xref: /openbmc/qemu/hw/nvram/fw_cfg.c (revision 8cbb4fc12e1d10182cbab93f234510bc616594ca)
1 /*
2  * QEMU Firmware configuration device emulation
3  *
4  * Copyright (c) 2008 Gleb Natapov
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/datadir.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/dma.h"
29 #include "sysemu/reset.h"
30 #include "exec/address-spaces.h"
31 #include "hw/boards.h"
32 #include "hw/nvram/fw_cfg.h"
33 #include "hw/qdev-properties.h"
34 #include "hw/sysbus.h"
35 #include "migration/qemu-file-types.h"
36 #include "migration/vmstate.h"
37 #include "trace.h"
38 #include "qemu/error-report.h"
39 #include "qemu/option.h"
40 #include "qemu/config-file.h"
41 #include "qemu/cutils.h"
42 #include "qapi/error.h"
43 #include "hw/acpi/aml-build.h"
44 #include "hw/pci/pci_bus.h"
45 #include "hw/loader.h"
46 
47 #define FW_CFG_FILE_SLOTS_DFLT 0x20
48 
49 /* FW_CFG_VERSION bits */
50 #define FW_CFG_VERSION      0x01
51 #define FW_CFG_VERSION_DMA  0x02
52 
53 /* FW_CFG_DMA_CONTROL bits */
54 #define FW_CFG_DMA_CTL_ERROR   0x01
55 #define FW_CFG_DMA_CTL_READ    0x02
56 #define FW_CFG_DMA_CTL_SKIP    0x04
57 #define FW_CFG_DMA_CTL_SELECT  0x08
58 #define FW_CFG_DMA_CTL_WRITE   0x10
59 
60 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
61 
62 struct FWCfgEntry {
63     uint32_t len;
64     bool allow_write;
65     uint8_t *data;
66     void *callback_opaque;
67     FWCfgCallback select_cb;
68     FWCfgWriteCallback write_cb;
69 };
70 
71 /**
72  * key_name:
73  *
74  * @key: The uint16 selector key.
75  *
76  * Returns: The stringified name if the selector refers to a well-known
77  *          numerically defined item, or NULL on key lookup failure.
78  */
79 static const char *key_name(uint16_t key)
80 {
81     static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = {
82         [FW_CFG_SIGNATURE] = "signature",
83         [FW_CFG_ID] = "id",
84         [FW_CFG_UUID] = "uuid",
85         [FW_CFG_RAM_SIZE] = "ram_size",
86         [FW_CFG_NOGRAPHIC] = "nographic",
87         [FW_CFG_NB_CPUS] = "nb_cpus",
88         [FW_CFG_MACHINE_ID] = "machine_id",
89         [FW_CFG_KERNEL_ADDR] = "kernel_addr",
90         [FW_CFG_KERNEL_SIZE] = "kernel_size",
91         [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline",
92         [FW_CFG_INITRD_ADDR] = "initrd_addr",
93         [FW_CFG_INITRD_SIZE] = "initdr_size",
94         [FW_CFG_BOOT_DEVICE] = "boot_device",
95         [FW_CFG_NUMA] = "numa",
96         [FW_CFG_BOOT_MENU] = "boot_menu",
97         [FW_CFG_MAX_CPUS] = "max_cpus",
98         [FW_CFG_KERNEL_ENTRY] = "kernel_entry",
99         [FW_CFG_KERNEL_DATA] = "kernel_data",
100         [FW_CFG_INITRD_DATA] = "initrd_data",
101         [FW_CFG_CMDLINE_ADDR] = "cmdline_addr",
102         [FW_CFG_CMDLINE_SIZE] = "cmdline_size",
103         [FW_CFG_CMDLINE_DATA] = "cmdline_data",
104         [FW_CFG_SETUP_ADDR] = "setup_addr",
105         [FW_CFG_SETUP_SIZE] = "setup_size",
106         [FW_CFG_SETUP_DATA] = "setup_data",
107         [FW_CFG_FILE_DIR] = "file_dir",
108     };
109 
110     if (key & FW_CFG_ARCH_LOCAL) {
111         return fw_cfg_arch_key_name(key);
112     }
113     if (key < FW_CFG_FILE_FIRST) {
114         return fw_cfg_wellknown_keys[key];
115     }
116 
117     return NULL;
118 }
119 
120 static inline const char *trace_key_name(uint16_t key)
121 {
122     const char *name = key_name(key);
123 
124     return name ? name : "unknown";
125 }
126 
127 #define JPG_FILE 0
128 #define BMP_FILE 1
129 
130 static char *read_splashfile(char *filename, gsize *file_sizep,
131                              int *file_typep)
132 {
133     GError *err = NULL;
134     gchar *content;
135     int file_type;
136     unsigned int filehead;
137     int bmp_bpp;
138 
139     if (!g_file_get_contents(filename, &content, file_sizep, &err)) {
140         error_report("failed to read splash file '%s': %s",
141                      filename, err->message);
142         g_error_free(err);
143         return NULL;
144     }
145 
146     /* check file size */
147     if (*file_sizep < 30) {
148         goto error;
149     }
150 
151     /* check magic ID */
152     filehead = lduw_le_p(content);
153     if (filehead == 0xd8ff) {
154         file_type = JPG_FILE;
155     } else if (filehead == 0x4d42) {
156         file_type = BMP_FILE;
157     } else {
158         goto error;
159     }
160 
161     /* check BMP bpp */
162     if (file_type == BMP_FILE) {
163         bmp_bpp = lduw_le_p(&content[28]);
164         if (bmp_bpp != 24) {
165             goto error;
166         }
167     }
168 
169     /* return values */
170     *file_typep = file_type;
171 
172     return content;
173 
174 error:
175     error_report("splash file '%s' format not recognized; must be JPEG "
176                  "or 24 bit BMP", filename);
177     g_free(content);
178     return NULL;
179 }
180 
181 static void fw_cfg_bootsplash(FWCfgState *s)
182 {
183     char *filename, *file_data;
184     gsize file_size;
185     int file_type;
186 
187     /* insert splash time if user configurated */
188     if (current_machine->boot_config.has_splash_time) {
189         int64_t bst_val = current_machine->boot_config.splash_time;
190         uint16_t bst_le16;
191 
192         /* validate the input */
193         if (bst_val < 0 || bst_val > 0xffff) {
194             error_report("splash-time is invalid,"
195                          "it should be a value between 0 and 65535");
196             exit(1);
197         }
198         /* use little endian format */
199         bst_le16 = cpu_to_le16(bst_val);
200         fw_cfg_add_file(s, "etc/boot-menu-wait",
201                         g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16);
202     }
203 
204     /* insert splash file if user configurated */
205     if (current_machine->boot_config.splash) {
206         const char *boot_splash_filename = current_machine->boot_config.splash;
207         filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
208         if (filename == NULL) {
209             error_report("failed to find file '%s'", boot_splash_filename);
210             return;
211         }
212 
213         /* loading file data */
214         file_data = read_splashfile(filename, &file_size, &file_type);
215         if (file_data == NULL) {
216             g_free(filename);
217             return;
218         }
219         g_free(boot_splash_filedata);
220         boot_splash_filedata = (uint8_t *)file_data;
221 
222         /* insert data */
223         if (file_type == JPG_FILE) {
224             fw_cfg_add_file(s, "bootsplash.jpg",
225                             boot_splash_filedata, file_size);
226         } else {
227             fw_cfg_add_file(s, "bootsplash.bmp",
228                             boot_splash_filedata, file_size);
229         }
230         g_free(filename);
231     }
232 }
233 
234 static void fw_cfg_reboot(FWCfgState *s)
235 {
236     uint64_t rt_val = -1;
237     uint32_t rt_le32;
238 
239     if (current_machine->boot_config.has_reboot_timeout) {
240         rt_val = current_machine->boot_config.reboot_timeout;
241 
242         /* validate the input */
243         if (rt_val > 0xffff && rt_val != (uint64_t)-1) {
244             error_report("reboot timeout is invalid,"
245                          "it should be a value between -1 and 65535");
246             exit(1);
247         }
248     }
249 
250     rt_le32 = cpu_to_le32(rt_val);
251     fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4);
252 }
253 
254 static void fw_cfg_write(FWCfgState *s, uint8_t value)
255 {
256     /* nothing, write support removed in QEMU v2.4+ */
257 }
258 
259 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
260 {
261     return s->file_slots;
262 }
263 
264 /* Note: this function returns an exclusive limit. */
265 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
266 {
267     return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
268 }
269 
270 static int fw_cfg_select(FWCfgState *s, uint16_t key)
271 {
272     int arch, ret;
273     FWCfgEntry *e;
274 
275     s->cur_offset = 0;
276     if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
277         s->cur_entry = FW_CFG_INVALID;
278         ret = 0;
279     } else {
280         s->cur_entry = key;
281         ret = 1;
282         /* entry successfully selected, now run callback if present */
283         arch = !!(key & FW_CFG_ARCH_LOCAL);
284         e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
285         if (e->select_cb) {
286             e->select_cb(e->callback_opaque);
287         }
288     }
289 
290     trace_fw_cfg_select(s, key, trace_key_name(key), ret);
291     return ret;
292 }
293 
294 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
295 {
296     FWCfgState *s = opaque;
297     int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
298     FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
299                     &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
300     uint64_t value = 0;
301 
302     assert(size > 0 && size <= sizeof(value));
303     if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
304         /* The least significant 'size' bytes of the return value are
305          * expected to contain a string preserving portion of the item
306          * data, padded with zeros on the right in case we run out early.
307          * In technical terms, we're composing the host-endian representation
308          * of the big endian interpretation of the fw_cfg string.
309          */
310         do {
311             value = (value << 8) | e->data[s->cur_offset++];
312         } while (--size && s->cur_offset < e->len);
313         /* If size is still not zero, we *did* run out early, so continue
314          * left-shifting, to add the appropriate number of padding zeros
315          * on the right.
316          */
317         value <<= 8 * size;
318     }
319 
320     trace_fw_cfg_read(s, value);
321     return value;
322 }
323 
324 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
325                                   uint64_t value, unsigned size)
326 {
327     FWCfgState *s = opaque;
328     unsigned i = size;
329 
330     do {
331         fw_cfg_write(s, value >> (8 * --i));
332     } while (i);
333 }
334 
335 static void fw_cfg_dma_transfer(FWCfgState *s)
336 {
337     dma_addr_t len;
338     FWCfgDmaAccess dma;
339     int arch;
340     FWCfgEntry *e;
341     int read = 0, write = 0;
342     dma_addr_t dma_addr;
343 
344     /* Reset the address before the next access */
345     dma_addr = s->dma_addr;
346     s->dma_addr = 0;
347 
348     if (dma_memory_read(s->dma_as, dma_addr,
349                         &dma, sizeof(dma), MEMTXATTRS_UNSPECIFIED)) {
350         stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
351                    FW_CFG_DMA_CTL_ERROR, MEMTXATTRS_UNSPECIFIED);
352         return;
353     }
354 
355     dma.address = be64_to_cpu(dma.address);
356     dma.length = be32_to_cpu(dma.length);
357     dma.control = be32_to_cpu(dma.control);
358 
359     if (dma.control & FW_CFG_DMA_CTL_SELECT) {
360         fw_cfg_select(s, dma.control >> 16);
361     }
362 
363     arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
364     e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
365         &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
366 
367     if (dma.control & FW_CFG_DMA_CTL_READ) {
368         read = 1;
369         write = 0;
370     } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
371         read = 0;
372         write = 1;
373     } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
374         read = 0;
375         write = 0;
376     } else {
377         dma.length = 0;
378     }
379 
380     dma.control = 0;
381 
382     while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
383         if (s->cur_entry == FW_CFG_INVALID || !e->data ||
384                                 s->cur_offset >= e->len) {
385             len = dma.length;
386 
387             /* If the access is not a read access, it will be a skip access,
388              * tested before.
389              */
390             if (read) {
391                 if (dma_memory_set(s->dma_as, dma.address, 0, len,
392                                    MEMTXATTRS_UNSPECIFIED)) {
393                     dma.control |= FW_CFG_DMA_CTL_ERROR;
394                 }
395             }
396             if (write) {
397                 dma.control |= FW_CFG_DMA_CTL_ERROR;
398             }
399         } else {
400             if (dma.length <= (e->len - s->cur_offset)) {
401                 len = dma.length;
402             } else {
403                 len = (e->len - s->cur_offset);
404             }
405 
406             /* If the access is not a read access, it will be a skip access,
407              * tested before.
408              */
409             if (read) {
410                 if (dma_memory_write(s->dma_as, dma.address,
411                                      &e->data[s->cur_offset], len,
412                                      MEMTXATTRS_UNSPECIFIED)) {
413                     dma.control |= FW_CFG_DMA_CTL_ERROR;
414                 }
415             }
416             if (write) {
417                 if (!e->allow_write ||
418                     len != dma.length ||
419                     dma_memory_read(s->dma_as, dma.address,
420                                     &e->data[s->cur_offset], len,
421                                     MEMTXATTRS_UNSPECIFIED)) {
422                     dma.control |= FW_CFG_DMA_CTL_ERROR;
423                 } else if (e->write_cb) {
424                     e->write_cb(e->callback_opaque, s->cur_offset, len);
425                 }
426             }
427 
428             s->cur_offset += len;
429         }
430 
431         dma.address += len;
432         dma.length  -= len;
433 
434     }
435 
436     stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
437                 dma.control, MEMTXATTRS_UNSPECIFIED);
438 
439     trace_fw_cfg_read(s, 0);
440 }
441 
442 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
443                                     unsigned size)
444 {
445     /* Return a signature value (and handle various read sizes) */
446     return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
447 }
448 
449 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
450                                  uint64_t value, unsigned size)
451 {
452     FWCfgState *s = opaque;
453 
454     if (size == 4) {
455         if (addr == 0) {
456             /* FWCfgDmaAccess high address */
457             s->dma_addr = value << 32;
458         } else if (addr == 4) {
459             /* FWCfgDmaAccess low address */
460             s->dma_addr |= value;
461             fw_cfg_dma_transfer(s);
462         }
463     } else if (size == 8 && addr == 0) {
464         s->dma_addr = value;
465         fw_cfg_dma_transfer(s);
466     }
467 }
468 
469 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
470                                  unsigned size, bool is_write,
471                                  MemTxAttrs attrs)
472 {
473     return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
474                          (size == 8 && addr == 0));
475 }
476 
477 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
478                                   unsigned size, bool is_write,
479                                   MemTxAttrs attrs)
480 {
481     return addr == 0;
482 }
483 
484 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size)
485 {
486     return 0;
487 }
488 
489 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
490                                  uint64_t value, unsigned size)
491 {
492     fw_cfg_select(opaque, (uint16_t)value);
493 }
494 
495 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
496                                  unsigned size, bool is_write,
497                                  MemTxAttrs attrs)
498 {
499     return is_write && size == 2;
500 }
501 
502 static void fw_cfg_comb_write(void *opaque, hwaddr addr,
503                               uint64_t value, unsigned size)
504 {
505     switch (size) {
506     case 1:
507         fw_cfg_write(opaque, (uint8_t)value);
508         break;
509     case 2:
510         fw_cfg_select(opaque, (uint16_t)value);
511         break;
512     }
513 }
514 
515 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
516                               unsigned size, bool is_write,
517                               MemTxAttrs attrs)
518 {
519     return (size == 1) || (is_write && size == 2);
520 }
521 
522 static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
523     .read = fw_cfg_ctl_mem_read,
524     .write = fw_cfg_ctl_mem_write,
525     .endianness = DEVICE_BIG_ENDIAN,
526     .valid.accepts = fw_cfg_ctl_mem_valid,
527 };
528 
529 static const MemoryRegionOps fw_cfg_data_mem_ops = {
530     .read = fw_cfg_data_read,
531     .write = fw_cfg_data_mem_write,
532     .endianness = DEVICE_BIG_ENDIAN,
533     .valid = {
534         .min_access_size = 1,
535         .max_access_size = 1,
536         .accepts = fw_cfg_data_mem_valid,
537     },
538 };
539 
540 static const MemoryRegionOps fw_cfg_comb_mem_ops = {
541     .read = fw_cfg_data_read,
542     .write = fw_cfg_comb_write,
543     .endianness = DEVICE_LITTLE_ENDIAN,
544     .valid.accepts = fw_cfg_comb_valid,
545 };
546 
547 static const MemoryRegionOps fw_cfg_dma_mem_ops = {
548     .read = fw_cfg_dma_mem_read,
549     .write = fw_cfg_dma_mem_write,
550     .endianness = DEVICE_BIG_ENDIAN,
551     .valid.accepts = fw_cfg_dma_mem_valid,
552     .valid.max_access_size = 8,
553     .impl.max_access_size = 8,
554 };
555 
556 static void fw_cfg_reset(DeviceState *d)
557 {
558     FWCfgState *s = FW_CFG(d);
559 
560     /* we never register a read callback for FW_CFG_SIGNATURE */
561     fw_cfg_select(s, FW_CFG_SIGNATURE);
562 }
563 
564 /* Save restore 32 bit int as uint16_t
565    This is a Big hack, but it is how the old state did it.
566    Or we broke compatibility in the state, or we can't use struct tm
567  */
568 
569 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
570                                 const VMStateField *field)
571 {
572     uint32_t *v = pv;
573     *v = qemu_get_be16(f);
574     return 0;
575 }
576 
577 static int put_unused(QEMUFile *f, void *pv, size_t size,
578                       const VMStateField *field, JSONWriter *vmdesc)
579 {
580     fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
581     fprintf(stderr, "This functions shouldn't be called.\n");
582 
583     return 0;
584 }
585 
586 static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
587     .name = "int32_as_uint16",
588     .get  = get_uint32_as_uint16,
589     .put  = put_unused,
590 };
591 
592 #define VMSTATE_UINT16_HACK(_f, _s, _t)                                    \
593     VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
594 
595 
596 static bool is_version_1(void *opaque, int version_id)
597 {
598     return version_id == 1;
599 }
600 
601 bool fw_cfg_dma_enabled(void *opaque)
602 {
603     FWCfgState *s = opaque;
604 
605     return s->dma_enabled;
606 }
607 
608 static bool fw_cfg_acpi_mr_restore(void *opaque)
609 {
610     FWCfgState *s = opaque;
611     bool mr_aligned;
612 
613     mr_aligned = QEMU_IS_ALIGNED(s->table_mr_size, qemu_real_host_page_size()) &&
614                  QEMU_IS_ALIGNED(s->linker_mr_size, qemu_real_host_page_size()) &&
615                  QEMU_IS_ALIGNED(s->rsdp_mr_size, qemu_real_host_page_size());
616     return s->acpi_mr_restore && !mr_aligned;
617 }
618 
619 static void fw_cfg_update_mr(FWCfgState *s, uint16_t key, size_t size)
620 {
621     MemoryRegion *mr;
622     ram_addr_t offset;
623     int arch = !!(key & FW_CFG_ARCH_LOCAL);
624     void *ptr;
625 
626     key &= FW_CFG_ENTRY_MASK;
627     assert(key < fw_cfg_max_entry(s));
628 
629     ptr = s->entries[arch][key].data;
630     mr = memory_region_from_host(ptr, &offset);
631 
632     memory_region_ram_resize(mr, size, &error_abort);
633 }
634 
635 static int fw_cfg_acpi_mr_restore_post_load(void *opaque, int version_id)
636 {
637     FWCfgState *s = opaque;
638     int i, index;
639 
640     assert(s->files);
641 
642     index = be32_to_cpu(s->files->count);
643 
644     for (i = 0; i < index; i++) {
645         if (!strcmp(s->files->f[i].name, ACPI_BUILD_TABLE_FILE)) {
646             fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->table_mr_size);
647         } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_LOADER_FILE)) {
648             fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->linker_mr_size);
649         } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_RSDP_FILE)) {
650             fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->rsdp_mr_size);
651         }
652     }
653 
654     return 0;
655 }
656 
657 static const VMStateDescription vmstate_fw_cfg_dma = {
658     .name = "fw_cfg/dma",
659     .needed = fw_cfg_dma_enabled,
660     .fields = (const VMStateField[]) {
661         VMSTATE_UINT64(dma_addr, FWCfgState),
662         VMSTATE_END_OF_LIST()
663     },
664 };
665 
666 static const VMStateDescription vmstate_fw_cfg_acpi_mr = {
667     .name = "fw_cfg/acpi_mr",
668     .version_id = 1,
669     .minimum_version_id = 1,
670     .needed = fw_cfg_acpi_mr_restore,
671     .post_load = fw_cfg_acpi_mr_restore_post_load,
672     .fields = (const VMStateField[]) {
673         VMSTATE_UINT64(table_mr_size, FWCfgState),
674         VMSTATE_UINT64(linker_mr_size, FWCfgState),
675         VMSTATE_UINT64(rsdp_mr_size, FWCfgState),
676         VMSTATE_END_OF_LIST()
677     },
678 };
679 
680 static const VMStateDescription vmstate_fw_cfg = {
681     .name = "fw_cfg",
682     .version_id = 2,
683     .minimum_version_id = 1,
684     .fields = (const VMStateField[]) {
685         VMSTATE_UINT16(cur_entry, FWCfgState),
686         VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
687         VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
688         VMSTATE_END_OF_LIST()
689     },
690     .subsections = (const VMStateDescription * const []) {
691         &vmstate_fw_cfg_dma,
692         &vmstate_fw_cfg_acpi_mr,
693         NULL,
694     }
695 };
696 
697 static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key,
698                                       FWCfgCallback select_cb,
699                                       FWCfgWriteCallback write_cb,
700                                       void *callback_opaque,
701                                       void *data, size_t len,
702                                       bool read_only)
703 {
704     int arch = !!(key & FW_CFG_ARCH_LOCAL);
705 
706     key &= FW_CFG_ENTRY_MASK;
707 
708     assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
709     assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
710 
711     s->entries[arch][key].data = data;
712     s->entries[arch][key].len = (uint32_t)len;
713     s->entries[arch][key].select_cb = select_cb;
714     s->entries[arch][key].write_cb = write_cb;
715     s->entries[arch][key].callback_opaque = callback_opaque;
716     s->entries[arch][key].allow_write = !read_only;
717 }
718 
719 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
720                                               void *data, size_t len)
721 {
722     void *ptr;
723     int arch = !!(key & FW_CFG_ARCH_LOCAL);
724 
725     key &= FW_CFG_ENTRY_MASK;
726 
727     assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
728 
729     /* return the old data to the function caller, avoid memory leak */
730     ptr = s->entries[arch][key].data;
731     s->entries[arch][key].data = data;
732     s->entries[arch][key].len = len;
733     s->entries[arch][key].callback_opaque = NULL;
734     s->entries[arch][key].allow_write = false;
735 
736     return ptr;
737 }
738 
739 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
740 {
741     trace_fw_cfg_add_bytes(key, trace_key_name(key), len);
742     fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true);
743 }
744 
745 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
746 {
747     size_t sz = strlen(value) + 1;
748 
749     trace_fw_cfg_add_string(key, trace_key_name(key), value);
750     fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
751 }
752 
753 void fw_cfg_modify_string(FWCfgState *s, uint16_t key, const char *value)
754 {
755     size_t sz = strlen(value) + 1;
756     char *old;
757 
758     old = fw_cfg_modify_bytes_read(s, key, g_memdup(value, sz), sz);
759     g_free(old);
760 }
761 
762 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
763 {
764     uint16_t *copy;
765 
766     copy = g_malloc(sizeof(value));
767     *copy = cpu_to_le16(value);
768     trace_fw_cfg_add_i16(key, trace_key_name(key), value);
769     fw_cfg_add_bytes(s, key, copy, sizeof(value));
770 }
771 
772 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
773 {
774     uint16_t *copy, *old;
775 
776     copy = g_malloc(sizeof(value));
777     *copy = cpu_to_le16(value);
778     old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
779     g_free(old);
780 }
781 
782 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
783 {
784     uint32_t *copy;
785 
786     copy = g_malloc(sizeof(value));
787     *copy = cpu_to_le32(value);
788     trace_fw_cfg_add_i32(key, trace_key_name(key), value);
789     fw_cfg_add_bytes(s, key, copy, sizeof(value));
790 }
791 
792 void fw_cfg_modify_i32(FWCfgState *s, uint16_t key, uint32_t value)
793 {
794     uint32_t *copy, *old;
795 
796     copy = g_malloc(sizeof(value));
797     *copy = cpu_to_le32(value);
798     old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
799     g_free(old);
800 }
801 
802 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
803 {
804     uint64_t *copy;
805 
806     copy = g_malloc(sizeof(value));
807     *copy = cpu_to_le64(value);
808     trace_fw_cfg_add_i64(key, trace_key_name(key), value);
809     fw_cfg_add_bytes(s, key, copy, sizeof(value));
810 }
811 
812 void fw_cfg_modify_i64(FWCfgState *s, uint16_t key, uint64_t value)
813 {
814     uint64_t *copy, *old;
815 
816     copy = g_malloc(sizeof(value));
817     *copy = cpu_to_le64(value);
818     old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
819     g_free(old);
820 }
821 
822 void fw_cfg_set_order_override(FWCfgState *s, int order)
823 {
824     assert(s->fw_cfg_order_override == 0);
825     s->fw_cfg_order_override = order;
826 }
827 
828 void fw_cfg_reset_order_override(FWCfgState *s)
829 {
830     assert(s->fw_cfg_order_override != 0);
831     s->fw_cfg_order_override = 0;
832 }
833 
834 /*
835  * This is the legacy order list.  For legacy systems, files are in
836  * the fw_cfg in the order defined below, by the "order" value.  Note
837  * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
838  * specific area, but there may be more than one and they occur in the
839  * order that the user specifies them on the command line.  Those are
840  * handled in a special manner, using the order override above.
841  *
842  * For non-legacy, the files are sorted by filename to avoid this kind
843  * of complexity in the future.
844  *
845  * This is only for x86, other arches don't implement versioning so
846  * they won't set legacy mode.
847  */
848 static struct {
849     const char *name;
850     int order;
851 } fw_cfg_order[] = {
852     { "etc/boot-menu-wait", 10 },
853     { "bootsplash.jpg", 11 },
854     { "bootsplash.bmp", 12 },
855     { "etc/boot-fail-wait", 15 },
856     { "etc/smbios/smbios-tables", 20 },
857     { "etc/smbios/smbios-anchor", 30 },
858     { "etc/e820", 40 },
859     { "etc/reserved-memory-end", 50 },
860     { "genroms/kvmvapic.bin", 55 },
861     { "genroms/linuxboot.bin", 60 },
862     { }, /* VGA ROMs from pc_vga_init come here, 70. */
863     { }, /* NIC option ROMs from pc_nic_init come here, 80. */
864     { "etc/system-states", 90 },
865     { }, /* User ROMs come here, 100. */
866     { }, /* Device FW comes here, 110. */
867     { "etc/extra-pci-roots", 120 },
868     { "etc/acpi/tables", 130 },
869     { "etc/table-loader", 140 },
870     { "etc/tpm/log", 150 },
871     { "etc/acpi/rsdp", 160 },
872     { "bootorder", 170 },
873     { "etc/msr_feature_control", 180 },
874 
875 #define FW_CFG_ORDER_OVERRIDE_LAST 200
876 };
877 
878 /*
879  * Any sub-page size update to these table MRs will be lost during migration,
880  * as we use aligned size in ram_load_precopy() -> qemu_ram_resize() path.
881  * In order to avoid the inconsistency in sizes save them separately and
882  * migrate over in vmstate post_load().
883  */
884 static void fw_cfg_acpi_mr_save(FWCfgState *s, const char *filename, size_t len)
885 {
886     if (!strcmp(filename, ACPI_BUILD_TABLE_FILE)) {
887         s->table_mr_size = len;
888     } else if (!strcmp(filename, ACPI_BUILD_LOADER_FILE)) {
889         s->linker_mr_size = len;
890     } else if (!strcmp(filename, ACPI_BUILD_RSDP_FILE)) {
891         s->rsdp_mr_size = len;
892     }
893 }
894 
895 static int get_fw_cfg_order(FWCfgState *s, const char *name)
896 {
897     int i;
898 
899     if (s->fw_cfg_order_override > 0) {
900         return s->fw_cfg_order_override;
901     }
902 
903     for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
904         if (fw_cfg_order[i].name == NULL) {
905             continue;
906         }
907 
908         if (strcmp(name, fw_cfg_order[i].name) == 0) {
909             return fw_cfg_order[i].order;
910         }
911     }
912 
913     /* Stick unknown stuff at the end. */
914     warn_report("Unknown firmware file in legacy mode: %s", name);
915     return FW_CFG_ORDER_OVERRIDE_LAST;
916 }
917 
918 void fw_cfg_add_file_callback(FWCfgState *s,  const char *filename,
919                               FWCfgCallback select_cb,
920                               FWCfgWriteCallback write_cb,
921                               void *callback_opaque,
922                               void *data, size_t len, bool read_only)
923 {
924     int i, index, count;
925     size_t dsize;
926     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
927     int order = 0;
928 
929     if (!s->files) {
930         dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
931         s->files = g_malloc0(dsize);
932         fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
933     }
934 
935     count = be32_to_cpu(s->files->count);
936     assert(count < fw_cfg_file_slots(s));
937 
938     /* Find the insertion point. */
939     if (mc->legacy_fw_cfg_order) {
940         /*
941          * Sort by order. For files with the same order, we keep them
942          * in the sequence in which they were added.
943          */
944         order = get_fw_cfg_order(s, filename);
945         for (index = count;
946              index > 0 && order < s->entry_order[index - 1];
947              index--);
948     } else {
949         /* Sort by file name. */
950         for (index = count;
951              index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
952              index--);
953     }
954 
955     /*
956      * Move all the entries from the index point and after down one
957      * to create a slot for the new entry.  Because calculations are
958      * being done with the index, make it so that "i" is the current
959      * index and "i - 1" is the one being copied from, thus the
960      * unusual start and end in the for statement.
961      */
962     for (i = count; i > index; i--) {
963         s->files->f[i] = s->files->f[i - 1];
964         s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
965         s->entries[0][FW_CFG_FILE_FIRST + i] =
966             s->entries[0][FW_CFG_FILE_FIRST + i - 1];
967         s->entry_order[i] = s->entry_order[i - 1];
968     }
969 
970     memset(&s->files->f[index], 0, sizeof(FWCfgFile));
971     memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
972 
973     pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
974     for (i = 0; i <= count; i++) {
975         if (i != index &&
976             strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
977             error_report("duplicate fw_cfg file name: %s",
978                          s->files->f[index].name);
979             exit(1);
980         }
981     }
982 
983     fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index,
984                               select_cb, write_cb,
985                               callback_opaque, data, len,
986                               read_only);
987 
988     s->files->f[index].size   = cpu_to_be32(len);
989     s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
990     s->entry_order[index] = order;
991     trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
992 
993     s->files->count = cpu_to_be32(count+1);
994     fw_cfg_acpi_mr_save(s, filename, len);
995 }
996 
997 void fw_cfg_add_file(FWCfgState *s,  const char *filename,
998                      void *data, size_t len)
999 {
1000     fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
1001 }
1002 
1003 void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
1004                         void *data, size_t len)
1005 {
1006     int i, index;
1007     void *ptr = NULL;
1008 
1009     assert(s->files);
1010 
1011     index = be32_to_cpu(s->files->count);
1012 
1013     for (i = 0; i < index; i++) {
1014         if (strcmp(filename, s->files->f[i].name) == 0) {
1015             ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
1016                                            data, len);
1017             s->files->f[i].size   = cpu_to_be32(len);
1018             fw_cfg_acpi_mr_save(s, filename, len);
1019             return ptr;
1020         }
1021     }
1022 
1023     assert(index < fw_cfg_file_slots(s));
1024 
1025     /* add new one */
1026     fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
1027     return NULL;
1028 }
1029 
1030 bool fw_cfg_add_from_generator(FWCfgState *s, const char *filename,
1031                                const char *gen_id, Error **errp)
1032 {
1033     FWCfgDataGeneratorClass *klass;
1034     GByteArray *array;
1035     Object *obj;
1036     gsize size;
1037 
1038     obj = object_resolve_path_component(object_get_objects_root(), gen_id);
1039     if (!obj) {
1040         error_setg(errp, "Cannot find object ID '%s'", gen_id);
1041         return false;
1042     }
1043     if (!object_dynamic_cast(obj, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE)) {
1044         error_setg(errp, "Object ID '%s' is not a '%s' subclass",
1045                    gen_id, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE);
1046         return false;
1047     }
1048     klass = FW_CFG_DATA_GENERATOR_GET_CLASS(obj);
1049     array = klass->get_data(obj, errp);
1050     if (!array) {
1051         return false;
1052     }
1053     size = array->len;
1054     fw_cfg_add_file(s, filename, g_byte_array_free(array, FALSE), size);
1055 
1056     return true;
1057 }
1058 
1059 void fw_cfg_add_extra_pci_roots(PCIBus *bus, FWCfgState *s)
1060 {
1061     int extra_hosts = 0;
1062 
1063     if (!bus) {
1064         return;
1065     }
1066 
1067     QLIST_FOREACH(bus, &bus->child, sibling) {
1068         /* look for expander root buses */
1069         if (pci_bus_is_root(bus)) {
1070             extra_hosts++;
1071         }
1072     }
1073 
1074     if (extra_hosts && s) {
1075         uint64_t *val = g_malloc(sizeof(*val));
1076         *val = cpu_to_le64(extra_hosts);
1077         fw_cfg_add_file(s, "etc/extra-pci-roots", val, sizeof(*val));
1078     }
1079 }
1080 
1081 static void fw_cfg_machine_reset(void *opaque)
1082 {
1083     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1084     FWCfgState *s = opaque;
1085     void *ptr;
1086     size_t len;
1087     char *buf;
1088 
1089     buf = get_boot_devices_list(&len);
1090     ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)buf, len);
1091     g_free(ptr);
1092 
1093     if (!mc->legacy_fw_cfg_order) {
1094         buf = get_boot_devices_lchs_list(&len);
1095         ptr = fw_cfg_modify_file(s, "bios-geometry", (uint8_t *)buf, len);
1096         g_free(ptr);
1097     }
1098 }
1099 
1100 static void fw_cfg_machine_ready(struct Notifier *n, void *data)
1101 {
1102     FWCfgState *s = container_of(n, FWCfgState, machine_ready);
1103     qemu_register_reset(fw_cfg_machine_reset, s);
1104 }
1105 
1106 static Property fw_cfg_properties[] = {
1107     DEFINE_PROP_BOOL("acpi-mr-restore", FWCfgState, acpi_mr_restore, true),
1108     DEFINE_PROP_END_OF_LIST(),
1109 };
1110 
1111 static void fw_cfg_common_realize(DeviceState *dev, Error **errp)
1112 {
1113     FWCfgState *s = FW_CFG(dev);
1114     MachineState *machine = MACHINE(qdev_get_machine());
1115     uint32_t version = FW_CFG_VERSION;
1116 
1117     if (!fw_cfg_find()) {
1118         error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG);
1119         return;
1120     }
1121 
1122     fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
1123     fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
1124     fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
1125     fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)(machine->boot_config.has_menu && machine->boot_config.menu));
1126     fw_cfg_bootsplash(s);
1127     fw_cfg_reboot(s);
1128 
1129     if (s->dma_enabled) {
1130         version |= FW_CFG_VERSION_DMA;
1131     }
1132 
1133     fw_cfg_add_i32(s, FW_CFG_ID, version);
1134 
1135     s->machine_ready.notify = fw_cfg_machine_ready;
1136     qemu_add_machine_init_done_notifier(&s->machine_ready);
1137 }
1138 
1139 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
1140                                 AddressSpace *dma_as)
1141 {
1142     DeviceState *dev;
1143     SysBusDevice *sbd;
1144     FWCfgIoState *ios;
1145     FWCfgState *s;
1146     MemoryRegion *iomem = get_system_io();
1147     bool dma_requested = dma_iobase && dma_as;
1148 
1149     dev = qdev_new(TYPE_FW_CFG_IO);
1150     if (!dma_requested) {
1151         qdev_prop_set_bit(dev, "dma_enabled", false);
1152     }
1153 
1154     object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1155                               OBJECT(dev));
1156 
1157     sbd = SYS_BUS_DEVICE(dev);
1158     sysbus_realize_and_unref(sbd, &error_fatal);
1159     ios = FW_CFG_IO(dev);
1160     memory_region_add_subregion(iomem, iobase, &ios->comb_iomem);
1161 
1162     s = FW_CFG(dev);
1163 
1164     if (s->dma_enabled) {
1165         /* 64 bits for the address field */
1166         s->dma_as = dma_as;
1167         s->dma_addr = 0;
1168         memory_region_add_subregion(iomem, dma_iobase, &s->dma_iomem);
1169     }
1170 
1171     return s;
1172 }
1173 
1174 FWCfgState *fw_cfg_init_io(uint32_t iobase)
1175 {
1176     return fw_cfg_init_io_dma(iobase, 0, NULL);
1177 }
1178 
1179 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
1180                                  hwaddr data_addr, uint32_t data_width,
1181                                  hwaddr dma_addr, AddressSpace *dma_as)
1182 {
1183     DeviceState *dev;
1184     SysBusDevice *sbd;
1185     FWCfgState *s;
1186     bool dma_requested = dma_addr && dma_as;
1187 
1188     dev = qdev_new(TYPE_FW_CFG_MEM);
1189     qdev_prop_set_uint32(dev, "data_width", data_width);
1190     if (!dma_requested) {
1191         qdev_prop_set_bit(dev, "dma_enabled", false);
1192     }
1193 
1194     object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1195                               OBJECT(dev));
1196 
1197     sbd = SYS_BUS_DEVICE(dev);
1198     sysbus_realize_and_unref(sbd, &error_fatal);
1199     sysbus_mmio_map(sbd, 0, ctl_addr);
1200     sysbus_mmio_map(sbd, 1, data_addr);
1201 
1202     s = FW_CFG(dev);
1203 
1204     if (s->dma_enabled) {
1205         s->dma_as = dma_as;
1206         s->dma_addr = 0;
1207         sysbus_mmio_map(sbd, 2, dma_addr);
1208     }
1209 
1210     return s;
1211 }
1212 
1213 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
1214 {
1215     return fw_cfg_init_mem_wide(ctl_addr, data_addr,
1216                                 fw_cfg_data_mem_ops.valid.max_access_size,
1217                                 0, NULL);
1218 }
1219 
1220 
1221 FWCfgState *fw_cfg_find(void)
1222 {
1223     /* Returns NULL unless there is exactly one fw_cfg device */
1224     return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
1225 }
1226 
1227 void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
1228                           uint16_t data_key, const char *image_name,
1229                           bool try_decompress)
1230 {
1231     size_t size = -1;
1232     uint8_t *data;
1233 
1234     if (image_name == NULL) {
1235         return;
1236     }
1237 
1238     if (try_decompress) {
1239         size = load_image_gzipped_buffer(image_name,
1240                                          LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
1241     }
1242 
1243     if (size == (size_t)-1) {
1244         gchar *contents;
1245         gsize length;
1246 
1247         if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
1248             error_report("failed to load \"%s\"", image_name);
1249             exit(1);
1250         }
1251         size = length;
1252         data = (uint8_t *)contents;
1253     }
1254 
1255     fw_cfg_add_i32(fw_cfg, size_key, size);
1256     fw_cfg_add_bytes(fw_cfg, data_key, data, size);
1257 }
1258 
1259 static void fw_cfg_class_init(ObjectClass *klass, void *data)
1260 {
1261     DeviceClass *dc = DEVICE_CLASS(klass);
1262 
1263     dc->reset = fw_cfg_reset;
1264     dc->vmsd = &vmstate_fw_cfg;
1265 
1266     device_class_set_props(dc, fw_cfg_properties);
1267 }
1268 
1269 static const TypeInfo fw_cfg_info = {
1270     .name          = TYPE_FW_CFG,
1271     .parent        = TYPE_SYS_BUS_DEVICE,
1272     .abstract      = true,
1273     .instance_size = sizeof(FWCfgState),
1274     .class_init    = fw_cfg_class_init,
1275 };
1276 
1277 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1278 {
1279     uint16_t file_slots_max;
1280 
1281     if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1282         error_setg(errp, "\"file_slots\" must be at least 0x%x",
1283                    FW_CFG_FILE_SLOTS_MIN);
1284         return;
1285     }
1286 
1287     /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1288      * that we permit. The actual (exclusive) value coming from the
1289      * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1290     file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1291     if (fw_cfg_file_slots(s) > file_slots_max) {
1292         error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1293                    file_slots_max);
1294         return;
1295     }
1296 
1297     s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1298     s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1299     s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1300 }
1301 
1302 static Property fw_cfg_io_properties[] = {
1303     DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1304                      true),
1305     DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1306                        FW_CFG_FILE_SLOTS_DFLT),
1307     DEFINE_PROP_END_OF_LIST(),
1308 };
1309 
1310 static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1311 {
1312     ERRP_GUARD();
1313     FWCfgIoState *s = FW_CFG_IO(dev);
1314 
1315     fw_cfg_file_slots_allocate(FW_CFG(s), errp);
1316     if (*errp) {
1317         return;
1318     }
1319 
1320     /* when using port i/o, the 8-bit data register ALWAYS overlaps
1321      * with half of the 16-bit control register. Hence, the total size
1322      * of the i/o region used is FW_CFG_CTL_SIZE */
1323     memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1324                           FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1325 
1326     if (FW_CFG(s)->dma_enabled) {
1327         memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1328                               &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1329                               sizeof(dma_addr_t));
1330     }
1331 
1332     fw_cfg_common_realize(dev, errp);
1333 }
1334 
1335 static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1336 {
1337     DeviceClass *dc = DEVICE_CLASS(klass);
1338 
1339     dc->realize = fw_cfg_io_realize;
1340     device_class_set_props(dc, fw_cfg_io_properties);
1341 }
1342 
1343 static const TypeInfo fw_cfg_io_info = {
1344     .name          = TYPE_FW_CFG_IO,
1345     .parent        = TYPE_FW_CFG,
1346     .instance_size = sizeof(FWCfgIoState),
1347     .class_init    = fw_cfg_io_class_init,
1348 };
1349 
1350 
1351 static Property fw_cfg_mem_properties[] = {
1352     DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1353     DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1354                      true),
1355     DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1356                        FW_CFG_FILE_SLOTS_DFLT),
1357     DEFINE_PROP_END_OF_LIST(),
1358 };
1359 
1360 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1361 {
1362     ERRP_GUARD();
1363     FWCfgMemState *s = FW_CFG_MEM(dev);
1364     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1365     const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1366 
1367     fw_cfg_file_slots_allocate(FW_CFG(s), errp);
1368     if (*errp) {
1369         return;
1370     }
1371 
1372     memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1373                           FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1374     sysbus_init_mmio(sbd, &s->ctl_iomem);
1375 
1376     if (s->data_width > data_ops->valid.max_access_size) {
1377         s->wide_data_ops = *data_ops;
1378 
1379         s->wide_data_ops.valid.max_access_size = s->data_width;
1380         s->wide_data_ops.impl.max_access_size  = s->data_width;
1381         data_ops = &s->wide_data_ops;
1382     }
1383     memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1384                           "fwcfg.data", data_ops->valid.max_access_size);
1385     sysbus_init_mmio(sbd, &s->data_iomem);
1386 
1387     if (FW_CFG(s)->dma_enabled) {
1388         memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1389                               &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1390                               sizeof(dma_addr_t));
1391         sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1392     }
1393 
1394     fw_cfg_common_realize(dev, errp);
1395 }
1396 
1397 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1398 {
1399     DeviceClass *dc = DEVICE_CLASS(klass);
1400 
1401     dc->realize = fw_cfg_mem_realize;
1402     device_class_set_props(dc, fw_cfg_mem_properties);
1403 }
1404 
1405 static const TypeInfo fw_cfg_mem_info = {
1406     .name          = TYPE_FW_CFG_MEM,
1407     .parent        = TYPE_FW_CFG,
1408     .instance_size = sizeof(FWCfgMemState),
1409     .class_init    = fw_cfg_mem_class_init,
1410 };
1411 
1412 static void fw_cfg_register_types(void)
1413 {
1414     type_register_static(&fw_cfg_info);
1415     type_register_static(&fw_cfg_io_info);
1416     type_register_static(&fw_cfg_mem_info);
1417 }
1418 
1419 type_init(fw_cfg_register_types)
1420