const char compat[] = "qemu,powernv10\0ibm,powernv";
1931 
1932     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1933     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
1934 
1935     pmc->compat = compat;
1936     pmc->compat_size = sizeof(compat);
1937     pmc->dt_power_mgt = pnv_dt_power_mgt;
1938 }
1939 
1940 static bool pnv_machine_get_hb(Object *obj, Error **errp)
1941 {
1942     PnvMachineState *pnv = PNV_MACHINE(obj);
1943 
1944     return !!pnv->fw_load_addr;
1945 }
1946 
1947 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
1948 {
1949     PnvMachineState *pnv = PNV_MACHINE(obj);
1950 
1951     if (value) {
1952         pnv->fw_load_addr = 0x8000000;
1953     }
1954 }
1955 
1956 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
1957 {
1958     PowerPCCPU *cpu = POWERPC_CPU(cs);
1959     CPUPPCState *env = &cpu->env;
1960 
1961     cpu_synchronize_state(cs);
1962     ppc_cpu_do_system_reset(cs);
1963     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
1964         /*
1965          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
1966          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
1967          * (PPC_BIT(43)).
1968          */
1969         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
1970             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
1971             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
1972         }
1973     } else {
1974         /*
1975          * For non-powersave system resets, SRR1[42:45] are defined to be
1976          * implementation-dependent. The POWER9 User Manual specifies that
1977          * an external (SCOM driven, which may come from a BMC nmi command or
1978          * another CPU requesting a NMI IPI) system reset exception should be
1979          * 0b0010 (PPC_BIT(44)).
1980          */
1981         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
1982     }
1983 }
1984 
1985 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
1986 {
1987     CPUState *cs;
1988 
1989     CPU_FOREACH(cs) {
1990         async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
1991     }
1992 }
1993 
1994 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1995 {
1996     MachineClass *mc = MACHINE_CLASS(oc);
1997     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1998     NMIClass *nc = NMI_CLASS(oc);
1999 
2000     mc->desc = "IBM PowerNV (Non-Virtualized)";
2001     mc->init = pnv_init;
2002     mc->reset = pnv_reset;
2003     mc->max_cpus = MAX_CPUS;
2004     /* Pnv provides a AHCI device for storage */
2005     mc->block_default_type = IF_IDE;
2006     mc->no_parallel = 1;
2007     mc->default_boot_order = NULL;
2008     /*
2009      * RAM defaults to less than 2048 for 32-bit hosts, and large
2010      * enough to fit the maximum initrd size at it's load address
2011      */
2012     mc->default_ram_size = 1 * GiB;
2013     mc->default_ram_id = "pnv.ram";
2014     ispc->print_info = pnv_pic_print_info;
2015     nc->nmi_monitor_handler = pnv_nmi;
2016 
2017     object_class_property_add_bool(oc, "hb-mode",
2018                                    pnv_machine_get_hb, pnv_machine_set_hb);
2019     object_class_property_set_description(oc, "hb-mode",
2020                               "Use a hostboot like boot loader");
2021 }
2022 
2023 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2024     {                                             \
2025         .name          = type,                    \
2026         .class_init    = class_initfn,            \
2027         .parent        = TYPE_PNV8_CHIP,          \
2028     }
2029 
2030 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2031     {                                             \
2032         .name          = type,                    \
2033         .class_init    = class_initfn,            \
2034         .parent        = TYPE_PNV9_CHIP,          \
2035     }
2036 
2037 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2038     {                                              \
2039         .name          = type,                     \
2040         .class_init    = class_initfn,             \
2041         .parent        = TYPE_PNV10_CHIP,          \
2042     }
2043 
2044 static const TypeInfo types[] = {
2045     {
2046         .name          = MACHINE_TYPE_NAME("powernv10"),
2047         .parent        = TYPE_PNV_MACHINE,
2048         .class_init    = pnv_machine_power10_class_init,
2049     },
2050     {
2051         .name          = MACHINE_TYPE_NAME("powernv9"),
2052         .parent        = TYPE_PNV_MACHINE,
2053         .class_init    = pnv_machine_power9_class_init,
2054         .interfaces = (InterfaceInfo[]) {
2055             { TYPE_XIVE_FABRIC },
2056             { },
2057         },
2058     },
2059     {
2060         .name          = MACHINE_TYPE_NAME("powernv8"),
2061         .parent        = TYPE_PNV_MACHINE,
2062         .class_init    = pnv_machine_power8_class_init,
2063         .interfaces = (InterfaceInfo[]) {
2064             { TYPE_XICS_FABRIC },
2065             { },
2066         },
2067     },
2068     {
2069         .name          = TYPE_PNV_MACHINE,
2070         .parent        = TYPE_MACHINE,
2071         .abstract       = true,
2072         .instance_size = sizeof(PnvMachineState),
2073         .class_init    = pnv_machine_class_init,
2074         .class_size    = sizeof(PnvMachineClass),
2075         .interfaces = (InterfaceInfo[]) {
2076             { TYPE_INTERRUPT_STATS_PROVIDER },
2077             { TYPE_NMI },
2078             { },
2079         },
2080     },
2081     {
2082         .name          = TYPE_PNV_CHIP,
2083         .parent        = TYPE_SYS_BUS_DEVICE,
2084         .class_init    = pnv_chip_class_init,
2085         .instance_size = sizeof(PnvChip),
2086         .class_size    = sizeof(PnvChipClass),
2087         .abstract      = true,
2088     },
2089 
2090     /*
2091      * P10 chip and variants
2092      */
2093     {
2094         .name          = TYPE_PNV10_CHIP,
2095         .parent        = TYPE_PNV_CHIP,
2096         .instance_init = pnv_chip_power10_instance_init,
2097         .instance_size = sizeof(Pnv10Chip),
2098     },
2099     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2100 
2101     /*
2102      * P9 chip and variants
2103      */
2104     {
2105         .name          = TYPE_PNV9_CHIP,
2106         .parent        = TYPE_PNV_CHIP,
2107         .instance_init = pnv_chip_power9_instance_init,
2108         .instance_size = sizeof(Pnv9Chip),
2109     },
2110     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2111 
2112     /*
2113      * P8 chip and variants
2114      */
2115     {
2116         .name          = TYPE_PNV8_CHIP,
2117         .parent        = TYPE_PNV_CHIP,
2118         .instance_init = pnv_chip_power8_instance_init,
2119         .instance_size = sizeof(Pnv8Chip),
2120     },
2121     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2122     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2123     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2124                           pnv_chip_power8nvl_class_init),
2125 };
2126 
2127 DEFINE_TYPES(types)
2128