xref: /openbmc/qemu/hw/nvram/spapr_nvram.c (revision 651615d92d244a6dfd7c81ab97bd3369fbe41d06)
1 /*
2  * QEMU sPAPR NVRAM emulation
3  *
4  * Copyright (C) 2012 David Gibson, IBM Corporation.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/module.h"
27 #include "qemu/units.h"
28 #include "qapi/error.h"
29 #include "cpu.h"
30 #include <libfdt.h>
31 
32 #include "sysemu/block-backend.h"
33 #include "sysemu/device_tree.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/runstate.h"
36 #include "hw/sysbus.h"
37 #include "migration/vmstate.h"
38 #include "hw/nvram/chrp_nvram.h"
39 #include "hw/ppc/spapr.h"
40 #include "hw/ppc/spapr_vio.h"
41 #include "hw/qdev-properties.h"
42 #include "hw/qdev-properties-system.h"
43 #include "qom/object.h"
44 
45 struct SpaprNvram {
46     SpaprVioDevice sdev;
47     uint32_t size;
48     uint8_t *buf;
49     BlockBackend *blk;
50     VMChangeStateEntry *vmstate;
51 };
52 
53 #define TYPE_VIO_SPAPR_NVRAM "spapr-nvram"
54 OBJECT_DECLARE_SIMPLE_TYPE(SpaprNvram, VIO_SPAPR_NVRAM)
55 
56 #define MIN_NVRAM_SIZE      (8 * KiB)
57 #define DEFAULT_NVRAM_SIZE  (64 * KiB)
58 #define MAX_NVRAM_SIZE      (1 * MiB)
59 
60 static void rtas_nvram_fetch(PowerPCCPU *cpu, SpaprMachineState *spapr,
61                              uint32_t token, uint32_t nargs,
62                              target_ulong args,
63                              uint32_t nret, target_ulong rets)
64 {
65     SpaprNvram *nvram = spapr->nvram;
66     hwaddr offset, buffer, len;
67     void *membuf;
68 
69     if ((nargs != 3) || (nret != 2)) {
70         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
71         return;
72     }
73 
74     if (!nvram) {
75         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
76         rtas_st(rets, 1, 0);
77         return;
78     }
79 
80     offset = rtas_ld(args, 0);
81     buffer = rtas_ld(args, 1);
82     len = rtas_ld(args, 2);
83 
84     if (((offset + len) < offset)
85         || ((offset + len) > nvram->size)) {
86         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
87         rtas_st(rets, 1, 0);
88         return;
89     }
90 
91     assert(nvram->buf);
92 
93     membuf = cpu_physical_memory_map(buffer, &len, true);
94     memcpy(membuf, nvram->buf + offset, len);
95     cpu_physical_memory_unmap(membuf, len, 1, len);
96 
97     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
98     rtas_st(rets, 1, len);
99 }
100 
101 static void rtas_nvram_store(PowerPCCPU *cpu, SpaprMachineState *spapr,
102                              uint32_t token, uint32_t nargs,
103                              target_ulong args,
104                              uint32_t nret, target_ulong rets)
105 {
106     SpaprNvram *nvram = spapr->nvram;
107     hwaddr offset, buffer, len;
108     int alen;
109     void *membuf;
110 
111     if ((nargs != 3) || (nret != 2)) {
112         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
113         return;
114     }
115 
116     if (!nvram) {
117         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
118         return;
119     }
120 
121     offset = rtas_ld(args, 0);
122     buffer = rtas_ld(args, 1);
123     len = rtas_ld(args, 2);
124 
125     if (((offset + len) < offset)
126         || ((offset + len) > nvram->size)) {
127         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
128         return;
129     }
130 
131     membuf = cpu_physical_memory_map(buffer, &len, false);
132 
133     alen = len;
134     if (nvram->blk) {
135         alen = blk_pwrite(nvram->blk, offset, membuf, len, 0);
136     }
137 
138     assert(nvram->buf);
139     memcpy(nvram->buf + offset, membuf, len);
140 
141     cpu_physical_memory_unmap(membuf, len, 0, len);
142 
143     rtas_st(rets, 0, (alen < len) ? RTAS_OUT_HW_ERROR : RTAS_OUT_SUCCESS);
144     rtas_st(rets, 1, (alen < 0) ? 0 : alen);
145 }
146 
147 static void spapr_nvram_realize(SpaprVioDevice *dev, Error **errp)
148 {
149     SpaprNvram *nvram = VIO_SPAPR_NVRAM(dev);
150     int ret;
151 
152     if (nvram->blk) {
153         int64_t len = blk_getlength(nvram->blk);
154 
155         if (len < 0) {
156             error_setg_errno(errp, -len,
157                              "could not get length of backing image");
158             return;
159         }
160 
161         nvram->size = len;
162 
163         ret = blk_set_perm(nvram->blk,
164                            BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE,
165                            BLK_PERM_ALL, errp);
166         if (ret < 0) {
167             return;
168         }
169     } else {
170         nvram->size = DEFAULT_NVRAM_SIZE;
171     }
172 
173     nvram->buf = g_malloc0(nvram->size);
174 
175     if ((nvram->size < MIN_NVRAM_SIZE) || (nvram->size > MAX_NVRAM_SIZE)) {
176         error_setg(errp,
177                    "spapr-nvram must be between %" PRId64
178                    " and %" PRId64 " bytes in size",
179                    MIN_NVRAM_SIZE, MAX_NVRAM_SIZE);
180         return;
181     }
182 
183     if (nvram->blk) {
184         int alen = blk_pread(nvram->blk, 0, nvram->buf, nvram->size);
185 
186         if (alen != nvram->size) {
187             error_setg(errp, "can't read spapr-nvram contents");
188             return;
189         }
190     } else if (nb_prom_envs > 0) {
191         /* Create a system partition to pass the -prom-env variables */
192         chrp_nvram_create_system_partition(nvram->buf, MIN_NVRAM_SIZE / 4,
193                                            nvram->size);
194         chrp_nvram_create_free_partition(&nvram->buf[MIN_NVRAM_SIZE / 4],
195                                          nvram->size - MIN_NVRAM_SIZE / 4);
196     }
197 
198     spapr_rtas_register(RTAS_NVRAM_FETCH, "nvram-fetch", rtas_nvram_fetch);
199     spapr_rtas_register(RTAS_NVRAM_STORE, "nvram-store", rtas_nvram_store);
200 }
201 
202 static int spapr_nvram_devnode(SpaprVioDevice *dev, void *fdt, int node_off)
203 {
204     SpaprNvram *nvram = VIO_SPAPR_NVRAM(dev);
205 
206     return fdt_setprop_cell(fdt, node_off, "#bytes", nvram->size);
207 }
208 
209 static int spapr_nvram_pre_load(void *opaque)
210 {
211     SpaprNvram *nvram = VIO_SPAPR_NVRAM(opaque);
212 
213     g_free(nvram->buf);
214     nvram->buf = NULL;
215     nvram->size = 0;
216 
217     return 0;
218 }
219 
220 static void postload_update_cb(void *opaque, int running, RunState state)
221 {
222     SpaprNvram *nvram = opaque;
223 
224     /* This is called after bdrv_invalidate_cache_all.  */
225 
226     qemu_del_vm_change_state_handler(nvram->vmstate);
227     nvram->vmstate = NULL;
228 
229     blk_pwrite(nvram->blk, 0, nvram->buf, nvram->size, 0);
230 }
231 
232 static int spapr_nvram_post_load(void *opaque, int version_id)
233 {
234     SpaprNvram *nvram = VIO_SPAPR_NVRAM(opaque);
235 
236     if (nvram->blk) {
237         nvram->vmstate = qemu_add_vm_change_state_handler(postload_update_cb,
238                                                           nvram);
239     }
240 
241     return 0;
242 }
243 
244 static const VMStateDescription vmstate_spapr_nvram = {
245     .name = "spapr_nvram",
246     .version_id = 1,
247     .minimum_version_id = 1,
248     .pre_load = spapr_nvram_pre_load,
249     .post_load = spapr_nvram_post_load,
250     .fields = (VMStateField[]) {
251         VMSTATE_UINT32(size, SpaprNvram),
252         VMSTATE_VBUFFER_ALLOC_UINT32(buf, SpaprNvram, 1, NULL, size),
253         VMSTATE_END_OF_LIST()
254     },
255 };
256 
257 static Property spapr_nvram_properties[] = {
258     DEFINE_SPAPR_PROPERTIES(SpaprNvram, sdev),
259     DEFINE_PROP_DRIVE("drive", SpaprNvram, blk),
260     DEFINE_PROP_END_OF_LIST(),
261 };
262 
263 static void spapr_nvram_class_init(ObjectClass *klass, void *data)
264 {
265     DeviceClass *dc = DEVICE_CLASS(klass);
266     SpaprVioDeviceClass *k = VIO_SPAPR_DEVICE_CLASS(klass);
267 
268     k->realize = spapr_nvram_realize;
269     k->devnode = spapr_nvram_devnode;
270     k->dt_name = "nvram";
271     k->dt_type = "nvram";
272     k->dt_compatible = "qemu,spapr-nvram";
273     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
274     device_class_set_props(dc, spapr_nvram_properties);
275     dc->vmsd = &vmstate_spapr_nvram;
276     /* Reason: Internal device only, uses spapr_rtas_register() in realize() */
277     dc->user_creatable = false;
278 }
279 
280 static const TypeInfo spapr_nvram_type_info = {
281     .name          = TYPE_VIO_SPAPR_NVRAM,
282     .parent        = TYPE_VIO_SPAPR_DEVICE,
283     .instance_size = sizeof(SpaprNvram),
284     .class_init    = spapr_nvram_class_init,
285 };
286 
287 static void spapr_nvram_register_types(void)
288 {
289     type_register_static(&spapr_nvram_type_info);
290 }
291 
292 type_init(spapr_nvram_register_types)
293