xref: /openbmc/qemu/hw/openrisc/virt.c (revision 623d7e3551a6fc5693c06ea938c60fe281b52e27)
1 /*
2  * SPDX-License-Identifier: GPL-2.0-or-later
3  *
4  * OpenRISC QEMU virtual machine.
5  *
6  * (c) 2022 Stafford Horne <shorne@gmail.com>
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/error-report.h"
11 #include "qemu/guest-random.h"
12 #include "qapi/error.h"
13 #include "cpu.h"
14 #include "exec/address-spaces.h"
15 #include "hw/irq.h"
16 #include "hw/boards.h"
17 #include "hw/char/serial.h"
18 #include "hw/core/split-irq.h"
19 #include "hw/openrisc/boot.h"
20 #include "hw/misc/sifive_test.h"
21 #include "hw/pci/pci.h"
22 #include "hw/pci-host/gpex.h"
23 #include "hw/qdev-properties.h"
24 #include "hw/rtc/goldfish_rtc.h"
25 #include "hw/sysbus.h"
26 #include "hw/virtio/virtio-mmio.h"
27 #include "sysemu/device_tree.h"
28 #include "sysemu/sysemu.h"
29 #include "sysemu/qtest.h"
30 #include "sysemu/reset.h"
31 
32 #include <libfdt.h>
33 
34 #define VIRT_CPUS_MAX 4
35 #define VIRT_CLK_MHZ 20000000
36 
37 #define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME("virt")
38 #define VIRT_MACHINE(obj) \
39     OBJECT_CHECK(OR1KVirtState, (obj), TYPE_VIRT_MACHINE)
40 
41 typedef struct OR1KVirtState {
42     /*< private >*/
43     MachineState parent_obj;
44 
45     /*< public >*/
46     void *fdt;
47     int fdt_size;
48 
49 } OR1KVirtState;
50 
51 enum {
52     VIRT_DRAM,
53     VIRT_ECAM,
54     VIRT_MMIO,
55     VIRT_PIO,
56     VIRT_TEST,
57     VIRT_RTC,
58     VIRT_VIRTIO,
59     VIRT_UART,
60     VIRT_OMPIC,
61 };
62 
63 enum {
64     VIRT_OMPIC_IRQ = 1,
65     VIRT_UART_IRQ = 2,
66     VIRT_RTC_IRQ = 3,
67     VIRT_VIRTIO_IRQ = 4, /* to 12 */
68     VIRTIO_COUNT = 8,
69     VIRT_PCI_IRQ_BASE = 13, /* to 17 */
70 };
71 
72 static const struct MemmapEntry {
73     hwaddr base;
74     hwaddr size;
75 } virt_memmap[] = {
76     [VIRT_DRAM] =      { 0x00000000,          0 },
77     [VIRT_UART] =      { 0x90000000,      0x100 },
78     [VIRT_TEST] =      { 0x96000000,        0x8 },
79     [VIRT_RTC] =       { 0x96005000,     0x1000 },
80     [VIRT_VIRTIO] =    { 0x97000000,     0x1000 },
81     [VIRT_OMPIC] =     { 0x98000000, VIRT_CPUS_MAX * 8 },
82     [VIRT_ECAM] =      { 0x9e000000,  0x1000000 },
83     [VIRT_PIO] =       { 0x9f000000,  0x1000000 },
84     [VIRT_MMIO] =      { 0xa0000000, 0x10000000 },
85 };
86 
87 static struct openrisc_boot_info {
88     uint32_t bootstrap_pc;
89     uint32_t fdt_addr;
90 } boot_info;
91 
92 static void main_cpu_reset(void *opaque)
93 {
94     OpenRISCCPU *cpu = opaque;
95     CPUState *cs = CPU(cpu);
96 
97     cpu_reset(CPU(cpu));
98 
99     cpu_set_pc(cs, boot_info.bootstrap_pc);
100     cpu_set_gpr(&cpu->env, 3, boot_info.fdt_addr);
101 }
102 
103 static qemu_irq get_cpu_irq(OpenRISCCPU *cpus[], int cpunum, int irq_pin)
104 {
105     return qdev_get_gpio_in_named(DEVICE(cpus[cpunum]), "IRQ", irq_pin);
106 }
107 
108 static qemu_irq get_per_cpu_irq(OpenRISCCPU *cpus[], int num_cpus, int irq_pin)
109 {
110     int i;
111 
112     if (num_cpus > 1) {
113         DeviceState *splitter = qdev_new(TYPE_SPLIT_IRQ);
114         qdev_prop_set_uint32(splitter, "num-lines", num_cpus);
115         qdev_realize_and_unref(splitter, NULL, &error_fatal);
116         for (i = 0; i < num_cpus; i++) {
117             qdev_connect_gpio_out(splitter, i, get_cpu_irq(cpus, i, irq_pin));
118         }
119         return qdev_get_gpio_in(splitter, 0);
120     } else {
121         return get_cpu_irq(cpus, 0, irq_pin);
122     }
123 }
124 
125 static void openrisc_create_fdt(OR1KVirtState *state,
126                                 const struct MemmapEntry *memmap,
127                                 int num_cpus, uint64_t mem_size,
128                                 const char *cmdline,
129                                 int32_t *pic_phandle)
130 {
131     void *fdt;
132     int cpu;
133     char *nodename;
134     uint8_t rng_seed[32];
135 
136     fdt = state->fdt = create_device_tree(&state->fdt_size);
137     if (!fdt) {
138         error_report("create_device_tree() failed");
139         exit(1);
140     }
141 
142     qemu_fdt_setprop_string(fdt, "/", "compatible", "opencores,or1ksim");
143     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x1);
144     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x1);
145 
146     qemu_fdt_add_subnode(fdt, "/soc");
147     qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
148     qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
149     qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x1);
150     qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x1);
151 
152     nodename = g_strdup_printf("/memory@%" HWADDR_PRIx,
153                                memmap[VIRT_DRAM].base);
154     qemu_fdt_add_subnode(fdt, nodename);
155     qemu_fdt_setprop_cells(fdt, nodename, "reg",
156                            memmap[VIRT_DRAM].base, mem_size);
157     qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
158     g_free(nodename);
159 
160     qemu_fdt_add_subnode(fdt, "/cpus");
161     qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
162     qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
163 
164     for (cpu = 0; cpu < num_cpus; cpu++) {
165         nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
166         qemu_fdt_add_subnode(fdt, nodename);
167         qemu_fdt_setprop_string(fdt, nodename, "compatible",
168                                 "opencores,or1200-rtlsvn481");
169         qemu_fdt_setprop_cell(fdt, nodename, "reg", cpu);
170         qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency",
171                               VIRT_CLK_MHZ);
172         g_free(nodename);
173     }
174 
175     nodename = (char *)"/pic";
176     qemu_fdt_add_subnode(fdt, nodename);
177     *pic_phandle = qemu_fdt_alloc_phandle(fdt);
178     qemu_fdt_setprop_string(fdt, nodename, "compatible",
179                             "opencores,or1k-pic-level");
180     qemu_fdt_setprop_cell(fdt, nodename, "#interrupt-cells", 1);
181     qemu_fdt_setprop(fdt, nodename, "interrupt-controller", NULL, 0);
182     qemu_fdt_setprop_cell(fdt, nodename, "phandle", *pic_phandle);
183 
184     qemu_fdt_setprop_cell(fdt, "/", "interrupt-parent", *pic_phandle);
185 
186     qemu_fdt_add_subnode(fdt, "/chosen");
187     if (cmdline) {
188         qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
189     }
190 
191     /* Pass seed to RNG. */
192     qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
193     qemu_fdt_setprop(fdt, "/chosen", "rng-seed", rng_seed, sizeof(rng_seed));
194 
195     /* Create aliases node for use by devices. */
196     qemu_fdt_add_subnode(fdt, "/aliases");
197 }
198 
199 static void openrisc_virt_ompic_init(OR1KVirtState *state, hwaddr base,
200                                     hwaddr size, int num_cpus,
201                                     OpenRISCCPU *cpus[], int irq_pin)
202 {
203     void *fdt = state->fdt;
204     DeviceState *dev;
205     SysBusDevice *s;
206     char *nodename;
207     int i;
208 
209     dev = qdev_new("or1k-ompic");
210     qdev_prop_set_uint32(dev, "num-cpus", num_cpus);
211 
212     s = SYS_BUS_DEVICE(dev);
213     sysbus_realize_and_unref(s, &error_fatal);
214     for (i = 0; i < num_cpus; i++) {
215         sysbus_connect_irq(s, i, get_cpu_irq(cpus, i, irq_pin));
216     }
217     sysbus_mmio_map(s, 0, base);
218 
219     /* Add device tree node for ompic. */
220     nodename = g_strdup_printf("/ompic@%" HWADDR_PRIx, base);
221     qemu_fdt_add_subnode(fdt, nodename);
222     qemu_fdt_setprop_string(fdt, nodename, "compatible", "openrisc,ompic");
223     qemu_fdt_setprop_cells(fdt, nodename, "reg", base, size);
224     qemu_fdt_setprop(fdt, nodename, "interrupt-controller", NULL, 0);
225     qemu_fdt_setprop_cell(fdt, nodename, "#interrupt-cells", 0);
226     qemu_fdt_setprop_cell(fdt, nodename, "interrupts", irq_pin);
227     g_free(nodename);
228 }
229 
230 static void openrisc_virt_serial_init(OR1KVirtState *state, hwaddr base,
231                                      hwaddr size, int num_cpus,
232                                      OpenRISCCPU *cpus[], int irq_pin)
233 {
234     void *fdt = state->fdt;
235     char *nodename;
236     qemu_irq serial_irq = get_per_cpu_irq(cpus, num_cpus, irq_pin);
237 
238     serial_mm_init(get_system_memory(), base, 0, serial_irq, 115200,
239                    serial_hd(0), DEVICE_NATIVE_ENDIAN);
240 
241     /* Add device tree node for serial. */
242     nodename = g_strdup_printf("/serial@%" HWADDR_PRIx, base);
243     qemu_fdt_add_subnode(fdt, nodename);
244     qemu_fdt_setprop_string(fdt, nodename, "compatible", "ns16550a");
245     qemu_fdt_setprop_cells(fdt, nodename, "reg", base, size);
246     qemu_fdt_setprop_cell(fdt, nodename, "interrupts", irq_pin);
247     qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency", VIRT_CLK_MHZ);
248     qemu_fdt_setprop(fdt, nodename, "big-endian", NULL, 0);
249 
250     /* The /chosen node is created during fdt creation. */
251     qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", nodename);
252     qemu_fdt_setprop_string(fdt, "/aliases", "uart0", nodename);
253     g_free(nodename);
254 }
255 
256 static void openrisc_virt_test_init(OR1KVirtState *state, hwaddr base,
257                                    hwaddr size)
258 {
259     void *fdt = state->fdt;
260     int test_ph;
261     char *nodename;
262 
263     /* SiFive Test MMIO device */
264     sifive_test_create(base);
265 
266     /* SiFive Test MMIO Reset device FDT */
267     nodename = g_strdup_printf("/soc/test@%" HWADDR_PRIx, base);
268     qemu_fdt_add_subnode(fdt, nodename);
269     qemu_fdt_setprop_string(fdt, nodename, "compatible", "syscon");
270     test_ph = qemu_fdt_alloc_phandle(fdt);
271     qemu_fdt_setprop_cells(fdt, nodename, "reg", base, size);
272     qemu_fdt_setprop_cell(fdt, nodename, "phandle", test_ph);
273     qemu_fdt_setprop(fdt, nodename, "big-endian", NULL, 0);
274     g_free(nodename);
275 
276     nodename = g_strdup_printf("/soc/reboot");
277     qemu_fdt_add_subnode(fdt, nodename);
278     qemu_fdt_setprop_string(fdt, nodename, "compatible", "syscon-reboot");
279     qemu_fdt_setprop_cell(fdt, nodename, "regmap", test_ph);
280     qemu_fdt_setprop_cell(fdt, nodename, "offset", 0x0);
281     qemu_fdt_setprop_cell(fdt, nodename, "value", FINISHER_RESET);
282     g_free(nodename);
283 
284     nodename = g_strdup_printf("/soc/poweroff");
285     qemu_fdt_add_subnode(fdt, nodename);
286     qemu_fdt_setprop_string(fdt, nodename, "compatible", "syscon-poweroff");
287     qemu_fdt_setprop_cell(fdt, nodename, "regmap", test_ph);
288     qemu_fdt_setprop_cell(fdt, nodename, "offset", 0x0);
289     qemu_fdt_setprop_cell(fdt, nodename, "value", FINISHER_PASS);
290     g_free(nodename);
291 
292 }
293 
294 static void openrisc_virt_rtc_init(OR1KVirtState *state, hwaddr base,
295                                    hwaddr size, int num_cpus,
296                                    OpenRISCCPU *cpus[], int irq_pin)
297 {
298     void *fdt = state->fdt;
299     char *nodename;
300     qemu_irq rtc_irq = get_per_cpu_irq(cpus, num_cpus, irq_pin);
301 
302     /* Goldfish RTC */
303     sysbus_create_simple(TYPE_GOLDFISH_RTC, base, rtc_irq);
304 
305     /* Goldfish RTC FDT */
306     nodename = g_strdup_printf("/soc/rtc@%" HWADDR_PRIx, base);
307     qemu_fdt_add_subnode(fdt, nodename);
308     qemu_fdt_setprop_string(fdt, nodename, "compatible",
309                             "google,goldfish-rtc");
310     qemu_fdt_setprop_cells(fdt, nodename, "reg", base, size);
311     qemu_fdt_setprop_cell(fdt, nodename, "interrupts", irq_pin);
312     g_free(nodename);
313 
314 }
315 
316 static void create_pcie_irq_map(void *fdt, char *nodename, int irq_base,
317                                 uint32_t irqchip_phandle)
318 {
319     int pin, dev;
320     uint32_t irq_map_stride = 0;
321     uint32_t full_irq_map[GPEX_NUM_IRQS * GPEX_NUM_IRQS * 6] = {};
322     uint32_t *irq_map = full_irq_map;
323 
324     /*
325      * This code creates a standard swizzle of interrupts such that
326      * each device's first interrupt is based on it's PCI_SLOT number.
327      * (See pci_swizzle_map_irq_fn())
328      *
329      * We only need one entry per interrupt in the table (not one per
330      * possible slot) seeing the interrupt-map-mask will allow the table
331      * to wrap to any number of devices.
332      */
333     for (dev = 0; dev < GPEX_NUM_IRQS; dev++) {
334         int devfn = dev << 3;
335 
336         for (pin = 0; pin < GPEX_NUM_IRQS; pin++) {
337             int irq_nr = irq_base + ((pin + PCI_SLOT(devfn)) % GPEX_NUM_IRQS);
338             int i = 0;
339 
340             /* Fill PCI address cells */
341             irq_map[i++] = cpu_to_be32(devfn << 8);
342             irq_map[i++] = 0;
343             irq_map[i++] = 0;
344 
345             /* Fill PCI Interrupt cells */
346             irq_map[i++] = cpu_to_be32(pin + 1);
347 
348             /* Fill interrupt controller phandle and cells */
349             irq_map[i++] = cpu_to_be32(irqchip_phandle);
350             irq_map[i++] = cpu_to_be32(irq_nr);
351 
352             if (!irq_map_stride) {
353                 irq_map_stride = i;
354             }
355             irq_map += irq_map_stride;
356         }
357     }
358 
359     qemu_fdt_setprop(fdt, nodename, "interrupt-map", full_irq_map,
360                      GPEX_NUM_IRQS * GPEX_NUM_IRQS *
361                      irq_map_stride * sizeof(uint32_t));
362 
363     qemu_fdt_setprop_cells(fdt, nodename, "interrupt-map-mask",
364                            0x1800, 0, 0, 0x7);
365 }
366 
367 static void openrisc_virt_pcie_init(OR1KVirtState *state,
368                                     hwaddr ecam_base, hwaddr ecam_size,
369                                     hwaddr pio_base, hwaddr pio_size,
370                                     hwaddr mmio_base, hwaddr mmio_size,
371                                     int num_cpus, OpenRISCCPU *cpus[],
372                                     int irq_base, int32_t pic_phandle)
373 {
374     void *fdt = state->fdt;
375     char *nodename;
376     MemoryRegion *alias;
377     MemoryRegion *reg;
378     DeviceState *dev;
379     qemu_irq pcie_irq;
380     int i;
381 
382     dev = qdev_new(TYPE_GPEX_HOST);
383     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
384 
385     /* Map ECAM space. */
386     alias = g_new0(MemoryRegion, 1);
387     reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
388     memory_region_init_alias(alias, OBJECT(dev), "pcie-ecam",
389                              reg, 0, ecam_size);
390     memory_region_add_subregion(get_system_memory(), ecam_base, alias);
391 
392     /*
393      * Map the MMIO window into system address space so as to expose
394      * the section of PCI MMIO space which starts at the same base address
395      * (ie 1:1 mapping for that part of PCI MMIO space visible through
396      * the window).
397      */
398     alias = g_new0(MemoryRegion, 1);
399     reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
400     memory_region_init_alias(alias, OBJECT(dev), "pcie-mmio",
401                              reg, mmio_base, mmio_size);
402     memory_region_add_subregion(get_system_memory(), mmio_base, alias);
403 
404     /* Map IO port space. */
405     alias = g_new0(MemoryRegion, 1);
406     reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 2);
407     memory_region_init_alias(alias, OBJECT(dev), "pcie-pio",
408                              reg, 0, pio_size);
409     memory_region_add_subregion(get_system_memory(), pio_base, alias);
410 
411     /* Connect IRQ lines. */
412     for (i = 0; i < GPEX_NUM_IRQS; i++) {
413         pcie_irq = get_per_cpu_irq(cpus, num_cpus, irq_base + i);
414 
415         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pcie_irq);
416         gpex_set_irq_num(GPEX_HOST(dev), i, irq_base + i);
417     }
418 
419     nodename = g_strdup_printf("/soc/pci@%" HWADDR_PRIx, ecam_base);
420     qemu_fdt_add_subnode(fdt, nodename);
421     qemu_fdt_setprop_cell(fdt, nodename, "#interrupt-cells", 1);
422     qemu_fdt_setprop_cell(fdt, nodename, "#address-cells", 3);
423     qemu_fdt_setprop_cell(fdt, nodename, "#size-cells", 2);
424     qemu_fdt_setprop_string(fdt, nodename, "compatible",
425                             "pci-host-ecam-generic");
426     qemu_fdt_setprop_string(fdt, nodename, "device_type", "pci");
427     qemu_fdt_setprop_cell(fdt, nodename, "linux,pci-domain", 0);
428     qemu_fdt_setprop_cells(fdt, nodename, "bus-range", 0,
429                            ecam_size / PCIE_MMCFG_SIZE_MIN - 1);
430     qemu_fdt_setprop(fdt, nodename, "dma-coherent", NULL, 0);
431     qemu_fdt_setprop_cells(fdt, nodename, "reg", ecam_base, ecam_size);
432     /* pci-address(3) cpu-address(1) pci-size(2) */
433     qemu_fdt_setprop_cells(fdt, nodename, "ranges",
434                            FDT_PCI_RANGE_IOPORT, 0, 0,
435                            pio_base, 0, pio_size,
436                            FDT_PCI_RANGE_MMIO, 0, mmio_base,
437                            mmio_base, 0, mmio_size);
438 
439     create_pcie_irq_map(fdt, nodename, irq_base, pic_phandle);
440     g_free(nodename);
441 }
442 
443 static void openrisc_virt_virtio_init(OR1KVirtState *state, hwaddr base,
444                                       hwaddr size, int num_cpus,
445                                       OpenRISCCPU *cpus[], int irq_pin)
446 {
447     void *fdt = state->fdt;
448     char *nodename;
449     DeviceState *dev;
450     SysBusDevice *sysbus;
451     qemu_irq virtio_irq = get_per_cpu_irq(cpus, num_cpus, irq_pin);
452 
453     /* VirtIO MMIO devices */
454     dev = qdev_new(TYPE_VIRTIO_MMIO);
455     qdev_prop_set_bit(dev, "force-legacy", false);
456     sysbus = SYS_BUS_DEVICE(dev);
457     sysbus_realize_and_unref(sysbus, &error_fatal);
458     sysbus_connect_irq(sysbus, 0, virtio_irq);
459     sysbus_mmio_map(sysbus, 0, base);
460 
461     /* VirtIO MMIO devices FDT */
462     nodename = g_strdup_printf("/soc/virtio_mmio@%" HWADDR_PRIx, base);
463     qemu_fdt_add_subnode(fdt, nodename);
464     qemu_fdt_setprop_string(fdt, nodename, "compatible", "virtio,mmio");
465     qemu_fdt_setprop_cells(fdt, nodename, "reg", base, size);
466     qemu_fdt_setprop_cell(fdt, nodename, "interrupts", irq_pin);
467     g_free(nodename);
468 }
469 
470 static void openrisc_virt_init(MachineState *machine)
471 {
472     ram_addr_t ram_size = machine->ram_size;
473     const char *kernel_filename = machine->kernel_filename;
474     OpenRISCCPU *cpus[VIRT_CPUS_MAX] = {};
475     OR1KVirtState *state = VIRT_MACHINE(machine);
476     MemoryRegion *ram;
477     hwaddr load_addr;
478     int n;
479     unsigned int smp_cpus = machine->smp.cpus;
480     int32_t pic_phandle;
481 
482     assert(smp_cpus >= 1 && smp_cpus <= VIRT_CPUS_MAX);
483     for (n = 0; n < smp_cpus; n++) {
484         cpus[n] = OPENRISC_CPU(cpu_create(machine->cpu_type));
485         if (cpus[n] == NULL) {
486             fprintf(stderr, "Unable to find CPU definition!\n");
487             exit(1);
488         }
489 
490         cpu_openrisc_clock_init(cpus[n]);
491 
492         qemu_register_reset(main_cpu_reset, cpus[n]);
493     }
494 
495     ram = g_malloc(sizeof(*ram));
496     memory_region_init_ram(ram, NULL, "openrisc.ram", ram_size, &error_fatal);
497     memory_region_add_subregion(get_system_memory(), 0, ram);
498 
499     openrisc_create_fdt(state, virt_memmap, smp_cpus, machine->ram_size,
500                         machine->kernel_cmdline, &pic_phandle);
501 
502     if (smp_cpus > 1) {
503         openrisc_virt_ompic_init(state, virt_memmap[VIRT_OMPIC].base,
504                                  virt_memmap[VIRT_OMPIC].size,
505                                  smp_cpus, cpus, VIRT_OMPIC_IRQ);
506     }
507 
508     openrisc_virt_serial_init(state, virt_memmap[VIRT_UART].base,
509                               virt_memmap[VIRT_UART].size,
510                               smp_cpus, cpus, VIRT_UART_IRQ);
511 
512     openrisc_virt_test_init(state, virt_memmap[VIRT_TEST].base,
513                             virt_memmap[VIRT_TEST].size);
514 
515     openrisc_virt_rtc_init(state, virt_memmap[VIRT_RTC].base,
516                            virt_memmap[VIRT_RTC].size, smp_cpus, cpus,
517                            VIRT_RTC_IRQ);
518 
519     openrisc_virt_pcie_init(state, virt_memmap[VIRT_ECAM].base,
520                             virt_memmap[VIRT_ECAM].size,
521                             virt_memmap[VIRT_PIO].base,
522                             virt_memmap[VIRT_PIO].size,
523                             virt_memmap[VIRT_MMIO].base,
524                             virt_memmap[VIRT_MMIO].size,
525                             smp_cpus, cpus,
526                             VIRT_PCI_IRQ_BASE, pic_phandle);
527 
528     for (n = 0; n < VIRTIO_COUNT; n++) {
529         openrisc_virt_virtio_init(state, virt_memmap[VIRT_VIRTIO].base
530                                          + n * virt_memmap[VIRT_VIRTIO].size,
531                                   virt_memmap[VIRT_VIRTIO].size,
532                                   smp_cpus, cpus, VIRT_VIRTIO_IRQ + n);
533     }
534 
535     load_addr = openrisc_load_kernel(ram_size, kernel_filename,
536                                      &boot_info.bootstrap_pc);
537     if (load_addr > 0) {
538         if (machine->initrd_filename) {
539             load_addr = openrisc_load_initrd(state->fdt,
540                                              machine->initrd_filename,
541                                              load_addr, machine->ram_size);
542         }
543         boot_info.fdt_addr = openrisc_load_fdt(state->fdt, load_addr,
544                                                machine->ram_size);
545     }
546 }
547 
548 static void openrisc_virt_machine_init(ObjectClass *oc, void *data)
549 {
550     MachineClass *mc = MACHINE_CLASS(oc);
551 
552     mc->desc = "or1k virtual machine";
553     mc->init = openrisc_virt_init;
554     mc->max_cpus = VIRT_CPUS_MAX;
555     mc->is_default = false;
556     mc->default_cpu_type = OPENRISC_CPU_TYPE_NAME("or1200");
557 }
558 
559 static const TypeInfo or1ksim_machine_typeinfo = {
560     .name       = TYPE_VIRT_MACHINE,
561     .parent     = TYPE_MACHINE,
562     .class_init = openrisc_virt_machine_init,
563     .instance_size = sizeof(OR1KVirtState),
564 };
565 
566 static void or1ksim_machine_init_register_types(void)
567 {
568     type_register_static(&or1ksim_machine_typeinfo);
569 }
570 
571 type_init(or1ksim_machine_init_register_types)
572