xref: /openbmc/qemu/hw/nvme/ctrl.c (revision d34fea6cce319c54ff09f96a2e74fb5a2d50affa)
1 /*
2  * QEMU NVM Express Controller
3  *
4  * Copyright (c) 2012, Intel Corporation
5  *
6  * Written by Keith Busch <keith.busch@intel.com>
7  *
8  * This code is licensed under the GNU GPL v2 or later.
9  */
10 
11 /**
12  * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e
13  *
14  *  https://nvmexpress.org/developers/nvme-specification/
15  *
16  *
17  * Notes on coding style
18  * ---------------------
19  * While QEMU coding style prefers lowercase hexadecimals in constants, the
20  * NVMe subsystem use this format from the NVMe specifications in the comments
21  * (i.e. 'h' suffix instead of '0x' prefix).
22  *
23  * Usage
24  * -----
25  * See docs/system/nvme.rst for extensive documentation.
26  *
27  * Add options:
28  *      -drive file=<file>,if=none,id=<drive_id>
29  *      -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id>
30  *      -device nvme,serial=<serial>,id=<bus_name>, \
31  *              cmb_size_mb=<cmb_size_mb[optional]>, \
32  *              [pmrdev=<mem_backend_file_id>,] \
33  *              max_ioqpairs=<N[optional]>, \
34  *              aerl=<N[optional]>,aer_max_queued=<N[optional]>, \
35  *              mdts=<N[optional]>,vsl=<N[optional]>, \
36  *              zoned.zasl=<N[optional]>, \
37  *              zoned.auto_transition=<on|off[optional]>, \
38  *              sriov_max_vfs=<N[optional]> \
39  *              sriov_vq_flexible=<N[optional]> \
40  *              sriov_vi_flexible=<N[optional]> \
41  *              sriov_max_vi_per_vf=<N[optional]> \
42  *              sriov_max_vq_per_vf=<N[optional]> \
43  *              atomic.dn=<on|off[optional]>, \
44  *              atomic.awun<N[optional]>, \
45  *              atomic.awupf<N[optional]>, \
46  *              subsys=<subsys_id>
47  *      -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\
48  *              zoned=<true|false[optional]>, \
49  *              subsys=<subsys_id>,shared=<true|false[optional]>, \
50  *              detached=<true|false[optional]>, \
51  *              zoned.zone_size=<N[optional]>, \
52  *              zoned.zone_capacity=<N[optional]>, \
53  *              zoned.descr_ext_size=<N[optional]>, \
54  *              zoned.max_active=<N[optional]>, \
55  *              zoned.max_open=<N[optional]>, \
56  *              zoned.cross_read=<true|false[optional]>
57  *
58  * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
59  * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the
60  * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to
61  * always enable the CMBLOC and CMBSZ registers (v1.3 behavior).
62  *
63  * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
64  * For example:
65  * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
66  *  size=<size> .... -device nvme,...,pmrdev=<mem_id>
67  *
68  * The PMR will use BAR 4/5 exclusively.
69  *
70  * To place controller(s) and namespace(s) to a subsystem, then provide
71  * nvme-subsys device as above.
72  *
73  * nvme subsystem device parameters
74  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
75  * - `nqn`
76  *   This parameter provides the `<nqn_id>` part of the string
77  *   `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field
78  *   of subsystem controllers. Note that `<nqn_id>` should be unique per
79  *   subsystem, but this is not enforced by QEMU. If not specified, it will
80  *   default to the value of the `id` parameter (`<subsys_id>`).
81  *
82  * nvme device parameters
83  * ~~~~~~~~~~~~~~~~~~~~~~
84  * - `subsys`
85  *   Specifying this parameter attaches the controller to the subsystem and
86  *   the SUBNQN field in the controller will report the NQN of the subsystem
87  *   device. This also enables multi controller capability represented in
88  *   Identify Controller data structure in CMIC (Controller Multi-path I/O and
89  *   Namespace Sharing Capabilities).
90  *
91  * - `aerl`
92  *   The Asynchronous Event Request Limit (AERL). Indicates the maximum number
93  *   of concurrently outstanding Asynchronous Event Request commands support
94  *   by the controller. This is a 0's based value.
95  *
96  * - `aer_max_queued`
97  *   This is the maximum number of events that the device will enqueue for
98  *   completion when there are no outstanding AERs. When the maximum number of
99  *   enqueued events are reached, subsequent events will be dropped.
100  *
101  * - `mdts`
102  *   Indicates the maximum data transfer size for a command that transfers data
103  *   between host-accessible memory and the controller. The value is specified
104  *   as a power of two (2^n) and is in units of the minimum memory page size
105  *   (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB).
106  *
107  * - `vsl`
108  *   Indicates the maximum data size limit for the Verify command. Like `mdts`,
109  *   this value is specified as a power of two (2^n) and is in units of the
110  *   minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512
111  *   KiB).
112  *
113  * - `zoned.zasl`
114  *   Indicates the maximum data transfer size for the Zone Append command. Like
115  *   `mdts`, the value is specified as a power of two (2^n) and is in units of
116  *   the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e.
117  *   defaulting to the value of `mdts`).
118  *
119  * - `zoned.auto_transition`
120  *   Indicates if zones in zone state implicitly opened can be automatically
121  *   transitioned to zone state closed for resource management purposes.
122  *   Defaults to 'on'.
123  *
124  * - `sriov_max_vfs`
125  *   Indicates the maximum number of PCIe virtual functions supported
126  *   by the controller. The default value is 0. Specifying a non-zero value
127  *   enables reporting of both SR-IOV and ARI capabilities by the NVMe device.
128  *   Virtual function controllers will not report SR-IOV capability.
129  *
130  *   NOTE: Single Root I/O Virtualization support is experimental.
131  *   All the related parameters may be subject to change.
132  *
133  * - `sriov_vq_flexible`
134  *   Indicates the total number of flexible queue resources assignable to all
135  *   the secondary controllers. Implicitly sets the number of primary
136  *   controller's private resources to `(max_ioqpairs - sriov_vq_flexible)`.
137  *
138  * - `sriov_vi_flexible`
139  *   Indicates the total number of flexible interrupt resources assignable to
140  *   all the secondary controllers. Implicitly sets the number of primary
141  *   controller's private resources to `(msix_qsize - sriov_vi_flexible)`.
142  *
143  * - `sriov_max_vi_per_vf`
144  *   Indicates the maximum number of virtual interrupt resources assignable
145  *   to a secondary controller. The default 0 resolves to
146  *   `(sriov_vi_flexible / sriov_max_vfs)`.
147  *
148  * - `sriov_max_vq_per_vf`
149  *   Indicates the maximum number of virtual queue resources assignable to
150  *   a secondary controller. The default 0 resolves to
151  *   `(sriov_vq_flexible / sriov_max_vfs)`.
152  *
153  * nvme namespace device parameters
154  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
155  * - `shared`
156  *   When the parent nvme device (as defined explicitly by the 'bus' parameter
157  *   or implicitly by the most recently defined NvmeBus) is linked to an
158  *   nvme-subsys device, the namespace will be attached to all controllers in
159  *   the subsystem. If set to 'off' (the default), the namespace will remain a
160  *   private namespace and may only be attached to a single controller at a
161  *   time.
162  *
163  * - `detached`
164  *   This parameter is only valid together with the `subsys` parameter. If left
165  *   at the default value (`false/off`), the namespace will be attached to all
166  *   controllers in the NVMe subsystem at boot-up. If set to `true/on`, the
167  *   namespace will be available in the subsystem but not attached to any
168  *   controllers.
169  *
170  * Setting `zoned` to true selects Zoned Command Set at the namespace.
171  * In this case, the following namespace properties are available to configure
172  * zoned operation:
173  *     zoned.zone_size=<zone size in bytes, default: 128MiB>
174  *         The number may be followed by K, M, G as in kilo-, mega- or giga-.
175  *
176  *     zoned.zone_capacity=<zone capacity in bytes, default: zone size>
177  *         The value 0 (default) forces zone capacity to be the same as zone
178  *         size. The value of this property may not exceed zone size.
179  *
180  *     zoned.descr_ext_size=<zone descriptor extension size, default 0>
181  *         This value needs to be specified in 64B units. If it is zero,
182  *         namespace(s) will not support zone descriptor extensions.
183  *
184  *     zoned.max_active=<Maximum Active Resources (zones), default: 0>
185  *         The default value means there is no limit to the number of
186  *         concurrently active zones.
187  *
188  *     zoned.max_open=<Maximum Open Resources (zones), default: 0>
189  *         The default value means there is no limit to the number of
190  *         concurrently open zones.
191  *
192  *     zoned.cross_read=<enable RAZB, default: false>
193  *         Setting this property to true enables Read Across Zone Boundaries.
194  */
195 
196 #include "qemu/osdep.h"
197 #include "qemu/cutils.h"
198 #include "qemu/error-report.h"
199 #include "qemu/log.h"
200 #include "qemu/units.h"
201 #include "qemu/range.h"
202 #include "qapi/error.h"
203 #include "qapi/visitor.h"
204 #include "sysemu/sysemu.h"
205 #include "sysemu/block-backend.h"
206 #include "sysemu/hostmem.h"
207 #include "hw/pci/msix.h"
208 #include "hw/pci/pcie_sriov.h"
209 #include "sysemu/spdm-socket.h"
210 #include "migration/vmstate.h"
211 
212 #include "nvme.h"
213 #include "dif.h"
214 #include "trace.h"
215 
216 #define NVME_MAX_IOQPAIRS 0xffff
217 #define NVME_DB_SIZE  4
218 #define NVME_SPEC_VER 0x00010400
219 #define NVME_CMB_BIR 2
220 #define NVME_PMR_BIR 4
221 #define NVME_TEMPERATURE 0x143
222 #define NVME_TEMPERATURE_WARNING 0x157
223 #define NVME_TEMPERATURE_CRITICAL 0x175
224 #define NVME_NUM_FW_SLOTS 1
225 #define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB)
226 #define NVME_VF_RES_GRANULARITY 1
227 #define NVME_VF_OFFSET 0x1
228 #define NVME_VF_STRIDE 1
229 
230 #define NVME_GUEST_ERR(trace, fmt, ...) \
231     do { \
232         (trace_##trace)(__VA_ARGS__); \
233         qemu_log_mask(LOG_GUEST_ERROR, #trace \
234             " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
235     } while (0)
236 
237 static const bool nvme_feature_support[NVME_FID_MAX] = {
238     [NVME_ARBITRATION]              = true,
239     [NVME_POWER_MANAGEMENT]         = true,
240     [NVME_TEMPERATURE_THRESHOLD]    = true,
241     [NVME_ERROR_RECOVERY]           = true,
242     [NVME_VOLATILE_WRITE_CACHE]     = true,
243     [NVME_NUMBER_OF_QUEUES]         = true,
244     [NVME_INTERRUPT_COALESCING]     = true,
245     [NVME_INTERRUPT_VECTOR_CONF]    = true,
246     [NVME_WRITE_ATOMICITY]          = true,
247     [NVME_ASYNCHRONOUS_EVENT_CONF]  = true,
248     [NVME_TIMESTAMP]                = true,
249     [NVME_HOST_BEHAVIOR_SUPPORT]    = true,
250     [NVME_COMMAND_SET_PROFILE]      = true,
251     [NVME_FDP_MODE]                 = true,
252     [NVME_FDP_EVENTS]               = true,
253 };
254 
255 static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
256     [NVME_TEMPERATURE_THRESHOLD]    = NVME_FEAT_CAP_CHANGE,
257     [NVME_ERROR_RECOVERY]           = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
258     [NVME_VOLATILE_WRITE_CACHE]     = NVME_FEAT_CAP_CHANGE,
259     [NVME_NUMBER_OF_QUEUES]         = NVME_FEAT_CAP_CHANGE,
260     [NVME_WRITE_ATOMICITY]          = NVME_FEAT_CAP_CHANGE,
261     [NVME_ASYNCHRONOUS_EVENT_CONF]  = NVME_FEAT_CAP_CHANGE,
262     [NVME_TIMESTAMP]                = NVME_FEAT_CAP_CHANGE,
263     [NVME_HOST_BEHAVIOR_SUPPORT]    = NVME_FEAT_CAP_CHANGE,
264     [NVME_COMMAND_SET_PROFILE]      = NVME_FEAT_CAP_CHANGE,
265     [NVME_FDP_MODE]                 = NVME_FEAT_CAP_CHANGE,
266     [NVME_FDP_EVENTS]               = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
267 };
268 
269 static const uint32_t nvme_cse_acs[256] = {
270     [NVME_ADM_CMD_DELETE_SQ]        = NVME_CMD_EFF_CSUPP,
271     [NVME_ADM_CMD_CREATE_SQ]        = NVME_CMD_EFF_CSUPP,
272     [NVME_ADM_CMD_GET_LOG_PAGE]     = NVME_CMD_EFF_CSUPP,
273     [NVME_ADM_CMD_DELETE_CQ]        = NVME_CMD_EFF_CSUPP,
274     [NVME_ADM_CMD_CREATE_CQ]        = NVME_CMD_EFF_CSUPP,
275     [NVME_ADM_CMD_IDENTIFY]         = NVME_CMD_EFF_CSUPP,
276     [NVME_ADM_CMD_ABORT]            = NVME_CMD_EFF_CSUPP,
277     [NVME_ADM_CMD_SET_FEATURES]     = NVME_CMD_EFF_CSUPP,
278     [NVME_ADM_CMD_GET_FEATURES]     = NVME_CMD_EFF_CSUPP,
279     [NVME_ADM_CMD_ASYNC_EV_REQ]     = NVME_CMD_EFF_CSUPP,
280     [NVME_ADM_CMD_NS_ATTACHMENT]    = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC,
281     [NVME_ADM_CMD_VIRT_MNGMT]       = NVME_CMD_EFF_CSUPP,
282     [NVME_ADM_CMD_DBBUF_CONFIG]     = NVME_CMD_EFF_CSUPP,
283     [NVME_ADM_CMD_FORMAT_NVM]       = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
284     [NVME_ADM_CMD_DIRECTIVE_RECV]   = NVME_CMD_EFF_CSUPP,
285     [NVME_ADM_CMD_DIRECTIVE_SEND]   = NVME_CMD_EFF_CSUPP,
286 };
287 
288 static const uint32_t nvme_cse_iocs_none[256];
289 
290 static const uint32_t nvme_cse_iocs_nvm[256] = {
291     [NVME_CMD_FLUSH]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
292     [NVME_CMD_WRITE_ZEROES]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
293     [NVME_CMD_WRITE]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
294     [NVME_CMD_READ]                 = NVME_CMD_EFF_CSUPP,
295     [NVME_CMD_DSM]                  = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
296     [NVME_CMD_VERIFY]               = NVME_CMD_EFF_CSUPP,
297     [NVME_CMD_COPY]                 = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
298     [NVME_CMD_COMPARE]              = NVME_CMD_EFF_CSUPP,
299     [NVME_CMD_IO_MGMT_RECV]         = NVME_CMD_EFF_CSUPP,
300     [NVME_CMD_IO_MGMT_SEND]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
301 };
302 
303 static const uint32_t nvme_cse_iocs_zoned[256] = {
304     [NVME_CMD_FLUSH]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
305     [NVME_CMD_WRITE_ZEROES]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
306     [NVME_CMD_WRITE]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
307     [NVME_CMD_READ]                 = NVME_CMD_EFF_CSUPP,
308     [NVME_CMD_DSM]                  = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
309     [NVME_CMD_VERIFY]               = NVME_CMD_EFF_CSUPP,
310     [NVME_CMD_COPY]                 = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
311     [NVME_CMD_COMPARE]              = NVME_CMD_EFF_CSUPP,
312     [NVME_CMD_ZONE_APPEND]          = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
313     [NVME_CMD_ZONE_MGMT_SEND]       = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
314     [NVME_CMD_ZONE_MGMT_RECV]       = NVME_CMD_EFF_CSUPP,
315 };
316 
317 static void nvme_process_sq(void *opaque);
318 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst);
319 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n);
320 
321 static uint16_t nvme_sqid(NvmeRequest *req)
322 {
323     return le16_to_cpu(req->sq->sqid);
324 }
325 
326 static inline uint16_t nvme_make_pid(NvmeNamespace *ns, uint16_t rg,
327                                      uint16_t ph)
328 {
329     uint16_t rgif = ns->endgrp->fdp.rgif;
330 
331     if (!rgif) {
332         return ph;
333     }
334 
335     return (rg << (16 - rgif)) | ph;
336 }
337 
338 static inline bool nvme_ph_valid(NvmeNamespace *ns, uint16_t ph)
339 {
340     return ph < ns->fdp.nphs;
341 }
342 
343 static inline bool nvme_rg_valid(NvmeEnduranceGroup *endgrp, uint16_t rg)
344 {
345     return rg < endgrp->fdp.nrg;
346 }
347 
348 static inline uint16_t nvme_pid2ph(NvmeNamespace *ns, uint16_t pid)
349 {
350     uint16_t rgif = ns->endgrp->fdp.rgif;
351 
352     if (!rgif) {
353         return pid;
354     }
355 
356     return pid & ((1 << (15 - rgif)) - 1);
357 }
358 
359 static inline uint16_t nvme_pid2rg(NvmeNamespace *ns, uint16_t pid)
360 {
361     uint16_t rgif = ns->endgrp->fdp.rgif;
362 
363     if (!rgif) {
364         return 0;
365     }
366 
367     return pid >> (16 - rgif);
368 }
369 
370 static inline bool nvme_parse_pid(NvmeNamespace *ns, uint16_t pid,
371                                   uint16_t *ph, uint16_t *rg)
372 {
373     *rg = nvme_pid2rg(ns, pid);
374     *ph = nvme_pid2ph(ns, pid);
375 
376     return nvme_ph_valid(ns, *ph) && nvme_rg_valid(ns->endgrp, *rg);
377 }
378 
379 static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone,
380                                    NvmeZoneState state)
381 {
382     if (QTAILQ_IN_USE(zone, entry)) {
383         switch (nvme_get_zone_state(zone)) {
384         case NVME_ZONE_STATE_EXPLICITLY_OPEN:
385             QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
386             break;
387         case NVME_ZONE_STATE_IMPLICITLY_OPEN:
388             QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
389             break;
390         case NVME_ZONE_STATE_CLOSED:
391             QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
392             break;
393         case NVME_ZONE_STATE_FULL:
394             QTAILQ_REMOVE(&ns->full_zones, zone, entry);
395         default:
396             ;
397         }
398     }
399 
400     nvme_set_zone_state(zone, state);
401 
402     switch (state) {
403     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
404         QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry);
405         break;
406     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
407         QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry);
408         break;
409     case NVME_ZONE_STATE_CLOSED:
410         QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry);
411         break;
412     case NVME_ZONE_STATE_FULL:
413         QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry);
414     case NVME_ZONE_STATE_READ_ONLY:
415         break;
416     default:
417         zone->d.za = 0;
418     }
419 }
420 
421 static uint16_t nvme_zns_check_resources(NvmeNamespace *ns, uint32_t act,
422                                          uint32_t opn, uint32_t zrwa)
423 {
424     if (ns->params.max_active_zones != 0 &&
425         ns->nr_active_zones + act > ns->params.max_active_zones) {
426         trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones);
427         return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR;
428     }
429 
430     if (ns->params.max_open_zones != 0 &&
431         ns->nr_open_zones + opn > ns->params.max_open_zones) {
432         trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones);
433         return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR;
434     }
435 
436     if (zrwa > ns->zns.numzrwa) {
437         return NVME_NOZRWA | NVME_DNR;
438     }
439 
440     return NVME_SUCCESS;
441 }
442 
443 /*
444  * Check if we can open a zone without exceeding open/active limits.
445  * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5).
446  */
447 static uint16_t nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn)
448 {
449     return nvme_zns_check_resources(ns, act, opn, 0);
450 }
451 
452 static NvmeFdpEvent *nvme_fdp_alloc_event(NvmeCtrl *n, NvmeFdpEventBuffer *ebuf)
453 {
454     NvmeFdpEvent *ret = NULL;
455     bool is_full = ebuf->next == ebuf->start && ebuf->nelems;
456 
457     ret = &ebuf->events[ebuf->next++];
458     if (unlikely(ebuf->next == NVME_FDP_MAX_EVENTS)) {
459         ebuf->next = 0;
460     }
461     if (is_full) {
462         ebuf->start = ebuf->next;
463     } else {
464         ebuf->nelems++;
465     }
466 
467     memset(ret, 0, sizeof(NvmeFdpEvent));
468     ret->timestamp = nvme_get_timestamp(n);
469 
470     return ret;
471 }
472 
473 static inline int log_event(NvmeRuHandle *ruh, uint8_t event_type)
474 {
475     return (ruh->event_filter >> nvme_fdp_evf_shifts[event_type]) & 0x1;
476 }
477 
478 static bool nvme_update_ruh(NvmeCtrl *n, NvmeNamespace *ns, uint16_t pid)
479 {
480     NvmeEnduranceGroup *endgrp = ns->endgrp;
481     NvmeRuHandle *ruh;
482     NvmeReclaimUnit *ru;
483     NvmeFdpEvent *e = NULL;
484     uint16_t ph, rg, ruhid;
485 
486     if (!nvme_parse_pid(ns, pid, &ph, &rg)) {
487         return false;
488     }
489 
490     ruhid = ns->fdp.phs[ph];
491 
492     ruh = &endgrp->fdp.ruhs[ruhid];
493     ru = &ruh->rus[rg];
494 
495     if (ru->ruamw) {
496         if (log_event(ruh, FDP_EVT_RU_NOT_FULLY_WRITTEN)) {
497             e = nvme_fdp_alloc_event(n, &endgrp->fdp.host_events);
498             e->type = FDP_EVT_RU_NOT_FULLY_WRITTEN;
499             e->flags = FDPEF_PIV | FDPEF_NSIDV | FDPEF_LV;
500             e->pid = cpu_to_le16(pid);
501             e->nsid = cpu_to_le32(ns->params.nsid);
502             e->rgid = cpu_to_le16(rg);
503             e->ruhid = cpu_to_le16(ruhid);
504         }
505 
506         /* log (eventual) GC overhead of prematurely swapping the RU */
507         nvme_fdp_stat_inc(&endgrp->fdp.mbmw, nvme_l2b(ns, ru->ruamw));
508     }
509 
510     ru->ruamw = ruh->ruamw;
511 
512     return true;
513 }
514 
515 static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
516 {
517     hwaddr hi, lo;
518 
519     if (!n->cmb.cmse) {
520         return false;
521     }
522 
523     lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
524     hi = lo + int128_get64(n->cmb.mem.size);
525 
526     return addr >= lo && addr < hi;
527 }
528 
529 static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
530 {
531     hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
532     return &n->cmb.buf[addr - base];
533 }
534 
535 static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr)
536 {
537     hwaddr hi;
538 
539     if (!n->pmr.cmse) {
540         return false;
541     }
542 
543     hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size);
544 
545     return addr >= n->pmr.cba && addr < hi;
546 }
547 
548 static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr)
549 {
550     return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba);
551 }
552 
553 static inline bool nvme_addr_is_iomem(NvmeCtrl *n, hwaddr addr)
554 {
555     hwaddr hi, lo;
556 
557     /*
558      * The purpose of this check is to guard against invalid "local" access to
559      * the iomem (i.e. controller registers). Thus, we check against the range
560      * covered by the 'bar0' MemoryRegion since that is currently composed of
561      * two subregions (the NVMe "MBAR" and the MSI-X table/pba). Note, however,
562      * that if the device model is ever changed to allow the CMB to be located
563      * in BAR0 as well, then this must be changed.
564      */
565     lo = n->bar0.addr;
566     hi = lo + int128_get64(n->bar0.size);
567 
568     return addr >= lo && addr < hi;
569 }
570 
571 static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
572 {
573     hwaddr hi = addr + size - 1;
574     if (hi < addr) {
575         return 1;
576     }
577 
578     if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
579         memcpy(buf, nvme_addr_to_cmb(n, addr), size);
580         return 0;
581     }
582 
583     if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
584         memcpy(buf, nvme_addr_to_pmr(n, addr), size);
585         return 0;
586     }
587 
588     return pci_dma_read(PCI_DEVICE(n), addr, buf, size);
589 }
590 
591 static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, const void *buf, int size)
592 {
593     hwaddr hi = addr + size - 1;
594     if (hi < addr) {
595         return 1;
596     }
597 
598     if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
599         memcpy(nvme_addr_to_cmb(n, addr), buf, size);
600         return 0;
601     }
602 
603     if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
604         memcpy(nvme_addr_to_pmr(n, addr), buf, size);
605         return 0;
606     }
607 
608     return pci_dma_write(PCI_DEVICE(n), addr, buf, size);
609 }
610 
611 static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
612 {
613     return nsid &&
614         (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES);
615 }
616 
617 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
618 {
619     return sqid < n->conf_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
620 }
621 
622 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
623 {
624     return cqid < n->conf_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
625 }
626 
627 static void nvme_inc_cq_tail(NvmeCQueue *cq)
628 {
629     cq->tail++;
630     if (cq->tail >= cq->size) {
631         cq->tail = 0;
632         cq->phase = !cq->phase;
633     }
634 }
635 
636 static void nvme_inc_sq_head(NvmeSQueue *sq)
637 {
638     sq->head = (sq->head + 1) % sq->size;
639 }
640 
641 static uint8_t nvme_cq_full(NvmeCQueue *cq)
642 {
643     return (cq->tail + 1) % cq->size == cq->head;
644 }
645 
646 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
647 {
648     return sq->head == sq->tail;
649 }
650 
651 static void nvme_irq_check(NvmeCtrl *n)
652 {
653     PCIDevice *pci = PCI_DEVICE(n);
654     uint32_t intms = ldl_le_p(&n->bar.intms);
655 
656     if (msix_enabled(pci)) {
657         return;
658     }
659 
660     /* vfs does not implement intx */
661     if (pci_is_vf(pci)) {
662         return;
663     }
664 
665     if (~intms & n->irq_status) {
666         pci_irq_assert(pci);
667     } else {
668         pci_irq_deassert(pci);
669     }
670 }
671 
672 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
673 {
674     PCIDevice *pci = PCI_DEVICE(n);
675 
676     if (cq->irq_enabled) {
677         if (msix_enabled(pci)) {
678             trace_pci_nvme_irq_msix(cq->vector);
679             msix_notify(pci, cq->vector);
680         } else {
681             trace_pci_nvme_irq_pin();
682             assert(cq->vector < 32);
683             n->irq_status |= 1 << cq->vector;
684             nvme_irq_check(n);
685         }
686     } else {
687         trace_pci_nvme_irq_masked();
688     }
689 }
690 
691 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
692 {
693     if (cq->irq_enabled) {
694         if (msix_enabled(PCI_DEVICE(n))) {
695             return;
696         } else {
697             assert(cq->vector < 32);
698             if (!n->cq_pending) {
699                 n->irq_status &= ~(1 << cq->vector);
700             }
701             nvme_irq_check(n);
702         }
703     }
704 }
705 
706 static void nvme_req_clear(NvmeRequest *req)
707 {
708     req->ns = NULL;
709     req->opaque = NULL;
710     req->aiocb = NULL;
711     memset(&req->cqe, 0x0, sizeof(req->cqe));
712     req->status = NVME_SUCCESS;
713 }
714 
715 static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma)
716 {
717     if (dma) {
718         pci_dma_sglist_init(&sg->qsg, PCI_DEVICE(n), 0);
719         sg->flags = NVME_SG_DMA;
720     } else {
721         qemu_iovec_init(&sg->iov, 0);
722     }
723 
724     sg->flags |= NVME_SG_ALLOC;
725 }
726 
727 static inline void nvme_sg_unmap(NvmeSg *sg)
728 {
729     if (!(sg->flags & NVME_SG_ALLOC)) {
730         return;
731     }
732 
733     if (sg->flags & NVME_SG_DMA) {
734         qemu_sglist_destroy(&sg->qsg);
735     } else {
736         qemu_iovec_destroy(&sg->iov);
737     }
738 
739     memset(sg, 0x0, sizeof(*sg));
740 }
741 
742 /*
743  * When metadata is transferred as extended LBAs, the DPTR mapped into `sg`
744  * holds both data and metadata. This function splits the data and metadata
745  * into two separate QSG/IOVs.
746  */
747 static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data,
748                           NvmeSg *mdata)
749 {
750     NvmeSg *dst = data;
751     uint32_t trans_len, count = ns->lbasz;
752     uint64_t offset = 0;
753     bool dma = sg->flags & NVME_SG_DMA;
754     size_t sge_len;
755     size_t sg_len = dma ? sg->qsg.size : sg->iov.size;
756     int sg_idx = 0;
757 
758     assert(sg->flags & NVME_SG_ALLOC);
759 
760     while (sg_len) {
761         sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
762 
763         trans_len = MIN(sg_len, count);
764         trans_len = MIN(trans_len, sge_len - offset);
765 
766         if (dst) {
767             if (dma) {
768                 qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset,
769                                 trans_len);
770             } else {
771                 qemu_iovec_add(&dst->iov,
772                                sg->iov.iov[sg_idx].iov_base + offset,
773                                trans_len);
774             }
775         }
776 
777         sg_len -= trans_len;
778         count -= trans_len;
779         offset += trans_len;
780 
781         if (count == 0) {
782             dst = (dst == data) ? mdata : data;
783             count = (dst == data) ? ns->lbasz : ns->lbaf.ms;
784         }
785 
786         if (sge_len == offset) {
787             offset = 0;
788             sg_idx++;
789         }
790     }
791 }
792 
793 static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
794                                   size_t len)
795 {
796     if (!len) {
797         return NVME_SUCCESS;
798     }
799 
800     trace_pci_nvme_map_addr_cmb(addr, len);
801 
802     if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
803         return NVME_DATA_TRAS_ERROR;
804     }
805 
806     qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
807 
808     return NVME_SUCCESS;
809 }
810 
811 static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
812                                   size_t len)
813 {
814     if (!len) {
815         return NVME_SUCCESS;
816     }
817 
818     if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) {
819         return NVME_DATA_TRAS_ERROR;
820     }
821 
822     qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len);
823 
824     return NVME_SUCCESS;
825 }
826 
827 static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len)
828 {
829     bool cmb = false, pmr = false;
830 
831     if (!len) {
832         return NVME_SUCCESS;
833     }
834 
835     trace_pci_nvme_map_addr(addr, len);
836 
837     if (nvme_addr_is_iomem(n, addr)) {
838         return NVME_DATA_TRAS_ERROR;
839     }
840 
841     if (nvme_addr_is_cmb(n, addr)) {
842         cmb = true;
843     } else if (nvme_addr_is_pmr(n, addr)) {
844         pmr = true;
845     }
846 
847     if (cmb || pmr) {
848         if (sg->flags & NVME_SG_DMA) {
849             return NVME_INVALID_USE_OF_CMB | NVME_DNR;
850         }
851 
852         if (sg->iov.niov + 1 > IOV_MAX) {
853             goto max_mappings_exceeded;
854         }
855 
856         if (cmb) {
857             return nvme_map_addr_cmb(n, &sg->iov, addr, len);
858         } else {
859             return nvme_map_addr_pmr(n, &sg->iov, addr, len);
860         }
861     }
862 
863     if (!(sg->flags & NVME_SG_DMA)) {
864         return NVME_INVALID_USE_OF_CMB | NVME_DNR;
865     }
866 
867     if (sg->qsg.nsg + 1 > IOV_MAX) {
868         goto max_mappings_exceeded;
869     }
870 
871     qemu_sglist_add(&sg->qsg, addr, len);
872 
873     return NVME_SUCCESS;
874 
875 max_mappings_exceeded:
876     NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings,
877                    "number of mappings exceed 1024");
878     return NVME_INTERNAL_DEV_ERROR | NVME_DNR;
879 }
880 
881 static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr)
882 {
883     return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr));
884 }
885 
886 static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1,
887                              uint64_t prp2, uint32_t len)
888 {
889     hwaddr trans_len = n->page_size - (prp1 % n->page_size);
890     trans_len = MIN(len, trans_len);
891     int num_prps = (len >> n->page_bits) + 1;
892     uint16_t status;
893     int ret;
894 
895     trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
896 
897     nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1));
898 
899     status = nvme_map_addr(n, sg, prp1, trans_len);
900     if (status) {
901         goto unmap;
902     }
903 
904     len -= trans_len;
905     if (len) {
906         if (len > n->page_size) {
907             g_autofree uint64_t *prp_list = g_new(uint64_t, n->max_prp_ents);
908             uint32_t nents, prp_trans;
909             int i = 0;
910 
911             /*
912              * The first PRP list entry, pointed to by PRP2 may contain offset.
913              * Hence, we need to calculate the number of entries in based on
914              * that offset.
915              */
916             nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3;
917             prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
918             ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
919             if (ret) {
920                 trace_pci_nvme_err_addr_read(prp2);
921                 status = NVME_DATA_TRAS_ERROR;
922                 goto unmap;
923             }
924             while (len != 0) {
925                 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
926 
927                 if (i == nents - 1 && len > n->page_size) {
928                     if (unlikely(prp_ent & (n->page_size - 1))) {
929                         trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
930                         status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
931                         goto unmap;
932                     }
933 
934                     i = 0;
935                     nents = (len + n->page_size - 1) >> n->page_bits;
936                     nents = MIN(nents, n->max_prp_ents);
937                     prp_trans = nents * sizeof(uint64_t);
938                     ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
939                                          prp_trans);
940                     if (ret) {
941                         trace_pci_nvme_err_addr_read(prp_ent);
942                         status = NVME_DATA_TRAS_ERROR;
943                         goto unmap;
944                     }
945                     prp_ent = le64_to_cpu(prp_list[i]);
946                 }
947 
948                 if (unlikely(prp_ent & (n->page_size - 1))) {
949                     trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
950                     status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
951                     goto unmap;
952                 }
953 
954                 trans_len = MIN(len, n->page_size);
955                 status = nvme_map_addr(n, sg, prp_ent, trans_len);
956                 if (status) {
957                     goto unmap;
958                 }
959 
960                 len -= trans_len;
961                 i++;
962             }
963         } else {
964             if (unlikely(prp2 & (n->page_size - 1))) {
965                 trace_pci_nvme_err_invalid_prp2_align(prp2);
966                 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
967                 goto unmap;
968             }
969             status = nvme_map_addr(n, sg, prp2, len);
970             if (status) {
971                 goto unmap;
972             }
973         }
974     }
975 
976     return NVME_SUCCESS;
977 
978 unmap:
979     nvme_sg_unmap(sg);
980     return status;
981 }
982 
983 /*
984  * Map 'nsgld' data descriptors from 'segment'. The function will subtract the
985  * number of bytes mapped in len.
986  */
987 static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg,
988                                   NvmeSglDescriptor *segment, uint64_t nsgld,
989                                   size_t *len, NvmeCmd *cmd)
990 {
991     dma_addr_t addr, trans_len;
992     uint32_t dlen;
993     uint16_t status;
994 
995     for (int i = 0; i < nsgld; i++) {
996         uint8_t type = NVME_SGL_TYPE(segment[i].type);
997 
998         switch (type) {
999         case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
1000             break;
1001         case NVME_SGL_DESCR_TYPE_SEGMENT:
1002         case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
1003             return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
1004         default:
1005             return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
1006         }
1007 
1008         dlen = le32_to_cpu(segment[i].len);
1009 
1010         if (!dlen) {
1011             continue;
1012         }
1013 
1014         if (*len == 0) {
1015             /*
1016              * All data has been mapped, but the SGL contains additional
1017              * segments and/or descriptors. The controller might accept
1018              * ignoring the rest of the SGL.
1019              */
1020             uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
1021             if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
1022                 break;
1023             }
1024 
1025             trace_pci_nvme_err_invalid_sgl_excess_length(dlen);
1026             return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1027         }
1028 
1029         trans_len = MIN(*len, dlen);
1030 
1031         addr = le64_to_cpu(segment[i].addr);
1032 
1033         if (UINT64_MAX - addr < dlen) {
1034             return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1035         }
1036 
1037         status = nvme_map_addr(n, sg, addr, trans_len);
1038         if (status) {
1039             return status;
1040         }
1041 
1042         *len -= trans_len;
1043     }
1044 
1045     return NVME_SUCCESS;
1046 }
1047 
1048 static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl,
1049                              size_t len, NvmeCmd *cmd)
1050 {
1051     /*
1052      * Read the segment in chunks of 256 descriptors (one 4k page) to avoid
1053      * dynamically allocating a potentially huge SGL. The spec allows the SGL
1054      * to be larger (as in number of bytes required to describe the SGL
1055      * descriptors and segment chain) than the command transfer size, so it is
1056      * not bounded by MDTS.
1057      */
1058 #define SEG_CHUNK_SIZE 256
1059 
1060     NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
1061     uint64_t nsgld;
1062     uint32_t seg_len;
1063     uint16_t status;
1064     hwaddr addr;
1065     int ret;
1066 
1067     sgld = &sgl;
1068     addr = le64_to_cpu(sgl.addr);
1069 
1070     trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len);
1071 
1072     nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr));
1073 
1074     /*
1075      * If the entire transfer can be described with a single data block it can
1076      * be mapped directly.
1077      */
1078     if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
1079         status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd);
1080         if (status) {
1081             goto unmap;
1082         }
1083 
1084         goto out;
1085     }
1086 
1087     for (;;) {
1088         switch (NVME_SGL_TYPE(sgld->type)) {
1089         case NVME_SGL_DESCR_TYPE_SEGMENT:
1090         case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
1091             break;
1092         default:
1093             return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
1094         }
1095 
1096         seg_len = le32_to_cpu(sgld->len);
1097 
1098         /* check the length of the (Last) Segment descriptor */
1099         if (!seg_len || seg_len & 0xf) {
1100             return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
1101         }
1102 
1103         if (UINT64_MAX - addr < seg_len) {
1104             return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1105         }
1106 
1107         nsgld = seg_len / sizeof(NvmeSglDescriptor);
1108 
1109         while (nsgld > SEG_CHUNK_SIZE) {
1110             if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
1111                 trace_pci_nvme_err_addr_read(addr);
1112                 status = NVME_DATA_TRAS_ERROR;
1113                 goto unmap;
1114             }
1115 
1116             status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE,
1117                                        &len, cmd);
1118             if (status) {
1119                 goto unmap;
1120             }
1121 
1122             nsgld -= SEG_CHUNK_SIZE;
1123             addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
1124         }
1125 
1126         ret = nvme_addr_read(n, addr, segment, nsgld *
1127                              sizeof(NvmeSglDescriptor));
1128         if (ret) {
1129             trace_pci_nvme_err_addr_read(addr);
1130             status = NVME_DATA_TRAS_ERROR;
1131             goto unmap;
1132         }
1133 
1134         last_sgld = &segment[nsgld - 1];
1135 
1136         /*
1137          * If the segment ends with a Data Block, then we are done.
1138          */
1139         if (NVME_SGL_TYPE(last_sgld->type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
1140             status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd);
1141             if (status) {
1142                 goto unmap;
1143             }
1144 
1145             goto out;
1146         }
1147 
1148         /*
1149          * If the last descriptor was not a Data Block, then the current
1150          * segment must not be a Last Segment.
1151          */
1152         if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
1153             status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
1154             goto unmap;
1155         }
1156 
1157         sgld = last_sgld;
1158         addr = le64_to_cpu(sgld->addr);
1159 
1160         /*
1161          * Do not map the last descriptor; it will be a Segment or Last Segment
1162          * descriptor and is handled by the next iteration.
1163          */
1164         status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd);
1165         if (status) {
1166             goto unmap;
1167         }
1168     }
1169 
1170 out:
1171     /* if there is any residual left in len, the SGL was too short */
1172     if (len) {
1173         status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1174         goto unmap;
1175     }
1176 
1177     return NVME_SUCCESS;
1178 
1179 unmap:
1180     nvme_sg_unmap(sg);
1181     return status;
1182 }
1183 
1184 uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1185                        NvmeCmd *cmd)
1186 {
1187     uint64_t prp1, prp2;
1188 
1189     switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) {
1190     case NVME_PSDT_PRP:
1191         prp1 = le64_to_cpu(cmd->dptr.prp1);
1192         prp2 = le64_to_cpu(cmd->dptr.prp2);
1193 
1194         return nvme_map_prp(n, sg, prp1, prp2, len);
1195     case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
1196     case NVME_PSDT_SGL_MPTR_SGL:
1197         return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd);
1198     default:
1199         return NVME_INVALID_FIELD;
1200     }
1201 }
1202 
1203 static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1204                               NvmeCmd *cmd)
1205 {
1206     int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags);
1207     hwaddr mptr = le64_to_cpu(cmd->mptr);
1208     uint16_t status;
1209 
1210     if (psdt == NVME_PSDT_SGL_MPTR_SGL) {
1211         NvmeSglDescriptor sgl;
1212 
1213         if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) {
1214             return NVME_DATA_TRAS_ERROR;
1215         }
1216 
1217         status = nvme_map_sgl(n, sg, sgl, len, cmd);
1218         if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) {
1219             status = NVME_MD_SGL_LEN_INVALID | NVME_DNR;
1220         }
1221 
1222         return status;
1223     }
1224 
1225     nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr));
1226     status = nvme_map_addr(n, sg, mptr, len);
1227     if (status) {
1228         nvme_sg_unmap(sg);
1229     }
1230 
1231     return status;
1232 }
1233 
1234 static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1235 {
1236     NvmeNamespace *ns = req->ns;
1237     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1238     bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1239     bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1240     size_t len = nvme_l2b(ns, nlb);
1241     uint16_t status;
1242 
1243     if (nvme_ns_ext(ns) &&
1244         !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1245         NvmeSg sg;
1246 
1247         len += nvme_m2b(ns, nlb);
1248 
1249         status = nvme_map_dptr(n, &sg, len, &req->cmd);
1250         if (status) {
1251             return status;
1252         }
1253 
1254         nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1255         nvme_sg_split(&sg, ns, &req->sg, NULL);
1256         nvme_sg_unmap(&sg);
1257 
1258         return NVME_SUCCESS;
1259     }
1260 
1261     return nvme_map_dptr(n, &req->sg, len, &req->cmd);
1262 }
1263 
1264 static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1265 {
1266     NvmeNamespace *ns = req->ns;
1267     size_t len = nvme_m2b(ns, nlb);
1268     uint16_t status;
1269 
1270     if (nvme_ns_ext(ns)) {
1271         NvmeSg sg;
1272 
1273         len += nvme_l2b(ns, nlb);
1274 
1275         status = nvme_map_dptr(n, &sg, len, &req->cmd);
1276         if (status) {
1277             return status;
1278         }
1279 
1280         nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1281         nvme_sg_split(&sg, ns, NULL, &req->sg);
1282         nvme_sg_unmap(&sg);
1283 
1284         return NVME_SUCCESS;
1285     }
1286 
1287     return nvme_map_mptr(n, &req->sg, len, &req->cmd);
1288 }
1289 
1290 static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr,
1291                                     uint32_t len, uint32_t bytes,
1292                                     int32_t skip_bytes, int64_t offset,
1293                                     NvmeTxDirection dir)
1294 {
1295     hwaddr addr;
1296     uint32_t trans_len, count = bytes;
1297     bool dma = sg->flags & NVME_SG_DMA;
1298     int64_t sge_len;
1299     int sg_idx = 0;
1300     int ret;
1301 
1302     assert(sg->flags & NVME_SG_ALLOC);
1303 
1304     while (len) {
1305         sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
1306 
1307         if (sge_len - offset < 0) {
1308             offset -= sge_len;
1309             sg_idx++;
1310             continue;
1311         }
1312 
1313         if (sge_len == offset) {
1314             offset = 0;
1315             sg_idx++;
1316             continue;
1317         }
1318 
1319         trans_len = MIN(len, count);
1320         trans_len = MIN(trans_len, sge_len - offset);
1321 
1322         if (dma) {
1323             addr = sg->qsg.sg[sg_idx].base + offset;
1324         } else {
1325             addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset;
1326         }
1327 
1328         if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1329             ret = nvme_addr_read(n, addr, ptr, trans_len);
1330         } else {
1331             ret = nvme_addr_write(n, addr, ptr, trans_len);
1332         }
1333 
1334         if (ret) {
1335             return NVME_DATA_TRAS_ERROR;
1336         }
1337 
1338         ptr += trans_len;
1339         len -= trans_len;
1340         count -= trans_len;
1341         offset += trans_len;
1342 
1343         if (count == 0) {
1344             count = bytes;
1345             offset += skip_bytes;
1346         }
1347     }
1348 
1349     return NVME_SUCCESS;
1350 }
1351 
1352 static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, void *ptr, uint32_t len,
1353                         NvmeTxDirection dir)
1354 {
1355     assert(sg->flags & NVME_SG_ALLOC);
1356 
1357     if (sg->flags & NVME_SG_DMA) {
1358         const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
1359         dma_addr_t residual;
1360 
1361         if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1362             dma_buf_write(ptr, len, &residual, &sg->qsg, attrs);
1363         } else {
1364             dma_buf_read(ptr, len, &residual, &sg->qsg, attrs);
1365         }
1366 
1367         if (unlikely(residual)) {
1368             trace_pci_nvme_err_invalid_dma();
1369             return NVME_INVALID_FIELD | NVME_DNR;
1370         }
1371     } else {
1372         size_t bytes;
1373 
1374         if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1375             bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len);
1376         } else {
1377             bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len);
1378         }
1379 
1380         if (unlikely(bytes != len)) {
1381             trace_pci_nvme_err_invalid_dma();
1382             return NVME_INVALID_FIELD | NVME_DNR;
1383         }
1384     }
1385 
1386     return NVME_SUCCESS;
1387 }
1388 
1389 static inline uint16_t nvme_c2h(NvmeCtrl *n, void *ptr, uint32_t len,
1390                                 NvmeRequest *req)
1391 {
1392     uint16_t status;
1393 
1394     status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1395     if (status) {
1396         return status;
1397     }
1398 
1399     return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE);
1400 }
1401 
1402 static inline uint16_t nvme_h2c(NvmeCtrl *n, void *ptr, uint32_t len,
1403                                 NvmeRequest *req)
1404 {
1405     uint16_t status;
1406 
1407     status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1408     if (status) {
1409         return status;
1410     }
1411 
1412     return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE);
1413 }
1414 
1415 uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len,
1416                           NvmeTxDirection dir, NvmeRequest *req)
1417 {
1418     NvmeNamespace *ns = req->ns;
1419     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1420     bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1421     bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1422 
1423     if (nvme_ns_ext(ns) &&
1424         !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1425         return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz,
1426                                    ns->lbaf.ms, 0, dir);
1427     }
1428 
1429     return nvme_tx(n, &req->sg, ptr, len, dir);
1430 }
1431 
1432 uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len,
1433                            NvmeTxDirection dir, NvmeRequest *req)
1434 {
1435     NvmeNamespace *ns = req->ns;
1436     uint16_t status;
1437 
1438     if (nvme_ns_ext(ns)) {
1439         return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms,
1440                                    ns->lbasz, ns->lbasz, dir);
1441     }
1442 
1443     nvme_sg_unmap(&req->sg);
1444 
1445     status = nvme_map_mptr(n, &req->sg, len, &req->cmd);
1446     if (status) {
1447         return status;
1448     }
1449 
1450     return nvme_tx(n, &req->sg, ptr, len, dir);
1451 }
1452 
1453 static inline void nvme_blk_read(BlockBackend *blk, int64_t offset,
1454                                  uint32_t align, BlockCompletionFunc *cb,
1455                                  NvmeRequest *req)
1456 {
1457     assert(req->sg.flags & NVME_SG_ALLOC);
1458 
1459     if (req->sg.flags & NVME_SG_DMA) {
1460         req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, align, cb, req);
1461     } else {
1462         req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req);
1463     }
1464 }
1465 
1466 static inline void nvme_blk_write(BlockBackend *blk, int64_t offset,
1467                                   uint32_t align, BlockCompletionFunc *cb,
1468                                   NvmeRequest *req)
1469 {
1470     assert(req->sg.flags & NVME_SG_ALLOC);
1471 
1472     if (req->sg.flags & NVME_SG_DMA) {
1473         req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, align, cb, req);
1474     } else {
1475         req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req);
1476     }
1477 }
1478 
1479 static void nvme_update_cq_eventidx(const NvmeCQueue *cq)
1480 {
1481     trace_pci_nvme_update_cq_eventidx(cq->cqid, cq->head);
1482 
1483     stl_le_pci_dma(PCI_DEVICE(cq->ctrl), cq->ei_addr, cq->head,
1484                    MEMTXATTRS_UNSPECIFIED);
1485 }
1486 
1487 static void nvme_update_cq_head(NvmeCQueue *cq)
1488 {
1489     ldl_le_pci_dma(PCI_DEVICE(cq->ctrl), cq->db_addr, &cq->head,
1490                    MEMTXATTRS_UNSPECIFIED);
1491 
1492     trace_pci_nvme_update_cq_head(cq->cqid, cq->head);
1493 }
1494 
1495 static void nvme_post_cqes(void *opaque)
1496 {
1497     NvmeCQueue *cq = opaque;
1498     NvmeCtrl *n = cq->ctrl;
1499     NvmeRequest *req, *next;
1500     bool pending = cq->head != cq->tail;
1501     int ret;
1502 
1503     QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
1504         NvmeSQueue *sq;
1505         hwaddr addr;
1506 
1507         if (n->dbbuf_enabled) {
1508             nvme_update_cq_eventidx(cq);
1509             nvme_update_cq_head(cq);
1510         }
1511 
1512         if (nvme_cq_full(cq)) {
1513             break;
1514         }
1515 
1516         sq = req->sq;
1517         req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
1518         req->cqe.sq_id = cpu_to_le16(sq->sqid);
1519         req->cqe.sq_head = cpu_to_le16(sq->head);
1520         addr = cq->dma_addr + (cq->tail << NVME_CQES);
1521         ret = pci_dma_write(PCI_DEVICE(n), addr, (void *)&req->cqe,
1522                             sizeof(req->cqe));
1523         if (ret) {
1524             trace_pci_nvme_err_addr_write(addr);
1525             trace_pci_nvme_err_cfs();
1526             stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
1527             break;
1528         }
1529 
1530         QTAILQ_REMOVE(&cq->req_list, req, entry);
1531 
1532         nvme_inc_cq_tail(cq);
1533         nvme_sg_unmap(&req->sg);
1534 
1535         if (QTAILQ_EMPTY(&sq->req_list) && !nvme_sq_empty(sq)) {
1536             qemu_bh_schedule(sq->bh);
1537         }
1538 
1539         QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
1540     }
1541     if (cq->tail != cq->head) {
1542         if (cq->irq_enabled && !pending) {
1543             n->cq_pending++;
1544         }
1545 
1546         nvme_irq_assert(n, cq);
1547     }
1548 }
1549 
1550 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
1551 {
1552     assert(cq->cqid == req->sq->cqid);
1553     trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
1554                                           le32_to_cpu(req->cqe.result),
1555                                           le32_to_cpu(req->cqe.dw1),
1556                                           req->status);
1557 
1558     if (req->status) {
1559         trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
1560                                       req->status, req->cmd.opcode);
1561     }
1562 
1563     QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
1564     QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
1565 
1566     qemu_bh_schedule(cq->bh);
1567 }
1568 
1569 static void nvme_process_aers(void *opaque)
1570 {
1571     NvmeCtrl *n = opaque;
1572     NvmeAsyncEvent *event, *next;
1573 
1574     trace_pci_nvme_process_aers(n->aer_queued);
1575 
1576     QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
1577         NvmeRequest *req;
1578         NvmeAerResult *result;
1579 
1580         /* can't post cqe if there is nothing to complete */
1581         if (!n->outstanding_aers) {
1582             trace_pci_nvme_no_outstanding_aers();
1583             break;
1584         }
1585 
1586         /* ignore if masked (cqe posted, but event not cleared) */
1587         if (n->aer_mask & (1 << event->result.event_type)) {
1588             trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
1589             continue;
1590         }
1591 
1592         QTAILQ_REMOVE(&n->aer_queue, event, entry);
1593         n->aer_queued--;
1594 
1595         n->aer_mask |= 1 << event->result.event_type;
1596         n->outstanding_aers--;
1597 
1598         req = n->aer_reqs[n->outstanding_aers];
1599 
1600         result = (NvmeAerResult *) &req->cqe.result;
1601         result->event_type = event->result.event_type;
1602         result->event_info = event->result.event_info;
1603         result->log_page = event->result.log_page;
1604         g_free(event);
1605 
1606         trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
1607                                     result->log_page);
1608 
1609         nvme_enqueue_req_completion(&n->admin_cq, req);
1610     }
1611 }
1612 
1613 static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
1614                                uint8_t event_info, uint8_t log_page)
1615 {
1616     NvmeAsyncEvent *event;
1617 
1618     trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
1619 
1620     if (n->aer_queued == n->params.aer_max_queued) {
1621         trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
1622         return;
1623     }
1624 
1625     event = g_new(NvmeAsyncEvent, 1);
1626     event->result = (NvmeAerResult) {
1627         .event_type = event_type,
1628         .event_info = event_info,
1629         .log_page   = log_page,
1630     };
1631 
1632     QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
1633     n->aer_queued++;
1634 
1635     nvme_process_aers(n);
1636 }
1637 
1638 static void nvme_smart_event(NvmeCtrl *n, uint8_t event)
1639 {
1640     uint8_t aer_info;
1641 
1642     /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */
1643     if (!(NVME_AEC_SMART(n->features.async_config) & event)) {
1644         return;
1645     }
1646 
1647     switch (event) {
1648     case NVME_SMART_SPARE:
1649         aer_info = NVME_AER_INFO_SMART_SPARE_THRESH;
1650         break;
1651     case NVME_SMART_TEMPERATURE:
1652         aer_info = NVME_AER_INFO_SMART_TEMP_THRESH;
1653         break;
1654     case NVME_SMART_RELIABILITY:
1655     case NVME_SMART_MEDIA_READ_ONLY:
1656     case NVME_SMART_FAILED_VOLATILE_MEDIA:
1657     case NVME_SMART_PMR_UNRELIABLE:
1658         aer_info = NVME_AER_INFO_SMART_RELIABILITY;
1659         break;
1660     default:
1661         return;
1662     }
1663 
1664     nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO);
1665 }
1666 
1667 static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
1668 {
1669     NvmeAsyncEvent *event, *next;
1670 
1671     n->aer_mask &= ~(1 << event_type);
1672 
1673     QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
1674         if (event->result.event_type == event_type) {
1675             QTAILQ_REMOVE(&n->aer_queue, event, entry);
1676             n->aer_queued--;
1677             g_free(event);
1678         }
1679     }
1680 }
1681 
1682 static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
1683 {
1684     uint8_t mdts = n->params.mdts;
1685 
1686     if (mdts && len > n->page_size << mdts) {
1687         trace_pci_nvme_err_mdts(len);
1688         return NVME_INVALID_FIELD | NVME_DNR;
1689     }
1690 
1691     return NVME_SUCCESS;
1692 }
1693 
1694 static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba,
1695                                          uint32_t nlb)
1696 {
1697     uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
1698 
1699     if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
1700         trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze);
1701         return NVME_LBA_RANGE | NVME_DNR;
1702     }
1703 
1704     return NVME_SUCCESS;
1705 }
1706 
1707 static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba,
1708                                  uint32_t nlb, int flags)
1709 {
1710     BlockDriverState *bs = blk_bs(ns->blkconf.blk);
1711 
1712     int64_t pnum = 0, bytes = nvme_l2b(ns, nlb);
1713     int64_t offset = nvme_l2b(ns, slba);
1714     int ret;
1715 
1716     /*
1717      * `pnum` holds the number of bytes after offset that shares the same
1718      * allocation status as the byte at offset. If `pnum` is different from
1719      * `bytes`, we should check the allocation status of the next range and
1720      * continue this until all bytes have been checked.
1721      */
1722     do {
1723         bytes -= pnum;
1724 
1725         ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL);
1726         if (ret < 0) {
1727             return ret;
1728         }
1729 
1730 
1731         trace_pci_nvme_block_status(offset, bytes, pnum, ret,
1732                                     !!(ret & BDRV_BLOCK_ZERO));
1733 
1734         if (!(ret & flags)) {
1735             return 1;
1736         }
1737 
1738         offset += pnum;
1739     } while (pnum != bytes);
1740 
1741     return 0;
1742 }
1743 
1744 static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba,
1745                                  uint32_t nlb)
1746 {
1747     int ret;
1748     Error *err = NULL;
1749 
1750     ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA);
1751     if (ret) {
1752         if (ret < 0) {
1753             error_setg_errno(&err, -ret, "unable to get block status");
1754             error_report_err(err);
1755 
1756             return NVME_INTERNAL_DEV_ERROR;
1757         }
1758 
1759         return NVME_DULB;
1760     }
1761 
1762     return NVME_SUCCESS;
1763 }
1764 
1765 static void nvme_aio_err(NvmeRequest *req, int ret)
1766 {
1767     uint16_t status = NVME_SUCCESS;
1768     Error *local_err = NULL;
1769 
1770     switch (req->cmd.opcode) {
1771     case NVME_CMD_READ:
1772         status = NVME_UNRECOVERED_READ;
1773         break;
1774     case NVME_CMD_FLUSH:
1775     case NVME_CMD_WRITE:
1776     case NVME_CMD_WRITE_ZEROES:
1777     case NVME_CMD_ZONE_APPEND:
1778     case NVME_CMD_COPY:
1779         status = NVME_WRITE_FAULT;
1780         break;
1781     default:
1782         status = NVME_INTERNAL_DEV_ERROR;
1783         break;
1784     }
1785 
1786     if (ret == -ECANCELED) {
1787         status = NVME_CMD_ABORT_REQ;
1788     }
1789 
1790     trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status);
1791 
1792     error_setg_errno(&local_err, -ret, "aio failed");
1793     error_report_err(local_err);
1794 
1795     /*
1796      * Set the command status code to the first encountered error but allow a
1797      * subsequent Internal Device Error to trump it.
1798      */
1799     if (req->status && status != NVME_INTERNAL_DEV_ERROR) {
1800         return;
1801     }
1802 
1803     req->status = status;
1804 }
1805 
1806 static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba)
1807 {
1808     return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 :
1809                                     slba / ns->zone_size;
1810 }
1811 
1812 static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba)
1813 {
1814     uint32_t zone_idx = nvme_zone_idx(ns, slba);
1815 
1816     if (zone_idx >= ns->num_zones) {
1817         return NULL;
1818     }
1819 
1820     return &ns->zone_array[zone_idx];
1821 }
1822 
1823 static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone)
1824 {
1825     uint64_t zslba = zone->d.zslba;
1826 
1827     switch (nvme_get_zone_state(zone)) {
1828     case NVME_ZONE_STATE_EMPTY:
1829     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1830     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1831     case NVME_ZONE_STATE_CLOSED:
1832         return NVME_SUCCESS;
1833     case NVME_ZONE_STATE_FULL:
1834         trace_pci_nvme_err_zone_is_full(zslba);
1835         return NVME_ZONE_FULL;
1836     case NVME_ZONE_STATE_OFFLINE:
1837         trace_pci_nvme_err_zone_is_offline(zslba);
1838         return NVME_ZONE_OFFLINE;
1839     case NVME_ZONE_STATE_READ_ONLY:
1840         trace_pci_nvme_err_zone_is_read_only(zslba);
1841         return NVME_ZONE_READ_ONLY;
1842     default:
1843         g_assert_not_reached();
1844     }
1845 
1846     return NVME_INTERNAL_DEV_ERROR;
1847 }
1848 
1849 static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone,
1850                                       uint64_t slba, uint32_t nlb)
1851 {
1852     uint64_t zcap = nvme_zone_wr_boundary(zone);
1853     uint16_t status;
1854 
1855     status = nvme_check_zone_state_for_write(zone);
1856     if (status) {
1857         return status;
1858     }
1859 
1860     if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1861         uint64_t ezrwa = zone->w_ptr + 2 * ns->zns.zrwas;
1862 
1863         if (slba < zone->w_ptr || slba + nlb > ezrwa) {
1864             trace_pci_nvme_err_zone_invalid_write(slba, zone->w_ptr);
1865             return NVME_ZONE_INVALID_WRITE;
1866         }
1867     } else {
1868         if (unlikely(slba != zone->w_ptr)) {
1869             trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba,
1870                                                zone->w_ptr);
1871             return NVME_ZONE_INVALID_WRITE;
1872         }
1873     }
1874 
1875     if (unlikely((slba + nlb) > zcap)) {
1876         trace_pci_nvme_err_zone_boundary(slba, nlb, zcap);
1877         return NVME_ZONE_BOUNDARY_ERROR;
1878     }
1879 
1880     return NVME_SUCCESS;
1881 }
1882 
1883 static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone)
1884 {
1885     switch (nvme_get_zone_state(zone)) {
1886     case NVME_ZONE_STATE_EMPTY:
1887     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1888     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1889     case NVME_ZONE_STATE_FULL:
1890     case NVME_ZONE_STATE_CLOSED:
1891     case NVME_ZONE_STATE_READ_ONLY:
1892         return NVME_SUCCESS;
1893     case NVME_ZONE_STATE_OFFLINE:
1894         trace_pci_nvme_err_zone_is_offline(zone->d.zslba);
1895         return NVME_ZONE_OFFLINE;
1896     default:
1897         g_assert_not_reached();
1898     }
1899 
1900     return NVME_INTERNAL_DEV_ERROR;
1901 }
1902 
1903 static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba,
1904                                      uint32_t nlb)
1905 {
1906     NvmeZone *zone;
1907     uint64_t bndry, end;
1908     uint16_t status;
1909 
1910     zone = nvme_get_zone_by_slba(ns, slba);
1911     assert(zone);
1912 
1913     bndry = nvme_zone_rd_boundary(ns, zone);
1914     end = slba + nlb;
1915 
1916     status = nvme_check_zone_state_for_read(zone);
1917     if (status) {
1918         ;
1919     } else if (unlikely(end > bndry)) {
1920         if (!ns->params.cross_zone_read) {
1921             status = NVME_ZONE_BOUNDARY_ERROR;
1922         } else {
1923             /*
1924              * Read across zone boundary - check that all subsequent
1925              * zones that are being read have an appropriate state.
1926              */
1927             do {
1928                 zone++;
1929                 status = nvme_check_zone_state_for_read(zone);
1930                 if (status) {
1931                     break;
1932                 }
1933             } while (end > nvme_zone_rd_boundary(ns, zone));
1934         }
1935     }
1936 
1937     return status;
1938 }
1939 
1940 static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone)
1941 {
1942     switch (nvme_get_zone_state(zone)) {
1943     case NVME_ZONE_STATE_FULL:
1944         return NVME_SUCCESS;
1945 
1946     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1947     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1948         nvme_aor_dec_open(ns);
1949         /* fallthrough */
1950     case NVME_ZONE_STATE_CLOSED:
1951         nvme_aor_dec_active(ns);
1952 
1953         if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1954             zone->d.za &= ~NVME_ZA_ZRWA_VALID;
1955             if (ns->params.numzrwa) {
1956                 ns->zns.numzrwa++;
1957             }
1958         }
1959 
1960         /* fallthrough */
1961     case NVME_ZONE_STATE_EMPTY:
1962         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL);
1963         return NVME_SUCCESS;
1964 
1965     default:
1966         return NVME_ZONE_INVAL_TRANSITION;
1967     }
1968 }
1969 
1970 static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone)
1971 {
1972     switch (nvme_get_zone_state(zone)) {
1973     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1974     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1975         nvme_aor_dec_open(ns);
1976         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
1977         /* fall through */
1978     case NVME_ZONE_STATE_CLOSED:
1979         return NVME_SUCCESS;
1980 
1981     default:
1982         return NVME_ZONE_INVAL_TRANSITION;
1983     }
1984 }
1985 
1986 static uint16_t nvme_zrm_reset(NvmeNamespace *ns, NvmeZone *zone)
1987 {
1988     switch (nvme_get_zone_state(zone)) {
1989     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1990     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1991         nvme_aor_dec_open(ns);
1992         /* fallthrough */
1993     case NVME_ZONE_STATE_CLOSED:
1994         nvme_aor_dec_active(ns);
1995 
1996         if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1997             if (ns->params.numzrwa) {
1998                 ns->zns.numzrwa++;
1999             }
2000         }
2001 
2002         /* fallthrough */
2003     case NVME_ZONE_STATE_FULL:
2004         zone->w_ptr = zone->d.zslba;
2005         zone->d.wp = zone->w_ptr;
2006         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY);
2007         /* fallthrough */
2008     case NVME_ZONE_STATE_EMPTY:
2009         return NVME_SUCCESS;
2010 
2011     default:
2012         return NVME_ZONE_INVAL_TRANSITION;
2013     }
2014 }
2015 
2016 static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns)
2017 {
2018     NvmeZone *zone;
2019 
2020     if (ns->params.max_open_zones &&
2021         ns->nr_open_zones == ns->params.max_open_zones) {
2022         zone = QTAILQ_FIRST(&ns->imp_open_zones);
2023         if (zone) {
2024             /*
2025              * Automatically close this implicitly open zone.
2026              */
2027             QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
2028             nvme_zrm_close(ns, zone);
2029         }
2030     }
2031 }
2032 
2033 enum {
2034     NVME_ZRM_AUTO = 1 << 0,
2035     NVME_ZRM_ZRWA = 1 << 1,
2036 };
2037 
2038 static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns,
2039                                     NvmeZone *zone, int flags)
2040 {
2041     int act = 0;
2042     uint16_t status;
2043 
2044     switch (nvme_get_zone_state(zone)) {
2045     case NVME_ZONE_STATE_EMPTY:
2046         act = 1;
2047 
2048         /* fallthrough */
2049 
2050     case NVME_ZONE_STATE_CLOSED:
2051         if (n->params.auto_transition_zones) {
2052             nvme_zrm_auto_transition_zone(ns);
2053         }
2054         status = nvme_zns_check_resources(ns, act, 1,
2055                                           (flags & NVME_ZRM_ZRWA) ? 1 : 0);
2056         if (status) {
2057             return status;
2058         }
2059 
2060         if (act) {
2061             nvme_aor_inc_active(ns);
2062         }
2063 
2064         nvme_aor_inc_open(ns);
2065 
2066         if (flags & NVME_ZRM_AUTO) {
2067             nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN);
2068             return NVME_SUCCESS;
2069         }
2070 
2071         /* fallthrough */
2072 
2073     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
2074         if (flags & NVME_ZRM_AUTO) {
2075             return NVME_SUCCESS;
2076         }
2077 
2078         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN);
2079 
2080         /* fallthrough */
2081 
2082     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
2083         if (flags & NVME_ZRM_ZRWA) {
2084             ns->zns.numzrwa--;
2085 
2086             zone->d.za |= NVME_ZA_ZRWA_VALID;
2087         }
2088 
2089         return NVME_SUCCESS;
2090 
2091     default:
2092         return NVME_ZONE_INVAL_TRANSITION;
2093     }
2094 }
2095 
2096 static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns,
2097                                      NvmeZone *zone)
2098 {
2099     return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO);
2100 }
2101 
2102 static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone,
2103                                  uint32_t nlb)
2104 {
2105     zone->d.wp += nlb;
2106 
2107     if (zone->d.wp == nvme_zone_wr_boundary(zone)) {
2108         nvme_zrm_finish(ns, zone);
2109     }
2110 }
2111 
2112 static void nvme_zoned_zrwa_implicit_flush(NvmeNamespace *ns, NvmeZone *zone,
2113                                            uint32_t nlbc)
2114 {
2115     uint16_t nzrwafgs = DIV_ROUND_UP(nlbc, ns->zns.zrwafg);
2116 
2117     nlbc = nzrwafgs * ns->zns.zrwafg;
2118 
2119     trace_pci_nvme_zoned_zrwa_implicit_flush(zone->d.zslba, nlbc);
2120 
2121     zone->w_ptr += nlbc;
2122 
2123     nvme_advance_zone_wp(ns, zone, nlbc);
2124 }
2125 
2126 static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req)
2127 {
2128     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2129     NvmeZone *zone;
2130     uint64_t slba;
2131     uint32_t nlb;
2132 
2133     slba = le64_to_cpu(rw->slba);
2134     nlb = le16_to_cpu(rw->nlb) + 1;
2135     zone = nvme_get_zone_by_slba(ns, slba);
2136     assert(zone);
2137 
2138     if (zone->d.za & NVME_ZA_ZRWA_VALID) {
2139         uint64_t ezrwa = zone->w_ptr + ns->zns.zrwas - 1;
2140         uint64_t elba = slba + nlb - 1;
2141 
2142         if (elba > ezrwa) {
2143             nvme_zoned_zrwa_implicit_flush(ns, zone, elba - ezrwa);
2144         }
2145 
2146         return;
2147     }
2148 
2149     nvme_advance_zone_wp(ns, zone, nlb);
2150 }
2151 
2152 static inline bool nvme_is_write(NvmeRequest *req)
2153 {
2154     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2155 
2156     return rw->opcode == NVME_CMD_WRITE ||
2157            rw->opcode == NVME_CMD_ZONE_APPEND ||
2158            rw->opcode == NVME_CMD_WRITE_ZEROES;
2159 }
2160 
2161 static void nvme_misc_cb(void *opaque, int ret)
2162 {
2163     NvmeRequest *req = opaque;
2164 
2165     trace_pci_nvme_misc_cb(nvme_cid(req));
2166 
2167     if (ret) {
2168         nvme_aio_err(req, ret);
2169     }
2170 
2171     nvme_enqueue_req_completion(nvme_cq(req), req);
2172 }
2173 
2174 void nvme_rw_complete_cb(void *opaque, int ret)
2175 {
2176     NvmeRequest *req = opaque;
2177     NvmeNamespace *ns = req->ns;
2178     BlockBackend *blk = ns->blkconf.blk;
2179     BlockAcctCookie *acct = &req->acct;
2180     BlockAcctStats *stats = blk_get_stats(blk);
2181 
2182     trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk));
2183 
2184     if (ret) {
2185         block_acct_failed(stats, acct);
2186         nvme_aio_err(req, ret);
2187     } else {
2188         block_acct_done(stats, acct);
2189     }
2190 
2191     if (ns->params.zoned && nvme_is_write(req)) {
2192         nvme_finalize_zoned_write(ns, req);
2193     }
2194 
2195     nvme_enqueue_req_completion(nvme_cq(req), req);
2196 }
2197 
2198 static void nvme_rw_cb(void *opaque, int ret)
2199 {
2200     NvmeRequest *req = opaque;
2201     NvmeNamespace *ns = req->ns;
2202 
2203     BlockBackend *blk = ns->blkconf.blk;
2204 
2205     trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
2206 
2207     if (ret) {
2208         goto out;
2209     }
2210 
2211     if (ns->lbaf.ms) {
2212         NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2213         uint64_t slba = le64_to_cpu(rw->slba);
2214         uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
2215         uint64_t offset = nvme_moff(ns, slba);
2216 
2217         if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) {
2218             size_t mlen = nvme_m2b(ns, nlb);
2219 
2220             req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen,
2221                                                BDRV_REQ_MAY_UNMAP,
2222                                                nvme_rw_complete_cb, req);
2223             return;
2224         }
2225 
2226         if (nvme_ns_ext(ns) || req->cmd.mptr) {
2227             uint16_t status;
2228 
2229             nvme_sg_unmap(&req->sg);
2230             status = nvme_map_mdata(nvme_ctrl(req), nlb, req);
2231             if (status) {
2232                 ret = -EFAULT;
2233                 goto out;
2234             }
2235 
2236             if (req->cmd.opcode == NVME_CMD_READ) {
2237                 return nvme_blk_read(blk, offset, 1, nvme_rw_complete_cb, req);
2238             }
2239 
2240             return nvme_blk_write(blk, offset, 1, nvme_rw_complete_cb, req);
2241         }
2242     }
2243 
2244 out:
2245     nvme_rw_complete_cb(req, ret);
2246 }
2247 
2248 static void nvme_verify_cb(void *opaque, int ret)
2249 {
2250     NvmeBounceContext *ctx = opaque;
2251     NvmeRequest *req = ctx->req;
2252     NvmeNamespace *ns = req->ns;
2253     BlockBackend *blk = ns->blkconf.blk;
2254     BlockAcctCookie *acct = &req->acct;
2255     BlockAcctStats *stats = blk_get_stats(blk);
2256     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2257     uint64_t slba = le64_to_cpu(rw->slba);
2258     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2259     uint16_t apptag = le16_to_cpu(rw->apptag);
2260     uint16_t appmask = le16_to_cpu(rw->appmask);
2261     uint64_t reftag = le32_to_cpu(rw->reftag);
2262     uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2263     uint16_t status;
2264 
2265     reftag |= cdw3 << 32;
2266 
2267     trace_pci_nvme_verify_cb(nvme_cid(req), prinfo, apptag, appmask, reftag);
2268 
2269     if (ret) {
2270         block_acct_failed(stats, acct);
2271         nvme_aio_err(req, ret);
2272         goto out;
2273     }
2274 
2275     block_acct_done(stats, acct);
2276 
2277     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2278         status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce,
2279                                        ctx->mdata.iov.size, slba);
2280         if (status) {
2281             req->status = status;
2282             goto out;
2283         }
2284 
2285         req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2286                                      ctx->mdata.bounce, ctx->mdata.iov.size,
2287                                      prinfo, slba, apptag, appmask, &reftag);
2288     }
2289 
2290 out:
2291     qemu_iovec_destroy(&ctx->data.iov);
2292     g_free(ctx->data.bounce);
2293 
2294     qemu_iovec_destroy(&ctx->mdata.iov);
2295     g_free(ctx->mdata.bounce);
2296 
2297     g_free(ctx);
2298 
2299     nvme_enqueue_req_completion(nvme_cq(req), req);
2300 }
2301 
2302 
2303 static void nvme_verify_mdata_in_cb(void *opaque, int ret)
2304 {
2305     NvmeBounceContext *ctx = opaque;
2306     NvmeRequest *req = ctx->req;
2307     NvmeNamespace *ns = req->ns;
2308     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2309     uint64_t slba = le64_to_cpu(rw->slba);
2310     uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2311     size_t mlen = nvme_m2b(ns, nlb);
2312     uint64_t offset = nvme_moff(ns, slba);
2313     BlockBackend *blk = ns->blkconf.blk;
2314 
2315     trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk));
2316 
2317     if (ret) {
2318         goto out;
2319     }
2320 
2321     ctx->mdata.bounce = g_malloc(mlen);
2322 
2323     qemu_iovec_reset(&ctx->mdata.iov);
2324     qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2325 
2326     req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2327                                 nvme_verify_cb, ctx);
2328     return;
2329 
2330 out:
2331     nvme_verify_cb(ctx, ret);
2332 }
2333 
2334 struct nvme_compare_ctx {
2335     struct {
2336         QEMUIOVector iov;
2337         uint8_t *bounce;
2338     } data;
2339 
2340     struct {
2341         QEMUIOVector iov;
2342         uint8_t *bounce;
2343     } mdata;
2344 };
2345 
2346 static void nvme_compare_mdata_cb(void *opaque, int ret)
2347 {
2348     NvmeRequest *req = opaque;
2349     NvmeNamespace *ns = req->ns;
2350     NvmeCtrl *n = nvme_ctrl(req);
2351     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2352     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2353     uint16_t apptag = le16_to_cpu(rw->apptag);
2354     uint16_t appmask = le16_to_cpu(rw->appmask);
2355     uint64_t reftag = le32_to_cpu(rw->reftag);
2356     uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2357     struct nvme_compare_ctx *ctx = req->opaque;
2358     g_autofree uint8_t *buf = NULL;
2359     BlockBackend *blk = ns->blkconf.blk;
2360     BlockAcctCookie *acct = &req->acct;
2361     BlockAcctStats *stats = blk_get_stats(blk);
2362     uint16_t status = NVME_SUCCESS;
2363 
2364     reftag |= cdw3 << 32;
2365 
2366     trace_pci_nvme_compare_mdata_cb(nvme_cid(req));
2367 
2368     if (ret) {
2369         block_acct_failed(stats, acct);
2370         nvme_aio_err(req, ret);
2371         goto out;
2372     }
2373 
2374     buf = g_malloc(ctx->mdata.iov.size);
2375 
2376     status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size,
2377                                NVME_TX_DIRECTION_TO_DEVICE, req);
2378     if (status) {
2379         req->status = status;
2380         goto out;
2381     }
2382 
2383     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2384         uint64_t slba = le64_to_cpu(rw->slba);
2385         uint8_t *bufp;
2386         uint8_t *mbufp = ctx->mdata.bounce;
2387         uint8_t *end = mbufp + ctx->mdata.iov.size;
2388         int16_t pil = 0;
2389 
2390         status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2391                                 ctx->mdata.bounce, ctx->mdata.iov.size, prinfo,
2392                                 slba, apptag, appmask, &reftag);
2393         if (status) {
2394             req->status = status;
2395             goto out;
2396         }
2397 
2398         /*
2399          * When formatted with protection information, do not compare the DIF
2400          * tuple.
2401          */
2402         if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) {
2403             pil = ns->lbaf.ms - nvme_pi_tuple_size(ns);
2404         }
2405 
2406         for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) {
2407             if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) {
2408                 req->status = NVME_CMP_FAILURE | NVME_DNR;
2409                 goto out;
2410             }
2411         }
2412 
2413         goto out;
2414     }
2415 
2416     if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) {
2417         req->status = NVME_CMP_FAILURE | NVME_DNR;
2418         goto out;
2419     }
2420 
2421     block_acct_done(stats, acct);
2422 
2423 out:
2424     qemu_iovec_destroy(&ctx->data.iov);
2425     g_free(ctx->data.bounce);
2426 
2427     qemu_iovec_destroy(&ctx->mdata.iov);
2428     g_free(ctx->mdata.bounce);
2429 
2430     g_free(ctx);
2431 
2432     nvme_enqueue_req_completion(nvme_cq(req), req);
2433 }
2434 
2435 static void nvme_compare_data_cb(void *opaque, int ret)
2436 {
2437     NvmeRequest *req = opaque;
2438     NvmeCtrl *n = nvme_ctrl(req);
2439     NvmeNamespace *ns = req->ns;
2440     BlockBackend *blk = ns->blkconf.blk;
2441     BlockAcctCookie *acct = &req->acct;
2442     BlockAcctStats *stats = blk_get_stats(blk);
2443 
2444     struct nvme_compare_ctx *ctx = req->opaque;
2445     g_autofree uint8_t *buf = NULL;
2446     uint16_t status;
2447 
2448     trace_pci_nvme_compare_data_cb(nvme_cid(req));
2449 
2450     if (ret) {
2451         block_acct_failed(stats, acct);
2452         nvme_aio_err(req, ret);
2453         goto out;
2454     }
2455 
2456     buf = g_malloc(ctx->data.iov.size);
2457 
2458     status = nvme_bounce_data(n, buf, ctx->data.iov.size,
2459                               NVME_TX_DIRECTION_TO_DEVICE, req);
2460     if (status) {
2461         req->status = status;
2462         goto out;
2463     }
2464 
2465     if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) {
2466         req->status = NVME_CMP_FAILURE | NVME_DNR;
2467         goto out;
2468     }
2469 
2470     if (ns->lbaf.ms) {
2471         NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2472         uint64_t slba = le64_to_cpu(rw->slba);
2473         uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2474         size_t mlen = nvme_m2b(ns, nlb);
2475         uint64_t offset = nvme_moff(ns, slba);
2476 
2477         ctx->mdata.bounce = g_malloc(mlen);
2478 
2479         qemu_iovec_init(&ctx->mdata.iov, 1);
2480         qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2481 
2482         req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2483                                     nvme_compare_mdata_cb, req);
2484         return;
2485     }
2486 
2487     block_acct_done(stats, acct);
2488 
2489 out:
2490     qemu_iovec_destroy(&ctx->data.iov);
2491     g_free(ctx->data.bounce);
2492     g_free(ctx);
2493 
2494     nvme_enqueue_req_completion(nvme_cq(req), req);
2495 }
2496 
2497 typedef struct NvmeDSMAIOCB {
2498     BlockAIOCB common;
2499     BlockAIOCB *aiocb;
2500     NvmeRequest *req;
2501     int ret;
2502 
2503     NvmeDsmRange *range;
2504     unsigned int nr;
2505     unsigned int idx;
2506 } NvmeDSMAIOCB;
2507 
2508 static void nvme_dsm_cancel(BlockAIOCB *aiocb)
2509 {
2510     NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common);
2511 
2512     /* break nvme_dsm_cb loop */
2513     iocb->idx = iocb->nr;
2514     iocb->ret = -ECANCELED;
2515 
2516     if (iocb->aiocb) {
2517         blk_aio_cancel_async(iocb->aiocb);
2518         iocb->aiocb = NULL;
2519     } else {
2520         /*
2521          * We only reach this if nvme_dsm_cancel() has already been called or
2522          * the command ran to completion.
2523          */
2524         assert(iocb->idx == iocb->nr);
2525     }
2526 }
2527 
2528 static const AIOCBInfo nvme_dsm_aiocb_info = {
2529     .aiocb_size   = sizeof(NvmeDSMAIOCB),
2530     .cancel_async = nvme_dsm_cancel,
2531 };
2532 
2533 static void nvme_dsm_cb(void *opaque, int ret);
2534 
2535 static void nvme_dsm_md_cb(void *opaque, int ret)
2536 {
2537     NvmeDSMAIOCB *iocb = opaque;
2538     NvmeRequest *req = iocb->req;
2539     NvmeNamespace *ns = req->ns;
2540     NvmeDsmRange *range;
2541     uint64_t slba;
2542     uint32_t nlb;
2543 
2544     if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
2545         goto done;
2546     }
2547 
2548     range = &iocb->range[iocb->idx - 1];
2549     slba = le64_to_cpu(range->slba);
2550     nlb = le32_to_cpu(range->nlb);
2551 
2552     /*
2553      * Check that all block were discarded (zeroed); otherwise we do not zero
2554      * the metadata.
2555      */
2556 
2557     ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO);
2558     if (ret) {
2559         if (ret < 0) {
2560             goto done;
2561         }
2562 
2563         nvme_dsm_cb(iocb, 0);
2564         return;
2565     }
2566 
2567     iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba),
2568                                         nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP,
2569                                         nvme_dsm_cb, iocb);
2570     return;
2571 
2572 done:
2573     nvme_dsm_cb(iocb, ret);
2574 }
2575 
2576 static void nvme_dsm_cb(void *opaque, int ret)
2577 {
2578     NvmeDSMAIOCB *iocb = opaque;
2579     NvmeRequest *req = iocb->req;
2580     NvmeCtrl *n = nvme_ctrl(req);
2581     NvmeNamespace *ns = req->ns;
2582     NvmeDsmRange *range;
2583     uint64_t slba;
2584     uint32_t nlb;
2585 
2586     if (iocb->ret < 0) {
2587         goto done;
2588     } else if (ret < 0) {
2589         iocb->ret = ret;
2590         goto done;
2591     }
2592 
2593 next:
2594     if (iocb->idx == iocb->nr) {
2595         goto done;
2596     }
2597 
2598     range = &iocb->range[iocb->idx++];
2599     slba = le64_to_cpu(range->slba);
2600     nlb = le32_to_cpu(range->nlb);
2601 
2602     trace_pci_nvme_dsm_deallocate(slba, nlb);
2603 
2604     if (nlb > n->dmrsl) {
2605         trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl);
2606         goto next;
2607     }
2608 
2609     if (nvme_check_bounds(ns, slba, nlb)) {
2610         trace_pci_nvme_err_invalid_lba_range(slba, nlb,
2611                                              ns->id_ns.nsze);
2612         goto next;
2613     }
2614 
2615     iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba),
2616                                    nvme_l2b(ns, nlb),
2617                                    nvme_dsm_md_cb, iocb);
2618     return;
2619 
2620 done:
2621     iocb->aiocb = NULL;
2622     iocb->common.cb(iocb->common.opaque, iocb->ret);
2623     g_free(iocb->range);
2624     qemu_aio_unref(iocb);
2625 }
2626 
2627 static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req)
2628 {
2629     NvmeNamespace *ns = req->ns;
2630     NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd;
2631     uint32_t attr = le32_to_cpu(dsm->attributes);
2632     uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1;
2633     uint16_t status = NVME_SUCCESS;
2634 
2635     trace_pci_nvme_dsm(nr, attr);
2636 
2637     if (attr & NVME_DSMGMT_AD) {
2638         NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk,
2639                                          nvme_misc_cb, req);
2640 
2641         iocb->req = req;
2642         iocb->ret = 0;
2643         iocb->range = g_new(NvmeDsmRange, nr);
2644         iocb->nr = nr;
2645         iocb->idx = 0;
2646 
2647         status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr,
2648                           req);
2649         if (status) {
2650             g_free(iocb->range);
2651             qemu_aio_unref(iocb);
2652 
2653             return status;
2654         }
2655 
2656         req->aiocb = &iocb->common;
2657         nvme_dsm_cb(iocb, 0);
2658 
2659         return NVME_NO_COMPLETE;
2660     }
2661 
2662     return status;
2663 }
2664 
2665 static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req)
2666 {
2667     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2668     NvmeNamespace *ns = req->ns;
2669     BlockBackend *blk = ns->blkconf.blk;
2670     uint64_t slba = le64_to_cpu(rw->slba);
2671     uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2672     size_t len = nvme_l2b(ns, nlb);
2673     size_t data_len = len;
2674     int64_t offset = nvme_l2b(ns, slba);
2675     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2676     uint32_t reftag = le32_to_cpu(rw->reftag);
2677     NvmeBounceContext *ctx = NULL;
2678     uint16_t status;
2679 
2680     trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb);
2681 
2682     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2683         status = nvme_check_prinfo(ns, prinfo, slba, reftag);
2684         if (status) {
2685             return status;
2686         }
2687 
2688         if (prinfo & NVME_PRINFO_PRACT) {
2689             return NVME_INVALID_PROT_INFO | NVME_DNR;
2690         }
2691     }
2692 
2693     if (nvme_ns_ext(ns) && !(NVME_ID_CTRL_CTRATT_MEM(n->id_ctrl.ctratt))) {
2694         data_len += nvme_m2b(ns, nlb);
2695     }
2696 
2697     if (data_len > (n->page_size << n->params.vsl)) {
2698         return NVME_INVALID_FIELD | NVME_DNR;
2699     }
2700 
2701     status = nvme_check_bounds(ns, slba, nlb);
2702     if (status) {
2703         return status;
2704     }
2705 
2706     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2707         status = nvme_check_dulbe(ns, slba, nlb);
2708         if (status) {
2709             return status;
2710         }
2711     }
2712 
2713     ctx = g_new0(NvmeBounceContext, 1);
2714     ctx->req = req;
2715 
2716     ctx->data.bounce = g_malloc(len);
2717 
2718     qemu_iovec_init(&ctx->data.iov, 1);
2719     qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len);
2720 
2721     block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size,
2722                      BLOCK_ACCT_READ);
2723 
2724     req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0,
2725                                 nvme_verify_mdata_in_cb, ctx);
2726     return NVME_NO_COMPLETE;
2727 }
2728 
2729 typedef struct NvmeCopyAIOCB {
2730     BlockAIOCB common;
2731     BlockAIOCB *aiocb;
2732     NvmeRequest *req;
2733     NvmeCtrl *n;
2734     int ret;
2735 
2736     void *ranges;
2737     unsigned int format;
2738     int nr;
2739     int idx;
2740 
2741     uint8_t *bounce;
2742     QEMUIOVector iov;
2743     struct {
2744         BlockAcctCookie read;
2745         BlockAcctCookie write;
2746     } acct;
2747 
2748     uint64_t reftag;
2749     uint64_t slba;
2750 
2751     NvmeZone *zone;
2752     NvmeNamespace *sns;
2753     uint32_t tcl;
2754 } NvmeCopyAIOCB;
2755 
2756 static void nvme_copy_cancel(BlockAIOCB *aiocb)
2757 {
2758     NvmeCopyAIOCB *iocb = container_of(aiocb, NvmeCopyAIOCB, common);
2759 
2760     iocb->ret = -ECANCELED;
2761 
2762     if (iocb->aiocb) {
2763         blk_aio_cancel_async(iocb->aiocb);
2764         iocb->aiocb = NULL;
2765     }
2766 }
2767 
2768 static const AIOCBInfo nvme_copy_aiocb_info = {
2769     .aiocb_size   = sizeof(NvmeCopyAIOCB),
2770     .cancel_async = nvme_copy_cancel,
2771 };
2772 
2773 static void nvme_copy_done(NvmeCopyAIOCB *iocb)
2774 {
2775     NvmeRequest *req = iocb->req;
2776     NvmeNamespace *ns = req->ns;
2777     BlockAcctStats *stats = blk_get_stats(ns->blkconf.blk);
2778 
2779     if (iocb->idx != iocb->nr) {
2780         req->cqe.result = cpu_to_le32(iocb->idx);
2781     }
2782 
2783     qemu_iovec_destroy(&iocb->iov);
2784     g_free(iocb->bounce);
2785 
2786     if (iocb->ret < 0) {
2787         block_acct_failed(stats, &iocb->acct.read);
2788         block_acct_failed(stats, &iocb->acct.write);
2789     } else {
2790         block_acct_done(stats, &iocb->acct.read);
2791         block_acct_done(stats, &iocb->acct.write);
2792     }
2793 
2794     iocb->common.cb(iocb->common.opaque, iocb->ret);
2795     qemu_aio_unref(iocb);
2796 }
2797 
2798 static void nvme_do_copy(NvmeCopyAIOCB *iocb);
2799 
2800 static void nvme_copy_source_range_parse_format0_2(void *ranges,
2801                                                    int idx, uint64_t *slba,
2802                                                    uint32_t *nlb,
2803                                                    uint32_t *snsid,
2804                                                    uint16_t *apptag,
2805                                                    uint16_t *appmask,
2806                                                    uint64_t *reftag)
2807 {
2808     NvmeCopySourceRangeFormat0_2 *_ranges = ranges;
2809 
2810     if (snsid) {
2811         *snsid = le32_to_cpu(_ranges[idx].sparams);
2812     }
2813 
2814     if (slba) {
2815         *slba = le64_to_cpu(_ranges[idx].slba);
2816     }
2817 
2818     if (nlb) {
2819         *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2820     }
2821 
2822     if (apptag) {
2823         *apptag = le16_to_cpu(_ranges[idx].apptag);
2824     }
2825 
2826     if (appmask) {
2827         *appmask = le16_to_cpu(_ranges[idx].appmask);
2828     }
2829 
2830     if (reftag) {
2831         *reftag = le32_to_cpu(_ranges[idx].reftag);
2832     }
2833 }
2834 
2835 static void nvme_copy_source_range_parse_format1_3(void *ranges, int idx,
2836                                                    uint64_t *slba,
2837                                                    uint32_t *nlb,
2838                                                    uint32_t *snsid,
2839                                                    uint16_t *apptag,
2840                                                    uint16_t *appmask,
2841                                                    uint64_t *reftag)
2842 {
2843     NvmeCopySourceRangeFormat1_3 *_ranges = ranges;
2844 
2845     if (snsid) {
2846         *snsid = le32_to_cpu(_ranges[idx].sparams);
2847     }
2848 
2849     if (slba) {
2850         *slba = le64_to_cpu(_ranges[idx].slba);
2851     }
2852 
2853     if (nlb) {
2854         *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2855     }
2856 
2857     if (apptag) {
2858         *apptag = le16_to_cpu(_ranges[idx].apptag);
2859     }
2860 
2861     if (appmask) {
2862         *appmask = le16_to_cpu(_ranges[idx].appmask);
2863     }
2864 
2865     if (reftag) {
2866         *reftag = 0;
2867 
2868         *reftag |= (uint64_t)_ranges[idx].sr[4] << 40;
2869         *reftag |= (uint64_t)_ranges[idx].sr[5] << 32;
2870         *reftag |= (uint64_t)_ranges[idx].sr[6] << 24;
2871         *reftag |= (uint64_t)_ranges[idx].sr[7] << 16;
2872         *reftag |= (uint64_t)_ranges[idx].sr[8] << 8;
2873         *reftag |= (uint64_t)_ranges[idx].sr[9];
2874     }
2875 }
2876 
2877 static void nvme_copy_source_range_parse(void *ranges, int idx, uint8_t format,
2878                                          uint64_t *slba, uint32_t *nlb,
2879                                          uint32_t *snsid, uint16_t *apptag,
2880                                          uint16_t *appmask, uint64_t *reftag)
2881 {
2882     switch (format) {
2883     case NVME_COPY_FORMAT_0:
2884     case NVME_COPY_FORMAT_2:
2885         nvme_copy_source_range_parse_format0_2(ranges, idx, slba, nlb, snsid,
2886                                                apptag, appmask, reftag);
2887         break;
2888 
2889     case NVME_COPY_FORMAT_1:
2890     case NVME_COPY_FORMAT_3:
2891         nvme_copy_source_range_parse_format1_3(ranges, idx, slba, nlb, snsid,
2892                                                apptag, appmask, reftag);
2893         break;
2894 
2895     default:
2896         abort();
2897     }
2898 }
2899 
2900 static inline uint16_t nvme_check_copy_mcl(NvmeNamespace *ns,
2901                                            NvmeCopyAIOCB *iocb, uint16_t nr)
2902 {
2903     uint32_t copy_len = 0;
2904 
2905     for (int idx = 0; idx < nr; idx++) {
2906         uint32_t nlb;
2907         nvme_copy_source_range_parse(iocb->ranges, idx, iocb->format, NULL,
2908                                      &nlb, NULL, NULL, NULL, NULL);
2909         copy_len += nlb;
2910     }
2911     iocb->tcl = copy_len;
2912     if (copy_len > ns->id_ns.mcl) {
2913         return NVME_CMD_SIZE_LIMIT | NVME_DNR;
2914     }
2915 
2916     return NVME_SUCCESS;
2917 }
2918 
2919 static void nvme_copy_out_completed_cb(void *opaque, int ret)
2920 {
2921     NvmeCopyAIOCB *iocb = opaque;
2922     NvmeRequest *req = iocb->req;
2923     NvmeNamespace *dns = req->ns;
2924     uint32_t nlb;
2925 
2926     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2927                                  &nlb, NULL, NULL, NULL, NULL);
2928 
2929     if (ret < 0) {
2930         iocb->ret = ret;
2931         goto out;
2932     } else if (iocb->ret < 0) {
2933         goto out;
2934     }
2935 
2936     if (dns->params.zoned) {
2937         nvme_advance_zone_wp(dns, iocb->zone, nlb);
2938     }
2939 
2940     iocb->idx++;
2941     iocb->slba += nlb;
2942 out:
2943     nvme_do_copy(iocb);
2944 }
2945 
2946 static void nvme_copy_out_cb(void *opaque, int ret)
2947 {
2948     NvmeCopyAIOCB *iocb = opaque;
2949     NvmeRequest *req = iocb->req;
2950     NvmeNamespace *dns = req->ns;
2951     uint32_t nlb;
2952     size_t mlen;
2953     uint8_t *mbounce;
2954 
2955     if (ret < 0 || iocb->ret < 0 || !dns->lbaf.ms) {
2956         goto out;
2957     }
2958 
2959     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2960                                  &nlb, NULL, NULL, NULL, NULL);
2961 
2962     mlen = nvme_m2b(dns, nlb);
2963     mbounce = iocb->bounce + nvme_l2b(dns, nlb);
2964 
2965     qemu_iovec_reset(&iocb->iov);
2966     qemu_iovec_add(&iocb->iov, mbounce, mlen);
2967 
2968     iocb->aiocb = blk_aio_pwritev(dns->blkconf.blk, nvme_moff(dns, iocb->slba),
2969                                   &iocb->iov, 0, nvme_copy_out_completed_cb,
2970                                   iocb);
2971 
2972     return;
2973 
2974 out:
2975     nvme_copy_out_completed_cb(iocb, ret);
2976 }
2977 
2978 static void nvme_copy_in_completed_cb(void *opaque, int ret)
2979 {
2980     NvmeCopyAIOCB *iocb = opaque;
2981     NvmeRequest *req = iocb->req;
2982     NvmeNamespace *sns = iocb->sns;
2983     NvmeNamespace *dns = req->ns;
2984     NvmeCopyCmd *copy = NULL;
2985     uint8_t *mbounce = NULL;
2986     uint32_t nlb;
2987     uint64_t slba;
2988     uint16_t apptag, appmask;
2989     uint64_t reftag;
2990     size_t len, mlen;
2991     uint16_t status;
2992 
2993     if (ret < 0) {
2994         iocb->ret = ret;
2995         goto out;
2996     } else if (iocb->ret < 0) {
2997         goto out;
2998     }
2999 
3000     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
3001                                  &nlb, NULL, &apptag, &appmask, &reftag);
3002 
3003     trace_pci_nvme_copy_out(iocb->slba, nlb);
3004 
3005     len = nvme_l2b(sns, nlb);
3006 
3007     if (NVME_ID_NS_DPS_TYPE(sns->id_ns.dps)) {
3008         copy = (NvmeCopyCmd *)&req->cmd;
3009 
3010         uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
3011 
3012         mlen = nvme_m2b(sns, nlb);
3013         mbounce = iocb->bounce + nvme_l2b(sns, nlb);
3014 
3015         status = nvme_dif_mangle_mdata(sns, mbounce, mlen, slba);
3016         if (status) {
3017             goto invalid;
3018         }
3019         status = nvme_dif_check(sns, iocb->bounce, len, mbounce, mlen, prinfor,
3020                                 slba, apptag, appmask, &reftag);
3021         if (status) {
3022             goto invalid;
3023         }
3024     }
3025 
3026     if (NVME_ID_NS_DPS_TYPE(dns->id_ns.dps)) {
3027         copy = (NvmeCopyCmd *)&req->cmd;
3028         uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
3029 
3030         mlen = nvme_m2b(dns, nlb);
3031         mbounce = iocb->bounce + nvme_l2b(dns, nlb);
3032 
3033         apptag = le16_to_cpu(copy->apptag);
3034         appmask = le16_to_cpu(copy->appmask);
3035 
3036         if (prinfow & NVME_PRINFO_PRACT) {
3037             status = nvme_check_prinfo(dns, prinfow, iocb->slba, iocb->reftag);
3038             if (status) {
3039                 goto invalid;
3040             }
3041 
3042             nvme_dif_pract_generate_dif(dns, iocb->bounce, len, mbounce, mlen,
3043                                         apptag, &iocb->reftag);
3044         } else {
3045             status = nvme_dif_check(dns, iocb->bounce, len, mbounce, mlen,
3046                                     prinfow, iocb->slba, apptag, appmask,
3047                                     &iocb->reftag);
3048             if (status) {
3049                 goto invalid;
3050             }
3051         }
3052     }
3053 
3054     status = nvme_check_bounds(dns, iocb->slba, nlb);
3055     if (status) {
3056         goto invalid;
3057     }
3058 
3059     if (dns->params.zoned) {
3060         status = nvme_check_zone_write(dns, iocb->zone, iocb->slba, nlb);
3061         if (status) {
3062             goto invalid;
3063         }
3064 
3065         if (!(iocb->zone->d.za & NVME_ZA_ZRWA_VALID)) {
3066             iocb->zone->w_ptr += nlb;
3067         }
3068     }
3069 
3070     qemu_iovec_reset(&iocb->iov);
3071     qemu_iovec_add(&iocb->iov, iocb->bounce, len);
3072 
3073     block_acct_start(blk_get_stats(dns->blkconf.blk), &iocb->acct.write, 0,
3074                      BLOCK_ACCT_WRITE);
3075 
3076     iocb->aiocb = blk_aio_pwritev(dns->blkconf.blk, nvme_l2b(dns, iocb->slba),
3077                                   &iocb->iov, 0, nvme_copy_out_cb, iocb);
3078 
3079     return;
3080 
3081 invalid:
3082     req->status = status;
3083     iocb->ret = -1;
3084 out:
3085     nvme_do_copy(iocb);
3086 }
3087 
3088 static void nvme_copy_in_cb(void *opaque, int ret)
3089 {
3090     NvmeCopyAIOCB *iocb = opaque;
3091     NvmeNamespace *sns = iocb->sns;
3092     uint64_t slba;
3093     uint32_t nlb;
3094 
3095     if (ret < 0 || iocb->ret < 0 || !sns->lbaf.ms) {
3096         goto out;
3097     }
3098 
3099     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
3100                                  &nlb, NULL, NULL, NULL, NULL);
3101 
3102     qemu_iovec_reset(&iocb->iov);
3103     qemu_iovec_add(&iocb->iov, iocb->bounce + nvme_l2b(sns, nlb),
3104                    nvme_m2b(sns, nlb));
3105 
3106     iocb->aiocb = blk_aio_preadv(sns->blkconf.blk, nvme_moff(sns, slba),
3107                                  &iocb->iov, 0, nvme_copy_in_completed_cb,
3108                                  iocb);
3109     return;
3110 
3111 out:
3112     nvme_copy_in_completed_cb(iocb, ret);
3113 }
3114 
3115 static inline bool nvme_csi_supports_copy(uint8_t csi)
3116 {
3117     return csi == NVME_CSI_NVM || csi == NVME_CSI_ZONED;
3118 }
3119 
3120 static inline bool nvme_copy_ns_format_match(NvmeNamespace *sns,
3121                                              NvmeNamespace *dns)
3122 {
3123     return sns->lbaf.ds == dns->lbaf.ds && sns->lbaf.ms == dns->lbaf.ms;
3124 }
3125 
3126 static bool nvme_copy_matching_ns_format(NvmeNamespace *sns, NvmeNamespace *dns,
3127                                          bool pi_enable)
3128 {
3129     if (!nvme_csi_supports_copy(sns->csi) ||
3130         !nvme_csi_supports_copy(dns->csi)) {
3131         return false;
3132     }
3133 
3134     if (!pi_enable && !nvme_copy_ns_format_match(sns, dns)) {
3135             return false;
3136     }
3137 
3138     if (pi_enable && (!nvme_copy_ns_format_match(sns, dns) ||
3139         sns->id_ns.dps != dns->id_ns.dps)) {
3140             return false;
3141     }
3142 
3143     return true;
3144 }
3145 
3146 static inline bool nvme_copy_corresp_pi_match(NvmeNamespace *sns,
3147                                               NvmeNamespace *dns)
3148 {
3149     return sns->lbaf.ms == 0 &&
3150            ((dns->lbaf.ms == 8 && dns->pif == 0) ||
3151            (dns->lbaf.ms == 16 && dns->pif == 1));
3152 }
3153 
3154 static bool nvme_copy_corresp_pi_format(NvmeNamespace *sns, NvmeNamespace *dns,
3155                                         bool sns_pi_en)
3156 {
3157     if (!nvme_csi_supports_copy(sns->csi) ||
3158         !nvme_csi_supports_copy(dns->csi)) {
3159         return false;
3160     }
3161 
3162     if (!sns_pi_en && !nvme_copy_corresp_pi_match(sns, dns)) {
3163         return false;
3164     }
3165 
3166     if (sns_pi_en && !nvme_copy_corresp_pi_match(dns, sns)) {
3167         return false;
3168     }
3169 
3170     return true;
3171 }
3172 
3173 static void nvme_do_copy(NvmeCopyAIOCB *iocb)
3174 {
3175     NvmeRequest *req = iocb->req;
3176     NvmeNamespace *sns;
3177     NvmeNamespace *dns = req->ns;
3178     NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
3179     uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
3180     uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
3181     uint64_t slba;
3182     uint32_t nlb;
3183     size_t len;
3184     uint16_t status;
3185     uint32_t dnsid = le32_to_cpu(req->cmd.nsid);
3186     uint32_t snsid = dnsid;
3187 
3188     if (iocb->ret < 0) {
3189         goto done;
3190     }
3191 
3192     if (iocb->idx == iocb->nr) {
3193         goto done;
3194     }
3195 
3196     if (iocb->format == 2 || iocb->format == 3) {
3197         nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format,
3198                                      &slba, &nlb, &snsid, NULL, NULL, NULL);
3199         if (snsid != dnsid) {
3200             if (snsid == NVME_NSID_BROADCAST ||
3201                 !nvme_nsid_valid(iocb->n, snsid)) {
3202                 status = NVME_INVALID_NSID | NVME_DNR;
3203                 goto invalid;
3204             }
3205             iocb->sns = nvme_ns(iocb->n, snsid);
3206             if (unlikely(!iocb->sns)) {
3207                 status = NVME_INVALID_FIELD | NVME_DNR;
3208                 goto invalid;
3209             }
3210         } else {
3211             if (((slba + nlb) > iocb->slba) &&
3212                 ((slba + nlb) < (iocb->slba + iocb->tcl))) {
3213                 status = NVME_CMD_OVERLAP_IO_RANGE | NVME_DNR;
3214                 goto invalid;
3215             }
3216         }
3217     } else {
3218         nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format,
3219                                      &slba, &nlb, NULL, NULL, NULL, NULL);
3220     }
3221 
3222     sns = iocb->sns;
3223     if ((snsid == dnsid) && NVME_ID_NS_DPS_TYPE(sns->id_ns.dps) &&
3224         ((prinfor & NVME_PRINFO_PRACT) != (prinfow & NVME_PRINFO_PRACT))) {
3225         status = NVME_INVALID_FIELD | NVME_DNR;
3226         goto invalid;
3227     } else if (snsid != dnsid) {
3228         if (!NVME_ID_NS_DPS_TYPE(sns->id_ns.dps) &&
3229             !NVME_ID_NS_DPS_TYPE(dns->id_ns.dps)) {
3230             if (!nvme_copy_matching_ns_format(sns, dns, false)) {
3231                 status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR;
3232                 goto invalid;
3233             }
3234         }
3235         if (NVME_ID_NS_DPS_TYPE(sns->id_ns.dps) &&
3236             NVME_ID_NS_DPS_TYPE(dns->id_ns.dps)) {
3237             if ((prinfor & NVME_PRINFO_PRACT) !=
3238                 (prinfow & NVME_PRINFO_PRACT)) {
3239                 status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR;
3240                 goto invalid;
3241             } else {
3242                 if (!nvme_copy_matching_ns_format(sns, dns, true)) {
3243                     status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR;
3244                     goto invalid;
3245                 }
3246             }
3247         }
3248 
3249         if (!NVME_ID_NS_DPS_TYPE(sns->id_ns.dps) &&
3250             NVME_ID_NS_DPS_TYPE(dns->id_ns.dps)) {
3251             if (!(prinfow & NVME_PRINFO_PRACT)) {
3252                 status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR;
3253                 goto invalid;
3254             } else {
3255                 if (!nvme_copy_corresp_pi_format(sns, dns, false)) {
3256                     status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR;
3257                     goto invalid;
3258                 }
3259             }
3260         }
3261 
3262         if (NVME_ID_NS_DPS_TYPE(sns->id_ns.dps) &&
3263             !NVME_ID_NS_DPS_TYPE(dns->id_ns.dps)) {
3264             if (!(prinfor & NVME_PRINFO_PRACT)) {
3265                 status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR;
3266                 goto invalid;
3267             } else {
3268                 if (!nvme_copy_corresp_pi_format(sns, dns, true)) {
3269                     status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR;
3270                     goto invalid;
3271                 }
3272             }
3273         }
3274     }
3275     len = nvme_l2b(sns, nlb);
3276 
3277     trace_pci_nvme_copy_source_range(slba, nlb);
3278 
3279     if (nlb > le16_to_cpu(sns->id_ns.mssrl)) {
3280         status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
3281         goto invalid;
3282     }
3283 
3284     status = nvme_check_bounds(sns, slba, nlb);
3285     if (status) {
3286         goto invalid;
3287     }
3288 
3289     if (NVME_ERR_REC_DULBE(sns->features.err_rec)) {
3290         status = nvme_check_dulbe(sns, slba, nlb);
3291         if (status) {
3292             goto invalid;
3293         }
3294     }
3295 
3296     if (sns->params.zoned) {
3297         status = nvme_check_zone_read(sns, slba, nlb);
3298         if (status) {
3299             goto invalid;
3300         }
3301     }
3302 
3303     g_free(iocb->bounce);
3304     iocb->bounce = g_malloc_n(le16_to_cpu(sns->id_ns.mssrl),
3305                               sns->lbasz + sns->lbaf.ms);
3306 
3307     qemu_iovec_reset(&iocb->iov);
3308     qemu_iovec_add(&iocb->iov, iocb->bounce, len);
3309 
3310     block_acct_start(blk_get_stats(sns->blkconf.blk), &iocb->acct.read, 0,
3311                      BLOCK_ACCT_READ);
3312 
3313     iocb->aiocb = blk_aio_preadv(sns->blkconf.blk, nvme_l2b(sns, slba),
3314                                  &iocb->iov, 0, nvme_copy_in_cb, iocb);
3315     return;
3316 
3317 invalid:
3318     req->status = status;
3319     iocb->ret = -1;
3320 done:
3321     nvme_copy_done(iocb);
3322 }
3323 
3324 static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
3325 {
3326     NvmeNamespace *ns = req->ns;
3327     NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
3328     NvmeCopyAIOCB *iocb = blk_aio_get(&nvme_copy_aiocb_info, ns->blkconf.blk,
3329                                       nvme_misc_cb, req);
3330     uint16_t nr = copy->nr + 1;
3331     uint8_t format = copy->control[0] & 0xf;
3332     size_t len = sizeof(NvmeCopySourceRangeFormat0_2);
3333 
3334     uint16_t status;
3335 
3336     trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format);
3337 
3338     iocb->ranges = NULL;
3339     iocb->zone = NULL;
3340 
3341     if (!(n->id_ctrl.ocfs & (1 << format)) ||
3342         ((format == 2 || format == 3) &&
3343          !(n->features.hbs.cdfe & (1 << format)))) {
3344         trace_pci_nvme_err_copy_invalid_format(format);
3345         status = NVME_INVALID_FIELD | NVME_DNR;
3346         goto invalid;
3347     }
3348 
3349     if (nr > ns->id_ns.msrc + 1) {
3350         status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
3351         goto invalid;
3352     }
3353 
3354     if ((ns->pif == 0x0 && (format != 0x0 && format != 0x2)) ||
3355         (ns->pif != 0x0 && (format != 0x1 && format != 0x3))) {
3356         status = NVME_INVALID_FORMAT | NVME_DNR;
3357         goto invalid;
3358     }
3359 
3360     if (ns->pif) {
3361         len = sizeof(NvmeCopySourceRangeFormat1_3);
3362     }
3363 
3364     iocb->format = format;
3365     iocb->ranges = g_malloc_n(nr, len);
3366     status = nvme_h2c(n, (uint8_t *)iocb->ranges, len * nr, req);
3367     if (status) {
3368         goto invalid;
3369     }
3370 
3371     iocb->slba = le64_to_cpu(copy->sdlba);
3372 
3373     if (ns->params.zoned) {
3374         iocb->zone = nvme_get_zone_by_slba(ns, iocb->slba);
3375         if (!iocb->zone) {
3376             status = NVME_LBA_RANGE | NVME_DNR;
3377             goto invalid;
3378         }
3379 
3380         status = nvme_zrm_auto(n, ns, iocb->zone);
3381         if (status) {
3382             goto invalid;
3383         }
3384     }
3385 
3386     status = nvme_check_copy_mcl(ns, iocb, nr);
3387     if (status) {
3388         goto invalid;
3389     }
3390 
3391     iocb->req = req;
3392     iocb->ret = 0;
3393     iocb->nr = nr;
3394     iocb->idx = 0;
3395     iocb->reftag = le32_to_cpu(copy->reftag);
3396     iocb->reftag |= (uint64_t)le32_to_cpu(copy->cdw3) << 32;
3397 
3398     qemu_iovec_init(&iocb->iov, 1);
3399 
3400     req->aiocb = &iocb->common;
3401     iocb->sns = req->ns;
3402     iocb->n = n;
3403     iocb->bounce = NULL;
3404     nvme_do_copy(iocb);
3405 
3406     return NVME_NO_COMPLETE;
3407 
3408 invalid:
3409     g_free(iocb->ranges);
3410     qemu_aio_unref(iocb);
3411     return status;
3412 }
3413 
3414 static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req)
3415 {
3416     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3417     NvmeNamespace *ns = req->ns;
3418     BlockBackend *blk = ns->blkconf.blk;
3419     uint64_t slba = le64_to_cpu(rw->slba);
3420     uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
3421     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3422     size_t data_len = nvme_l2b(ns, nlb);
3423     size_t len = data_len;
3424     int64_t offset = nvme_l2b(ns, slba);
3425     struct nvme_compare_ctx *ctx = NULL;
3426     uint16_t status;
3427 
3428     trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb);
3429 
3430     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (prinfo & NVME_PRINFO_PRACT)) {
3431         return NVME_INVALID_PROT_INFO | NVME_DNR;
3432     }
3433 
3434     if (nvme_ns_ext(ns)) {
3435         len += nvme_m2b(ns, nlb);
3436     }
3437 
3438     if (NVME_ID_CTRL_CTRATT_MEM(n->id_ctrl.ctratt)) {
3439         status = nvme_check_mdts(n, data_len);
3440     } else {
3441         status = nvme_check_mdts(n, len);
3442     }
3443     if (status) {
3444         return status;
3445     }
3446 
3447     status = nvme_check_bounds(ns, slba, nlb);
3448     if (status) {
3449         return status;
3450     }
3451 
3452     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3453         status = nvme_check_dulbe(ns, slba, nlb);
3454         if (status) {
3455             return status;
3456         }
3457     }
3458 
3459     status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
3460     if (status) {
3461         return status;
3462     }
3463 
3464     ctx = g_new(struct nvme_compare_ctx, 1);
3465     ctx->data.bounce = g_malloc(data_len);
3466 
3467     req->opaque = ctx;
3468 
3469     qemu_iovec_init(&ctx->data.iov, 1);
3470     qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len);
3471 
3472     block_acct_start(blk_get_stats(blk), &req->acct, data_len,
3473                      BLOCK_ACCT_READ);
3474     req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0,
3475                                 nvme_compare_data_cb, req);
3476 
3477     return NVME_NO_COMPLETE;
3478 }
3479 
3480 typedef struct NvmeFlushAIOCB {
3481     BlockAIOCB common;
3482     BlockAIOCB *aiocb;
3483     NvmeRequest *req;
3484     int ret;
3485 
3486     NvmeNamespace *ns;
3487     uint32_t nsid;
3488     bool broadcast;
3489 } NvmeFlushAIOCB;
3490 
3491 static void nvme_flush_cancel(BlockAIOCB *acb)
3492 {
3493     NvmeFlushAIOCB *iocb = container_of(acb, NvmeFlushAIOCB, common);
3494 
3495     iocb->ret = -ECANCELED;
3496 
3497     if (iocb->aiocb) {
3498         blk_aio_cancel_async(iocb->aiocb);
3499         iocb->aiocb = NULL;
3500     }
3501 }
3502 
3503 static const AIOCBInfo nvme_flush_aiocb_info = {
3504     .aiocb_size = sizeof(NvmeFlushAIOCB),
3505     .cancel_async = nvme_flush_cancel,
3506 };
3507 
3508 static void nvme_do_flush(NvmeFlushAIOCB *iocb);
3509 
3510 static void nvme_flush_ns_cb(void *opaque, int ret)
3511 {
3512     NvmeFlushAIOCB *iocb = opaque;
3513     NvmeNamespace *ns = iocb->ns;
3514 
3515     if (ret < 0) {
3516         iocb->ret = ret;
3517         goto out;
3518     } else if (iocb->ret < 0) {
3519         goto out;
3520     }
3521 
3522     if (ns) {
3523         trace_pci_nvme_flush_ns(iocb->nsid);
3524 
3525         iocb->ns = NULL;
3526         iocb->aiocb = blk_aio_flush(ns->blkconf.blk, nvme_flush_ns_cb, iocb);
3527         return;
3528     }
3529 
3530 out:
3531     nvme_do_flush(iocb);
3532 }
3533 
3534 static void nvme_do_flush(NvmeFlushAIOCB *iocb)
3535 {
3536     NvmeRequest *req = iocb->req;
3537     NvmeCtrl *n = nvme_ctrl(req);
3538     int i;
3539 
3540     if (iocb->ret < 0) {
3541         goto done;
3542     }
3543 
3544     if (iocb->broadcast) {
3545         for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
3546             iocb->ns = nvme_ns(n, i);
3547             if (iocb->ns) {
3548                 iocb->nsid = i;
3549                 break;
3550             }
3551         }
3552     }
3553 
3554     if (!iocb->ns) {
3555         goto done;
3556     }
3557 
3558     nvme_flush_ns_cb(iocb, 0);
3559     return;
3560 
3561 done:
3562     iocb->common.cb(iocb->common.opaque, iocb->ret);
3563     qemu_aio_unref(iocb);
3564 }
3565 
3566 static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
3567 {
3568     NvmeFlushAIOCB *iocb;
3569     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
3570     uint16_t status;
3571 
3572     iocb = qemu_aio_get(&nvme_flush_aiocb_info, NULL, nvme_misc_cb, req);
3573 
3574     iocb->req = req;
3575     iocb->ret = 0;
3576     iocb->ns = NULL;
3577     iocb->nsid = 0;
3578     iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
3579 
3580     if (!iocb->broadcast) {
3581         if (!nvme_nsid_valid(n, nsid)) {
3582             status = NVME_INVALID_NSID | NVME_DNR;
3583             goto out;
3584         }
3585 
3586         iocb->ns = nvme_ns(n, nsid);
3587         if (!iocb->ns) {
3588             status = NVME_INVALID_FIELD | NVME_DNR;
3589             goto out;
3590         }
3591 
3592         iocb->nsid = nsid;
3593     }
3594 
3595     req->aiocb = &iocb->common;
3596     nvme_do_flush(iocb);
3597 
3598     return NVME_NO_COMPLETE;
3599 
3600 out:
3601     qemu_aio_unref(iocb);
3602 
3603     return status;
3604 }
3605 
3606 static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req)
3607 {
3608     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3609     NvmeNamespace *ns = req->ns;
3610     uint64_t slba = le64_to_cpu(rw->slba);
3611     uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3612     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3613     uint64_t data_size = nvme_l2b(ns, nlb);
3614     uint64_t mapped_size = data_size;
3615     uint64_t data_offset;
3616     BlockBackend *blk = ns->blkconf.blk;
3617     uint16_t status;
3618 
3619     if (nvme_ns_ext(ns) && !(NVME_ID_CTRL_CTRATT_MEM(n->id_ctrl.ctratt))) {
3620         mapped_size += nvme_m2b(ns, nlb);
3621 
3622         if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3623             bool pract = prinfo & NVME_PRINFO_PRACT;
3624 
3625             if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3626                 mapped_size = data_size;
3627             }
3628         }
3629     }
3630 
3631     trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba);
3632 
3633     status = nvme_check_mdts(n, mapped_size);
3634     if (status) {
3635         goto invalid;
3636     }
3637 
3638     status = nvme_check_bounds(ns, slba, nlb);
3639     if (status) {
3640         goto invalid;
3641     }
3642 
3643     if (ns->params.zoned) {
3644         status = nvme_check_zone_read(ns, slba, nlb);
3645         if (status) {
3646             trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status);
3647             goto invalid;
3648         }
3649     }
3650 
3651     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3652         status = nvme_check_dulbe(ns, slba, nlb);
3653         if (status) {
3654             goto invalid;
3655         }
3656     }
3657 
3658     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3659         return nvme_dif_rw(n, req);
3660     }
3661 
3662     status = nvme_map_data(n, nlb, req);
3663     if (status) {
3664         goto invalid;
3665     }
3666 
3667     data_offset = nvme_l2b(ns, slba);
3668 
3669     block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3670                      BLOCK_ACCT_READ);
3671     nvme_blk_read(blk, data_offset, BDRV_SECTOR_SIZE, nvme_rw_cb, req);
3672     return NVME_NO_COMPLETE;
3673 
3674 invalid:
3675     block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ);
3676     return status | NVME_DNR;
3677 }
3678 
3679 static void nvme_do_write_fdp(NvmeCtrl *n, NvmeRequest *req, uint64_t slba,
3680                               uint32_t nlb)
3681 {
3682     NvmeNamespace *ns = req->ns;
3683     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3684     uint64_t data_size = nvme_l2b(ns, nlb);
3685     uint32_t dw12 = le32_to_cpu(req->cmd.cdw12);
3686     uint8_t dtype = (dw12 >> 20) & 0xf;
3687     uint16_t pid = le16_to_cpu(rw->dspec);
3688     uint16_t ph, rg, ruhid;
3689     NvmeReclaimUnit *ru;
3690 
3691     if (dtype != NVME_DIRECTIVE_DATA_PLACEMENT ||
3692         !nvme_parse_pid(ns, pid, &ph, &rg)) {
3693         ph = 0;
3694         rg = 0;
3695     }
3696 
3697     ruhid = ns->fdp.phs[ph];
3698     ru = &ns->endgrp->fdp.ruhs[ruhid].rus[rg];
3699 
3700     nvme_fdp_stat_inc(&ns->endgrp->fdp.hbmw, data_size);
3701     nvme_fdp_stat_inc(&ns->endgrp->fdp.mbmw, data_size);
3702 
3703     while (nlb) {
3704         if (nlb < ru->ruamw) {
3705             ru->ruamw -= nlb;
3706             break;
3707         }
3708 
3709         nlb -= ru->ruamw;
3710         nvme_update_ruh(n, ns, pid);
3711     }
3712 }
3713 
3714 static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
3715                               bool wrz)
3716 {
3717     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3718     NvmeNamespace *ns = req->ns;
3719     uint64_t slba = le64_to_cpu(rw->slba);
3720     uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3721     uint16_t ctrl = le16_to_cpu(rw->control);
3722     uint8_t prinfo = NVME_RW_PRINFO(ctrl);
3723     uint64_t data_size = nvme_l2b(ns, nlb);
3724     uint64_t mapped_size = data_size;
3725     uint64_t data_offset;
3726     NvmeZone *zone;
3727     NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe;
3728     BlockBackend *blk = ns->blkconf.blk;
3729     uint16_t status;
3730 
3731     if (nvme_ns_ext(ns) && !(NVME_ID_CTRL_CTRATT_MEM(n->id_ctrl.ctratt))) {
3732         mapped_size += nvme_m2b(ns, nlb);
3733 
3734         if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3735             bool pract = prinfo & NVME_PRINFO_PRACT;
3736 
3737             if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3738                 mapped_size -= nvme_m2b(ns, nlb);
3739             }
3740         }
3741     }
3742 
3743     trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode),
3744                          nvme_nsid(ns), nlb, mapped_size, slba);
3745 
3746     if (!wrz) {
3747         status = nvme_check_mdts(n, mapped_size);
3748         if (status) {
3749             goto invalid;
3750         }
3751     }
3752 
3753     status = nvme_check_bounds(ns, slba, nlb);
3754     if (status) {
3755         goto invalid;
3756     }
3757 
3758     if (ns->params.zoned) {
3759         zone = nvme_get_zone_by_slba(ns, slba);
3760         assert(zone);
3761 
3762         if (append) {
3763             bool piremap = !!(ctrl & NVME_RW_PIREMAP);
3764 
3765             if (unlikely(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3766                 return NVME_INVALID_ZONE_OP | NVME_DNR;
3767             }
3768 
3769             if (unlikely(slba != zone->d.zslba)) {
3770                 trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba);
3771                 status = NVME_INVALID_FIELD;
3772                 goto invalid;
3773             }
3774 
3775             if (n->params.zasl &&
3776                 data_size > (uint64_t)n->page_size << n->params.zasl) {
3777                 trace_pci_nvme_err_zasl(data_size);
3778                 return NVME_INVALID_FIELD | NVME_DNR;
3779             }
3780 
3781             slba = zone->w_ptr;
3782             rw->slba = cpu_to_le64(slba);
3783             res->slba = cpu_to_le64(slba);
3784 
3785             switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3786             case NVME_ID_NS_DPS_TYPE_1:
3787                 if (!piremap) {
3788                     return NVME_INVALID_PROT_INFO | NVME_DNR;
3789                 }
3790 
3791                 /* fallthrough */
3792 
3793             case NVME_ID_NS_DPS_TYPE_2:
3794                 if (piremap) {
3795                     uint32_t reftag = le32_to_cpu(rw->reftag);
3796                     rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba));
3797                 }
3798 
3799                 break;
3800 
3801             case NVME_ID_NS_DPS_TYPE_3:
3802                 if (piremap) {
3803                     return NVME_INVALID_PROT_INFO | NVME_DNR;
3804                 }
3805 
3806                 break;
3807             }
3808         }
3809 
3810         status = nvme_check_zone_write(ns, zone, slba, nlb);
3811         if (status) {
3812             goto invalid;
3813         }
3814 
3815         status = nvme_zrm_auto(n, ns, zone);
3816         if (status) {
3817             goto invalid;
3818         }
3819 
3820         if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3821             zone->w_ptr += nlb;
3822         }
3823     } else if (ns->endgrp && ns->endgrp->fdp.enabled) {
3824         nvme_do_write_fdp(n, req, slba, nlb);
3825     }
3826 
3827     data_offset = nvme_l2b(ns, slba);
3828 
3829     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3830         return nvme_dif_rw(n, req);
3831     }
3832 
3833     if (!wrz) {
3834         status = nvme_map_data(n, nlb, req);
3835         if (status) {
3836             goto invalid;
3837         }
3838 
3839         block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3840                          BLOCK_ACCT_WRITE);
3841         nvme_blk_write(blk, data_offset, BDRV_SECTOR_SIZE, nvme_rw_cb, req);
3842     } else {
3843         req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size,
3844                                            BDRV_REQ_MAY_UNMAP, nvme_rw_cb,
3845                                            req);
3846     }
3847 
3848     return NVME_NO_COMPLETE;
3849 
3850 invalid:
3851     block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE);
3852     return status | NVME_DNR;
3853 }
3854 
3855 static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req)
3856 {
3857     return nvme_do_write(n, req, false, false);
3858 }
3859 
3860 static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
3861 {
3862     return nvme_do_write(n, req, false, true);
3863 }
3864 
3865 static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req)
3866 {
3867     return nvme_do_write(n, req, true, false);
3868 }
3869 
3870 static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c,
3871                                             uint64_t *slba, uint32_t *zone_idx)
3872 {
3873     uint32_t dw10 = le32_to_cpu(c->cdw10);
3874     uint32_t dw11 = le32_to_cpu(c->cdw11);
3875 
3876     if (!ns->params.zoned) {
3877         trace_pci_nvme_err_invalid_opc(c->opcode);
3878         return NVME_INVALID_OPCODE | NVME_DNR;
3879     }
3880 
3881     *slba = ((uint64_t)dw11) << 32 | dw10;
3882     if (unlikely(*slba >= ns->id_ns.nsze)) {
3883         trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze);
3884         *slba = 0;
3885         return NVME_LBA_RANGE | NVME_DNR;
3886     }
3887 
3888     *zone_idx = nvme_zone_idx(ns, *slba);
3889     assert(*zone_idx < ns->num_zones);
3890 
3891     return NVME_SUCCESS;
3892 }
3893 
3894 typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState,
3895                                  NvmeRequest *);
3896 
3897 enum NvmeZoneProcessingMask {
3898     NVME_PROC_CURRENT_ZONE    = 0,
3899     NVME_PROC_OPENED_ZONES    = 1 << 0,
3900     NVME_PROC_CLOSED_ZONES    = 1 << 1,
3901     NVME_PROC_READ_ONLY_ZONES = 1 << 2,
3902     NVME_PROC_FULL_ZONES      = 1 << 3,
3903 };
3904 
3905 static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone,
3906                                NvmeZoneState state, NvmeRequest *req)
3907 {
3908     NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
3909     int flags = 0;
3910 
3911     if (cmd->zsflags & NVME_ZSFLAG_ZRWA_ALLOC) {
3912         uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3913 
3914         if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3915             return NVME_INVALID_ZONE_OP | NVME_DNR;
3916         }
3917 
3918         if (zone->w_ptr % ns->zns.zrwafg) {
3919             return NVME_NOZRWA | NVME_DNR;
3920         }
3921 
3922         flags = NVME_ZRM_ZRWA;
3923     }
3924 
3925     return nvme_zrm_open_flags(nvme_ctrl(req), ns, zone, flags);
3926 }
3927 
3928 static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone,
3929                                 NvmeZoneState state, NvmeRequest *req)
3930 {
3931     return nvme_zrm_close(ns, zone);
3932 }
3933 
3934 static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone,
3935                                  NvmeZoneState state, NvmeRequest *req)
3936 {
3937     return nvme_zrm_finish(ns, zone);
3938 }
3939 
3940 static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone,
3941                                   NvmeZoneState state, NvmeRequest *req)
3942 {
3943     switch (state) {
3944     case NVME_ZONE_STATE_READ_ONLY:
3945         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE);
3946         /* fall through */
3947     case NVME_ZONE_STATE_OFFLINE:
3948         return NVME_SUCCESS;
3949     default:
3950         return NVME_ZONE_INVAL_TRANSITION;
3951     }
3952 }
3953 
3954 static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone)
3955 {
3956     uint16_t status;
3957     uint8_t state = nvme_get_zone_state(zone);
3958 
3959     if (state == NVME_ZONE_STATE_EMPTY) {
3960         status = nvme_aor_check(ns, 1, 0);
3961         if (status) {
3962             return status;
3963         }
3964         nvme_aor_inc_active(ns);
3965         zone->d.za |= NVME_ZA_ZD_EXT_VALID;
3966         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
3967         return NVME_SUCCESS;
3968     }
3969 
3970     return NVME_ZONE_INVAL_TRANSITION;
3971 }
3972 
3973 static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone,
3974                                     enum NvmeZoneProcessingMask proc_mask,
3975                                     op_handler_t op_hndlr, NvmeRequest *req)
3976 {
3977     uint16_t status = NVME_SUCCESS;
3978     NvmeZoneState zs = nvme_get_zone_state(zone);
3979     bool proc_zone;
3980 
3981     switch (zs) {
3982     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3983     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3984         proc_zone = proc_mask & NVME_PROC_OPENED_ZONES;
3985         break;
3986     case NVME_ZONE_STATE_CLOSED:
3987         proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES;
3988         break;
3989     case NVME_ZONE_STATE_READ_ONLY:
3990         proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES;
3991         break;
3992     case NVME_ZONE_STATE_FULL:
3993         proc_zone = proc_mask & NVME_PROC_FULL_ZONES;
3994         break;
3995     default:
3996         proc_zone = false;
3997     }
3998 
3999     if (proc_zone) {
4000         status = op_hndlr(ns, zone, zs, req);
4001     }
4002 
4003     return status;
4004 }
4005 
4006 static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone,
4007                                 enum NvmeZoneProcessingMask proc_mask,
4008                                 op_handler_t op_hndlr, NvmeRequest *req)
4009 {
4010     NvmeZone *next;
4011     uint16_t status = NVME_SUCCESS;
4012     int i;
4013 
4014     if (!proc_mask) {
4015         status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req);
4016     } else {
4017         if (proc_mask & NVME_PROC_CLOSED_ZONES) {
4018             QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
4019                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
4020                                              req);
4021                 if (status && status != NVME_NO_COMPLETE) {
4022                     goto out;
4023                 }
4024             }
4025         }
4026         if (proc_mask & NVME_PROC_OPENED_ZONES) {
4027             QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
4028                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
4029                                              req);
4030                 if (status && status != NVME_NO_COMPLETE) {
4031                     goto out;
4032                 }
4033             }
4034 
4035             QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
4036                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
4037                                              req);
4038                 if (status && status != NVME_NO_COMPLETE) {
4039                     goto out;
4040                 }
4041             }
4042         }
4043         if (proc_mask & NVME_PROC_FULL_ZONES) {
4044             QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) {
4045                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
4046                                              req);
4047                 if (status && status != NVME_NO_COMPLETE) {
4048                     goto out;
4049                 }
4050             }
4051         }
4052 
4053         if (proc_mask & NVME_PROC_READ_ONLY_ZONES) {
4054             for (i = 0; i < ns->num_zones; i++, zone++) {
4055                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
4056                                              req);
4057                 if (status && status != NVME_NO_COMPLETE) {
4058                     goto out;
4059                 }
4060             }
4061         }
4062     }
4063 
4064 out:
4065     return status;
4066 }
4067 
4068 typedef struct NvmeZoneResetAIOCB {
4069     BlockAIOCB common;
4070     BlockAIOCB *aiocb;
4071     NvmeRequest *req;
4072     int ret;
4073 
4074     bool all;
4075     int idx;
4076     NvmeZone *zone;
4077 } NvmeZoneResetAIOCB;
4078 
4079 static void nvme_zone_reset_cancel(BlockAIOCB *aiocb)
4080 {
4081     NvmeZoneResetAIOCB *iocb = container_of(aiocb, NvmeZoneResetAIOCB, common);
4082     NvmeRequest *req = iocb->req;
4083     NvmeNamespace *ns = req->ns;
4084 
4085     iocb->idx = ns->num_zones;
4086 
4087     iocb->ret = -ECANCELED;
4088 
4089     if (iocb->aiocb) {
4090         blk_aio_cancel_async(iocb->aiocb);
4091         iocb->aiocb = NULL;
4092     }
4093 }
4094 
4095 static const AIOCBInfo nvme_zone_reset_aiocb_info = {
4096     .aiocb_size = sizeof(NvmeZoneResetAIOCB),
4097     .cancel_async = nvme_zone_reset_cancel,
4098 };
4099 
4100 static void nvme_zone_reset_cb(void *opaque, int ret);
4101 
4102 static void nvme_zone_reset_epilogue_cb(void *opaque, int ret)
4103 {
4104     NvmeZoneResetAIOCB *iocb = opaque;
4105     NvmeRequest *req = iocb->req;
4106     NvmeNamespace *ns = req->ns;
4107     int64_t moff;
4108     int count;
4109 
4110     if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
4111         goto out;
4112     }
4113 
4114     moff = nvme_moff(ns, iocb->zone->d.zslba);
4115     count = nvme_m2b(ns, ns->zone_size);
4116 
4117     iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, moff, count,
4118                                         BDRV_REQ_MAY_UNMAP,
4119                                         nvme_zone_reset_cb, iocb);
4120     return;
4121 
4122 out:
4123     nvme_zone_reset_cb(iocb, ret);
4124 }
4125 
4126 static void nvme_zone_reset_cb(void *opaque, int ret)
4127 {
4128     NvmeZoneResetAIOCB *iocb = opaque;
4129     NvmeRequest *req = iocb->req;
4130     NvmeNamespace *ns = req->ns;
4131 
4132     if (iocb->ret < 0) {
4133         goto done;
4134     } else if (ret < 0) {
4135         iocb->ret = ret;
4136         goto done;
4137     }
4138 
4139     if (iocb->zone) {
4140         nvme_zrm_reset(ns, iocb->zone);
4141 
4142         if (!iocb->all) {
4143             goto done;
4144         }
4145     }
4146 
4147     while (iocb->idx < ns->num_zones) {
4148         NvmeZone *zone = &ns->zone_array[iocb->idx++];
4149 
4150         switch (nvme_get_zone_state(zone)) {
4151         case NVME_ZONE_STATE_EMPTY:
4152             if (!iocb->all) {
4153                 goto done;
4154             }
4155 
4156             continue;
4157 
4158         case NVME_ZONE_STATE_EXPLICITLY_OPEN:
4159         case NVME_ZONE_STATE_IMPLICITLY_OPEN:
4160         case NVME_ZONE_STATE_CLOSED:
4161         case NVME_ZONE_STATE_FULL:
4162             iocb->zone = zone;
4163             break;
4164 
4165         default:
4166             continue;
4167         }
4168 
4169         trace_pci_nvme_zns_zone_reset(zone->d.zslba);
4170 
4171         iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk,
4172                                             nvme_l2b(ns, zone->d.zslba),
4173                                             nvme_l2b(ns, ns->zone_size),
4174                                             BDRV_REQ_MAY_UNMAP,
4175                                             nvme_zone_reset_epilogue_cb,
4176                                             iocb);
4177         return;
4178     }
4179 
4180 done:
4181     iocb->aiocb = NULL;
4182 
4183     iocb->common.cb(iocb->common.opaque, iocb->ret);
4184     qemu_aio_unref(iocb);
4185 }
4186 
4187 static uint16_t nvme_zone_mgmt_send_zrwa_flush(NvmeCtrl *n, NvmeZone *zone,
4188                                                uint64_t elba, NvmeRequest *req)
4189 {
4190     NvmeNamespace *ns = req->ns;
4191     uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
4192     uint64_t wp = zone->d.wp;
4193     uint32_t nlb = elba - wp + 1;
4194     uint16_t status;
4195 
4196 
4197     if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
4198         return NVME_INVALID_ZONE_OP | NVME_DNR;
4199     }
4200 
4201     if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
4202         return NVME_INVALID_FIELD | NVME_DNR;
4203     }
4204 
4205     if (elba < wp || elba > wp + ns->zns.zrwas) {
4206         return NVME_ZONE_BOUNDARY_ERROR | NVME_DNR;
4207     }
4208 
4209     if (nlb % ns->zns.zrwafg) {
4210         return NVME_INVALID_FIELD | NVME_DNR;
4211     }
4212 
4213     status = nvme_zrm_auto(n, ns, zone);
4214     if (status) {
4215         return status;
4216     }
4217 
4218     zone->w_ptr += nlb;
4219 
4220     nvme_advance_zone_wp(ns, zone, nlb);
4221 
4222     return NVME_SUCCESS;
4223 }
4224 
4225 static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
4226 {
4227     NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
4228     NvmeNamespace *ns = req->ns;
4229     NvmeZone *zone;
4230     NvmeZoneResetAIOCB *iocb;
4231     uint8_t *zd_ext;
4232     uint64_t slba = 0;
4233     uint32_t zone_idx = 0;
4234     uint16_t status;
4235     uint8_t action = cmd->zsa;
4236     bool all;
4237     enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE;
4238 
4239     all = cmd->zsflags & NVME_ZSFLAG_SELECT_ALL;
4240 
4241     req->status = NVME_SUCCESS;
4242 
4243     if (!all) {
4244         status = nvme_get_mgmt_zone_slba_idx(ns, &req->cmd, &slba, &zone_idx);
4245         if (status) {
4246             return status;
4247         }
4248     }
4249 
4250     zone = &ns->zone_array[zone_idx];
4251     if (slba != zone->d.zslba && action != NVME_ZONE_ACTION_ZRWA_FLUSH) {
4252         trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba);
4253         return NVME_INVALID_FIELD | NVME_DNR;
4254     }
4255 
4256     switch (action) {
4257 
4258     case NVME_ZONE_ACTION_OPEN:
4259         if (all) {
4260             proc_mask = NVME_PROC_CLOSED_ZONES;
4261         }
4262         trace_pci_nvme_open_zone(slba, zone_idx, all);
4263         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req);
4264         break;
4265 
4266     case NVME_ZONE_ACTION_CLOSE:
4267         if (all) {
4268             proc_mask = NVME_PROC_OPENED_ZONES;
4269         }
4270         trace_pci_nvme_close_zone(slba, zone_idx, all);
4271         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req);
4272         break;
4273 
4274     case NVME_ZONE_ACTION_FINISH:
4275         if (all) {
4276             proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES;
4277         }
4278         trace_pci_nvme_finish_zone(slba, zone_idx, all);
4279         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req);
4280         break;
4281 
4282     case NVME_ZONE_ACTION_RESET:
4283         trace_pci_nvme_reset_zone(slba, zone_idx, all);
4284 
4285         iocb = blk_aio_get(&nvme_zone_reset_aiocb_info, ns->blkconf.blk,
4286                            nvme_misc_cb, req);
4287 
4288         iocb->req = req;
4289         iocb->ret = 0;
4290         iocb->all = all;
4291         iocb->idx = zone_idx;
4292         iocb->zone = NULL;
4293 
4294         req->aiocb = &iocb->common;
4295         nvme_zone_reset_cb(iocb, 0);
4296 
4297         return NVME_NO_COMPLETE;
4298 
4299     case NVME_ZONE_ACTION_OFFLINE:
4300         if (all) {
4301             proc_mask = NVME_PROC_READ_ONLY_ZONES;
4302         }
4303         trace_pci_nvme_offline_zone(slba, zone_idx, all);
4304         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req);
4305         break;
4306 
4307     case NVME_ZONE_ACTION_SET_ZD_EXT:
4308         trace_pci_nvme_set_descriptor_extension(slba, zone_idx);
4309         if (all || !ns->params.zd_extension_size) {
4310             return NVME_INVALID_FIELD | NVME_DNR;
4311         }
4312         zd_ext = nvme_get_zd_extension(ns, zone_idx);
4313         status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req);
4314         if (status) {
4315             trace_pci_nvme_err_zd_extension_map_error(zone_idx);
4316             return status;
4317         }
4318 
4319         status = nvme_set_zd_ext(ns, zone);
4320         if (status == NVME_SUCCESS) {
4321             trace_pci_nvme_zd_extension_set(zone_idx);
4322             return status;
4323         }
4324         break;
4325 
4326     case NVME_ZONE_ACTION_ZRWA_FLUSH:
4327         if (all) {
4328             return NVME_INVALID_FIELD | NVME_DNR;
4329         }
4330 
4331         return nvme_zone_mgmt_send_zrwa_flush(n, zone, slba, req);
4332 
4333     default:
4334         trace_pci_nvme_err_invalid_mgmt_action(action);
4335         status = NVME_INVALID_FIELD;
4336     }
4337 
4338     if (status == NVME_ZONE_INVAL_TRANSITION) {
4339         trace_pci_nvme_err_invalid_zone_state_transition(action, slba,
4340                                                          zone->d.za);
4341     }
4342     if (status) {
4343         status |= NVME_DNR;
4344     }
4345 
4346     return status;
4347 }
4348 
4349 static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl)
4350 {
4351     NvmeZoneState zs = nvme_get_zone_state(zl);
4352 
4353     switch (zafs) {
4354     case NVME_ZONE_REPORT_ALL:
4355         return true;
4356     case NVME_ZONE_REPORT_EMPTY:
4357         return zs == NVME_ZONE_STATE_EMPTY;
4358     case NVME_ZONE_REPORT_IMPLICITLY_OPEN:
4359         return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN;
4360     case NVME_ZONE_REPORT_EXPLICITLY_OPEN:
4361         return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN;
4362     case NVME_ZONE_REPORT_CLOSED:
4363         return zs == NVME_ZONE_STATE_CLOSED;
4364     case NVME_ZONE_REPORT_FULL:
4365         return zs == NVME_ZONE_STATE_FULL;
4366     case NVME_ZONE_REPORT_READ_ONLY:
4367         return zs == NVME_ZONE_STATE_READ_ONLY;
4368     case NVME_ZONE_REPORT_OFFLINE:
4369         return zs == NVME_ZONE_STATE_OFFLINE;
4370     default:
4371         return false;
4372     }
4373 }
4374 
4375 static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
4376 {
4377     NvmeCmd *cmd = &req->cmd;
4378     NvmeNamespace *ns = req->ns;
4379     /* cdw12 is zero-based number of dwords to return. Convert to bytes */
4380     uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2;
4381     uint32_t dw13 = le32_to_cpu(cmd->cdw13);
4382     uint32_t zone_idx, zra, zrasf, partial;
4383     uint64_t max_zones, nr_zones = 0;
4384     uint16_t status;
4385     uint64_t slba;
4386     NvmeZoneDescr *z;
4387     NvmeZone *zone;
4388     NvmeZoneReportHeader *header;
4389     void *buf, *buf_p;
4390     size_t zone_entry_sz;
4391     int i;
4392 
4393     req->status = NVME_SUCCESS;
4394 
4395     status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
4396     if (status) {
4397         return status;
4398     }
4399 
4400     zra = dw13 & 0xff;
4401     if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) {
4402         return NVME_INVALID_FIELD | NVME_DNR;
4403     }
4404     if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) {
4405         return NVME_INVALID_FIELD | NVME_DNR;
4406     }
4407 
4408     zrasf = (dw13 >> 8) & 0xff;
4409     if (zrasf > NVME_ZONE_REPORT_OFFLINE) {
4410         return NVME_INVALID_FIELD | NVME_DNR;
4411     }
4412 
4413     if (data_size < sizeof(NvmeZoneReportHeader)) {
4414         return NVME_INVALID_FIELD | NVME_DNR;
4415     }
4416 
4417     status = nvme_check_mdts(n, data_size);
4418     if (status) {
4419         return status;
4420     }
4421 
4422     partial = (dw13 >> 16) & 0x01;
4423 
4424     zone_entry_sz = sizeof(NvmeZoneDescr);
4425     if (zra == NVME_ZONE_REPORT_EXTENDED) {
4426         zone_entry_sz += ns->params.zd_extension_size;
4427     }
4428 
4429     max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz;
4430     buf = g_malloc0(data_size);
4431 
4432     zone = &ns->zone_array[zone_idx];
4433     for (i = zone_idx; i < ns->num_zones; i++) {
4434         if (partial && nr_zones >= max_zones) {
4435             break;
4436         }
4437         if (nvme_zone_matches_filter(zrasf, zone++)) {
4438             nr_zones++;
4439         }
4440     }
4441     header = buf;
4442     header->nr_zones = cpu_to_le64(nr_zones);
4443 
4444     buf_p = buf + sizeof(NvmeZoneReportHeader);
4445     for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) {
4446         zone = &ns->zone_array[zone_idx];
4447         if (nvme_zone_matches_filter(zrasf, zone)) {
4448             z = buf_p;
4449             buf_p += sizeof(NvmeZoneDescr);
4450 
4451             z->zt = zone->d.zt;
4452             z->zs = zone->d.zs;
4453             z->zcap = cpu_to_le64(zone->d.zcap);
4454             z->zslba = cpu_to_le64(zone->d.zslba);
4455             z->za = zone->d.za;
4456 
4457             if (nvme_wp_is_valid(zone)) {
4458                 z->wp = cpu_to_le64(zone->d.wp);
4459             } else {
4460                 z->wp = cpu_to_le64(~0ULL);
4461             }
4462 
4463             if (zra == NVME_ZONE_REPORT_EXTENDED) {
4464                 if (zone->d.za & NVME_ZA_ZD_EXT_VALID) {
4465                     memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx),
4466                            ns->params.zd_extension_size);
4467                 }
4468                 buf_p += ns->params.zd_extension_size;
4469             }
4470 
4471             max_zones--;
4472         }
4473     }
4474 
4475     status = nvme_c2h(n, (uint8_t *)buf, data_size, req);
4476 
4477     g_free(buf);
4478 
4479     return status;
4480 }
4481 
4482 static uint16_t nvme_io_mgmt_recv_ruhs(NvmeCtrl *n, NvmeRequest *req,
4483                                        size_t len)
4484 {
4485     NvmeNamespace *ns = req->ns;
4486     NvmeEnduranceGroup *endgrp;
4487     NvmeRuhStatus *hdr;
4488     NvmeRuhStatusDescr *ruhsd;
4489     unsigned int nruhsd;
4490     uint16_t rg, ph, *ruhid;
4491     size_t trans_len;
4492     g_autofree uint8_t *buf = NULL;
4493 
4494     if (!n->subsys) {
4495         return NVME_INVALID_FIELD | NVME_DNR;
4496     }
4497 
4498     if (ns->params.nsid == 0 || ns->params.nsid == 0xffffffff) {
4499         return NVME_INVALID_NSID | NVME_DNR;
4500     }
4501 
4502     if (!n->subsys->endgrp.fdp.enabled) {
4503         return NVME_FDP_DISABLED | NVME_DNR;
4504     }
4505 
4506     endgrp = ns->endgrp;
4507 
4508     nruhsd = ns->fdp.nphs * endgrp->fdp.nrg;
4509     trans_len = sizeof(NvmeRuhStatus) + nruhsd * sizeof(NvmeRuhStatusDescr);
4510     buf = g_malloc0(trans_len);
4511 
4512     trans_len = MIN(trans_len, len);
4513 
4514     hdr = (NvmeRuhStatus *)buf;
4515     ruhsd = (NvmeRuhStatusDescr *)(buf + sizeof(NvmeRuhStatus));
4516 
4517     hdr->nruhsd = cpu_to_le16(nruhsd);
4518 
4519     ruhid = ns->fdp.phs;
4520 
4521     for (ph = 0; ph < ns->fdp.nphs; ph++, ruhid++) {
4522         NvmeRuHandle *ruh = &endgrp->fdp.ruhs[*ruhid];
4523 
4524         for (rg = 0; rg < endgrp->fdp.nrg; rg++, ruhsd++) {
4525             uint16_t pid = nvme_make_pid(ns, rg, ph);
4526 
4527             ruhsd->pid = cpu_to_le16(pid);
4528             ruhsd->ruhid = *ruhid;
4529             ruhsd->earutr = 0;
4530             ruhsd->ruamw = cpu_to_le64(ruh->rus[rg].ruamw);
4531         }
4532     }
4533 
4534     return nvme_c2h(n, buf, trans_len, req);
4535 }
4536 
4537 static uint16_t nvme_io_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
4538 {
4539     NvmeCmd *cmd = &req->cmd;
4540     uint32_t cdw10 = le32_to_cpu(cmd->cdw10);
4541     uint32_t numd = le32_to_cpu(cmd->cdw11);
4542     uint8_t mo = (cdw10 & 0xff);
4543     size_t len = (numd + 1) << 2;
4544 
4545     switch (mo) {
4546     case NVME_IOMR_MO_NOP:
4547         return 0;
4548     case NVME_IOMR_MO_RUH_STATUS:
4549         return nvme_io_mgmt_recv_ruhs(n, req, len);
4550     default:
4551         return NVME_INVALID_FIELD | NVME_DNR;
4552     };
4553 }
4554 
4555 static uint16_t nvme_io_mgmt_send_ruh_update(NvmeCtrl *n, NvmeRequest *req)
4556 {
4557     NvmeCmd *cmd = &req->cmd;
4558     NvmeNamespace *ns = req->ns;
4559     uint32_t cdw10 = le32_to_cpu(cmd->cdw10);
4560     uint16_t ret = NVME_SUCCESS;
4561     uint32_t npid = (cdw10 >> 16) + 1;
4562     unsigned int i = 0;
4563     g_autofree uint16_t *pids = NULL;
4564     uint32_t maxnpid;
4565 
4566     if (!ns->endgrp || !ns->endgrp->fdp.enabled) {
4567         return NVME_FDP_DISABLED | NVME_DNR;
4568     }
4569 
4570     maxnpid = n->subsys->endgrp.fdp.nrg * n->subsys->endgrp.fdp.nruh;
4571 
4572     if (unlikely(npid >= MIN(NVME_FDP_MAXPIDS, maxnpid))) {
4573         return NVME_INVALID_FIELD | NVME_DNR;
4574     }
4575 
4576     pids = g_new(uint16_t, npid);
4577 
4578     ret = nvme_h2c(n, pids, npid * sizeof(uint16_t), req);
4579     if (ret) {
4580         return ret;
4581     }
4582 
4583     for (; i < npid; i++) {
4584         if (!nvme_update_ruh(n, ns, pids[i])) {
4585             return NVME_INVALID_FIELD | NVME_DNR;
4586         }
4587     }
4588 
4589     return ret;
4590 }
4591 
4592 static uint16_t nvme_io_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
4593 {
4594     NvmeCmd *cmd = &req->cmd;
4595     uint32_t cdw10 = le32_to_cpu(cmd->cdw10);
4596     uint8_t mo = (cdw10 & 0xff);
4597 
4598     switch (mo) {
4599     case NVME_IOMS_MO_NOP:
4600         return 0;
4601     case NVME_IOMS_MO_RUH_UPDATE:
4602         return nvme_io_mgmt_send_ruh_update(n, req);
4603     default:
4604         return NVME_INVALID_FIELD | NVME_DNR;
4605     };
4606 }
4607 
4608 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
4609 {
4610     NvmeNamespace *ns;
4611     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4612 
4613     trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
4614                           req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
4615 
4616     /*
4617      * In the base NVM command set, Flush may apply to all namespaces
4618      * (indicated by NSID being set to FFFFFFFFh). But if that feature is used
4619      * along with TP 4056 (Namespace Types), it may be pretty screwed up.
4620      *
4621      * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the
4622      * opcode with a specific command since we cannot determine a unique I/O
4623      * command set. Opcode 0h could have any other meaning than something
4624      * equivalent to flushing and say it DOES have completely different
4625      * semantics in some other command set - does an NSID of FFFFFFFFh then
4626      * mean "for all namespaces, apply whatever command set specific command
4627      * that uses the 0h opcode?" Or does it mean "for all namespaces, apply
4628      * whatever command that uses the 0h opcode if, and only if, it allows NSID
4629      * to be FFFFFFFFh"?
4630      *
4631      * Anyway (and luckily), for now, we do not care about this since the
4632      * device only supports namespace types that includes the NVM Flush command
4633      * (NVM and Zoned), so always do an NVM Flush.
4634      */
4635 
4636     if (req->cmd.opcode == NVME_CMD_FLUSH) {
4637         return nvme_flush(n, req);
4638     }
4639 
4640     if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4641         return NVME_INVALID_NSID | NVME_DNR;
4642     }
4643 
4644     ns = nvme_ns(n, nsid);
4645     if (unlikely(!ns)) {
4646         return NVME_INVALID_FIELD | NVME_DNR;
4647     }
4648 
4649     if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
4650         trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
4651         return NVME_INVALID_OPCODE | NVME_DNR;
4652     }
4653 
4654     if (ns->status) {
4655         return ns->status;
4656     }
4657 
4658     if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
4659         return NVME_INVALID_FIELD;
4660     }
4661 
4662     req->ns = ns;
4663 
4664     switch (req->cmd.opcode) {
4665     case NVME_CMD_WRITE_ZEROES:
4666         return nvme_write_zeroes(n, req);
4667     case NVME_CMD_ZONE_APPEND:
4668         return nvme_zone_append(n, req);
4669     case NVME_CMD_WRITE:
4670         return nvme_write(n, req);
4671     case NVME_CMD_READ:
4672         return nvme_read(n, req);
4673     case NVME_CMD_COMPARE:
4674         return nvme_compare(n, req);
4675     case NVME_CMD_DSM:
4676         return nvme_dsm(n, req);
4677     case NVME_CMD_VERIFY:
4678         return nvme_verify(n, req);
4679     case NVME_CMD_COPY:
4680         return nvme_copy(n, req);
4681     case NVME_CMD_ZONE_MGMT_SEND:
4682         return nvme_zone_mgmt_send(n, req);
4683     case NVME_CMD_ZONE_MGMT_RECV:
4684         return nvme_zone_mgmt_recv(n, req);
4685     case NVME_CMD_IO_MGMT_RECV:
4686         return nvme_io_mgmt_recv(n, req);
4687     case NVME_CMD_IO_MGMT_SEND:
4688         return nvme_io_mgmt_send(n, req);
4689     default:
4690         g_assert_not_reached();
4691     }
4692 
4693     return NVME_INVALID_OPCODE | NVME_DNR;
4694 }
4695 
4696 static void nvme_cq_notifier(EventNotifier *e)
4697 {
4698     NvmeCQueue *cq = container_of(e, NvmeCQueue, notifier);
4699     NvmeCtrl *n = cq->ctrl;
4700 
4701     if (!event_notifier_test_and_clear(e)) {
4702         return;
4703     }
4704 
4705     nvme_update_cq_head(cq);
4706 
4707     if (cq->tail == cq->head) {
4708         if (cq->irq_enabled) {
4709             n->cq_pending--;
4710         }
4711 
4712         nvme_irq_deassert(n, cq);
4713     }
4714 
4715     qemu_bh_schedule(cq->bh);
4716 }
4717 
4718 static int nvme_init_cq_ioeventfd(NvmeCQueue *cq)
4719 {
4720     NvmeCtrl *n = cq->ctrl;
4721     uint16_t offset = (cq->cqid << 3) + (1 << 2);
4722     int ret;
4723 
4724     ret = event_notifier_init(&cq->notifier, 0);
4725     if (ret < 0) {
4726         return ret;
4727     }
4728 
4729     event_notifier_set_handler(&cq->notifier, nvme_cq_notifier);
4730     memory_region_add_eventfd(&n->iomem,
4731                               0x1000 + offset, 4, false, 0, &cq->notifier);
4732 
4733     return 0;
4734 }
4735 
4736 static void nvme_sq_notifier(EventNotifier *e)
4737 {
4738     NvmeSQueue *sq = container_of(e, NvmeSQueue, notifier);
4739 
4740     if (!event_notifier_test_and_clear(e)) {
4741         return;
4742     }
4743 
4744     nvme_process_sq(sq);
4745 }
4746 
4747 static int nvme_init_sq_ioeventfd(NvmeSQueue *sq)
4748 {
4749     NvmeCtrl *n = sq->ctrl;
4750     uint16_t offset = sq->sqid << 3;
4751     int ret;
4752 
4753     ret = event_notifier_init(&sq->notifier, 0);
4754     if (ret < 0) {
4755         return ret;
4756     }
4757 
4758     event_notifier_set_handler(&sq->notifier, nvme_sq_notifier);
4759     memory_region_add_eventfd(&n->iomem,
4760                               0x1000 + offset, 4, false, 0, &sq->notifier);
4761 
4762     return 0;
4763 }
4764 
4765 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
4766 {
4767     uint16_t offset = sq->sqid << 3;
4768 
4769     n->sq[sq->sqid] = NULL;
4770     qemu_bh_delete(sq->bh);
4771     if (sq->ioeventfd_enabled) {
4772         memory_region_del_eventfd(&n->iomem,
4773                                   0x1000 + offset, 4, false, 0, &sq->notifier);
4774         event_notifier_set_handler(&sq->notifier, NULL);
4775         event_notifier_cleanup(&sq->notifier);
4776     }
4777     g_free(sq->io_req);
4778     if (sq->sqid) {
4779         g_free(sq);
4780     }
4781 }
4782 
4783 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
4784 {
4785     NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
4786     NvmeRequest *r, *next;
4787     NvmeSQueue *sq;
4788     NvmeCQueue *cq;
4789     uint16_t qid = le16_to_cpu(c->qid);
4790 
4791     if (unlikely(!qid || nvme_check_sqid(n, qid))) {
4792         trace_pci_nvme_err_invalid_del_sq(qid);
4793         return NVME_INVALID_QID | NVME_DNR;
4794     }
4795 
4796     trace_pci_nvme_del_sq(qid);
4797 
4798     sq = n->sq[qid];
4799     while (!QTAILQ_EMPTY(&sq->out_req_list)) {
4800         r = QTAILQ_FIRST(&sq->out_req_list);
4801         assert(r->aiocb);
4802         blk_aio_cancel(r->aiocb);
4803     }
4804 
4805     assert(QTAILQ_EMPTY(&sq->out_req_list));
4806 
4807     if (!nvme_check_cqid(n, sq->cqid)) {
4808         cq = n->cq[sq->cqid];
4809         QTAILQ_REMOVE(&cq->sq_list, sq, entry);
4810 
4811         nvme_post_cqes(cq);
4812         QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
4813             if (r->sq == sq) {
4814                 QTAILQ_REMOVE(&cq->req_list, r, entry);
4815                 QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
4816             }
4817         }
4818     }
4819 
4820     nvme_free_sq(sq, n);
4821     return NVME_SUCCESS;
4822 }
4823 
4824 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
4825                          uint16_t sqid, uint16_t cqid, uint16_t size)
4826 {
4827     int i;
4828     NvmeCQueue *cq;
4829 
4830     sq->ctrl = n;
4831     sq->dma_addr = dma_addr;
4832     sq->sqid = sqid;
4833     sq->size = size;
4834     sq->cqid = cqid;
4835     sq->head = sq->tail = 0;
4836     sq->io_req = g_new0(NvmeRequest, sq->size);
4837 
4838     QTAILQ_INIT(&sq->req_list);
4839     QTAILQ_INIT(&sq->out_req_list);
4840     for (i = 0; i < sq->size; i++) {
4841         sq->io_req[i].sq = sq;
4842         QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
4843     }
4844 
4845     sq->bh = qemu_bh_new_guarded(nvme_process_sq, sq,
4846                                  &DEVICE(sq->ctrl)->mem_reentrancy_guard);
4847 
4848     if (n->dbbuf_enabled) {
4849         sq->db_addr = n->dbbuf_dbs + (sqid << 3);
4850         sq->ei_addr = n->dbbuf_eis + (sqid << 3);
4851 
4852         if (n->params.ioeventfd && sq->sqid != 0) {
4853             if (!nvme_init_sq_ioeventfd(sq)) {
4854                 sq->ioeventfd_enabled = true;
4855             }
4856         }
4857     }
4858 
4859     assert(n->cq[cqid]);
4860     cq = n->cq[cqid];
4861     QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
4862     n->sq[sqid] = sq;
4863 }
4864 
4865 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
4866 {
4867     NvmeSQueue *sq;
4868     NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
4869 
4870     uint16_t cqid = le16_to_cpu(c->cqid);
4871     uint16_t sqid = le16_to_cpu(c->sqid);
4872     uint16_t qsize = le16_to_cpu(c->qsize);
4873     uint16_t qflags = le16_to_cpu(c->sq_flags);
4874     uint64_t prp1 = le64_to_cpu(c->prp1);
4875 
4876     trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
4877 
4878     if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
4879         trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
4880         return NVME_INVALID_CQID | NVME_DNR;
4881     }
4882     if (unlikely(!sqid || sqid > n->conf_ioqpairs || n->sq[sqid] != NULL)) {
4883         trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
4884         return NVME_INVALID_QID | NVME_DNR;
4885     }
4886     if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
4887         trace_pci_nvme_err_invalid_create_sq_size(qsize);
4888         return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4889     }
4890     if (unlikely(prp1 & (n->page_size - 1))) {
4891         trace_pci_nvme_err_invalid_create_sq_addr(prp1);
4892         return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4893     }
4894     if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
4895         trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
4896         return NVME_INVALID_FIELD | NVME_DNR;
4897     }
4898     sq = g_malloc0(sizeof(*sq));
4899     nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
4900     return NVME_SUCCESS;
4901 }
4902 
4903 struct nvme_stats {
4904     uint64_t units_read;
4905     uint64_t units_written;
4906     uint64_t read_commands;
4907     uint64_t write_commands;
4908 };
4909 
4910 static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats)
4911 {
4912     BlockAcctStats *s = blk_get_stats(ns->blkconf.blk);
4913 
4914     stats->units_read += s->nr_bytes[BLOCK_ACCT_READ];
4915     stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE];
4916     stats->read_commands += s->nr_ops[BLOCK_ACCT_READ];
4917     stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE];
4918 }
4919 
4920 static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4921                                 uint64_t off, NvmeRequest *req)
4922 {
4923     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4924     struct nvme_stats stats = { 0 };
4925     NvmeSmartLog smart = { 0 };
4926     uint32_t trans_len;
4927     NvmeNamespace *ns;
4928     time_t current_ms;
4929     uint64_t u_read, u_written;
4930 
4931     if (off >= sizeof(smart)) {
4932         return NVME_INVALID_FIELD | NVME_DNR;
4933     }
4934 
4935     if (nsid != 0xffffffff) {
4936         ns = nvme_ns(n, nsid);
4937         if (!ns) {
4938             return NVME_INVALID_NSID | NVME_DNR;
4939         }
4940         nvme_set_blk_stats(ns, &stats);
4941     } else {
4942         int i;
4943 
4944         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4945             ns = nvme_ns(n, i);
4946             if (!ns) {
4947                 continue;
4948             }
4949             nvme_set_blk_stats(ns, &stats);
4950         }
4951     }
4952 
4953     trans_len = MIN(sizeof(smart) - off, buf_len);
4954     smart.critical_warning = n->smart_critical_warning;
4955 
4956     u_read = DIV_ROUND_UP(stats.units_read >> BDRV_SECTOR_BITS, 1000);
4957     u_written = DIV_ROUND_UP(stats.units_written >> BDRV_SECTOR_BITS, 1000);
4958 
4959     smart.data_units_read[0] = cpu_to_le64(u_read);
4960     smart.data_units_written[0] = cpu_to_le64(u_written);
4961     smart.host_read_commands[0] = cpu_to_le64(stats.read_commands);
4962     smart.host_write_commands[0] = cpu_to_le64(stats.write_commands);
4963 
4964     smart.temperature = cpu_to_le16(n->temperature);
4965 
4966     if ((n->temperature >= n->features.temp_thresh_hi) ||
4967         (n->temperature <= n->features.temp_thresh_low)) {
4968         smart.critical_warning |= NVME_SMART_TEMPERATURE;
4969     }
4970 
4971     current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
4972     smart.power_on_hours[0] =
4973         cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
4974 
4975     if (!rae) {
4976         nvme_clear_events(n, NVME_AER_TYPE_SMART);
4977     }
4978 
4979     return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req);
4980 }
4981 
4982 static uint16_t nvme_endgrp_info(NvmeCtrl *n,  uint8_t rae, uint32_t buf_len,
4983                                  uint64_t off, NvmeRequest *req)
4984 {
4985     uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
4986     uint16_t endgrpid = (dw11 >> 16) & 0xffff;
4987     struct nvme_stats stats = {};
4988     NvmeEndGrpLog info = {};
4989     int i;
4990 
4991     if (!n->subsys || endgrpid != 0x1) {
4992         return NVME_INVALID_FIELD | NVME_DNR;
4993     }
4994 
4995     if (off >= sizeof(info)) {
4996         return NVME_INVALID_FIELD | NVME_DNR;
4997     }
4998 
4999     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5000         NvmeNamespace *ns = nvme_subsys_ns(n->subsys, i);
5001         if (!ns) {
5002             continue;
5003         }
5004 
5005         nvme_set_blk_stats(ns, &stats);
5006     }
5007 
5008     info.data_units_read[0] =
5009         cpu_to_le64(DIV_ROUND_UP(stats.units_read / 1000000000, 1000000000));
5010     info.data_units_written[0] =
5011         cpu_to_le64(DIV_ROUND_UP(stats.units_written / 1000000000, 1000000000));
5012     info.media_units_written[0] =
5013         cpu_to_le64(DIV_ROUND_UP(stats.units_written / 1000000000, 1000000000));
5014 
5015     info.host_read_commands[0] = cpu_to_le64(stats.read_commands);
5016     info.host_write_commands[0] = cpu_to_le64(stats.write_commands);
5017 
5018     buf_len = MIN(sizeof(info) - off, buf_len);
5019 
5020     return nvme_c2h(n, (uint8_t *)&info + off, buf_len, req);
5021 }
5022 
5023 
5024 static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
5025                                  NvmeRequest *req)
5026 {
5027     uint32_t trans_len;
5028     NvmeFwSlotInfoLog fw_log = {
5029         .afi = 0x1,
5030     };
5031 
5032     if (off >= sizeof(fw_log)) {
5033         return NVME_INVALID_FIELD | NVME_DNR;
5034     }
5035 
5036     strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
5037     trans_len = MIN(sizeof(fw_log) - off, buf_len);
5038 
5039     return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req);
5040 }
5041 
5042 static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
5043                                 uint64_t off, NvmeRequest *req)
5044 {
5045     uint32_t trans_len;
5046     NvmeErrorLog errlog;
5047 
5048     if (off >= sizeof(errlog)) {
5049         return NVME_INVALID_FIELD | NVME_DNR;
5050     }
5051 
5052     if (!rae) {
5053         nvme_clear_events(n, NVME_AER_TYPE_ERROR);
5054     }
5055 
5056     memset(&errlog, 0x0, sizeof(errlog));
5057     trans_len = MIN(sizeof(errlog) - off, buf_len);
5058 
5059     return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req);
5060 }
5061 
5062 static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
5063                                     uint64_t off, NvmeRequest *req)
5064 {
5065     uint32_t nslist[1024];
5066     uint32_t trans_len;
5067     int i = 0;
5068     uint32_t nsid;
5069 
5070     if (off >= sizeof(nslist)) {
5071         trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(nslist));
5072         return NVME_INVALID_FIELD | NVME_DNR;
5073     }
5074 
5075     memset(nslist, 0x0, sizeof(nslist));
5076     trans_len = MIN(sizeof(nslist) - off, buf_len);
5077 
5078     while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) !=
5079             NVME_CHANGED_NSID_SIZE) {
5080         /*
5081          * If more than 1024 namespaces, the first entry in the log page should
5082          * be set to FFFFFFFFh and the others to 0 as spec.
5083          */
5084         if (i == ARRAY_SIZE(nslist)) {
5085             memset(nslist, 0x0, sizeof(nslist));
5086             nslist[0] = 0xffffffff;
5087             break;
5088         }
5089 
5090         nslist[i++] = nsid;
5091         clear_bit(nsid, n->changed_nsids);
5092     }
5093 
5094     /*
5095      * Remove all the remaining list entries in case returns directly due to
5096      * more than 1024 namespaces.
5097      */
5098     if (nslist[0] == 0xffffffff) {
5099         bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE);
5100     }
5101 
5102     if (!rae) {
5103         nvme_clear_events(n, NVME_AER_TYPE_NOTICE);
5104     }
5105 
5106     return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req);
5107 }
5108 
5109 static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len,
5110                                  uint64_t off, NvmeRequest *req)
5111 {
5112     NvmeEffectsLog log = {};
5113     const uint32_t *src_iocs = NULL;
5114     uint32_t trans_len;
5115 
5116     if (off >= sizeof(log)) {
5117         trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log));
5118         return NVME_INVALID_FIELD | NVME_DNR;
5119     }
5120 
5121     switch (NVME_CC_CSS(ldl_le_p(&n->bar.cc))) {
5122     case NVME_CC_CSS_NVM:
5123         src_iocs = nvme_cse_iocs_nvm;
5124         /* fall through */
5125     case NVME_CC_CSS_ADMIN_ONLY:
5126         break;
5127     case NVME_CC_CSS_CSI:
5128         switch (csi) {
5129         case NVME_CSI_NVM:
5130             src_iocs = nvme_cse_iocs_nvm;
5131             break;
5132         case NVME_CSI_ZONED:
5133             src_iocs = nvme_cse_iocs_zoned;
5134             break;
5135         }
5136     }
5137 
5138     memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs));
5139 
5140     if (src_iocs) {
5141         memcpy(log.iocs, src_iocs, sizeof(log.iocs));
5142     }
5143 
5144     trans_len = MIN(sizeof(log) - off, buf_len);
5145 
5146     return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req);
5147 }
5148 
5149 static size_t sizeof_fdp_conf_descr(size_t nruh, size_t vss)
5150 {
5151     size_t entry_siz = sizeof(NvmeFdpDescrHdr) + nruh * sizeof(NvmeRuhDescr)
5152                        + vss;
5153     return ROUND_UP(entry_siz, 8);
5154 }
5155 
5156 static uint16_t nvme_fdp_confs(NvmeCtrl *n, uint32_t endgrpid, uint32_t buf_len,
5157                                uint64_t off, NvmeRequest *req)
5158 {
5159     uint32_t log_size, trans_len;
5160     g_autofree uint8_t *buf = NULL;
5161     NvmeFdpDescrHdr *hdr;
5162     NvmeRuhDescr *ruhd;
5163     NvmeEnduranceGroup *endgrp;
5164     NvmeFdpConfsHdr *log;
5165     size_t nruh, fdp_descr_size;
5166     int i;
5167 
5168     if (endgrpid != 1 || !n->subsys) {
5169         return NVME_INVALID_FIELD | NVME_DNR;
5170     }
5171 
5172     endgrp = &n->subsys->endgrp;
5173 
5174     if (endgrp->fdp.enabled) {
5175         nruh = endgrp->fdp.nruh;
5176     } else {
5177         nruh = 1;
5178     }
5179 
5180     fdp_descr_size = sizeof_fdp_conf_descr(nruh, FDPVSS);
5181     log_size = sizeof(NvmeFdpConfsHdr) + fdp_descr_size;
5182 
5183     if (off >= log_size) {
5184         return NVME_INVALID_FIELD | NVME_DNR;
5185     }
5186 
5187     trans_len = MIN(log_size - off, buf_len);
5188 
5189     buf = g_malloc0(log_size);
5190     log = (NvmeFdpConfsHdr *)buf;
5191     hdr = (NvmeFdpDescrHdr *)(log + 1);
5192     ruhd = (NvmeRuhDescr *)(buf + sizeof(*log) + sizeof(*hdr));
5193 
5194     log->num_confs = cpu_to_le16(0);
5195     log->size = cpu_to_le32(log_size);
5196 
5197     hdr->descr_size = cpu_to_le16(fdp_descr_size);
5198     if (endgrp->fdp.enabled) {
5199         hdr->fdpa = FIELD_DP8(hdr->fdpa, FDPA, VALID, 1);
5200         hdr->fdpa = FIELD_DP8(hdr->fdpa, FDPA, RGIF, endgrp->fdp.rgif);
5201         hdr->nrg = cpu_to_le16(endgrp->fdp.nrg);
5202         hdr->nruh = cpu_to_le16(endgrp->fdp.nruh);
5203         hdr->maxpids = cpu_to_le16(NVME_FDP_MAXPIDS - 1);
5204         hdr->nnss = cpu_to_le32(NVME_MAX_NAMESPACES);
5205         hdr->runs = cpu_to_le64(endgrp->fdp.runs);
5206 
5207         for (i = 0; i < nruh; i++) {
5208             ruhd->ruht = NVME_RUHT_INITIALLY_ISOLATED;
5209             ruhd++;
5210         }
5211     } else {
5212         /* 1 bit for RUH in PIF -> 2 RUHs max. */
5213         hdr->nrg = cpu_to_le16(1);
5214         hdr->nruh = cpu_to_le16(1);
5215         hdr->maxpids = cpu_to_le16(NVME_FDP_MAXPIDS - 1);
5216         hdr->nnss = cpu_to_le32(1);
5217         hdr->runs = cpu_to_le64(96 * MiB);
5218 
5219         ruhd->ruht = NVME_RUHT_INITIALLY_ISOLATED;
5220     }
5221 
5222     return nvme_c2h(n, (uint8_t *)buf + off, trans_len, req);
5223 }
5224 
5225 static uint16_t nvme_fdp_ruh_usage(NvmeCtrl *n, uint32_t endgrpid,
5226                                    uint32_t dw10, uint32_t dw12,
5227                                    uint32_t buf_len, uint64_t off,
5228                                    NvmeRequest *req)
5229 {
5230     NvmeRuHandle *ruh;
5231     NvmeRuhuLog *hdr;
5232     NvmeRuhuDescr *ruhud;
5233     NvmeEnduranceGroup *endgrp;
5234     g_autofree uint8_t *buf = NULL;
5235     uint32_t log_size, trans_len;
5236     uint16_t i;
5237 
5238     if (endgrpid != 1 || !n->subsys) {
5239         return NVME_INVALID_FIELD | NVME_DNR;
5240     }
5241 
5242     endgrp = &n->subsys->endgrp;
5243 
5244     if (!endgrp->fdp.enabled) {
5245         return NVME_FDP_DISABLED | NVME_DNR;
5246     }
5247 
5248     log_size = sizeof(NvmeRuhuLog) + endgrp->fdp.nruh * sizeof(NvmeRuhuDescr);
5249 
5250     if (off >= log_size) {
5251         return NVME_INVALID_FIELD | NVME_DNR;
5252     }
5253 
5254     trans_len = MIN(log_size - off, buf_len);
5255 
5256     buf = g_malloc0(log_size);
5257     hdr = (NvmeRuhuLog *)buf;
5258     ruhud = (NvmeRuhuDescr *)(hdr + 1);
5259 
5260     ruh = endgrp->fdp.ruhs;
5261     hdr->nruh = cpu_to_le16(endgrp->fdp.nruh);
5262 
5263     for (i = 0; i < endgrp->fdp.nruh; i++, ruhud++, ruh++) {
5264         ruhud->ruha = ruh->ruha;
5265     }
5266 
5267     return nvme_c2h(n, (uint8_t *)buf + off, trans_len, req);
5268 }
5269 
5270 static uint16_t nvme_fdp_stats(NvmeCtrl *n, uint32_t endgrpid, uint32_t buf_len,
5271                                uint64_t off, NvmeRequest *req)
5272 {
5273     NvmeEnduranceGroup *endgrp;
5274     NvmeFdpStatsLog log = {};
5275     uint32_t trans_len;
5276 
5277     if (off >= sizeof(NvmeFdpStatsLog)) {
5278         return NVME_INVALID_FIELD | NVME_DNR;
5279     }
5280 
5281     if (endgrpid != 1 || !n->subsys) {
5282         return NVME_INVALID_FIELD | NVME_DNR;
5283     }
5284 
5285     if (!n->subsys->endgrp.fdp.enabled) {
5286         return NVME_FDP_DISABLED | NVME_DNR;
5287     }
5288 
5289     endgrp = &n->subsys->endgrp;
5290 
5291     trans_len = MIN(sizeof(log) - off, buf_len);
5292 
5293     /* spec value is 128 bit, we only use 64 bit */
5294     log.hbmw[0] = cpu_to_le64(endgrp->fdp.hbmw);
5295     log.mbmw[0] = cpu_to_le64(endgrp->fdp.mbmw);
5296     log.mbe[0] = cpu_to_le64(endgrp->fdp.mbe);
5297 
5298     return nvme_c2h(n, (uint8_t *)&log + off, trans_len, req);
5299 }
5300 
5301 static uint16_t nvme_fdp_events(NvmeCtrl *n, uint32_t endgrpid,
5302                                 uint32_t buf_len, uint64_t off,
5303                                 NvmeRequest *req)
5304 {
5305     NvmeEnduranceGroup *endgrp;
5306     NvmeCmd *cmd = &req->cmd;
5307     bool host_events = (cmd->cdw10 >> 8) & 0x1;
5308     uint32_t log_size, trans_len;
5309     NvmeFdpEventBuffer *ebuf;
5310     g_autofree NvmeFdpEventsLog *elog = NULL;
5311     NvmeFdpEvent *event;
5312 
5313     if (endgrpid != 1 || !n->subsys) {
5314         return NVME_INVALID_FIELD | NVME_DNR;
5315     }
5316 
5317     endgrp = &n->subsys->endgrp;
5318 
5319     if (!endgrp->fdp.enabled) {
5320         return NVME_FDP_DISABLED | NVME_DNR;
5321     }
5322 
5323     if (host_events) {
5324         ebuf = &endgrp->fdp.host_events;
5325     } else {
5326         ebuf = &endgrp->fdp.ctrl_events;
5327     }
5328 
5329     log_size = sizeof(NvmeFdpEventsLog) + ebuf->nelems * sizeof(NvmeFdpEvent);
5330 
5331     if (off >= log_size) {
5332         return NVME_INVALID_FIELD | NVME_DNR;
5333     }
5334 
5335     trans_len = MIN(log_size - off, buf_len);
5336     elog = g_malloc0(log_size);
5337     elog->num_events = cpu_to_le32(ebuf->nelems);
5338     event = (NvmeFdpEvent *)(elog + 1);
5339 
5340     if (ebuf->nelems && ebuf->start == ebuf->next) {
5341         unsigned int nelems = (NVME_FDP_MAX_EVENTS - ebuf->start);
5342         /* wrap over, copy [start;NVME_FDP_MAX_EVENTS[ and [0; next[ */
5343         memcpy(event, &ebuf->events[ebuf->start],
5344                sizeof(NvmeFdpEvent) * nelems);
5345         memcpy(event + nelems, ebuf->events,
5346                sizeof(NvmeFdpEvent) * ebuf->next);
5347     } else if (ebuf->start < ebuf->next) {
5348         memcpy(event, &ebuf->events[ebuf->start],
5349                sizeof(NvmeFdpEvent) * (ebuf->next - ebuf->start));
5350     }
5351 
5352     return nvme_c2h(n, (uint8_t *)elog + off, trans_len, req);
5353 }
5354 
5355 static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
5356 {
5357     NvmeCmd *cmd = &req->cmd;
5358 
5359     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5360     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5361     uint32_t dw12 = le32_to_cpu(cmd->cdw12);
5362     uint32_t dw13 = le32_to_cpu(cmd->cdw13);
5363     uint8_t  lid = dw10 & 0xff;
5364     uint8_t  lsp = (dw10 >> 8) & 0xf;
5365     uint8_t  rae = (dw10 >> 15) & 0x1;
5366     uint8_t  csi = le32_to_cpu(cmd->cdw14) >> 24;
5367     uint32_t numdl, numdu, lspi;
5368     uint64_t off, lpol, lpou;
5369     size_t   len;
5370     uint16_t status;
5371 
5372     numdl = (dw10 >> 16);
5373     numdu = (dw11 & 0xffff);
5374     lspi = (dw11 >> 16);
5375     lpol = dw12;
5376     lpou = dw13;
5377 
5378     len = (((numdu << 16) | numdl) + 1) << 2;
5379     off = (lpou << 32ULL) | lpol;
5380 
5381     if (off & 0x3) {
5382         return NVME_INVALID_FIELD | NVME_DNR;
5383     }
5384 
5385     trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
5386 
5387     status = nvme_check_mdts(n, len);
5388     if (status) {
5389         return status;
5390     }
5391 
5392     switch (lid) {
5393     case NVME_LOG_ERROR_INFO:
5394         return nvme_error_info(n, rae, len, off, req);
5395     case NVME_LOG_SMART_INFO:
5396         return nvme_smart_info(n, rae, len, off, req);
5397     case NVME_LOG_FW_SLOT_INFO:
5398         return nvme_fw_log_info(n, len, off, req);
5399     case NVME_LOG_CHANGED_NSLIST:
5400         return nvme_changed_nslist(n, rae, len, off, req);
5401     case NVME_LOG_CMD_EFFECTS:
5402         return nvme_cmd_effects(n, csi, len, off, req);
5403     case NVME_LOG_ENDGRP:
5404         return nvme_endgrp_info(n, rae, len, off, req);
5405     case NVME_LOG_FDP_CONFS:
5406         return nvme_fdp_confs(n, lspi, len, off, req);
5407     case NVME_LOG_FDP_RUH_USAGE:
5408         return nvme_fdp_ruh_usage(n, lspi, dw10, dw12, len, off, req);
5409     case NVME_LOG_FDP_STATS:
5410         return nvme_fdp_stats(n, lspi, len, off, req);
5411     case NVME_LOG_FDP_EVENTS:
5412         return nvme_fdp_events(n, lspi, len, off, req);
5413     default:
5414         trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
5415         return NVME_INVALID_FIELD | NVME_DNR;
5416     }
5417 }
5418 
5419 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
5420 {
5421     PCIDevice *pci = PCI_DEVICE(n);
5422     uint16_t offset = (cq->cqid << 3) + (1 << 2);
5423 
5424     n->cq[cq->cqid] = NULL;
5425     qemu_bh_delete(cq->bh);
5426     if (cq->ioeventfd_enabled) {
5427         memory_region_del_eventfd(&n->iomem,
5428                                   0x1000 + offset, 4, false, 0, &cq->notifier);
5429         event_notifier_set_handler(&cq->notifier, NULL);
5430         event_notifier_cleanup(&cq->notifier);
5431     }
5432     if (msix_enabled(pci) && cq->irq_enabled) {
5433         msix_vector_unuse(pci, cq->vector);
5434     }
5435     if (cq->cqid) {
5436         g_free(cq);
5437     }
5438 }
5439 
5440 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
5441 {
5442     NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
5443     NvmeCQueue *cq;
5444     uint16_t qid = le16_to_cpu(c->qid);
5445 
5446     if (unlikely(!qid || nvme_check_cqid(n, qid))) {
5447         trace_pci_nvme_err_invalid_del_cq_cqid(qid);
5448         return NVME_INVALID_CQID | NVME_DNR;
5449     }
5450 
5451     cq = n->cq[qid];
5452     if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
5453         trace_pci_nvme_err_invalid_del_cq_notempty(qid);
5454         return NVME_INVALID_QUEUE_DEL;
5455     }
5456 
5457     if (cq->irq_enabled && cq->tail != cq->head) {
5458         n->cq_pending--;
5459     }
5460 
5461     nvme_irq_deassert(n, cq);
5462     trace_pci_nvme_del_cq(qid);
5463     nvme_free_cq(cq, n);
5464     return NVME_SUCCESS;
5465 }
5466 
5467 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
5468                          uint16_t cqid, uint16_t vector, uint16_t size,
5469                          uint16_t irq_enabled)
5470 {
5471     PCIDevice *pci = PCI_DEVICE(n);
5472 
5473     if (msix_enabled(pci) && irq_enabled) {
5474         msix_vector_use(pci, vector);
5475     }
5476 
5477     cq->ctrl = n;
5478     cq->cqid = cqid;
5479     cq->size = size;
5480     cq->dma_addr = dma_addr;
5481     cq->phase = 1;
5482     cq->irq_enabled = irq_enabled;
5483     cq->vector = vector;
5484     cq->head = cq->tail = 0;
5485     QTAILQ_INIT(&cq->req_list);
5486     QTAILQ_INIT(&cq->sq_list);
5487     if (n->dbbuf_enabled) {
5488         cq->db_addr = n->dbbuf_dbs + (cqid << 3) + (1 << 2);
5489         cq->ei_addr = n->dbbuf_eis + (cqid << 3) + (1 << 2);
5490 
5491         if (n->params.ioeventfd && cqid != 0) {
5492             if (!nvme_init_cq_ioeventfd(cq)) {
5493                 cq->ioeventfd_enabled = true;
5494             }
5495         }
5496     }
5497     n->cq[cqid] = cq;
5498     cq->bh = qemu_bh_new_guarded(nvme_post_cqes, cq,
5499                                  &DEVICE(cq->ctrl)->mem_reentrancy_guard);
5500 }
5501 
5502 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
5503 {
5504     NvmeCQueue *cq;
5505     NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
5506     uint16_t cqid = le16_to_cpu(c->cqid);
5507     uint16_t vector = le16_to_cpu(c->irq_vector);
5508     uint16_t qsize = le16_to_cpu(c->qsize);
5509     uint16_t qflags = le16_to_cpu(c->cq_flags);
5510     uint64_t prp1 = le64_to_cpu(c->prp1);
5511     uint32_t cc = ldq_le_p(&n->bar.cc);
5512     uint8_t iocqes = NVME_CC_IOCQES(cc);
5513     uint8_t iosqes = NVME_CC_IOSQES(cc);
5514 
5515     trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
5516                              NVME_CQ_FLAGS_IEN(qflags) != 0);
5517 
5518     if (iosqes != NVME_SQES || iocqes != NVME_CQES) {
5519         trace_pci_nvme_err_invalid_create_cq_entry_size(iosqes, iocqes);
5520         return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
5521     }
5522 
5523     if (unlikely(!cqid || cqid > n->conf_ioqpairs || n->cq[cqid] != NULL)) {
5524         trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
5525         return NVME_INVALID_QID | NVME_DNR;
5526     }
5527     if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
5528         trace_pci_nvme_err_invalid_create_cq_size(qsize);
5529         return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
5530     }
5531     if (unlikely(prp1 & (n->page_size - 1))) {
5532         trace_pci_nvme_err_invalid_create_cq_addr(prp1);
5533         return NVME_INVALID_PRP_OFFSET | NVME_DNR;
5534     }
5535     if (unlikely(!msix_enabled(PCI_DEVICE(n)) && vector)) {
5536         trace_pci_nvme_err_invalid_create_cq_vector(vector);
5537         return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
5538     }
5539     if (unlikely(vector >= n->conf_msix_qsize)) {
5540         trace_pci_nvme_err_invalid_create_cq_vector(vector);
5541         return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
5542     }
5543     if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
5544         trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
5545         return NVME_INVALID_FIELD | NVME_DNR;
5546     }
5547 
5548     cq = g_malloc0(sizeof(*cq));
5549     nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
5550                  NVME_CQ_FLAGS_IEN(qflags));
5551 
5552     /*
5553      * It is only required to set qs_created when creating a completion queue;
5554      * creating a submission queue without a matching completion queue will
5555      * fail.
5556      */
5557     n->qs_created = true;
5558     return NVME_SUCCESS;
5559 }
5560 
5561 static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req)
5562 {
5563     uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
5564 
5565     return nvme_c2h(n, id, sizeof(id), req);
5566 }
5567 
5568 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
5569 {
5570     trace_pci_nvme_identify_ctrl();
5571 
5572     return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req);
5573 }
5574 
5575 static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req)
5576 {
5577     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5578     uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
5579     NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id;
5580 
5581     trace_pci_nvme_identify_ctrl_csi(c->csi);
5582 
5583     switch (c->csi) {
5584     case NVME_CSI_NVM:
5585         id_nvm->vsl = n->params.vsl;
5586         id_nvm->dmrsl = cpu_to_le32(n->dmrsl);
5587         break;
5588 
5589     case NVME_CSI_ZONED:
5590         ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl;
5591         break;
5592 
5593     default:
5594         return NVME_INVALID_FIELD | NVME_DNR;
5595     }
5596 
5597     return nvme_c2h(n, id, sizeof(id), req);
5598 }
5599 
5600 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active)
5601 {
5602     NvmeNamespace *ns;
5603     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5604     uint32_t nsid = le32_to_cpu(c->nsid);
5605 
5606     trace_pci_nvme_identify_ns(nsid);
5607 
5608     if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5609         return NVME_INVALID_NSID | NVME_DNR;
5610     }
5611 
5612     ns = nvme_ns(n, nsid);
5613     if (unlikely(!ns)) {
5614         if (!active) {
5615             ns = nvme_subsys_ns(n->subsys, nsid);
5616             if (!ns) {
5617                 return nvme_rpt_empty_id_struct(n, req);
5618             }
5619         } else {
5620             return nvme_rpt_empty_id_struct(n, req);
5621         }
5622     }
5623 
5624     if (active || ns->csi == NVME_CSI_NVM) {
5625         return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req);
5626     }
5627 
5628     return NVME_INVALID_CMD_SET | NVME_DNR;
5629 }
5630 
5631 static uint16_t nvme_identify_ctrl_list(NvmeCtrl *n, NvmeRequest *req,
5632                                         bool attached)
5633 {
5634     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5635     uint32_t nsid = le32_to_cpu(c->nsid);
5636     uint16_t min_id = le16_to_cpu(c->ctrlid);
5637     uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
5638     uint16_t *ids = &list[1];
5639     NvmeNamespace *ns;
5640     NvmeCtrl *ctrl;
5641     int cntlid, nr_ids = 0;
5642 
5643     trace_pci_nvme_identify_ctrl_list(c->cns, min_id);
5644 
5645     if (!n->subsys) {
5646         return NVME_INVALID_FIELD | NVME_DNR;
5647     }
5648 
5649     if (attached) {
5650         if (nsid == NVME_NSID_BROADCAST) {
5651             return NVME_INVALID_FIELD | NVME_DNR;
5652         }
5653 
5654         ns = nvme_subsys_ns(n->subsys, nsid);
5655         if (!ns) {
5656             return NVME_INVALID_FIELD | NVME_DNR;
5657         }
5658     }
5659 
5660     for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) {
5661         ctrl = nvme_subsys_ctrl(n->subsys, cntlid);
5662         if (!ctrl) {
5663             continue;
5664         }
5665 
5666         if (attached && !nvme_ns(ctrl, nsid)) {
5667             continue;
5668         }
5669 
5670         ids[nr_ids++] = cntlid;
5671     }
5672 
5673     list[0] = nr_ids;
5674 
5675     return nvme_c2h(n, (uint8_t *)list, sizeof(list), req);
5676 }
5677 
5678 static uint16_t nvme_identify_pri_ctrl_cap(NvmeCtrl *n, NvmeRequest *req)
5679 {
5680     trace_pci_nvme_identify_pri_ctrl_cap(le16_to_cpu(n->pri_ctrl_cap.cntlid));
5681 
5682     return nvme_c2h(n, (uint8_t *)&n->pri_ctrl_cap,
5683                     sizeof(NvmePriCtrlCap), req);
5684 }
5685 
5686 static uint16_t nvme_identify_sec_ctrl_list(NvmeCtrl *n, NvmeRequest *req)
5687 {
5688     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5689     uint16_t pri_ctrl_id = le16_to_cpu(n->pri_ctrl_cap.cntlid);
5690     uint16_t min_id = le16_to_cpu(c->ctrlid);
5691     uint8_t num_sec_ctrl = n->nr_sec_ctrls;
5692     NvmeSecCtrlList list = {0};
5693     uint8_t i;
5694 
5695     for (i = 0; i < num_sec_ctrl; i++) {
5696         if (n->sec_ctrl_list[i].scid >= min_id) {
5697             list.numcntl = MIN(num_sec_ctrl - i, 127);
5698             memcpy(&list.sec, n->sec_ctrl_list + i,
5699                    list.numcntl * sizeof(NvmeSecCtrlEntry));
5700             break;
5701         }
5702     }
5703 
5704     trace_pci_nvme_identify_sec_ctrl_list(pri_ctrl_id, list.numcntl);
5705 
5706     return nvme_c2h(n, (uint8_t *)&list, sizeof(list), req);
5707 }
5708 
5709 static uint16_t nvme_identify_ns_ind(NvmeCtrl *n, NvmeRequest *req, bool alloc)
5710 {
5711     NvmeNamespace *ns;
5712     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5713     uint32_t nsid = le32_to_cpu(c->nsid);
5714 
5715     trace_pci_nvme_identify_ns_ind(nsid);
5716 
5717     if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5718         return NVME_INVALID_NSID | NVME_DNR;
5719     }
5720 
5721     ns = nvme_ns(n, nsid);
5722     if (unlikely(!ns)) {
5723         if (alloc) {
5724             ns = nvme_subsys_ns(n->subsys, nsid);
5725             if (!ns) {
5726                 return nvme_rpt_empty_id_struct(n, req);
5727             }
5728         } else {
5729             return nvme_rpt_empty_id_struct(n, req);
5730         }
5731     }
5732 
5733     return nvme_c2h(n, (uint8_t *)&ns->id_ns_ind, sizeof(NvmeIdNsInd), req);
5734 }
5735 
5736 static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req,
5737                                      bool active)
5738 {
5739     NvmeNamespace *ns;
5740     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5741     uint32_t nsid = le32_to_cpu(c->nsid);
5742 
5743     trace_pci_nvme_identify_ns_csi(nsid, c->csi);
5744 
5745     if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5746         return NVME_INVALID_NSID | NVME_DNR;
5747     }
5748 
5749     ns = nvme_ns(n, nsid);
5750     if (unlikely(!ns)) {
5751         if (!active) {
5752             ns = nvme_subsys_ns(n->subsys, nsid);
5753             if (!ns) {
5754                 return nvme_rpt_empty_id_struct(n, req);
5755             }
5756         } else {
5757             return nvme_rpt_empty_id_struct(n, req);
5758         }
5759     }
5760 
5761     if (c->csi == NVME_CSI_NVM) {
5762         return nvme_c2h(n, (uint8_t *)&ns->id_ns_nvm, sizeof(NvmeIdNsNvm),
5763                         req);
5764     } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) {
5765         return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned),
5766                         req);
5767     }
5768 
5769     return NVME_INVALID_FIELD | NVME_DNR;
5770 }
5771 
5772 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req,
5773                                      bool active)
5774 {
5775     NvmeNamespace *ns;
5776     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5777     uint32_t min_nsid = le32_to_cpu(c->nsid);
5778     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5779     static const int data_len = sizeof(list);
5780     uint32_t *list_ptr = (uint32_t *)list;
5781     int i, j = 0;
5782 
5783     trace_pci_nvme_identify_nslist(min_nsid);
5784 
5785     /*
5786      * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values
5787      * since the Active Namespace ID List should return namespaces with ids
5788      * *higher* than the NSID specified in the command. This is also specified
5789      * in the spec (NVM Express v1.3d, Section 5.15.4).
5790      */
5791     if (min_nsid >= NVME_NSID_BROADCAST - 1) {
5792         return NVME_INVALID_NSID | NVME_DNR;
5793     }
5794 
5795     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5796         ns = nvme_ns(n, i);
5797         if (!ns) {
5798             if (!active) {
5799                 ns = nvme_subsys_ns(n->subsys, i);
5800                 if (!ns) {
5801                     continue;
5802                 }
5803             } else {
5804                 continue;
5805             }
5806         }
5807         if (ns->params.nsid <= min_nsid) {
5808             continue;
5809         }
5810         list_ptr[j++] = cpu_to_le32(ns->params.nsid);
5811         if (j == data_len / sizeof(uint32_t)) {
5812             break;
5813         }
5814     }
5815 
5816     return nvme_c2h(n, list, data_len, req);
5817 }
5818 
5819 static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req,
5820                                          bool active)
5821 {
5822     NvmeNamespace *ns;
5823     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5824     uint32_t min_nsid = le32_to_cpu(c->nsid);
5825     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5826     static const int data_len = sizeof(list);
5827     uint32_t *list_ptr = (uint32_t *)list;
5828     int i, j = 0;
5829 
5830     trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi);
5831 
5832     /*
5833      * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid.
5834      */
5835     if (min_nsid >= NVME_NSID_BROADCAST - 1) {
5836         return NVME_INVALID_NSID | NVME_DNR;
5837     }
5838 
5839     if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) {
5840         return NVME_INVALID_FIELD | NVME_DNR;
5841     }
5842 
5843     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5844         ns = nvme_ns(n, i);
5845         if (!ns) {
5846             if (!active) {
5847                 ns = nvme_subsys_ns(n->subsys, i);
5848                 if (!ns) {
5849                     continue;
5850                 }
5851             } else {
5852                 continue;
5853             }
5854         }
5855         if (ns->params.nsid <= min_nsid || c->csi != ns->csi) {
5856             continue;
5857         }
5858         list_ptr[j++] = cpu_to_le32(ns->params.nsid);
5859         if (j == data_len / sizeof(uint32_t)) {
5860             break;
5861         }
5862     }
5863 
5864     return nvme_c2h(n, list, data_len, req);
5865 }
5866 
5867 static uint16_t nvme_endurance_group_list(NvmeCtrl *n, NvmeRequest *req)
5868 {
5869     uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
5870     uint16_t *nr_ids = &list[0];
5871     uint16_t *ids = &list[1];
5872     uint16_t endgid = le32_to_cpu(req->cmd.cdw11) & 0xffff;
5873 
5874     /*
5875      * The current nvme-subsys only supports Endurance Group #1.
5876      */
5877     if (!endgid) {
5878         *nr_ids = 1;
5879         ids[0] = 1;
5880     } else {
5881         *nr_ids = 0;
5882     }
5883 
5884     return nvme_c2h(n, list, sizeof(list), req);
5885 }
5886 
5887 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
5888 {
5889     NvmeNamespace *ns;
5890     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5891     uint32_t nsid = le32_to_cpu(c->nsid);
5892     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5893     uint8_t *pos = list;
5894     struct {
5895         NvmeIdNsDescr hdr;
5896         uint8_t v[NVME_NIDL_UUID];
5897     } QEMU_PACKED uuid = {};
5898     struct {
5899         NvmeIdNsDescr hdr;
5900         uint8_t v[NVME_NIDL_NGUID];
5901     } QEMU_PACKED nguid = {};
5902     struct {
5903         NvmeIdNsDescr hdr;
5904         uint64_t v;
5905     } QEMU_PACKED eui64 = {};
5906     struct {
5907         NvmeIdNsDescr hdr;
5908         uint8_t v;
5909     } QEMU_PACKED csi = {};
5910 
5911     trace_pci_nvme_identify_ns_descr_list(nsid);
5912 
5913     if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5914         return NVME_INVALID_NSID | NVME_DNR;
5915     }
5916 
5917     ns = nvme_ns(n, nsid);
5918     if (unlikely(!ns)) {
5919         return NVME_INVALID_FIELD | NVME_DNR;
5920     }
5921 
5922     if (!qemu_uuid_is_null(&ns->params.uuid)) {
5923         uuid.hdr.nidt = NVME_NIDT_UUID;
5924         uuid.hdr.nidl = NVME_NIDL_UUID;
5925         memcpy(uuid.v, ns->params.uuid.data, NVME_NIDL_UUID);
5926         memcpy(pos, &uuid, sizeof(uuid));
5927         pos += sizeof(uuid);
5928     }
5929 
5930     if (!nvme_nguid_is_null(&ns->params.nguid)) {
5931         nguid.hdr.nidt = NVME_NIDT_NGUID;
5932         nguid.hdr.nidl = NVME_NIDL_NGUID;
5933         memcpy(nguid.v, ns->params.nguid.data, NVME_NIDL_NGUID);
5934         memcpy(pos, &nguid, sizeof(nguid));
5935         pos += sizeof(nguid);
5936     }
5937 
5938     if (ns->params.eui64) {
5939         eui64.hdr.nidt = NVME_NIDT_EUI64;
5940         eui64.hdr.nidl = NVME_NIDL_EUI64;
5941         eui64.v = cpu_to_be64(ns->params.eui64);
5942         memcpy(pos, &eui64, sizeof(eui64));
5943         pos += sizeof(eui64);
5944     }
5945 
5946     csi.hdr.nidt = NVME_NIDT_CSI;
5947     csi.hdr.nidl = NVME_NIDL_CSI;
5948     csi.v = ns->csi;
5949     memcpy(pos, &csi, sizeof(csi));
5950     pos += sizeof(csi);
5951 
5952     return nvme_c2h(n, list, sizeof(list), req);
5953 }
5954 
5955 static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req)
5956 {
5957     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5958     static const int data_len = sizeof(list);
5959 
5960     trace_pci_nvme_identify_cmd_set();
5961 
5962     NVME_SET_CSI(*list, NVME_CSI_NVM);
5963     NVME_SET_CSI(*list, NVME_CSI_ZONED);
5964 
5965     return nvme_c2h(n, list, data_len, req);
5966 }
5967 
5968 static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
5969 {
5970     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5971 
5972     trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid),
5973                             c->csi);
5974 
5975     switch (c->cns) {
5976     case NVME_ID_CNS_NS:
5977         return nvme_identify_ns(n, req, true);
5978     case NVME_ID_CNS_NS_PRESENT:
5979         return nvme_identify_ns(n, req, false);
5980     case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST:
5981         return nvme_identify_ctrl_list(n, req, true);
5982     case NVME_ID_CNS_CTRL_LIST:
5983         return nvme_identify_ctrl_list(n, req, false);
5984     case NVME_ID_CNS_PRIMARY_CTRL_CAP:
5985         return nvme_identify_pri_ctrl_cap(n, req);
5986     case NVME_ID_CNS_SECONDARY_CTRL_LIST:
5987         return nvme_identify_sec_ctrl_list(n, req);
5988     case NVME_ID_CNS_CS_NS:
5989         return nvme_identify_ns_csi(n, req, true);
5990     case NVME_ID_CNS_CS_IND_NS:
5991         return nvme_identify_ns_ind(n, req, false);
5992     case NVME_ID_CNS_CS_IND_NS_ALLOCATED:
5993         return nvme_identify_ns_ind(n, req, true);
5994     case NVME_ID_CNS_CS_NS_PRESENT:
5995         return nvme_identify_ns_csi(n, req, false);
5996     case NVME_ID_CNS_CTRL:
5997         return nvme_identify_ctrl(n, req);
5998     case NVME_ID_CNS_CS_CTRL:
5999         return nvme_identify_ctrl_csi(n, req);
6000     case NVME_ID_CNS_NS_ACTIVE_LIST:
6001         return nvme_identify_nslist(n, req, true);
6002     case NVME_ID_CNS_NS_PRESENT_LIST:
6003         return nvme_identify_nslist(n, req, false);
6004     case NVME_ID_CNS_CS_NS_ACTIVE_LIST:
6005         return nvme_identify_nslist_csi(n, req, true);
6006     case NVME_ID_CNS_ENDURANCE_GROUP_LIST:
6007         return nvme_endurance_group_list(n, req);
6008     case NVME_ID_CNS_CS_NS_PRESENT_LIST:
6009         return nvme_identify_nslist_csi(n, req, false);
6010     case NVME_ID_CNS_NS_DESCR_LIST:
6011         return nvme_identify_ns_descr_list(n, req);
6012     case NVME_ID_CNS_IO_COMMAND_SET:
6013         return nvme_identify_cmd_set(n, req);
6014     default:
6015         trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
6016         return NVME_INVALID_FIELD | NVME_DNR;
6017     }
6018 }
6019 
6020 static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
6021 {
6022     uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
6023     uint16_t cid  = (le32_to_cpu(req->cmd.cdw10) >> 16) & 0xffff;
6024     NvmeSQueue *sq = n->sq[sqid];
6025     NvmeRequest *r, *next;
6026     int i;
6027 
6028     req->cqe.result = 1;
6029     if (nvme_check_sqid(n, sqid)) {
6030         return NVME_INVALID_FIELD | NVME_DNR;
6031     }
6032 
6033     if (sqid == 0) {
6034         for (i = 0; i < n->outstanding_aers; i++) {
6035             NvmeRequest *re = n->aer_reqs[i];
6036             if (re->cqe.cid == cid) {
6037                 memmove(n->aer_reqs + i, n->aer_reqs + i + 1,
6038                          (n->outstanding_aers - i - 1) * sizeof(NvmeRequest *));
6039                 n->outstanding_aers--;
6040                 re->status = NVME_CMD_ABORT_REQ;
6041                 req->cqe.result = 0;
6042                 nvme_enqueue_req_completion(&n->admin_cq, re);
6043                 return NVME_SUCCESS;
6044             }
6045         }
6046     }
6047 
6048     QTAILQ_FOREACH_SAFE(r, &sq->out_req_list, entry, next) {
6049         if (r->cqe.cid == cid) {
6050             if (r->aiocb) {
6051                 blk_aio_cancel_async(r->aiocb);
6052             }
6053             break;
6054         }
6055     }
6056 
6057     return NVME_SUCCESS;
6058 }
6059 
6060 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
6061 {
6062     trace_pci_nvme_setfeat_timestamp(ts);
6063 
6064     n->host_timestamp = le64_to_cpu(ts);
6065     n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
6066 }
6067 
6068 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
6069 {
6070     uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
6071     uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
6072 
6073     union nvme_timestamp {
6074         struct {
6075             uint64_t timestamp:48;
6076             uint64_t sync:1;
6077             uint64_t origin:3;
6078             uint64_t rsvd1:12;
6079         };
6080         uint64_t all;
6081     };
6082 
6083     union nvme_timestamp ts;
6084     ts.all = 0;
6085     ts.timestamp = n->host_timestamp + elapsed_time;
6086 
6087     /* If the host timestamp is non-zero, set the timestamp origin */
6088     ts.origin = n->host_timestamp ? 0x01 : 0x00;
6089 
6090     trace_pci_nvme_getfeat_timestamp(ts.all);
6091 
6092     return cpu_to_le64(ts.all);
6093 }
6094 
6095 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
6096 {
6097     uint64_t timestamp = nvme_get_timestamp(n);
6098 
6099     return nvme_c2h(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
6100 }
6101 
6102 static int nvme_get_feature_fdp(NvmeCtrl *n, uint32_t endgrpid,
6103                                 uint32_t *result)
6104 {
6105     *result = 0;
6106 
6107     if (!n->subsys || !n->subsys->endgrp.fdp.enabled) {
6108         return NVME_INVALID_FIELD | NVME_DNR;
6109     }
6110 
6111     *result = FIELD_DP16(0, FEAT_FDP, FDPE, 1);
6112     *result = FIELD_DP16(*result, FEAT_FDP, CONF_NDX, 0);
6113 
6114     return NVME_SUCCESS;
6115 }
6116 
6117 static uint16_t nvme_get_feature_fdp_events(NvmeCtrl *n, NvmeNamespace *ns,
6118                                             NvmeRequest *req, uint32_t *result)
6119 {
6120     NvmeCmd *cmd = &req->cmd;
6121     uint32_t cdw11 = le32_to_cpu(cmd->cdw11);
6122     uint16_t ph = cdw11 & 0xffff;
6123     uint8_t noet = (cdw11 >> 16) & 0xff;
6124     uint16_t ruhid, ret;
6125     uint32_t nentries = 0;
6126     uint8_t s_events_ndx = 0;
6127     size_t s_events_siz = sizeof(NvmeFdpEventDescr) * noet;
6128     g_autofree NvmeFdpEventDescr *s_events = g_malloc0(s_events_siz);
6129     NvmeRuHandle *ruh;
6130     NvmeFdpEventDescr *s_event;
6131 
6132     if (!n->subsys || !n->subsys->endgrp.fdp.enabled) {
6133         return NVME_FDP_DISABLED | NVME_DNR;
6134     }
6135 
6136     if (!nvme_ph_valid(ns, ph)) {
6137         return NVME_INVALID_FIELD | NVME_DNR;
6138     }
6139 
6140     ruhid = ns->fdp.phs[ph];
6141     ruh = &n->subsys->endgrp.fdp.ruhs[ruhid];
6142 
6143     assert(ruh);
6144 
6145     if (unlikely(noet == 0)) {
6146         return NVME_INVALID_FIELD | NVME_DNR;
6147     }
6148 
6149     for (uint8_t event_type = 0; event_type < FDP_EVT_MAX; event_type++) {
6150         uint8_t shift = nvme_fdp_evf_shifts[event_type];
6151         if (!shift && event_type) {
6152             /*
6153              * only first entry (event_type == 0) has a shift value of 0
6154              * other entries are simply unpopulated.
6155              */
6156             continue;
6157         }
6158 
6159         nentries++;
6160 
6161         s_event = &s_events[s_events_ndx];
6162         s_event->evt = event_type;
6163         s_event->evta = (ruh->event_filter >> shift) & 0x1;
6164 
6165         /* break if all `noet` entries are filled */
6166         if ((++s_events_ndx) == noet) {
6167             break;
6168         }
6169     }
6170 
6171     ret = nvme_c2h(n, s_events, s_events_siz, req);
6172     if (ret) {
6173         return ret;
6174     }
6175 
6176     *result = nentries;
6177     return NVME_SUCCESS;
6178 }
6179 
6180 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
6181 {
6182     NvmeCmd *cmd = &req->cmd;
6183     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
6184     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
6185     uint32_t nsid = le32_to_cpu(cmd->nsid);
6186     uint32_t result = 0;
6187     uint8_t fid = NVME_GETSETFEAT_FID(dw10);
6188     NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
6189     uint16_t iv;
6190     NvmeNamespace *ns;
6191     int i;
6192     uint16_t endgrpid = 0, ret = NVME_SUCCESS;
6193 
6194     static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
6195         [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
6196     };
6197 
6198     trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11);
6199 
6200     if (!nvme_feature_support[fid]) {
6201         return NVME_INVALID_FIELD | NVME_DNR;
6202     }
6203 
6204     if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
6205         if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
6206             /*
6207              * The Reservation Notification Mask and Reservation Persistence
6208              * features require a status code of Invalid Field in Command when
6209              * NSID is FFFFFFFFh. Since the device does not support those
6210              * features we can always return Invalid Namespace or Format as we
6211              * should do for all other features.
6212              */
6213             return NVME_INVALID_NSID | NVME_DNR;
6214         }
6215 
6216         if (!nvme_ns(n, nsid)) {
6217             return NVME_INVALID_FIELD | NVME_DNR;
6218         }
6219     }
6220 
6221     switch (sel) {
6222     case NVME_GETFEAT_SELECT_CURRENT:
6223         break;
6224     case NVME_GETFEAT_SELECT_SAVED:
6225         /* no features are saveable by the controller; fallthrough */
6226     case NVME_GETFEAT_SELECT_DEFAULT:
6227         goto defaults;
6228     case NVME_GETFEAT_SELECT_CAP:
6229         result = nvme_feature_cap[fid];
6230         goto out;
6231     }
6232 
6233     switch (fid) {
6234     case NVME_TEMPERATURE_THRESHOLD:
6235         result = 0;
6236 
6237         /*
6238          * The controller only implements the Composite Temperature sensor, so
6239          * return 0 for all other sensors.
6240          */
6241         if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
6242             goto out;
6243         }
6244 
6245         switch (NVME_TEMP_THSEL(dw11)) {
6246         case NVME_TEMP_THSEL_OVER:
6247             result = n->features.temp_thresh_hi;
6248             goto out;
6249         case NVME_TEMP_THSEL_UNDER:
6250             result = n->features.temp_thresh_low;
6251             goto out;
6252         }
6253 
6254         return NVME_INVALID_FIELD | NVME_DNR;
6255     case NVME_ERROR_RECOVERY:
6256         if (!nvme_nsid_valid(n, nsid)) {
6257             return NVME_INVALID_NSID | NVME_DNR;
6258         }
6259 
6260         ns = nvme_ns(n, nsid);
6261         if (unlikely(!ns)) {
6262             return NVME_INVALID_FIELD | NVME_DNR;
6263         }
6264 
6265         result = ns->features.err_rec;
6266         goto out;
6267     case NVME_VOLATILE_WRITE_CACHE:
6268         result = 0;
6269         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6270             ns = nvme_ns(n, i);
6271             if (!ns) {
6272                 continue;
6273             }
6274 
6275             result = blk_enable_write_cache(ns->blkconf.blk);
6276             if (result) {
6277                 break;
6278             }
6279         }
6280         trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
6281         goto out;
6282     case NVME_ASYNCHRONOUS_EVENT_CONF:
6283         result = n->features.async_config;
6284         goto out;
6285     case NVME_TIMESTAMP:
6286         return nvme_get_feature_timestamp(n, req);
6287     case NVME_HOST_BEHAVIOR_SUPPORT:
6288         return nvme_c2h(n, (uint8_t *)&n->features.hbs,
6289                         sizeof(n->features.hbs), req);
6290     case NVME_FDP_MODE:
6291         endgrpid = dw11 & 0xff;
6292 
6293         if (endgrpid != 0x1) {
6294             return NVME_INVALID_FIELD | NVME_DNR;
6295         }
6296 
6297         ret = nvme_get_feature_fdp(n, endgrpid, &result);
6298         if (ret) {
6299             return ret;
6300         }
6301         goto out;
6302     case NVME_FDP_EVENTS:
6303         if (!nvme_nsid_valid(n, nsid)) {
6304             return NVME_INVALID_NSID | NVME_DNR;
6305         }
6306 
6307         ns = nvme_ns(n, nsid);
6308         if (unlikely(!ns)) {
6309             return NVME_INVALID_FIELD | NVME_DNR;
6310         }
6311 
6312         ret = nvme_get_feature_fdp_events(n, ns, req, &result);
6313         if (ret) {
6314             return ret;
6315         }
6316         goto out;
6317     default:
6318         break;
6319     }
6320 
6321 defaults:
6322     switch (fid) {
6323     case NVME_TEMPERATURE_THRESHOLD:
6324         result = 0;
6325 
6326         if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
6327             break;
6328         }
6329 
6330         if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
6331             result = NVME_TEMPERATURE_WARNING;
6332         }
6333 
6334         break;
6335     case NVME_NUMBER_OF_QUEUES:
6336         result = (n->conf_ioqpairs - 1) | ((n->conf_ioqpairs - 1) << 16);
6337         trace_pci_nvme_getfeat_numq(result);
6338         break;
6339     case NVME_INTERRUPT_VECTOR_CONF:
6340         iv = dw11 & 0xffff;
6341         if (iv >= n->conf_ioqpairs + 1) {
6342             return NVME_INVALID_FIELD | NVME_DNR;
6343         }
6344 
6345         result = iv;
6346         if (iv == n->admin_cq.vector) {
6347             result |= NVME_INTVC_NOCOALESCING;
6348         }
6349         break;
6350     case NVME_FDP_MODE:
6351         endgrpid = dw11 & 0xff;
6352 
6353         if (endgrpid != 0x1) {
6354             return NVME_INVALID_FIELD | NVME_DNR;
6355         }
6356 
6357         ret = nvme_get_feature_fdp(n, endgrpid, &result);
6358         if (ret) {
6359             return ret;
6360         }
6361         break;
6362 
6363     case NVME_WRITE_ATOMICITY:
6364         result = n->dn;
6365         break;
6366     default:
6367         result = nvme_feature_default[fid];
6368         break;
6369     }
6370 
6371 out:
6372     req->cqe.result = cpu_to_le32(result);
6373     return ret;
6374 }
6375 
6376 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
6377 {
6378     uint16_t ret;
6379     uint64_t timestamp;
6380 
6381     ret = nvme_h2c(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
6382     if (ret) {
6383         return ret;
6384     }
6385 
6386     nvme_set_timestamp(n, timestamp);
6387 
6388     return NVME_SUCCESS;
6389 }
6390 
6391 static uint16_t nvme_set_feature_fdp_events(NvmeCtrl *n, NvmeNamespace *ns,
6392                                             NvmeRequest *req)
6393 {
6394     NvmeCmd *cmd = &req->cmd;
6395     uint32_t cdw11 = le32_to_cpu(cmd->cdw11);
6396     uint16_t ph = cdw11 & 0xffff;
6397     uint8_t noet = (cdw11 >> 16) & 0xff;
6398     uint16_t ret, ruhid;
6399     uint8_t enable = le32_to_cpu(cmd->cdw12) & 0x1;
6400     uint8_t event_mask = 0;
6401     unsigned int i;
6402     g_autofree uint8_t *events = g_malloc0(noet);
6403     NvmeRuHandle *ruh = NULL;
6404 
6405     assert(ns);
6406 
6407     if (!n->subsys || !n->subsys->endgrp.fdp.enabled) {
6408         return NVME_FDP_DISABLED | NVME_DNR;
6409     }
6410 
6411     if (!nvme_ph_valid(ns, ph)) {
6412         return NVME_INVALID_FIELD | NVME_DNR;
6413     }
6414 
6415     ruhid = ns->fdp.phs[ph];
6416     ruh = &n->subsys->endgrp.fdp.ruhs[ruhid];
6417 
6418     ret = nvme_h2c(n, events, noet, req);
6419     if (ret) {
6420         return ret;
6421     }
6422 
6423     for (i = 0; i < noet; i++) {
6424         event_mask |= (1 << nvme_fdp_evf_shifts[events[i]]);
6425     }
6426 
6427     if (enable) {
6428         ruh->event_filter |= event_mask;
6429     } else {
6430         ruh->event_filter = ruh->event_filter & ~event_mask;
6431     }
6432 
6433     return NVME_SUCCESS;
6434 }
6435 
6436 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
6437 {
6438     NvmeNamespace *ns = NULL;
6439 
6440     NvmeCmd *cmd = &req->cmd;
6441     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
6442     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
6443     uint32_t nsid = le32_to_cpu(cmd->nsid);
6444     uint8_t fid = NVME_GETSETFEAT_FID(dw10);
6445     uint8_t save = NVME_SETFEAT_SAVE(dw10);
6446     uint16_t status;
6447     int i;
6448     NvmeIdCtrl *id = &n->id_ctrl;
6449     NvmeAtomic *atomic = &n->atomic;
6450 
6451     trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11);
6452 
6453     if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) {
6454         return NVME_FID_NOT_SAVEABLE | NVME_DNR;
6455     }
6456 
6457     if (!nvme_feature_support[fid]) {
6458         return NVME_INVALID_FIELD | NVME_DNR;
6459     }
6460 
6461     if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
6462         if (nsid != NVME_NSID_BROADCAST) {
6463             if (!nvme_nsid_valid(n, nsid)) {
6464                 return NVME_INVALID_NSID | NVME_DNR;
6465             }
6466 
6467             ns = nvme_ns(n, nsid);
6468             if (unlikely(!ns)) {
6469                 return NVME_INVALID_FIELD | NVME_DNR;
6470             }
6471         }
6472     } else if (nsid && nsid != NVME_NSID_BROADCAST) {
6473         if (!nvme_nsid_valid(n, nsid)) {
6474             return NVME_INVALID_NSID | NVME_DNR;
6475         }
6476 
6477         return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
6478     }
6479 
6480     if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
6481         return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
6482     }
6483 
6484     switch (fid) {
6485     case NVME_TEMPERATURE_THRESHOLD:
6486         if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
6487             break;
6488         }
6489 
6490         switch (NVME_TEMP_THSEL(dw11)) {
6491         case NVME_TEMP_THSEL_OVER:
6492             n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
6493             break;
6494         case NVME_TEMP_THSEL_UNDER:
6495             n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
6496             break;
6497         default:
6498             return NVME_INVALID_FIELD | NVME_DNR;
6499         }
6500 
6501         if ((n->temperature >= n->features.temp_thresh_hi) ||
6502             (n->temperature <= n->features.temp_thresh_low)) {
6503             nvme_smart_event(n, NVME_SMART_TEMPERATURE);
6504         }
6505 
6506         break;
6507     case NVME_ERROR_RECOVERY:
6508         if (nsid == NVME_NSID_BROADCAST) {
6509             for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6510                 ns = nvme_ns(n, i);
6511 
6512                 if (!ns) {
6513                     continue;
6514                 }
6515 
6516                 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
6517                     ns->features.err_rec = dw11;
6518                 }
6519             }
6520 
6521             break;
6522         }
6523 
6524         assert(ns);
6525         if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat))  {
6526             ns->features.err_rec = dw11;
6527         }
6528         break;
6529     case NVME_VOLATILE_WRITE_CACHE:
6530         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6531             ns = nvme_ns(n, i);
6532             if (!ns) {
6533                 continue;
6534             }
6535 
6536             if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) {
6537                 blk_flush(ns->blkconf.blk);
6538             }
6539 
6540             blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1);
6541         }
6542 
6543         break;
6544 
6545     case NVME_NUMBER_OF_QUEUES:
6546         if (n->qs_created) {
6547             return NVME_CMD_SEQ_ERROR | NVME_DNR;
6548         }
6549 
6550         /*
6551          * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR
6552          * and NSQR.
6553          */
6554         if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
6555             return NVME_INVALID_FIELD | NVME_DNR;
6556         }
6557 
6558         trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1,
6559                                     ((dw11 >> 16) & 0xffff) + 1,
6560                                     n->conf_ioqpairs,
6561                                     n->conf_ioqpairs);
6562         req->cqe.result = cpu_to_le32((n->conf_ioqpairs - 1) |
6563                                       ((n->conf_ioqpairs - 1) << 16));
6564         break;
6565     case NVME_ASYNCHRONOUS_EVENT_CONF:
6566         n->features.async_config = dw11;
6567         break;
6568     case NVME_TIMESTAMP:
6569         return nvme_set_feature_timestamp(n, req);
6570     case NVME_HOST_BEHAVIOR_SUPPORT:
6571         status = nvme_h2c(n, (uint8_t *)&n->features.hbs,
6572                           sizeof(n->features.hbs), req);
6573         if (status) {
6574             return status;
6575         }
6576 
6577         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6578             ns = nvme_ns(n, i);
6579 
6580             if (!ns) {
6581                 continue;
6582             }
6583 
6584             ns->id_ns.nlbaf = ns->nlbaf - 1;
6585             if (!n->features.hbs.lbafee) {
6586                 ns->id_ns.nlbaf = MIN(ns->id_ns.nlbaf, 15);
6587             }
6588         }
6589 
6590         return status;
6591     case NVME_COMMAND_SET_PROFILE:
6592         if (dw11 & 0x1ff) {
6593             trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff);
6594             return NVME_CMD_SET_CMB_REJECTED | NVME_DNR;
6595         }
6596         break;
6597     case NVME_FDP_MODE:
6598         /* spec: abort with cmd seq err if there's one or more NS' in endgrp */
6599         return NVME_CMD_SEQ_ERROR | NVME_DNR;
6600     case NVME_FDP_EVENTS:
6601         return nvme_set_feature_fdp_events(n, ns, req);
6602     case NVME_WRITE_ATOMICITY:
6603 
6604         n->dn = 0x1 & dw11;
6605 
6606         if (n->dn) {
6607             atomic->atomic_max_write_size = le16_to_cpu(id->awupf) + 1;
6608         } else {
6609             atomic->atomic_max_write_size = le16_to_cpu(id->awun) + 1;
6610         }
6611 
6612         if (atomic->atomic_max_write_size == 1) {
6613             atomic->atomic_writes = 0;
6614         } else {
6615             atomic->atomic_writes = 1;
6616         }
6617         break;
6618     default:
6619         return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
6620     }
6621     return NVME_SUCCESS;
6622 }
6623 
6624 static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
6625 {
6626     trace_pci_nvme_aer(nvme_cid(req));
6627 
6628     if (n->outstanding_aers > n->params.aerl) {
6629         trace_pci_nvme_aer_aerl_exceeded();
6630         return NVME_AER_LIMIT_EXCEEDED;
6631     }
6632 
6633     n->aer_reqs[n->outstanding_aers] = req;
6634     n->outstanding_aers++;
6635 
6636     if (!QTAILQ_EMPTY(&n->aer_queue)) {
6637         nvme_process_aers(n);
6638     }
6639 
6640     return NVME_NO_COMPLETE;
6641 }
6642 
6643 static void nvme_update_dmrsl(NvmeCtrl *n)
6644 {
6645     int nsid;
6646 
6647     for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) {
6648         NvmeNamespace *ns = nvme_ns(n, nsid);
6649         if (!ns) {
6650             continue;
6651         }
6652 
6653         n->dmrsl = MIN_NON_ZERO(n->dmrsl,
6654                                 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
6655     }
6656 }
6657 
6658 static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns)
6659 {
6660     uint32_t cc = ldl_le_p(&n->bar.cc);
6661 
6662     ns->iocs = nvme_cse_iocs_none;
6663     switch (ns->csi) {
6664     case NVME_CSI_NVM:
6665         if (NVME_CC_CSS(cc) != NVME_CC_CSS_ADMIN_ONLY) {
6666             ns->iocs = nvme_cse_iocs_nvm;
6667         }
6668         break;
6669     case NVME_CSI_ZONED:
6670         if (NVME_CC_CSS(cc) == NVME_CC_CSS_CSI) {
6671             ns->iocs = nvme_cse_iocs_zoned;
6672         } else if (NVME_CC_CSS(cc) == NVME_CC_CSS_NVM) {
6673             ns->iocs = nvme_cse_iocs_nvm;
6674         }
6675         break;
6676     }
6677 }
6678 
6679 static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req)
6680 {
6681     NvmeNamespace *ns;
6682     NvmeCtrl *ctrl;
6683     uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
6684     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
6685     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6686     uint8_t sel = dw10 & 0xf;
6687     uint16_t *nr_ids = &list[0];
6688     uint16_t *ids = &list[1];
6689     uint16_t ret;
6690     int i;
6691 
6692     trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf);
6693 
6694     if (!nvme_nsid_valid(n, nsid)) {
6695         return NVME_INVALID_NSID | NVME_DNR;
6696     }
6697 
6698     ns = nvme_subsys_ns(n->subsys, nsid);
6699     if (!ns) {
6700         return NVME_INVALID_FIELD | NVME_DNR;
6701     }
6702 
6703     ret = nvme_h2c(n, (uint8_t *)list, 4096, req);
6704     if (ret) {
6705         return ret;
6706     }
6707 
6708     if (!*nr_ids) {
6709         return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
6710     }
6711 
6712     *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1);
6713     for (i = 0; i < *nr_ids; i++) {
6714         ctrl = nvme_subsys_ctrl(n->subsys, ids[i]);
6715         if (!ctrl) {
6716             return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
6717         }
6718 
6719         switch (sel) {
6720         case NVME_NS_ATTACHMENT_ATTACH:
6721             if (nvme_ns(ctrl, nsid)) {
6722                 return NVME_NS_ALREADY_ATTACHED | NVME_DNR;
6723             }
6724 
6725             if (ns->attached && !ns->params.shared) {
6726                 return NVME_NS_PRIVATE | NVME_DNR;
6727             }
6728 
6729             nvme_attach_ns(ctrl, ns);
6730             nvme_select_iocs_ns(ctrl, ns);
6731 
6732             break;
6733 
6734         case NVME_NS_ATTACHMENT_DETACH:
6735             if (!nvme_ns(ctrl, nsid)) {
6736                 return NVME_NS_NOT_ATTACHED | NVME_DNR;
6737             }
6738 
6739             ctrl->namespaces[nsid] = NULL;
6740             ns->attached--;
6741 
6742             nvme_update_dmrsl(ctrl);
6743 
6744             break;
6745 
6746         default:
6747             return NVME_INVALID_FIELD | NVME_DNR;
6748         }
6749 
6750         /*
6751          * Add namespace id to the changed namespace id list for event clearing
6752          * via Get Log Page command.
6753          */
6754         if (!test_and_set_bit(nsid, ctrl->changed_nsids)) {
6755             nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE,
6756                                NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED,
6757                                NVME_LOG_CHANGED_NSLIST);
6758         }
6759     }
6760 
6761     return NVME_SUCCESS;
6762 }
6763 
6764 typedef struct NvmeFormatAIOCB {
6765     BlockAIOCB common;
6766     BlockAIOCB *aiocb;
6767     NvmeRequest *req;
6768     int ret;
6769 
6770     NvmeNamespace *ns;
6771     uint32_t nsid;
6772     bool broadcast;
6773     int64_t offset;
6774 
6775     uint8_t lbaf;
6776     uint8_t mset;
6777     uint8_t pi;
6778     uint8_t pil;
6779 } NvmeFormatAIOCB;
6780 
6781 static void nvme_format_cancel(BlockAIOCB *aiocb)
6782 {
6783     NvmeFormatAIOCB *iocb = container_of(aiocb, NvmeFormatAIOCB, common);
6784 
6785     iocb->ret = -ECANCELED;
6786 
6787     if (iocb->aiocb) {
6788         blk_aio_cancel_async(iocb->aiocb);
6789         iocb->aiocb = NULL;
6790     }
6791 }
6792 
6793 static const AIOCBInfo nvme_format_aiocb_info = {
6794     .aiocb_size = sizeof(NvmeFormatAIOCB),
6795     .cancel_async = nvme_format_cancel,
6796 };
6797 
6798 static void nvme_format_set(NvmeNamespace *ns, uint8_t lbaf, uint8_t mset,
6799                             uint8_t pi, uint8_t pil)
6800 {
6801     uint8_t lbafl = lbaf & 0xf;
6802     uint8_t lbafu = lbaf >> 4;
6803 
6804     trace_pci_nvme_format_set(ns->params.nsid, lbaf, mset, pi, pil);
6805 
6806     ns->id_ns.dps = (pil << 3) | pi;
6807     ns->id_ns.flbas = (lbafu << 5) | (mset << 4) | lbafl;
6808 
6809     nvme_ns_init_format(ns);
6810 }
6811 
6812 static void nvme_do_format(NvmeFormatAIOCB *iocb);
6813 
6814 static void nvme_format_ns_cb(void *opaque, int ret)
6815 {
6816     NvmeFormatAIOCB *iocb = opaque;
6817     NvmeNamespace *ns = iocb->ns;
6818     int bytes;
6819 
6820     if (iocb->ret < 0) {
6821         goto done;
6822     } else if (ret < 0) {
6823         iocb->ret = ret;
6824         goto done;
6825     }
6826 
6827     assert(ns);
6828 
6829     if (iocb->offset < ns->size) {
6830         bytes = MIN(BDRV_REQUEST_MAX_BYTES, ns->size - iocb->offset);
6831 
6832         iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, iocb->offset,
6833                                             bytes, BDRV_REQ_MAY_UNMAP,
6834                                             nvme_format_ns_cb, iocb);
6835 
6836         iocb->offset += bytes;
6837         return;
6838     }
6839 
6840     nvme_format_set(ns, iocb->lbaf, iocb->mset, iocb->pi, iocb->pil);
6841     ns->status = 0x0;
6842     iocb->ns = NULL;
6843     iocb->offset = 0;
6844 
6845 done:
6846     nvme_do_format(iocb);
6847 }
6848 
6849 static uint16_t nvme_format_check(NvmeNamespace *ns, uint8_t lbaf, uint8_t pi)
6850 {
6851     if (ns->params.zoned) {
6852         return NVME_INVALID_FORMAT | NVME_DNR;
6853     }
6854 
6855     if (lbaf > ns->id_ns.nlbaf) {
6856         return NVME_INVALID_FORMAT | NVME_DNR;
6857     }
6858 
6859     if (pi && (ns->id_ns.lbaf[lbaf].ms < nvme_pi_tuple_size(ns))) {
6860         return NVME_INVALID_FORMAT | NVME_DNR;
6861     }
6862 
6863     if (pi && pi > NVME_ID_NS_DPS_TYPE_3) {
6864         return NVME_INVALID_FIELD | NVME_DNR;
6865     }
6866 
6867     return NVME_SUCCESS;
6868 }
6869 
6870 static void nvme_do_format(NvmeFormatAIOCB *iocb)
6871 {
6872     NvmeRequest *req = iocb->req;
6873     NvmeCtrl *n = nvme_ctrl(req);
6874     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6875     uint8_t lbaf = dw10 & 0xf;
6876     uint8_t pi = (dw10 >> 5) & 0x7;
6877     uint16_t status;
6878     int i;
6879 
6880     if (iocb->ret < 0) {
6881         goto done;
6882     }
6883 
6884     if (iocb->broadcast) {
6885         for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
6886             iocb->ns = nvme_ns(n, i);
6887             if (iocb->ns) {
6888                 iocb->nsid = i;
6889                 break;
6890             }
6891         }
6892     }
6893 
6894     if (!iocb->ns) {
6895         goto done;
6896     }
6897 
6898     status = nvme_format_check(iocb->ns, lbaf, pi);
6899     if (status) {
6900         req->status = status;
6901         goto done;
6902     }
6903 
6904     iocb->ns->status = NVME_FORMAT_IN_PROGRESS;
6905     nvme_format_ns_cb(iocb, 0);
6906     return;
6907 
6908 done:
6909     iocb->common.cb(iocb->common.opaque, iocb->ret);
6910     qemu_aio_unref(iocb);
6911 }
6912 
6913 static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req)
6914 {
6915     NvmeFormatAIOCB *iocb;
6916     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
6917     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6918     uint8_t lbaf = dw10 & 0xf;
6919     uint8_t mset = (dw10 >> 4) & 0x1;
6920     uint8_t pi = (dw10 >> 5) & 0x7;
6921     uint8_t pil = (dw10 >> 8) & 0x1;
6922     uint8_t lbafu = (dw10 >> 12) & 0x3;
6923     uint16_t status;
6924 
6925     iocb = qemu_aio_get(&nvme_format_aiocb_info, NULL, nvme_misc_cb, req);
6926 
6927     iocb->req = req;
6928     iocb->ret = 0;
6929     iocb->ns = NULL;
6930     iocb->nsid = 0;
6931     iocb->lbaf = lbaf;
6932     iocb->mset = mset;
6933     iocb->pi = pi;
6934     iocb->pil = pil;
6935     iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
6936     iocb->offset = 0;
6937 
6938     if (n->features.hbs.lbafee) {
6939         iocb->lbaf |= lbafu << 4;
6940     }
6941 
6942     if (!iocb->broadcast) {
6943         if (!nvme_nsid_valid(n, nsid)) {
6944             status = NVME_INVALID_NSID | NVME_DNR;
6945             goto out;
6946         }
6947 
6948         iocb->ns = nvme_ns(n, nsid);
6949         if (!iocb->ns) {
6950             status = NVME_INVALID_FIELD | NVME_DNR;
6951             goto out;
6952         }
6953     }
6954 
6955     req->aiocb = &iocb->common;
6956     nvme_do_format(iocb);
6957 
6958     return NVME_NO_COMPLETE;
6959 
6960 out:
6961     qemu_aio_unref(iocb);
6962 
6963     return status;
6964 }
6965 
6966 static void nvme_get_virt_res_num(NvmeCtrl *n, uint8_t rt, int *num_total,
6967                                   int *num_prim, int *num_sec)
6968 {
6969     *num_total = le32_to_cpu(rt ?
6970                              n->pri_ctrl_cap.vifrt : n->pri_ctrl_cap.vqfrt);
6971     *num_prim = le16_to_cpu(rt ?
6972                             n->pri_ctrl_cap.virfap : n->pri_ctrl_cap.vqrfap);
6973     *num_sec = le16_to_cpu(rt ? n->pri_ctrl_cap.virfa : n->pri_ctrl_cap.vqrfa);
6974 }
6975 
6976 static uint16_t nvme_assign_virt_res_to_prim(NvmeCtrl *n, NvmeRequest *req,
6977                                              uint16_t cntlid, uint8_t rt,
6978                                              int nr)
6979 {
6980     int num_total, num_prim, num_sec;
6981 
6982     if (cntlid != n->cntlid) {
6983         return NVME_INVALID_CTRL_ID | NVME_DNR;
6984     }
6985 
6986     nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
6987 
6988     if (nr > num_total) {
6989         return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
6990     }
6991 
6992     if (nr > num_total - num_sec) {
6993         return NVME_INVALID_RESOURCE_ID | NVME_DNR;
6994     }
6995 
6996     if (rt) {
6997         n->next_pri_ctrl_cap.virfap = cpu_to_le16(nr);
6998     } else {
6999         n->next_pri_ctrl_cap.vqrfap = cpu_to_le16(nr);
7000     }
7001 
7002     req->cqe.result = cpu_to_le32(nr);
7003     return req->status;
7004 }
7005 
7006 static void nvme_update_virt_res(NvmeCtrl *n, NvmeSecCtrlEntry *sctrl,
7007                                  uint8_t rt, int nr)
7008 {
7009     int prev_nr, prev_total;
7010 
7011     if (rt) {
7012         prev_nr = le16_to_cpu(sctrl->nvi);
7013         prev_total = le32_to_cpu(n->pri_ctrl_cap.virfa);
7014         sctrl->nvi = cpu_to_le16(nr);
7015         n->pri_ctrl_cap.virfa = cpu_to_le32(prev_total + nr - prev_nr);
7016     } else {
7017         prev_nr = le16_to_cpu(sctrl->nvq);
7018         prev_total = le32_to_cpu(n->pri_ctrl_cap.vqrfa);
7019         sctrl->nvq = cpu_to_le16(nr);
7020         n->pri_ctrl_cap.vqrfa = cpu_to_le32(prev_total + nr - prev_nr);
7021     }
7022 }
7023 
7024 static uint16_t nvme_assign_virt_res_to_sec(NvmeCtrl *n, NvmeRequest *req,
7025                                             uint16_t cntlid, uint8_t rt, int nr)
7026 {
7027     int num_total, num_prim, num_sec, num_free, diff, limit;
7028     NvmeSecCtrlEntry *sctrl;
7029 
7030     sctrl = nvme_sctrl_for_cntlid(n, cntlid);
7031     if (!sctrl) {
7032         return NVME_INVALID_CTRL_ID | NVME_DNR;
7033     }
7034 
7035     if (sctrl->scs) {
7036         return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
7037     }
7038 
7039     limit = le16_to_cpu(rt ? n->pri_ctrl_cap.vifrsm : n->pri_ctrl_cap.vqfrsm);
7040     if (nr > limit) {
7041         return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
7042     }
7043 
7044     nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
7045     num_free = num_total - num_prim - num_sec;
7046     diff = nr - le16_to_cpu(rt ? sctrl->nvi : sctrl->nvq);
7047 
7048     if (diff > num_free) {
7049         return NVME_INVALID_RESOURCE_ID | NVME_DNR;
7050     }
7051 
7052     nvme_update_virt_res(n, sctrl, rt, nr);
7053     req->cqe.result = cpu_to_le32(nr);
7054 
7055     return req->status;
7056 }
7057 
7058 static uint16_t nvme_virt_set_state(NvmeCtrl *n, uint16_t cntlid, bool online)
7059 {
7060     PCIDevice *pci = PCI_DEVICE(n);
7061     NvmeCtrl *sn = NULL;
7062     NvmeSecCtrlEntry *sctrl;
7063     int vf_index;
7064 
7065     sctrl = nvme_sctrl_for_cntlid(n, cntlid);
7066     if (!sctrl) {
7067         return NVME_INVALID_CTRL_ID | NVME_DNR;
7068     }
7069 
7070     if (!pci_is_vf(pci)) {
7071         vf_index = le16_to_cpu(sctrl->vfn) - 1;
7072         sn = NVME(pcie_sriov_get_vf_at_index(pci, vf_index));
7073     }
7074 
7075     if (online) {
7076         if (!sctrl->nvi || (le16_to_cpu(sctrl->nvq) < 2) || !sn) {
7077             return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
7078         }
7079 
7080         if (!sctrl->scs) {
7081             sctrl->scs = 0x1;
7082             nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
7083         }
7084     } else {
7085         nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_INTERRUPT, 0);
7086         nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_QUEUE, 0);
7087 
7088         if (sctrl->scs) {
7089             sctrl->scs = 0x0;
7090             if (sn) {
7091                 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
7092             }
7093         }
7094     }
7095 
7096     return NVME_SUCCESS;
7097 }
7098 
7099 static uint16_t nvme_virt_mngmt(NvmeCtrl *n, NvmeRequest *req)
7100 {
7101     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
7102     uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
7103     uint8_t act = dw10 & 0xf;
7104     uint8_t rt = (dw10 >> 8) & 0x7;
7105     uint16_t cntlid = (dw10 >> 16) & 0xffff;
7106     int nr = dw11 & 0xffff;
7107 
7108     trace_pci_nvme_virt_mngmt(nvme_cid(req), act, cntlid, rt ? "VI" : "VQ", nr);
7109 
7110     if (rt != NVME_VIRT_RES_QUEUE && rt != NVME_VIRT_RES_INTERRUPT) {
7111         return NVME_INVALID_RESOURCE_ID | NVME_DNR;
7112     }
7113 
7114     switch (act) {
7115     case NVME_VIRT_MNGMT_ACTION_SEC_ASSIGN:
7116         return nvme_assign_virt_res_to_sec(n, req, cntlid, rt, nr);
7117     case NVME_VIRT_MNGMT_ACTION_PRM_ALLOC:
7118         return nvme_assign_virt_res_to_prim(n, req, cntlid, rt, nr);
7119     case NVME_VIRT_MNGMT_ACTION_SEC_ONLINE:
7120         return nvme_virt_set_state(n, cntlid, true);
7121     case NVME_VIRT_MNGMT_ACTION_SEC_OFFLINE:
7122         return nvme_virt_set_state(n, cntlid, false);
7123     default:
7124         return NVME_INVALID_FIELD | NVME_DNR;
7125     }
7126 }
7127 
7128 static uint16_t nvme_dbbuf_config(NvmeCtrl *n, const NvmeRequest *req)
7129 {
7130     PCIDevice *pci = PCI_DEVICE(n);
7131     uint64_t dbs_addr = le64_to_cpu(req->cmd.dptr.prp1);
7132     uint64_t eis_addr = le64_to_cpu(req->cmd.dptr.prp2);
7133     int i;
7134 
7135     /* Address should be page aligned */
7136     if (dbs_addr & (n->page_size - 1) || eis_addr & (n->page_size - 1)) {
7137         return NVME_INVALID_FIELD | NVME_DNR;
7138     }
7139 
7140     /* Save shadow buffer base addr for use during queue creation */
7141     n->dbbuf_dbs = dbs_addr;
7142     n->dbbuf_eis = eis_addr;
7143     n->dbbuf_enabled = true;
7144 
7145     for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
7146         NvmeSQueue *sq = n->sq[i];
7147         NvmeCQueue *cq = n->cq[i];
7148 
7149         if (sq) {
7150             /*
7151              * CAP.DSTRD is 0, so offset of ith sq db_addr is (i<<3)
7152              * nvme_process_db() uses this hard-coded way to calculate
7153              * doorbell offsets. Be consistent with that here.
7154              */
7155             sq->db_addr = dbs_addr + (i << 3);
7156             sq->ei_addr = eis_addr + (i << 3);
7157             stl_le_pci_dma(pci, sq->db_addr, sq->tail, MEMTXATTRS_UNSPECIFIED);
7158 
7159             if (n->params.ioeventfd && sq->sqid != 0) {
7160                 if (!nvme_init_sq_ioeventfd(sq)) {
7161                     sq->ioeventfd_enabled = true;
7162                 }
7163             }
7164         }
7165 
7166         if (cq) {
7167             /* CAP.DSTRD is 0, so offset of ith cq db_addr is (i<<3)+(1<<2) */
7168             cq->db_addr = dbs_addr + (i << 3) + (1 << 2);
7169             cq->ei_addr = eis_addr + (i << 3) + (1 << 2);
7170             stl_le_pci_dma(pci, cq->db_addr, cq->head, MEMTXATTRS_UNSPECIFIED);
7171 
7172             if (n->params.ioeventfd && cq->cqid != 0) {
7173                 if (!nvme_init_cq_ioeventfd(cq)) {
7174                     cq->ioeventfd_enabled = true;
7175                 }
7176             }
7177         }
7178     }
7179 
7180     trace_pci_nvme_dbbuf_config(dbs_addr, eis_addr);
7181 
7182     return NVME_SUCCESS;
7183 }
7184 
7185 static uint16_t nvme_directive_send(NvmeCtrl *n, NvmeRequest *req)
7186 {
7187     return NVME_INVALID_FIELD | NVME_DNR;
7188 }
7189 
7190 static uint16_t nvme_directive_receive(NvmeCtrl *n, NvmeRequest *req)
7191 {
7192     NvmeNamespace *ns;
7193     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
7194     uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
7195     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
7196     uint8_t doper, dtype;
7197     uint32_t numd, trans_len;
7198     NvmeDirectiveIdentify id = {
7199         .supported = 1 << NVME_DIRECTIVE_IDENTIFY,
7200         .enabled = 1 << NVME_DIRECTIVE_IDENTIFY,
7201     };
7202 
7203     numd = dw10 + 1;
7204     doper = dw11 & 0xff;
7205     dtype = (dw11 >> 8) & 0xff;
7206 
7207     trans_len = MIN(sizeof(NvmeDirectiveIdentify), numd << 2);
7208 
7209     if (nsid == NVME_NSID_BROADCAST || dtype != NVME_DIRECTIVE_IDENTIFY ||
7210         doper != NVME_DIRECTIVE_RETURN_PARAMS) {
7211         return NVME_INVALID_FIELD | NVME_DNR;
7212     }
7213 
7214     ns = nvme_ns(n, nsid);
7215     if (!ns) {
7216         return NVME_INVALID_FIELD | NVME_DNR;
7217     }
7218 
7219     switch (dtype) {
7220     case NVME_DIRECTIVE_IDENTIFY:
7221         switch (doper) {
7222         case NVME_DIRECTIVE_RETURN_PARAMS:
7223             if (ns->endgrp && ns->endgrp->fdp.enabled) {
7224                 id.supported |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT;
7225                 id.enabled |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT;
7226                 id.persistent |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT;
7227             }
7228 
7229             return nvme_c2h(n, (uint8_t *)&id, trans_len, req);
7230 
7231         default:
7232             return NVME_INVALID_FIELD | NVME_DNR;
7233         }
7234 
7235     default:
7236         return NVME_INVALID_FIELD;
7237     }
7238 }
7239 
7240 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
7241 {
7242     trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
7243                              nvme_adm_opc_str(req->cmd.opcode));
7244 
7245     if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
7246         trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
7247         return NVME_INVALID_OPCODE | NVME_DNR;
7248     }
7249 
7250     /* SGLs shall not be used for Admin commands in NVMe over PCIe */
7251     if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) {
7252         return NVME_INVALID_FIELD | NVME_DNR;
7253     }
7254 
7255     if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
7256         return NVME_INVALID_FIELD;
7257     }
7258 
7259     switch (req->cmd.opcode) {
7260     case NVME_ADM_CMD_DELETE_SQ:
7261         return nvme_del_sq(n, req);
7262     case NVME_ADM_CMD_CREATE_SQ:
7263         return nvme_create_sq(n, req);
7264     case NVME_ADM_CMD_GET_LOG_PAGE:
7265         return nvme_get_log(n, req);
7266     case NVME_ADM_CMD_DELETE_CQ:
7267         return nvme_del_cq(n, req);
7268     case NVME_ADM_CMD_CREATE_CQ:
7269         return nvme_create_cq(n, req);
7270     case NVME_ADM_CMD_IDENTIFY:
7271         return nvme_identify(n, req);
7272     case NVME_ADM_CMD_ABORT:
7273         return nvme_abort(n, req);
7274     case NVME_ADM_CMD_SET_FEATURES:
7275         return nvme_set_feature(n, req);
7276     case NVME_ADM_CMD_GET_FEATURES:
7277         return nvme_get_feature(n, req);
7278     case NVME_ADM_CMD_ASYNC_EV_REQ:
7279         return nvme_aer(n, req);
7280     case NVME_ADM_CMD_NS_ATTACHMENT:
7281         return nvme_ns_attachment(n, req);
7282     case NVME_ADM_CMD_VIRT_MNGMT:
7283         return nvme_virt_mngmt(n, req);
7284     case NVME_ADM_CMD_DBBUF_CONFIG:
7285         return nvme_dbbuf_config(n, req);
7286     case NVME_ADM_CMD_FORMAT_NVM:
7287         return nvme_format(n, req);
7288     case NVME_ADM_CMD_DIRECTIVE_SEND:
7289         return nvme_directive_send(n, req);
7290     case NVME_ADM_CMD_DIRECTIVE_RECV:
7291         return nvme_directive_receive(n, req);
7292     default:
7293         g_assert_not_reached();
7294     }
7295 
7296     return NVME_INVALID_OPCODE | NVME_DNR;
7297 }
7298 
7299 static void nvme_update_sq_eventidx(const NvmeSQueue *sq)
7300 {
7301     trace_pci_nvme_update_sq_eventidx(sq->sqid, sq->tail);
7302 
7303     stl_le_pci_dma(PCI_DEVICE(sq->ctrl), sq->ei_addr, sq->tail,
7304                    MEMTXATTRS_UNSPECIFIED);
7305 }
7306 
7307 static void nvme_update_sq_tail(NvmeSQueue *sq)
7308 {
7309     ldl_le_pci_dma(PCI_DEVICE(sq->ctrl), sq->db_addr, &sq->tail,
7310                    MEMTXATTRS_UNSPECIFIED);
7311 
7312     trace_pci_nvme_update_sq_tail(sq->sqid, sq->tail);
7313 }
7314 
7315 #define NVME_ATOMIC_NO_START        0
7316 #define NVME_ATOMIC_START_ATOMIC    1
7317 #define NVME_ATOMIC_START_NONATOMIC 2
7318 
7319 static int nvme_atomic_write_check(NvmeCtrl *n, NvmeCmd *cmd,
7320     NvmeAtomic *atomic)
7321 {
7322     NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
7323     uint64_t slba = le64_to_cpu(rw->slba);
7324     uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb);
7325     uint64_t elba = slba + nlb;
7326     bool cmd_atomic_wr = true;
7327     int i;
7328 
7329     if ((cmd->opcode == NVME_CMD_READ) || ((cmd->opcode == NVME_CMD_WRITE) &&
7330         ((rw->nlb + 1) > atomic->atomic_max_write_size))) {
7331         cmd_atomic_wr = false;
7332     }
7333 
7334     /*
7335      * Walk the queues to see if there are any atomic conflicts.
7336      */
7337     for (i = 1; i < n->params.max_ioqpairs + 1; i++) {
7338         NvmeSQueue *sq;
7339         NvmeRequest *req;
7340         NvmeRwCmd *req_rw;
7341         uint64_t req_slba;
7342         uint32_t req_nlb;
7343         uint64_t req_elba;
7344 
7345         sq = n->sq[i];
7346         if (!sq) {
7347             continue;
7348         }
7349 
7350         /*
7351          * Walk all the requests on a given queue.
7352          */
7353         QTAILQ_FOREACH(req, &sq->out_req_list, entry) {
7354             req_rw = (NvmeRwCmd *)&req->cmd;
7355 
7356             if (((req_rw->opcode == NVME_CMD_WRITE) ||
7357                  (req_rw->opcode == NVME_CMD_READ)) &&
7358                 (cmd->nsid == req->ns->params.nsid)) {
7359                 req_slba = le64_to_cpu(req_rw->slba);
7360                 req_nlb = (uint32_t)le16_to_cpu(req_rw->nlb);
7361                 req_elba = req_slba + req_nlb;
7362 
7363                 if (cmd_atomic_wr) {
7364                     if ((elba >= req_slba) && (slba <= req_elba)) {
7365                         return NVME_ATOMIC_NO_START;
7366                     }
7367                 } else {
7368                     if (req->atomic_write && ((elba >= req_slba) &&
7369                         (slba <= req_elba))) {
7370                         return NVME_ATOMIC_NO_START;
7371                     }
7372                 }
7373             }
7374         }
7375     }
7376     if (cmd_atomic_wr) {
7377         return NVME_ATOMIC_START_ATOMIC;
7378     }
7379     return NVME_ATOMIC_START_NONATOMIC;
7380 }
7381 
7382 static NvmeAtomic *nvme_get_atomic(NvmeCtrl *n, NvmeCmd *cmd)
7383 {
7384     if (n->atomic.atomic_writes) {
7385         return &n->atomic;
7386     }
7387     return NULL;
7388 }
7389 
7390 static void nvme_process_sq(void *opaque)
7391 {
7392     NvmeSQueue *sq = opaque;
7393     NvmeCtrl *n = sq->ctrl;
7394     NvmeCQueue *cq = n->cq[sq->cqid];
7395 
7396     uint16_t status;
7397     hwaddr addr;
7398     NvmeCmd cmd;
7399     NvmeRequest *req;
7400 
7401     if (n->dbbuf_enabled) {
7402         nvme_update_sq_tail(sq);
7403     }
7404 
7405     while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
7406         NvmeAtomic *atomic;
7407         bool cmd_is_atomic;
7408 
7409         addr = sq->dma_addr + (sq->head << NVME_SQES);
7410         if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
7411             trace_pci_nvme_err_addr_read(addr);
7412             trace_pci_nvme_err_cfs();
7413             stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
7414             break;
7415         }
7416 
7417         atomic = nvme_get_atomic(n, &cmd);
7418 
7419         cmd_is_atomic = false;
7420         if (sq->sqid && atomic) {
7421             int ret;
7422 
7423             ret = nvme_atomic_write_check(n, &cmd, atomic);
7424             switch (ret) {
7425             case NVME_ATOMIC_NO_START:
7426                 qemu_bh_schedule(sq->bh);
7427                 return;
7428             case NVME_ATOMIC_START_ATOMIC:
7429                 cmd_is_atomic = true;
7430                 break;
7431             case NVME_ATOMIC_START_NONATOMIC:
7432             default:
7433                 break;
7434             }
7435         }
7436         nvme_inc_sq_head(sq);
7437 
7438         req = QTAILQ_FIRST(&sq->req_list);
7439         QTAILQ_REMOVE(&sq->req_list, req, entry);
7440         QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
7441         nvme_req_clear(req);
7442         req->cqe.cid = cmd.cid;
7443         memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
7444 
7445         if (sq->sqid && atomic) {
7446             req->atomic_write = cmd_is_atomic;
7447         }
7448 
7449         status = sq->sqid ? nvme_io_cmd(n, req) :
7450             nvme_admin_cmd(n, req);
7451         if (status != NVME_NO_COMPLETE) {
7452             req->status = status;
7453             nvme_enqueue_req_completion(cq, req);
7454         }
7455 
7456         if (n->dbbuf_enabled) {
7457             nvme_update_sq_eventidx(sq);
7458             nvme_update_sq_tail(sq);
7459         }
7460     }
7461 }
7462 
7463 static void nvme_update_msixcap_ts(PCIDevice *pci_dev, uint32_t table_size)
7464 {
7465     uint8_t *config;
7466 
7467     if (!msix_present(pci_dev)) {
7468         return;
7469     }
7470 
7471     assert(table_size > 0 && table_size <= pci_dev->msix_entries_nr);
7472 
7473     config = pci_dev->config + pci_dev->msix_cap;
7474     pci_set_word_by_mask(config + PCI_MSIX_FLAGS, PCI_MSIX_FLAGS_QSIZE,
7475                          table_size - 1);
7476 }
7477 
7478 static void nvme_activate_virt_res(NvmeCtrl *n)
7479 {
7480     PCIDevice *pci_dev = PCI_DEVICE(n);
7481     NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
7482     NvmeSecCtrlEntry *sctrl;
7483 
7484     /* -1 to account for the admin queue */
7485     if (pci_is_vf(pci_dev)) {
7486         sctrl = nvme_sctrl(n);
7487         cap->vqprt = sctrl->nvq;
7488         cap->viprt = sctrl->nvi;
7489         n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
7490         n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
7491     } else {
7492         cap->vqrfap = n->next_pri_ctrl_cap.vqrfap;
7493         cap->virfap = n->next_pri_ctrl_cap.virfap;
7494         n->conf_ioqpairs = le16_to_cpu(cap->vqprt) +
7495                            le16_to_cpu(cap->vqrfap) - 1;
7496         n->conf_msix_qsize = le16_to_cpu(cap->viprt) +
7497                              le16_to_cpu(cap->virfap);
7498     }
7499 }
7500 
7501 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst)
7502 {
7503     PCIDevice *pci_dev = PCI_DEVICE(n);
7504     NvmeSecCtrlEntry *sctrl;
7505     NvmeNamespace *ns;
7506     int i;
7507 
7508     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
7509         ns = nvme_ns(n, i);
7510         if (!ns) {
7511             continue;
7512         }
7513 
7514         nvme_ns_drain(ns);
7515     }
7516 
7517     for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
7518         if (n->sq[i] != NULL) {
7519             nvme_free_sq(n->sq[i], n);
7520         }
7521     }
7522     for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
7523         if (n->cq[i] != NULL) {
7524             nvme_free_cq(n->cq[i], n);
7525         }
7526     }
7527 
7528     while (!QTAILQ_EMPTY(&n->aer_queue)) {
7529         NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
7530         QTAILQ_REMOVE(&n->aer_queue, event, entry);
7531         g_free(event);
7532     }
7533 
7534     if (n->params.sriov_max_vfs) {
7535         if (!pci_is_vf(pci_dev)) {
7536             for (i = 0; i < n->nr_sec_ctrls; i++) {
7537                 sctrl = &n->sec_ctrl_list[i];
7538                 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
7539             }
7540         }
7541 
7542         if (rst != NVME_RESET_CONTROLLER) {
7543             nvme_activate_virt_res(n);
7544         }
7545     }
7546 
7547     n->aer_queued = 0;
7548     n->aer_mask = 0;
7549     n->outstanding_aers = 0;
7550     n->qs_created = false;
7551 
7552     n->dn = n->params.atomic_dn; /* Set Disable Normal */
7553 
7554     nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
7555 
7556     if (pci_is_vf(pci_dev)) {
7557         sctrl = nvme_sctrl(n);
7558 
7559         stl_le_p(&n->bar.csts, sctrl->scs ? 0 : NVME_CSTS_FAILED);
7560     } else {
7561         stl_le_p(&n->bar.csts, 0);
7562     }
7563 
7564     stl_le_p(&n->bar.intms, 0);
7565     stl_le_p(&n->bar.intmc, 0);
7566     stl_le_p(&n->bar.cc, 0);
7567 
7568     n->dbbuf_dbs = 0;
7569     n->dbbuf_eis = 0;
7570     n->dbbuf_enabled = false;
7571 }
7572 
7573 static void nvme_ctrl_shutdown(NvmeCtrl *n)
7574 {
7575     NvmeNamespace *ns;
7576     int i;
7577 
7578     if (n->pmr.dev) {
7579         memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
7580     }
7581 
7582     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
7583         ns = nvme_ns(n, i);
7584         if (!ns) {
7585             continue;
7586         }
7587 
7588         nvme_ns_shutdown(ns);
7589     }
7590 }
7591 
7592 static void nvme_select_iocs(NvmeCtrl *n)
7593 {
7594     NvmeNamespace *ns;
7595     int i;
7596 
7597     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
7598         ns = nvme_ns(n, i);
7599         if (!ns) {
7600             continue;
7601         }
7602 
7603         nvme_select_iocs_ns(n, ns);
7604     }
7605 }
7606 
7607 static int nvme_start_ctrl(NvmeCtrl *n)
7608 {
7609     uint64_t cap = ldq_le_p(&n->bar.cap);
7610     uint32_t cc = ldl_le_p(&n->bar.cc);
7611     uint32_t aqa = ldl_le_p(&n->bar.aqa);
7612     uint64_t asq = ldq_le_p(&n->bar.asq);
7613     uint64_t acq = ldq_le_p(&n->bar.acq);
7614     uint32_t page_bits = NVME_CC_MPS(cc) + 12;
7615     uint32_t page_size = 1 << page_bits;
7616     NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
7617 
7618     if (pci_is_vf(PCI_DEVICE(n)) && !sctrl->scs) {
7619         trace_pci_nvme_err_startfail_virt_state(le16_to_cpu(sctrl->nvi),
7620                                                 le16_to_cpu(sctrl->nvq));
7621         return -1;
7622     }
7623     if (unlikely(n->cq[0])) {
7624         trace_pci_nvme_err_startfail_cq();
7625         return -1;
7626     }
7627     if (unlikely(n->sq[0])) {
7628         trace_pci_nvme_err_startfail_sq();
7629         return -1;
7630     }
7631     if (unlikely(asq & (page_size - 1))) {
7632         trace_pci_nvme_err_startfail_asq_misaligned(asq);
7633         return -1;
7634     }
7635     if (unlikely(acq & (page_size - 1))) {
7636         trace_pci_nvme_err_startfail_acq_misaligned(acq);
7637         return -1;
7638     }
7639     if (unlikely(!(NVME_CAP_CSS(cap) & (1 << NVME_CC_CSS(cc))))) {
7640         trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc));
7641         return -1;
7642     }
7643     if (unlikely(NVME_CC_MPS(cc) < NVME_CAP_MPSMIN(cap))) {
7644         trace_pci_nvme_err_startfail_page_too_small(
7645                     NVME_CC_MPS(cc),
7646                     NVME_CAP_MPSMIN(cap));
7647         return -1;
7648     }
7649     if (unlikely(NVME_CC_MPS(cc) >
7650                  NVME_CAP_MPSMAX(cap))) {
7651         trace_pci_nvme_err_startfail_page_too_large(
7652                     NVME_CC_MPS(cc),
7653                     NVME_CAP_MPSMAX(cap));
7654         return -1;
7655     }
7656     if (unlikely(!NVME_AQA_ASQS(aqa))) {
7657         trace_pci_nvme_err_startfail_asqent_sz_zero();
7658         return -1;
7659     }
7660     if (unlikely(!NVME_AQA_ACQS(aqa))) {
7661         trace_pci_nvme_err_startfail_acqent_sz_zero();
7662         return -1;
7663     }
7664 
7665     n->page_bits = page_bits;
7666     n->page_size = page_size;
7667     n->max_prp_ents = n->page_size / sizeof(uint64_t);
7668     nvme_init_cq(&n->admin_cq, n, acq, 0, 0, NVME_AQA_ACQS(aqa) + 1, 1);
7669     nvme_init_sq(&n->admin_sq, n, asq, 0, 0, NVME_AQA_ASQS(aqa) + 1);
7670 
7671     nvme_set_timestamp(n, 0ULL);
7672 
7673     nvme_select_iocs(n);
7674 
7675     return 0;
7676 }
7677 
7678 static void nvme_cmb_enable_regs(NvmeCtrl *n)
7679 {
7680     uint32_t cmbloc = ldl_le_p(&n->bar.cmbloc);
7681     uint32_t cmbsz = ldl_le_p(&n->bar.cmbsz);
7682 
7683     NVME_CMBLOC_SET_CDPCILS(cmbloc, 1);
7684     NVME_CMBLOC_SET_CDPMLS(cmbloc, 1);
7685     NVME_CMBLOC_SET_BIR(cmbloc, NVME_CMB_BIR);
7686     stl_le_p(&n->bar.cmbloc, cmbloc);
7687 
7688     NVME_CMBSZ_SET_SQS(cmbsz, 1);
7689     NVME_CMBSZ_SET_CQS(cmbsz, 0);
7690     NVME_CMBSZ_SET_LISTS(cmbsz, 1);
7691     NVME_CMBSZ_SET_RDS(cmbsz, 1);
7692     NVME_CMBSZ_SET_WDS(cmbsz, 1);
7693     NVME_CMBSZ_SET_SZU(cmbsz, 2); /* MBs */
7694     NVME_CMBSZ_SET_SZ(cmbsz, n->params.cmb_size_mb);
7695     stl_le_p(&n->bar.cmbsz, cmbsz);
7696 }
7697 
7698 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
7699                            unsigned size)
7700 {
7701     PCIDevice *pci = PCI_DEVICE(n);
7702     uint64_t cap = ldq_le_p(&n->bar.cap);
7703     uint32_t cc = ldl_le_p(&n->bar.cc);
7704     uint32_t intms = ldl_le_p(&n->bar.intms);
7705     uint32_t csts = ldl_le_p(&n->bar.csts);
7706     uint32_t pmrsts = ldl_le_p(&n->bar.pmrsts);
7707 
7708     if (unlikely(offset & (sizeof(uint32_t) - 1))) {
7709         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
7710                        "MMIO write not 32-bit aligned,"
7711                        " offset=0x%"PRIx64"", offset);
7712         /* should be ignored, fall through for now */
7713     }
7714 
7715     if (unlikely(size < sizeof(uint32_t))) {
7716         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
7717                        "MMIO write smaller than 32-bits,"
7718                        " offset=0x%"PRIx64", size=%u",
7719                        offset, size);
7720         /* should be ignored, fall through for now */
7721     }
7722 
7723     switch (offset) {
7724     case NVME_REG_INTMS:
7725         if (unlikely(msix_enabled(pci))) {
7726             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
7727                            "undefined access to interrupt mask set"
7728                            " when MSI-X is enabled");
7729             /* should be ignored, fall through for now */
7730         }
7731         intms |= data;
7732         stl_le_p(&n->bar.intms, intms);
7733         n->bar.intmc = n->bar.intms;
7734         trace_pci_nvme_mmio_intm_set(data & 0xffffffff, intms);
7735         nvme_irq_check(n);
7736         break;
7737     case NVME_REG_INTMC:
7738         if (unlikely(msix_enabled(pci))) {
7739             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
7740                            "undefined access to interrupt mask clr"
7741                            " when MSI-X is enabled");
7742             /* should be ignored, fall through for now */
7743         }
7744         intms &= ~data;
7745         stl_le_p(&n->bar.intms, intms);
7746         n->bar.intmc = n->bar.intms;
7747         trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, intms);
7748         nvme_irq_check(n);
7749         break;
7750     case NVME_REG_CC:
7751         stl_le_p(&n->bar.cc, data);
7752 
7753         trace_pci_nvme_mmio_cfg(data & 0xffffffff);
7754 
7755         if (NVME_CC_SHN(data) && !(NVME_CC_SHN(cc))) {
7756             trace_pci_nvme_mmio_shutdown_set();
7757             nvme_ctrl_shutdown(n);
7758             csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
7759             csts |= NVME_CSTS_SHST_COMPLETE;
7760         } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(cc)) {
7761             trace_pci_nvme_mmio_shutdown_cleared();
7762             csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
7763         }
7764 
7765         if (NVME_CC_EN(data) && !NVME_CC_EN(cc)) {
7766             if (unlikely(nvme_start_ctrl(n))) {
7767                 trace_pci_nvme_err_startfail();
7768                 csts = NVME_CSTS_FAILED;
7769             } else {
7770                 trace_pci_nvme_mmio_start_success();
7771                 csts = NVME_CSTS_READY;
7772             }
7773         } else if (!NVME_CC_EN(data) && NVME_CC_EN(cc)) {
7774             trace_pci_nvme_mmio_stopped();
7775             nvme_ctrl_reset(n, NVME_RESET_CONTROLLER);
7776 
7777             break;
7778         }
7779 
7780         stl_le_p(&n->bar.csts, csts);
7781 
7782         break;
7783     case NVME_REG_CSTS:
7784         if (data & (1 << 4)) {
7785             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
7786                            "attempted to W1C CSTS.NSSRO"
7787                            " but CAP.NSSRS is zero (not supported)");
7788         } else if (data != 0) {
7789             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
7790                            "attempted to set a read only bit"
7791                            " of controller status");
7792         }
7793         break;
7794     case NVME_REG_NSSR:
7795         if (data == 0x4e564d65) {
7796             trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
7797         } else {
7798             /* The spec says that writes of other values have no effect */
7799             return;
7800         }
7801         break;
7802     case NVME_REG_AQA:
7803         stl_le_p(&n->bar.aqa, data);
7804         trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
7805         break;
7806     case NVME_REG_ASQ:
7807         stn_le_p(&n->bar.asq, size, data);
7808         trace_pci_nvme_mmio_asqaddr(data);
7809         break;
7810     case NVME_REG_ASQ + 4:
7811         stl_le_p((uint8_t *)&n->bar.asq + 4, data);
7812         trace_pci_nvme_mmio_asqaddr_hi(data, ldq_le_p(&n->bar.asq));
7813         break;
7814     case NVME_REG_ACQ:
7815         trace_pci_nvme_mmio_acqaddr(data);
7816         stn_le_p(&n->bar.acq, size, data);
7817         break;
7818     case NVME_REG_ACQ + 4:
7819         stl_le_p((uint8_t *)&n->bar.acq + 4, data);
7820         trace_pci_nvme_mmio_acqaddr_hi(data, ldq_le_p(&n->bar.acq));
7821         break;
7822     case NVME_REG_CMBLOC:
7823         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
7824                        "invalid write to reserved CMBLOC"
7825                        " when CMBSZ is zero, ignored");
7826         return;
7827     case NVME_REG_CMBSZ:
7828         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
7829                        "invalid write to read only CMBSZ, ignored");
7830         return;
7831     case NVME_REG_CMBMSC:
7832         if (!NVME_CAP_CMBS(cap)) {
7833             return;
7834         }
7835 
7836         stn_le_p(&n->bar.cmbmsc, size, data);
7837         n->cmb.cmse = false;
7838 
7839         if (NVME_CMBMSC_CRE(data)) {
7840             nvme_cmb_enable_regs(n);
7841 
7842             if (NVME_CMBMSC_CMSE(data)) {
7843                 uint64_t cmbmsc = ldq_le_p(&n->bar.cmbmsc);
7844                 hwaddr cba = NVME_CMBMSC_CBA(cmbmsc) << CMBMSC_CBA_SHIFT;
7845                 if (cba + int128_get64(n->cmb.mem.size) < cba) {
7846                     uint32_t cmbsts = ldl_le_p(&n->bar.cmbsts);
7847                     NVME_CMBSTS_SET_CBAI(cmbsts, 1);
7848                     stl_le_p(&n->bar.cmbsts, cmbsts);
7849                     return;
7850                 }
7851 
7852                 n->cmb.cba = cba;
7853                 n->cmb.cmse = true;
7854             }
7855         } else {
7856             n->bar.cmbsz = 0;
7857             n->bar.cmbloc = 0;
7858         }
7859 
7860         return;
7861     case NVME_REG_CMBMSC + 4:
7862         stl_le_p((uint8_t *)&n->bar.cmbmsc + 4, data);
7863         return;
7864 
7865     case NVME_REG_PMRCAP:
7866         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
7867                        "invalid write to PMRCAP register, ignored");
7868         return;
7869     case NVME_REG_PMRCTL:
7870         if (!NVME_CAP_PMRS(cap)) {
7871             return;
7872         }
7873 
7874         stl_le_p(&n->bar.pmrctl, data);
7875         if (NVME_PMRCTL_EN(data)) {
7876             memory_region_set_enabled(&n->pmr.dev->mr, true);
7877             pmrsts = 0;
7878         } else {
7879             memory_region_set_enabled(&n->pmr.dev->mr, false);
7880             NVME_PMRSTS_SET_NRDY(pmrsts, 1);
7881             n->pmr.cmse = false;
7882         }
7883         stl_le_p(&n->bar.pmrsts, pmrsts);
7884         return;
7885     case NVME_REG_PMRSTS:
7886         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
7887                        "invalid write to PMRSTS register, ignored");
7888         return;
7889     case NVME_REG_PMREBS:
7890         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
7891                        "invalid write to PMREBS register, ignored");
7892         return;
7893     case NVME_REG_PMRSWTP:
7894         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
7895                        "invalid write to PMRSWTP register, ignored");
7896         return;
7897     case NVME_REG_PMRMSCL:
7898         if (!NVME_CAP_PMRS(cap)) {
7899             return;
7900         }
7901 
7902         stl_le_p(&n->bar.pmrmscl, data);
7903         n->pmr.cmse = false;
7904 
7905         if (NVME_PMRMSCL_CMSE(data)) {
7906             uint64_t pmrmscu = ldl_le_p(&n->bar.pmrmscu);
7907             hwaddr cba = pmrmscu << 32 |
7908                 (NVME_PMRMSCL_CBA(data) << PMRMSCL_CBA_SHIFT);
7909             if (cba + int128_get64(n->pmr.dev->mr.size) < cba) {
7910                 NVME_PMRSTS_SET_CBAI(pmrsts, 1);
7911                 stl_le_p(&n->bar.pmrsts, pmrsts);
7912                 return;
7913             }
7914 
7915             n->pmr.cmse = true;
7916             n->pmr.cba = cba;
7917         }
7918 
7919         return;
7920     case NVME_REG_PMRMSCU:
7921         if (!NVME_CAP_PMRS(cap)) {
7922             return;
7923         }
7924 
7925         stl_le_p(&n->bar.pmrmscu, data);
7926         return;
7927     default:
7928         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
7929                        "invalid MMIO write,"
7930                        " offset=0x%"PRIx64", data=%"PRIx64"",
7931                        offset, data);
7932         break;
7933     }
7934 }
7935 
7936 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
7937 {
7938     NvmeCtrl *n = (NvmeCtrl *)opaque;
7939     uint8_t *ptr = (uint8_t *)&n->bar;
7940 
7941     trace_pci_nvme_mmio_read(addr, size);
7942 
7943     if (unlikely(addr & (sizeof(uint32_t) - 1))) {
7944         NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
7945                        "MMIO read not 32-bit aligned,"
7946                        " offset=0x%"PRIx64"", addr);
7947         /* should RAZ, fall through for now */
7948     } else if (unlikely(size < sizeof(uint32_t))) {
7949         NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
7950                        "MMIO read smaller than 32-bits,"
7951                        " offset=0x%"PRIx64"", addr);
7952         /* should RAZ, fall through for now */
7953     }
7954 
7955     if (addr > sizeof(n->bar) - size) {
7956         NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
7957                        "MMIO read beyond last register,"
7958                        " offset=0x%"PRIx64", returning 0", addr);
7959 
7960         return 0;
7961     }
7962 
7963     if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs &&
7964         addr != NVME_REG_CSTS) {
7965         trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
7966         return 0;
7967     }
7968 
7969     /*
7970      * When PMRWBM bit 1 is set then read from
7971      * from PMRSTS should ensure prior writes
7972      * made it to persistent media
7973      */
7974     if (addr == NVME_REG_PMRSTS &&
7975         (NVME_PMRCAP_PMRWBM(ldl_le_p(&n->bar.pmrcap)) & 0x02)) {
7976         memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
7977     }
7978 
7979     return ldn_le_p(ptr + addr, size);
7980 }
7981 
7982 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
7983 {
7984     PCIDevice *pci = PCI_DEVICE(n);
7985     uint32_t qid;
7986 
7987     if (unlikely(addr & ((1 << 2) - 1))) {
7988         NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
7989                        "doorbell write not 32-bit aligned,"
7990                        " offset=0x%"PRIx64", ignoring", addr);
7991         return;
7992     }
7993 
7994     if (((addr - 0x1000) >> 2) & 1) {
7995         /* Completion queue doorbell write */
7996 
7997         uint16_t new_head = val & 0xffff;
7998         NvmeCQueue *cq;
7999 
8000         qid = (addr - (0x1000 + (1 << 2))) >> 3;
8001         if (unlikely(nvme_check_cqid(n, qid))) {
8002             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
8003                            "completion queue doorbell write"
8004                            " for nonexistent queue,"
8005                            " sqid=%"PRIu32", ignoring", qid);
8006 
8007             /*
8008              * NVM Express v1.3d, Section 4.1 state: "If host software writes
8009              * an invalid value to the Submission Queue Tail Doorbell or
8010              * Completion Queue Head Doorbell register and an Asynchronous Event
8011              * Request command is outstanding, then an asynchronous event is
8012              * posted to the Admin Completion Queue with a status code of
8013              * Invalid Doorbell Write Value."
8014              *
8015              * Also note that the spec includes the "Invalid Doorbell Register"
8016              * status code, but nowhere does it specify when to use it.
8017              * However, it seems reasonable to use it here in a similar
8018              * fashion.
8019              */
8020             if (n->outstanding_aers) {
8021                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
8022                                    NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
8023                                    NVME_LOG_ERROR_INFO);
8024             }
8025 
8026             return;
8027         }
8028 
8029         cq = n->cq[qid];
8030         if (unlikely(new_head >= cq->size)) {
8031             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
8032                            "completion queue doorbell write value"
8033                            " beyond queue size, sqid=%"PRIu32","
8034                            " new_head=%"PRIu16", ignoring",
8035                            qid, new_head);
8036 
8037             if (n->outstanding_aers) {
8038                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
8039                                    NVME_AER_INFO_ERR_INVALID_DB_VALUE,
8040                                    NVME_LOG_ERROR_INFO);
8041             }
8042 
8043             return;
8044         }
8045 
8046         trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
8047 
8048         /* scheduled deferred cqe posting if queue was previously full */
8049         if (nvme_cq_full(cq)) {
8050             qemu_bh_schedule(cq->bh);
8051         }
8052 
8053         cq->head = new_head;
8054         if (!qid && n->dbbuf_enabled) {
8055             stl_le_pci_dma(pci, cq->db_addr, cq->head, MEMTXATTRS_UNSPECIFIED);
8056         }
8057 
8058         if (cq->tail == cq->head) {
8059             if (cq->irq_enabled) {
8060                 n->cq_pending--;
8061             }
8062 
8063             nvme_irq_deassert(n, cq);
8064         }
8065     } else {
8066         /* Submission queue doorbell write */
8067 
8068         uint16_t new_tail = val & 0xffff;
8069         NvmeSQueue *sq;
8070 
8071         qid = (addr - 0x1000) >> 3;
8072         if (unlikely(nvme_check_sqid(n, qid))) {
8073             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
8074                            "submission queue doorbell write"
8075                            " for nonexistent queue,"
8076                            " sqid=%"PRIu32", ignoring", qid);
8077 
8078             if (n->outstanding_aers) {
8079                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
8080                                    NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
8081                                    NVME_LOG_ERROR_INFO);
8082             }
8083 
8084             return;
8085         }
8086 
8087         sq = n->sq[qid];
8088         if (unlikely(new_tail >= sq->size)) {
8089             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
8090                            "submission queue doorbell write value"
8091                            " beyond queue size, sqid=%"PRIu32","
8092                            " new_tail=%"PRIu16", ignoring",
8093                            qid, new_tail);
8094 
8095             if (n->outstanding_aers) {
8096                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
8097                                    NVME_AER_INFO_ERR_INVALID_DB_VALUE,
8098                                    NVME_LOG_ERROR_INFO);
8099             }
8100 
8101             return;
8102         }
8103 
8104         trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
8105 
8106         sq->tail = new_tail;
8107         if (!qid && n->dbbuf_enabled) {
8108             /*
8109              * The spec states "the host shall also update the controller's
8110              * corresponding doorbell property to match the value of that entry
8111              * in the Shadow Doorbell buffer."
8112              *
8113              * Since this context is currently a VM trap, we can safely enforce
8114              * the requirement from the device side in case the host is
8115              * misbehaving.
8116              *
8117              * Note, we shouldn't have to do this, but various drivers
8118              * including ones that run on Linux, are not updating Admin Queues,
8119              * so we can't trust reading it for an appropriate sq tail.
8120              */
8121             stl_le_pci_dma(pci, sq->db_addr, sq->tail, MEMTXATTRS_UNSPECIFIED);
8122         }
8123 
8124         qemu_bh_schedule(sq->bh);
8125     }
8126 }
8127 
8128 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
8129                             unsigned size)
8130 {
8131     NvmeCtrl *n = (NvmeCtrl *)opaque;
8132 
8133     trace_pci_nvme_mmio_write(addr, data, size);
8134 
8135     if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs &&
8136         addr != NVME_REG_CSTS) {
8137         trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
8138         return;
8139     }
8140 
8141     if (addr < sizeof(n->bar)) {
8142         nvme_write_bar(n, addr, data, size);
8143     } else {
8144         nvme_process_db(n, addr, data);
8145     }
8146 }
8147 
8148 static const MemoryRegionOps nvme_mmio_ops = {
8149     .read = nvme_mmio_read,
8150     .write = nvme_mmio_write,
8151     .endianness = DEVICE_LITTLE_ENDIAN,
8152     .impl = {
8153         .min_access_size = 2,
8154         .max_access_size = 8,
8155     },
8156 };
8157 
8158 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
8159                            unsigned size)
8160 {
8161     NvmeCtrl *n = (NvmeCtrl *)opaque;
8162     stn_le_p(&n->cmb.buf[addr], size, data);
8163 }
8164 
8165 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
8166 {
8167     NvmeCtrl *n = (NvmeCtrl *)opaque;
8168     return ldn_le_p(&n->cmb.buf[addr], size);
8169 }
8170 
8171 static const MemoryRegionOps nvme_cmb_ops = {
8172     .read = nvme_cmb_read,
8173     .write = nvme_cmb_write,
8174     .endianness = DEVICE_LITTLE_ENDIAN,
8175     .impl = {
8176         .min_access_size = 1,
8177         .max_access_size = 8,
8178     },
8179 };
8180 
8181 static bool nvme_check_params(NvmeCtrl *n, Error **errp)
8182 {
8183     NvmeParams *params = &n->params;
8184 
8185     if (params->num_queues) {
8186         warn_report("num_queues is deprecated; please use max_ioqpairs "
8187                     "instead");
8188 
8189         params->max_ioqpairs = params->num_queues - 1;
8190     }
8191 
8192     if (n->namespace.blkconf.blk && n->subsys) {
8193         error_setg(errp, "subsystem support is unavailable with legacy "
8194                    "namespace ('drive' property)");
8195         return false;
8196     }
8197 
8198     if (params->max_ioqpairs < 1 ||
8199         params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
8200         error_setg(errp, "max_ioqpairs must be between 1 and %d",
8201                    NVME_MAX_IOQPAIRS);
8202         return false;
8203     }
8204 
8205     if (params->msix_qsize < 1 ||
8206         params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
8207         error_setg(errp, "msix_qsize must be between 1 and %d",
8208                    PCI_MSIX_FLAGS_QSIZE + 1);
8209         return false;
8210     }
8211 
8212     if (!params->serial) {
8213         error_setg(errp, "serial property not set");
8214         return false;
8215     }
8216 
8217     if (params->mqes < 1) {
8218         error_setg(errp, "mqes property cannot be less than 1");
8219         return false;
8220     }
8221 
8222     if (n->pmr.dev) {
8223         if (params->msix_exclusive_bar) {
8224             error_setg(errp, "not enough BARs available to enable PMR");
8225             return false;
8226         }
8227 
8228         if (host_memory_backend_is_mapped(n->pmr.dev)) {
8229             error_setg(errp, "can't use already busy memdev: %s",
8230                        object_get_canonical_path_component(OBJECT(n->pmr.dev)));
8231             return false;
8232         }
8233 
8234         if (!is_power_of_2(n->pmr.dev->size)) {
8235             error_setg(errp, "pmr backend size needs to be power of 2 in size");
8236             return false;
8237         }
8238 
8239         host_memory_backend_set_mapped(n->pmr.dev, true);
8240     }
8241 
8242     if (n->params.zasl > n->params.mdts) {
8243         error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less "
8244                    "than or equal to mdts (Maximum Data Transfer Size)");
8245         return false;
8246     }
8247 
8248     if (!n->params.vsl) {
8249         error_setg(errp, "vsl must be non-zero");
8250         return false;
8251     }
8252 
8253     if (params->sriov_max_vfs) {
8254         if (!n->subsys) {
8255             error_setg(errp, "subsystem is required for the use of SR-IOV");
8256             return false;
8257         }
8258 
8259         if (params->cmb_size_mb) {
8260             error_setg(errp, "CMB is not supported with SR-IOV");
8261             return false;
8262         }
8263 
8264         if (n->pmr.dev) {
8265             error_setg(errp, "PMR is not supported with SR-IOV");
8266             return false;
8267         }
8268 
8269         if (!params->sriov_vq_flexible || !params->sriov_vi_flexible) {
8270             error_setg(errp, "both sriov_vq_flexible and sriov_vi_flexible"
8271                        " must be set for the use of SR-IOV");
8272             return false;
8273         }
8274 
8275         if (params->sriov_vq_flexible < params->sriov_max_vfs * 2) {
8276             error_setg(errp, "sriov_vq_flexible must be greater than or equal"
8277                        " to %d (sriov_max_vfs * 2)", params->sriov_max_vfs * 2);
8278             return false;
8279         }
8280 
8281         if (params->max_ioqpairs < params->sriov_vq_flexible + 2) {
8282             error_setg(errp, "(max_ioqpairs - sriov_vq_flexible) must be"
8283                        " greater than or equal to 2");
8284             return false;
8285         }
8286 
8287         if (params->sriov_vi_flexible < params->sriov_max_vfs) {
8288             error_setg(errp, "sriov_vi_flexible must be greater than or equal"
8289                        " to %d (sriov_max_vfs)", params->sriov_max_vfs);
8290             return false;
8291         }
8292 
8293         if (params->msix_qsize < params->sriov_vi_flexible + 1) {
8294             error_setg(errp, "(msix_qsize - sriov_vi_flexible) must be"
8295                        " greater than or equal to 1");
8296             return false;
8297         }
8298 
8299         if (params->sriov_max_vi_per_vf &&
8300             (params->sriov_max_vi_per_vf - 1) % NVME_VF_RES_GRANULARITY) {
8301             error_setg(errp, "sriov_max_vi_per_vf must meet:"
8302                        " (sriov_max_vi_per_vf - 1) %% %d == 0 and"
8303                        " sriov_max_vi_per_vf >= 1", NVME_VF_RES_GRANULARITY);
8304             return false;
8305         }
8306 
8307         if (params->sriov_max_vq_per_vf &&
8308             (params->sriov_max_vq_per_vf < 2 ||
8309              (params->sriov_max_vq_per_vf - 1) % NVME_VF_RES_GRANULARITY)) {
8310             error_setg(errp, "sriov_max_vq_per_vf must meet:"
8311                        " (sriov_max_vq_per_vf - 1) %% %d == 0 and"
8312                        " sriov_max_vq_per_vf >= 2", NVME_VF_RES_GRANULARITY);
8313             return false;
8314         }
8315     }
8316 
8317     return true;
8318 }
8319 
8320 static void nvme_init_state(NvmeCtrl *n)
8321 {
8322     NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
8323     NvmeSecCtrlEntry *list = n->sec_ctrl_list;
8324     NvmeSecCtrlEntry *sctrl;
8325     PCIDevice *pci = PCI_DEVICE(n);
8326     NvmeAtomic *atomic = &n->atomic;
8327     NvmeIdCtrl *id = &n->id_ctrl;
8328     uint8_t max_vfs;
8329     int i;
8330 
8331     if (pci_is_vf(pci)) {
8332         sctrl = nvme_sctrl(n);
8333         max_vfs = 0;
8334         n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
8335         n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
8336     } else {
8337         max_vfs = n->params.sriov_max_vfs;
8338         n->conf_ioqpairs = n->params.max_ioqpairs;
8339         n->conf_msix_qsize = n->params.msix_qsize;
8340     }
8341 
8342     n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
8343     n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
8344     n->temperature = NVME_TEMPERATURE;
8345     n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
8346     n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
8347     n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
8348     QTAILQ_INIT(&n->aer_queue);
8349 
8350     n->nr_sec_ctrls = max_vfs;
8351     for (i = 0; i < max_vfs; i++) {
8352         sctrl = &list[i];
8353         sctrl->pcid = cpu_to_le16(n->cntlid);
8354         sctrl->vfn = cpu_to_le16(i + 1);
8355     }
8356 
8357     cap->cntlid = cpu_to_le16(n->cntlid);
8358     cap->crt = NVME_CRT_VQ | NVME_CRT_VI;
8359 
8360     if (pci_is_vf(pci)) {
8361         cap->vqprt = cpu_to_le16(1 + n->conf_ioqpairs);
8362     } else {
8363         cap->vqprt = cpu_to_le16(1 + n->params.max_ioqpairs -
8364                                  n->params.sriov_vq_flexible);
8365         cap->vqfrt = cpu_to_le32(n->params.sriov_vq_flexible);
8366         cap->vqrfap = cap->vqfrt;
8367         cap->vqgran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
8368         cap->vqfrsm = n->params.sriov_max_vq_per_vf ?
8369                         cpu_to_le16(n->params.sriov_max_vq_per_vf) :
8370                         cap->vqfrt / MAX(max_vfs, 1);
8371     }
8372 
8373     if (pci_is_vf(pci)) {
8374         cap->viprt = cpu_to_le16(n->conf_msix_qsize);
8375     } else {
8376         cap->viprt = cpu_to_le16(n->params.msix_qsize -
8377                                  n->params.sriov_vi_flexible);
8378         cap->vifrt = cpu_to_le32(n->params.sriov_vi_flexible);
8379         cap->virfap = cap->vifrt;
8380         cap->vigran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
8381         cap->vifrsm = n->params.sriov_max_vi_per_vf ?
8382                         cpu_to_le16(n->params.sriov_max_vi_per_vf) :
8383                         cap->vifrt / MAX(max_vfs, 1);
8384     }
8385 
8386     /* Atomic Write */
8387     id->awun = cpu_to_le16(n->params.atomic_awun);
8388     id->awupf = cpu_to_le16(n->params.atomic_awupf);
8389     n->dn = n->params.atomic_dn;
8390 
8391     if (id->awun || id->awupf) {
8392         if (id->awupf > id->awun) {
8393             id->awupf = 0;
8394         }
8395 
8396         if (n->dn) {
8397             atomic->atomic_max_write_size = id->awupf + 1;
8398         } else {
8399             atomic->atomic_max_write_size = id->awun + 1;
8400         }
8401 
8402         if (atomic->atomic_max_write_size == 1) {
8403             atomic->atomic_writes = 0;
8404         } else {
8405             atomic->atomic_writes = 1;
8406         }
8407     }
8408 }
8409 
8410 static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
8411 {
8412     uint64_t cmb_size = n->params.cmb_size_mb * MiB;
8413     uint64_t cap = ldq_le_p(&n->bar.cap);
8414 
8415     n->cmb.buf = g_malloc0(cmb_size);
8416     memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n,
8417                           "nvme-cmb", cmb_size);
8418     pci_register_bar(pci_dev, NVME_CMB_BIR,
8419                      PCI_BASE_ADDRESS_SPACE_MEMORY |
8420                      PCI_BASE_ADDRESS_MEM_TYPE_64 |
8421                      PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem);
8422 
8423     NVME_CAP_SET_CMBS(cap, 1);
8424     stq_le_p(&n->bar.cap, cap);
8425 
8426     if (n->params.legacy_cmb) {
8427         nvme_cmb_enable_regs(n);
8428         n->cmb.cmse = true;
8429     }
8430 }
8431 
8432 static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
8433 {
8434     uint32_t pmrcap = ldl_le_p(&n->bar.pmrcap);
8435 
8436     NVME_PMRCAP_SET_RDS(pmrcap, 1);
8437     NVME_PMRCAP_SET_WDS(pmrcap, 1);
8438     NVME_PMRCAP_SET_BIR(pmrcap, NVME_PMR_BIR);
8439     /* Turn on bit 1 support */
8440     NVME_PMRCAP_SET_PMRWBM(pmrcap, 0x02);
8441     NVME_PMRCAP_SET_CMSS(pmrcap, 1);
8442     stl_le_p(&n->bar.pmrcap, pmrcap);
8443 
8444     pci_register_bar(pci_dev, NVME_PMR_BIR,
8445                      PCI_BASE_ADDRESS_SPACE_MEMORY |
8446                      PCI_BASE_ADDRESS_MEM_TYPE_64 |
8447                      PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr);
8448 
8449     memory_region_set_enabled(&n->pmr.dev->mr, false);
8450 }
8451 
8452 static uint64_t nvme_mbar_size(unsigned total_queues, unsigned total_irqs,
8453                                unsigned *msix_table_offset,
8454                                unsigned *msix_pba_offset)
8455 {
8456     uint64_t bar_size, msix_table_size;
8457 
8458     bar_size = sizeof(NvmeBar) + 2 * total_queues * NVME_DB_SIZE;
8459 
8460     if (total_irqs == 0) {
8461         goto out;
8462     }
8463 
8464     bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
8465 
8466     if (msix_table_offset) {
8467         *msix_table_offset = bar_size;
8468     }
8469 
8470     msix_table_size = PCI_MSIX_ENTRY_SIZE * total_irqs;
8471     bar_size += msix_table_size;
8472     bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
8473 
8474     if (msix_pba_offset) {
8475         *msix_pba_offset = bar_size;
8476     }
8477 
8478     bar_size += QEMU_ALIGN_UP(total_irqs, 64) / 8;
8479 
8480 out:
8481     return pow2ceil(bar_size);
8482 }
8483 
8484 static void nvme_init_sriov(NvmeCtrl *n, PCIDevice *pci_dev, uint16_t offset)
8485 {
8486     uint16_t vf_dev_id = n->params.use_intel_id ?
8487                          PCI_DEVICE_ID_INTEL_NVME : PCI_DEVICE_ID_REDHAT_NVME;
8488     NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
8489     uint64_t bar_size = nvme_mbar_size(le16_to_cpu(cap->vqfrsm),
8490                                       le16_to_cpu(cap->vifrsm),
8491                                       NULL, NULL);
8492 
8493     pcie_sriov_pf_init(pci_dev, offset, "nvme", vf_dev_id,
8494                        n->params.sriov_max_vfs, n->params.sriov_max_vfs,
8495                        NVME_VF_OFFSET, NVME_VF_STRIDE);
8496 
8497     pcie_sriov_pf_init_vf_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
8498                               PCI_BASE_ADDRESS_MEM_TYPE_64, bar_size);
8499 }
8500 
8501 static int nvme_add_pm_capability(PCIDevice *pci_dev, uint8_t offset)
8502 {
8503     Error *err = NULL;
8504     int ret;
8505 
8506     ret = pci_add_capability(pci_dev, PCI_CAP_ID_PM, offset,
8507                              PCI_PM_SIZEOF, &err);
8508     if (err) {
8509         error_report_err(err);
8510         return ret;
8511     }
8512 
8513     pci_set_word(pci_dev->config + offset + PCI_PM_PMC,
8514                  PCI_PM_CAP_VER_1_2);
8515     pci_set_word(pci_dev->config + offset + PCI_PM_CTRL,
8516                  PCI_PM_CTRL_NO_SOFT_RESET);
8517     pci_set_word(pci_dev->wmask + offset + PCI_PM_CTRL,
8518                  PCI_PM_CTRL_STATE_MASK);
8519 
8520     return 0;
8521 }
8522 
8523 static bool pcie_doe_spdm_rsp(DOECap *doe_cap)
8524 {
8525     void *req = pcie_doe_get_write_mbox_ptr(doe_cap);
8526     uint32_t req_len = pcie_doe_get_obj_len(req) * 4;
8527     void *rsp = doe_cap->read_mbox;
8528     uint32_t rsp_len = SPDM_SOCKET_MAX_MESSAGE_BUFFER_SIZE;
8529 
8530     uint32_t recvd = spdm_socket_rsp(doe_cap->spdm_socket,
8531                              SPDM_SOCKET_TRANSPORT_TYPE_PCI_DOE,
8532                              req, req_len, rsp, rsp_len);
8533     doe_cap->read_mbox_len += DIV_ROUND_UP(recvd, 4);
8534 
8535     return recvd != 0;
8536 }
8537 
8538 static DOEProtocol doe_spdm_prot[] = {
8539     { PCI_VENDOR_ID_PCI_SIG, PCI_SIG_DOE_CMA, pcie_doe_spdm_rsp },
8540     { PCI_VENDOR_ID_PCI_SIG, PCI_SIG_DOE_SECURED_CMA, pcie_doe_spdm_rsp },
8541     { }
8542 };
8543 
8544 static bool nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
8545 {
8546     ERRP_GUARD();
8547     uint8_t *pci_conf = pci_dev->config;
8548     uint64_t bar_size;
8549     unsigned msix_table_offset = 0, msix_pba_offset = 0;
8550     unsigned nr_vectors;
8551     int ret;
8552 
8553     pci_conf[PCI_INTERRUPT_PIN] = pci_is_vf(pci_dev) ? 0 : 1;
8554     pci_config_set_prog_interface(pci_conf, 0x2);
8555 
8556     if (n->params.use_intel_id) {
8557         pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
8558         pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_NVME);
8559     } else {
8560         pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT);
8561         pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME);
8562     }
8563 
8564     pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
8565     nvme_add_pm_capability(pci_dev, 0x60);
8566     pcie_endpoint_cap_init(pci_dev, 0x80);
8567     pcie_cap_flr_init(pci_dev);
8568     if (n->params.sriov_max_vfs) {
8569         pcie_ari_init(pci_dev, 0x100);
8570     }
8571 
8572     if (n->params.msix_exclusive_bar && !pci_is_vf(pci_dev)) {
8573         bar_size = nvme_mbar_size(n->params.max_ioqpairs + 1, 0, NULL, NULL);
8574         memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
8575                               bar_size);
8576         pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
8577                          PCI_BASE_ADDRESS_MEM_TYPE_64, &n->iomem);
8578         ret = msix_init_exclusive_bar(pci_dev, n->params.msix_qsize, 4, errp);
8579     } else {
8580         assert(n->params.msix_qsize >= 1);
8581 
8582         /* add one to max_ioqpairs to account for the admin queue pair */
8583         if (!pci_is_vf(pci_dev)) {
8584             nr_vectors = n->params.msix_qsize;
8585             bar_size = nvme_mbar_size(n->params.max_ioqpairs + 1,
8586                                       nr_vectors, &msix_table_offset,
8587                                       &msix_pba_offset);
8588         } else {
8589             NvmeCtrl *pn = NVME(pcie_sriov_get_pf(pci_dev));
8590             NvmePriCtrlCap *cap = &pn->pri_ctrl_cap;
8591 
8592             nr_vectors = le16_to_cpu(cap->vifrsm);
8593             bar_size = nvme_mbar_size(le16_to_cpu(cap->vqfrsm), nr_vectors,
8594                                       &msix_table_offset, &msix_pba_offset);
8595         }
8596 
8597         memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size);
8598         memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
8599                               msix_table_offset);
8600         memory_region_add_subregion(&n->bar0, 0, &n->iomem);
8601 
8602         if (pci_is_vf(pci_dev)) {
8603             pcie_sriov_vf_register_bar(pci_dev, 0, &n->bar0);
8604         } else {
8605             pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
8606                              PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0);
8607         }
8608 
8609         ret = msix_init(pci_dev, nr_vectors,
8610                         &n->bar0, 0, msix_table_offset,
8611                         &n->bar0, 0, msix_pba_offset, 0, errp);
8612     }
8613 
8614     if (ret == -ENOTSUP) {
8615         /* report that msix is not supported, but do not error out */
8616         warn_report_err(*errp);
8617         *errp = NULL;
8618     } else if (ret < 0) {
8619         /* propagate error to caller */
8620         return false;
8621     }
8622 
8623     nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
8624 
8625     pcie_cap_deverr_init(pci_dev);
8626 
8627     /* DOE Initialisation */
8628     if (pci_dev->spdm_port) {
8629         uint16_t doe_offset = n->params.sriov_max_vfs ?
8630                                   PCI_CONFIG_SPACE_SIZE + PCI_ARI_SIZEOF
8631                                   : PCI_CONFIG_SPACE_SIZE;
8632 
8633         pcie_doe_init(pci_dev, &pci_dev->doe_spdm, doe_offset,
8634                       doe_spdm_prot, true, 0);
8635 
8636         pci_dev->doe_spdm.spdm_socket = spdm_socket_connect(pci_dev->spdm_port,
8637                                                             errp);
8638 
8639         if (pci_dev->doe_spdm.spdm_socket < 0) {
8640             return false;
8641         }
8642     }
8643 
8644     if (n->params.cmb_size_mb) {
8645         nvme_init_cmb(n, pci_dev);
8646     }
8647 
8648     if (n->pmr.dev) {
8649         nvme_init_pmr(n, pci_dev);
8650     }
8651 
8652     if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
8653         nvme_init_sriov(n, pci_dev, 0x120);
8654     }
8655 
8656     return true;
8657 }
8658 
8659 static void nvme_init_subnqn(NvmeCtrl *n)
8660 {
8661     NvmeSubsystem *subsys = n->subsys;
8662     NvmeIdCtrl *id = &n->id_ctrl;
8663 
8664     if (!subsys) {
8665         snprintf((char *)id->subnqn, sizeof(id->subnqn),
8666                  "nqn.2019-08.org.qemu:%s", n->params.serial);
8667     } else {
8668         pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn);
8669     }
8670 }
8671 
8672 static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
8673 {
8674     NvmeIdCtrl *id = &n->id_ctrl;
8675     uint8_t *pci_conf = pci_dev->config;
8676     uint64_t cap = ldq_le_p(&n->bar.cap);
8677     NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
8678     uint32_t ctratt;
8679 
8680     id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
8681     id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
8682     strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
8683     strpadcpy((char *)id->fr, sizeof(id->fr), QEMU_VERSION, ' ');
8684     strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
8685 
8686     id->cntlid = cpu_to_le16(n->cntlid);
8687 
8688     id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR);
8689 
8690     ctratt = NVME_CTRATT_ELBAS;
8691     if (n->params.ctratt.mem) {
8692         ctratt |= NVME_CTRATT_MEM;
8693     }
8694 
8695     id->rab = 6;
8696 
8697     if (n->params.use_intel_id) {
8698         id->ieee[0] = 0xb3;
8699         id->ieee[1] = 0x02;
8700         id->ieee[2] = 0x00;
8701     } else {
8702         id->ieee[0] = 0x00;
8703         id->ieee[1] = 0x54;
8704         id->ieee[2] = 0x52;
8705     }
8706 
8707     id->mdts = n->params.mdts;
8708     id->ver = cpu_to_le32(NVME_SPEC_VER);
8709     id->oacs =
8710         cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT | NVME_OACS_DBBUF |
8711                     NVME_OACS_DIRECTIVES);
8712     id->cntrltype = 0x1;
8713 
8714     /*
8715      * Because the controller always completes the Abort command immediately,
8716      * there can never be more than one concurrently executing Abort command,
8717      * so this value is never used for anything. Note that there can easily be
8718      * many Abort commands in the queues, but they are not considered
8719      * "executing" until processed by nvme_abort.
8720      *
8721      * The specification recommends a value of 3 for Abort Command Limit (four
8722      * concurrently outstanding Abort commands), so lets use that though it is
8723      * inconsequential.
8724      */
8725     id->acl = 3;
8726     id->aerl = n->params.aerl;
8727     id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
8728     id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED;
8729 
8730     /* recommended default value (~70 C) */
8731     id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
8732     id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
8733 
8734     id->sqes = (NVME_SQES << 4) | NVME_SQES;
8735     id->cqes = (NVME_CQES << 4) | NVME_CQES;
8736     id->nn = cpu_to_le32(NVME_MAX_NAMESPACES);
8737     id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
8738                            NVME_ONCS_FEATURES | NVME_ONCS_DSM |
8739                            NVME_ONCS_COMPARE | NVME_ONCS_COPY |
8740                            NVME_ONCS_NVMCSA | NVME_ONCS_NVMAFC);
8741 
8742     /*
8743      * NOTE: If this device ever supports a command set that does NOT use 0x0
8744      * as a Flush-equivalent operation, support for the broadcast NSID in Flush
8745      * should probably be removed.
8746      *
8747      * See comment in nvme_io_cmd.
8748      */
8749     id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT;
8750 
8751     id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0 | NVME_OCFS_COPY_FORMAT_1 |
8752                             NVME_OCFS_COPY_FORMAT_2 | NVME_OCFS_COPY_FORMAT_3);
8753     id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN |
8754                            NVME_CTRL_SGLS_MPTR_SGL);
8755 
8756     nvme_init_subnqn(n);
8757 
8758     id->psd[0].mp = cpu_to_le16(0x9c4);
8759     id->psd[0].enlat = cpu_to_le32(0x10);
8760     id->psd[0].exlat = cpu_to_le32(0x4);
8761 
8762     if (n->subsys) {
8763         id->cmic |= NVME_CMIC_MULTI_CTRL;
8764         ctratt |= NVME_CTRATT_ENDGRPS;
8765 
8766         id->endgidmax = cpu_to_le16(0x1);
8767 
8768         if (n->subsys->endgrp.fdp.enabled) {
8769             ctratt |= NVME_CTRATT_FDPS;
8770         }
8771     }
8772 
8773     id->ctratt = cpu_to_le32(ctratt);
8774 
8775     NVME_CAP_SET_MQES(cap, n->params.mqes);
8776     NVME_CAP_SET_CQR(cap, 1);
8777     NVME_CAP_SET_TO(cap, 0xf);
8778     NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_NVM);
8779     NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_CSI_SUPP);
8780     NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_ADMIN_ONLY);
8781     NVME_CAP_SET_MPSMAX(cap, 4);
8782     NVME_CAP_SET_CMBS(cap, n->params.cmb_size_mb ? 1 : 0);
8783     NVME_CAP_SET_PMRS(cap, n->pmr.dev ? 1 : 0);
8784     stq_le_p(&n->bar.cap, cap);
8785 
8786     stl_le_p(&n->bar.vs, NVME_SPEC_VER);
8787     n->bar.intmc = n->bar.intms = 0;
8788 
8789     if (pci_is_vf(pci_dev) && !sctrl->scs) {
8790         stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
8791     }
8792 }
8793 
8794 static int nvme_init_subsys(NvmeCtrl *n, Error **errp)
8795 {
8796     int cntlid;
8797 
8798     if (!n->subsys) {
8799         return 0;
8800     }
8801 
8802     cntlid = nvme_subsys_register_ctrl(n, errp);
8803     if (cntlid < 0) {
8804         return -1;
8805     }
8806 
8807     n->cntlid = cntlid;
8808 
8809     return 0;
8810 }
8811 
8812 void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns)
8813 {
8814     uint32_t nsid = ns->params.nsid;
8815     assert(nsid && nsid <= NVME_MAX_NAMESPACES);
8816 
8817     n->namespaces[nsid] = ns;
8818     ns->attached++;
8819 
8820     n->dmrsl = MIN_NON_ZERO(n->dmrsl,
8821                             BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
8822 }
8823 
8824 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
8825 {
8826     NvmeCtrl *n = NVME(pci_dev);
8827     DeviceState *dev = DEVICE(pci_dev);
8828     NvmeNamespace *ns;
8829     NvmeCtrl *pn = NVME(pcie_sriov_get_pf(pci_dev));
8830 
8831     if (pci_is_vf(pci_dev)) {
8832         /*
8833          * VFs derive settings from the parent. PF's lifespan exceeds
8834          * that of VF's.
8835          */
8836         memcpy(&n->params, &pn->params, sizeof(NvmeParams));
8837 
8838         /*
8839          * Set PF's serial value to a new string memory to prevent 'serial'
8840          * property object release of PF when a VF is removed from the system.
8841          */
8842         n->params.serial = g_strdup(pn->params.serial);
8843         n->subsys = pn->subsys;
8844 
8845         /*
8846          * Assigning this link (strong link) causes an `object_unref` later in
8847          * `object_release_link_property`. Increment the refcount to balance
8848          * this out.
8849          */
8850         object_ref(OBJECT(pn->subsys));
8851     }
8852 
8853     if (!nvme_check_params(n, errp)) {
8854         return;
8855     }
8856 
8857     qbus_init(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS, dev, dev->id);
8858 
8859     if (nvme_init_subsys(n, errp)) {
8860         return;
8861     }
8862     nvme_init_state(n);
8863     if (!nvme_init_pci(n, pci_dev, errp)) {
8864         return;
8865     }
8866     nvme_init_ctrl(n, pci_dev);
8867 
8868     /* setup a namespace if the controller drive property was given */
8869     if (n->namespace.blkconf.blk) {
8870         ns = &n->namespace;
8871         ns->params.nsid = 1;
8872 
8873         if (nvme_ns_setup(ns, errp)) {
8874             return;
8875         }
8876 
8877         nvme_attach_ns(n, ns);
8878     }
8879 }
8880 
8881 static void nvme_exit(PCIDevice *pci_dev)
8882 {
8883     NvmeCtrl *n = NVME(pci_dev);
8884     NvmeNamespace *ns;
8885     int i;
8886 
8887     nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
8888 
8889     if (n->subsys) {
8890         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
8891             ns = nvme_ns(n, i);
8892             if (ns) {
8893                 ns->attached--;
8894             }
8895         }
8896 
8897         nvme_subsys_unregister_ctrl(n->subsys, n);
8898     }
8899 
8900     g_free(n->cq);
8901     g_free(n->sq);
8902     g_free(n->aer_reqs);
8903 
8904     if (n->params.cmb_size_mb) {
8905         g_free(n->cmb.buf);
8906     }
8907 
8908     if (pci_dev->doe_spdm.spdm_socket > 0) {
8909         spdm_socket_close(pci_dev->doe_spdm.spdm_socket,
8910                           SPDM_SOCKET_TRANSPORT_TYPE_PCI_DOE);
8911     }
8912 
8913     if (n->pmr.dev) {
8914         host_memory_backend_set_mapped(n->pmr.dev, false);
8915     }
8916 
8917     if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
8918         pcie_sriov_pf_exit(pci_dev);
8919     }
8920 
8921     if (n->params.msix_exclusive_bar && !pci_is_vf(pci_dev)) {
8922         msix_uninit_exclusive_bar(pci_dev);
8923     } else {
8924         msix_uninit(pci_dev, &n->bar0, &n->bar0);
8925     }
8926 
8927     memory_region_del_subregion(&n->bar0, &n->iomem);
8928 }
8929 
8930 static Property nvme_props[] = {
8931     DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf),
8932     DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND,
8933                      HostMemoryBackend *),
8934     DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS,
8935                      NvmeSubsystem *),
8936     DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
8937     DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
8938     DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
8939     DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
8940     DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
8941     DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
8942     DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
8943     DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
8944     DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7),
8945     DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false),
8946     DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false),
8947     DEFINE_PROP_BOOL("ioeventfd", NvmeCtrl, params.ioeventfd, false),
8948     DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0),
8949     DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl,
8950                      params.auto_transition_zones, true),
8951     DEFINE_PROP_UINT16("sriov_max_vfs", NvmeCtrl, params.sriov_max_vfs, 0),
8952     DEFINE_PROP_UINT16("sriov_vq_flexible", NvmeCtrl,
8953                        params.sriov_vq_flexible, 0),
8954     DEFINE_PROP_UINT16("sriov_vi_flexible", NvmeCtrl,
8955                        params.sriov_vi_flexible, 0),
8956     DEFINE_PROP_UINT32("sriov_max_vi_per_vf", NvmeCtrl,
8957                        params.sriov_max_vi_per_vf, 0),
8958     DEFINE_PROP_UINT32("sriov_max_vq_per_vf", NvmeCtrl,
8959                        params.sriov_max_vq_per_vf, 0),
8960     DEFINE_PROP_BOOL("msix-exclusive-bar", NvmeCtrl, params.msix_exclusive_bar,
8961                      false),
8962     DEFINE_PROP_UINT16("mqes", NvmeCtrl, params.mqes, 0x7ff),
8963     DEFINE_PROP_UINT16("spdm_port", PCIDevice, spdm_port, 0),
8964     DEFINE_PROP_BOOL("ctratt.mem", NvmeCtrl, params.ctratt.mem, false),
8965     DEFINE_PROP_BOOL("atomic.dn", NvmeCtrl, params.atomic_dn, 0),
8966     DEFINE_PROP_UINT16("atomic.awun", NvmeCtrl, params.atomic_awun, 0),
8967     DEFINE_PROP_UINT16("atomic.awupf", NvmeCtrl, params.atomic_awupf, 0),
8968     DEFINE_PROP_END_OF_LIST(),
8969 };
8970 
8971 static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name,
8972                                    void *opaque, Error **errp)
8973 {
8974     NvmeCtrl *n = NVME(obj);
8975     uint8_t value = n->smart_critical_warning;
8976 
8977     visit_type_uint8(v, name, &value, errp);
8978 }
8979 
8980 static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name,
8981                                    void *opaque, Error **errp)
8982 {
8983     NvmeCtrl *n = NVME(obj);
8984     uint8_t value, old_value, cap = 0, index, event;
8985 
8986     if (!visit_type_uint8(v, name, &value, errp)) {
8987         return;
8988     }
8989 
8990     cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY
8991           | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA;
8992     if (NVME_CAP_PMRS(ldq_le_p(&n->bar.cap))) {
8993         cap |= NVME_SMART_PMR_UNRELIABLE;
8994     }
8995 
8996     if ((value & cap) != value) {
8997         error_setg(errp, "unsupported smart critical warning bits: 0x%x",
8998                    value & ~cap);
8999         return;
9000     }
9001 
9002     old_value = n->smart_critical_warning;
9003     n->smart_critical_warning = value;
9004 
9005     /* only inject new bits of smart critical warning */
9006     for (index = 0; index < NVME_SMART_WARN_MAX; index++) {
9007         event = 1 << index;
9008         if (value & ~old_value & event)
9009             nvme_smart_event(n, event);
9010     }
9011 }
9012 
9013 static void nvme_pci_reset(DeviceState *qdev)
9014 {
9015     PCIDevice *pci_dev = PCI_DEVICE(qdev);
9016     NvmeCtrl *n = NVME(pci_dev);
9017 
9018     trace_pci_nvme_pci_reset();
9019     nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
9020 }
9021 
9022 static void nvme_sriov_post_write_config(PCIDevice *dev, uint16_t old_num_vfs)
9023 {
9024     NvmeCtrl *n = NVME(dev);
9025     NvmeSecCtrlEntry *sctrl;
9026     int i;
9027 
9028     for (i = pcie_sriov_num_vfs(dev); i < old_num_vfs; i++) {
9029         sctrl = &n->sec_ctrl_list[i];
9030         nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
9031     }
9032 }
9033 
9034 static void nvme_pci_write_config(PCIDevice *dev, uint32_t address,
9035                                   uint32_t val, int len)
9036 {
9037     uint16_t old_num_vfs = pcie_sriov_num_vfs(dev);
9038 
9039     if (pcie_find_capability(dev, PCI_EXT_CAP_ID_DOE)) {
9040         pcie_doe_write_config(&dev->doe_spdm, address, val, len);
9041     }
9042     pci_default_write_config(dev, address, val, len);
9043     pcie_cap_flr_write_config(dev, address, val, len);
9044     nvme_sriov_post_write_config(dev, old_num_vfs);
9045 }
9046 
9047 static uint32_t nvme_pci_read_config(PCIDevice *dev, uint32_t address, int len)
9048 {
9049     uint32_t val;
9050     if (dev->spdm_port && pcie_find_capability(dev, PCI_EXT_CAP_ID_DOE)) {
9051         if (pcie_doe_read_config(&dev->doe_spdm, address, len, &val)) {
9052             return val;
9053         }
9054     }
9055     return pci_default_read_config(dev, address, len);
9056 }
9057 
9058 static const VMStateDescription nvme_vmstate = {
9059     .name = "nvme",
9060     .unmigratable = 1,
9061 };
9062 
9063 static void nvme_class_init(ObjectClass *oc, void *data)
9064 {
9065     DeviceClass *dc = DEVICE_CLASS(oc);
9066     PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
9067 
9068     pc->realize = nvme_realize;
9069     pc->config_write = nvme_pci_write_config;
9070     pc->config_read = nvme_pci_read_config;
9071     pc->exit = nvme_exit;
9072     pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
9073     pc->revision = 2;
9074 
9075     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
9076     dc->desc = "Non-Volatile Memory Express";
9077     device_class_set_props(dc, nvme_props);
9078     dc->vmsd = &nvme_vmstate;
9079     device_class_set_legacy_reset(dc, nvme_pci_reset);
9080 }
9081 
9082 static void nvme_instance_init(Object *obj)
9083 {
9084     NvmeCtrl *n = NVME(obj);
9085 
9086     device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex,
9087                                   "bootindex", "/namespace@1,0",
9088                                   DEVICE(obj));
9089 
9090     object_property_add(obj, "smart_critical_warning", "uint8",
9091                         nvme_get_smart_warning,
9092                         nvme_set_smart_warning, NULL, NULL);
9093 }
9094 
9095 static const TypeInfo nvme_info = {
9096     .name          = TYPE_NVME,
9097     .parent        = TYPE_PCI_DEVICE,
9098     .instance_size = sizeof(NvmeCtrl),
9099     .instance_init = nvme_instance_init,
9100     .class_init    = nvme_class_init,
9101     .interfaces = (InterfaceInfo[]) {
9102         { INTERFACE_PCIE_DEVICE },
9103         { }
9104     },
9105 };
9106 
9107 static const TypeInfo nvme_bus_info = {
9108     .name = TYPE_NVME_BUS,
9109     .parent = TYPE_BUS,
9110     .instance_size = sizeof(NvmeBus),
9111 };
9112 
9113 static void nvme_register_types(void)
9114 {
9115     type_register_static(&nvme_info);
9116     type_register_static(&nvme_bus_info);
9117 }
9118 
9119 type_init(nvme_register_types)
9120