1 /* 2 * QEMU NVM Express Controller 3 * 4 * Copyright (c) 2012, Intel Corporation 5 * 6 * Written by Keith Busch <keith.busch@intel.com> 7 * 8 * This code is licensed under the GNU GPL v2 or later. 9 */ 10 11 /** 12 * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e 13 * 14 * https://nvmexpress.org/developers/nvme-specification/ 15 * 16 * 17 * Notes on coding style 18 * --------------------- 19 * While QEMU coding style prefers lowercase hexadecimals in constants, the 20 * NVMe subsystem use thes format from the NVMe specifications in the comments 21 * (i.e. 'h' suffix instead of '0x' prefix). 22 * 23 * Usage 24 * ----- 25 * See docs/system/nvme.rst for extensive documentation. 26 * 27 * Add options: 28 * -drive file=<file>,if=none,id=<drive_id> 29 * -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id> 30 * -device nvme,serial=<serial>,id=<bus_name>, \ 31 * cmb_size_mb=<cmb_size_mb[optional]>, \ 32 * [pmrdev=<mem_backend_file_id>,] \ 33 * max_ioqpairs=<N[optional]>, \ 34 * aerl=<N[optional]>,aer_max_queued=<N[optional]>, \ 35 * mdts=<N[optional]>,vsl=<N[optional]>, \ 36 * zoned.zasl=<N[optional]>, \ 37 * zoned.auto_transition=<on|off[optional]>, \ 38 * sriov_max_vfs=<N[optional]> \ 39 * sriov_vq_flexible=<N[optional]> \ 40 * sriov_vi_flexible=<N[optional]> \ 41 * sriov_max_vi_per_vf=<N[optional]> \ 42 * sriov_max_vq_per_vf=<N[optional]> \ 43 * subsys=<subsys_id> 44 * -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\ 45 * zoned=<true|false[optional]>, \ 46 * subsys=<subsys_id>,shared=<true|false[optional]>, \ 47 * detached=<true|false[optional]>, \ 48 * zoned.zone_size=<N[optional]>, \ 49 * zoned.zone_capacity=<N[optional]>, \ 50 * zoned.descr_ext_size=<N[optional]>, \ 51 * zoned.max_active=<N[optional]>, \ 52 * zoned.max_open=<N[optional]>, \ 53 * zoned.cross_read=<true|false[optional]> 54 * 55 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at 56 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the 57 * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to 58 * always enable the CMBLOC and CMBSZ registers (v1.3 behavior). 59 * 60 * Enabling pmr emulation can be achieved by pointing to memory-backend-file. 61 * For example: 62 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \ 63 * size=<size> .... -device nvme,...,pmrdev=<mem_id> 64 * 65 * The PMR will use BAR 4/5 exclusively. 66 * 67 * To place controller(s) and namespace(s) to a subsystem, then provide 68 * nvme-subsys device as above. 69 * 70 * nvme subsystem device parameters 71 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 72 * - `nqn` 73 * This parameter provides the `<nqn_id>` part of the string 74 * `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field 75 * of subsystem controllers. Note that `<nqn_id>` should be unique per 76 * subsystem, but this is not enforced by QEMU. If not specified, it will 77 * default to the value of the `id` parameter (`<subsys_id>`). 78 * 79 * nvme device parameters 80 * ~~~~~~~~~~~~~~~~~~~~~~ 81 * - `subsys` 82 * Specifying this parameter attaches the controller to the subsystem and 83 * the SUBNQN field in the controller will report the NQN of the subsystem 84 * device. This also enables multi controller capability represented in 85 * Identify Controller data structure in CMIC (Controller Multi-path I/O and 86 * Namespace Sharing Capabilities). 87 * 88 * - `aerl` 89 * The Asynchronous Event Request Limit (AERL). Indicates the maximum number 90 * of concurrently outstanding Asynchronous Event Request commands support 91 * by the controller. This is a 0's based value. 92 * 93 * - `aer_max_queued` 94 * This is the maximum number of events that the device will enqueue for 95 * completion when there are no outstanding AERs. When the maximum number of 96 * enqueued events are reached, subsequent events will be dropped. 97 * 98 * - `mdts` 99 * Indicates the maximum data transfer size for a command that transfers data 100 * between host-accessible memory and the controller. The value is specified 101 * as a power of two (2^n) and is in units of the minimum memory page size 102 * (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB). 103 * 104 * - `vsl` 105 * Indicates the maximum data size limit for the Verify command. Like `mdts`, 106 * this value is specified as a power of two (2^n) and is in units of the 107 * minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512 108 * KiB). 109 * 110 * - `zoned.zasl` 111 * Indicates the maximum data transfer size for the Zone Append command. Like 112 * `mdts`, the value is specified as a power of two (2^n) and is in units of 113 * the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e. 114 * defaulting to the value of `mdts`). 115 * 116 * - `zoned.auto_transition` 117 * Indicates if zones in zone state implicitly opened can be automatically 118 * transitioned to zone state closed for resource management purposes. 119 * Defaults to 'on'. 120 * 121 * - `sriov_max_vfs` 122 * Indicates the maximum number of PCIe virtual functions supported 123 * by the controller. The default value is 0. Specifying a non-zero value 124 * enables reporting of both SR-IOV and ARI capabilities by the NVMe device. 125 * Virtual function controllers will not report SR-IOV capability. 126 * 127 * NOTE: Single Root I/O Virtualization support is experimental. 128 * All the related parameters may be subject to change. 129 * 130 * - `sriov_vq_flexible` 131 * Indicates the total number of flexible queue resources assignable to all 132 * the secondary controllers. Implicitly sets the number of primary 133 * controller's private resources to `(max_ioqpairs - sriov_vq_flexible)`. 134 * 135 * - `sriov_vi_flexible` 136 * Indicates the total number of flexible interrupt resources assignable to 137 * all the secondary controllers. Implicitly sets the number of primary 138 * controller's private resources to `(msix_qsize - sriov_vi_flexible)`. 139 * 140 * - `sriov_max_vi_per_vf` 141 * Indicates the maximum number of virtual interrupt resources assignable 142 * to a secondary controller. The default 0 resolves to 143 * `(sriov_vi_flexible / sriov_max_vfs)`. 144 * 145 * - `sriov_max_vq_per_vf` 146 * Indicates the maximum number of virtual queue resources assignable to 147 * a secondary controller. The default 0 resolves to 148 * `(sriov_vq_flexible / sriov_max_vfs)`. 149 * 150 * nvme namespace device parameters 151 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 152 * - `shared` 153 * When the parent nvme device (as defined explicitly by the 'bus' parameter 154 * or implicitly by the most recently defined NvmeBus) is linked to an 155 * nvme-subsys device, the namespace will be attached to all controllers in 156 * the subsystem. If set to 'off' (the default), the namespace will remain a 157 * private namespace and may only be attached to a single controller at a 158 * time. 159 * 160 * - `detached` 161 * This parameter is only valid together with the `subsys` parameter. If left 162 * at the default value (`false/off`), the namespace will be attached to all 163 * controllers in the NVMe subsystem at boot-up. If set to `true/on`, the 164 * namespace will be available in the subsystem but not attached to any 165 * controllers. 166 * 167 * Setting `zoned` to true selects Zoned Command Set at the namespace. 168 * In this case, the following namespace properties are available to configure 169 * zoned operation: 170 * zoned.zone_size=<zone size in bytes, default: 128MiB> 171 * The number may be followed by K, M, G as in kilo-, mega- or giga-. 172 * 173 * zoned.zone_capacity=<zone capacity in bytes, default: zone size> 174 * The value 0 (default) forces zone capacity to be the same as zone 175 * size. The value of this property may not exceed zone size. 176 * 177 * zoned.descr_ext_size=<zone descriptor extension size, default 0> 178 * This value needs to be specified in 64B units. If it is zero, 179 * namespace(s) will not support zone descriptor extensions. 180 * 181 * zoned.max_active=<Maximum Active Resources (zones), default: 0> 182 * The default value means there is no limit to the number of 183 * concurrently active zones. 184 * 185 * zoned.max_open=<Maximum Open Resources (zones), default: 0> 186 * The default value means there is no limit to the number of 187 * concurrently open zones. 188 * 189 * zoned.cross_read=<enable RAZB, default: false> 190 * Setting this property to true enables Read Across Zone Boundaries. 191 */ 192 193 #include "qemu/osdep.h" 194 #include "qemu/cutils.h" 195 #include "qemu/error-report.h" 196 #include "qemu/log.h" 197 #include "qemu/units.h" 198 #include "qemu/range.h" 199 #include "qapi/error.h" 200 #include "qapi/visitor.h" 201 #include "sysemu/sysemu.h" 202 #include "sysemu/block-backend.h" 203 #include "sysemu/hostmem.h" 204 #include "hw/pci/msix.h" 205 #include "hw/pci/pcie_sriov.h" 206 #include "migration/vmstate.h" 207 208 #include "nvme.h" 209 #include "dif.h" 210 #include "trace.h" 211 212 #define NVME_MAX_IOQPAIRS 0xffff 213 #define NVME_DB_SIZE 4 214 #define NVME_SPEC_VER 0x00010400 215 #define NVME_CMB_BIR 2 216 #define NVME_PMR_BIR 4 217 #define NVME_TEMPERATURE 0x143 218 #define NVME_TEMPERATURE_WARNING 0x157 219 #define NVME_TEMPERATURE_CRITICAL 0x175 220 #define NVME_NUM_FW_SLOTS 1 221 #define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB) 222 #define NVME_MAX_VFS 127 223 #define NVME_VF_RES_GRANULARITY 1 224 #define NVME_VF_OFFSET 0x1 225 #define NVME_VF_STRIDE 1 226 227 #define NVME_GUEST_ERR(trace, fmt, ...) \ 228 do { \ 229 (trace_##trace)(__VA_ARGS__); \ 230 qemu_log_mask(LOG_GUEST_ERROR, #trace \ 231 " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \ 232 } while (0) 233 234 static const bool nvme_feature_support[NVME_FID_MAX] = { 235 [NVME_ARBITRATION] = true, 236 [NVME_POWER_MANAGEMENT] = true, 237 [NVME_TEMPERATURE_THRESHOLD] = true, 238 [NVME_ERROR_RECOVERY] = true, 239 [NVME_VOLATILE_WRITE_CACHE] = true, 240 [NVME_NUMBER_OF_QUEUES] = true, 241 [NVME_INTERRUPT_COALESCING] = true, 242 [NVME_INTERRUPT_VECTOR_CONF] = true, 243 [NVME_WRITE_ATOMICITY] = true, 244 [NVME_ASYNCHRONOUS_EVENT_CONF] = true, 245 [NVME_TIMESTAMP] = true, 246 [NVME_HOST_BEHAVIOR_SUPPORT] = true, 247 [NVME_COMMAND_SET_PROFILE] = true, 248 [NVME_FDP_MODE] = true, 249 [NVME_FDP_EVENTS] = true, 250 }; 251 252 static const uint32_t nvme_feature_cap[NVME_FID_MAX] = { 253 [NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE, 254 [NVME_ERROR_RECOVERY] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS, 255 [NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE, 256 [NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE, 257 [NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE, 258 [NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE, 259 [NVME_HOST_BEHAVIOR_SUPPORT] = NVME_FEAT_CAP_CHANGE, 260 [NVME_COMMAND_SET_PROFILE] = NVME_FEAT_CAP_CHANGE, 261 [NVME_FDP_MODE] = NVME_FEAT_CAP_CHANGE, 262 [NVME_FDP_EVENTS] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS, 263 }; 264 265 static const uint32_t nvme_cse_acs[256] = { 266 [NVME_ADM_CMD_DELETE_SQ] = NVME_CMD_EFF_CSUPP, 267 [NVME_ADM_CMD_CREATE_SQ] = NVME_CMD_EFF_CSUPP, 268 [NVME_ADM_CMD_GET_LOG_PAGE] = NVME_CMD_EFF_CSUPP, 269 [NVME_ADM_CMD_DELETE_CQ] = NVME_CMD_EFF_CSUPP, 270 [NVME_ADM_CMD_CREATE_CQ] = NVME_CMD_EFF_CSUPP, 271 [NVME_ADM_CMD_IDENTIFY] = NVME_CMD_EFF_CSUPP, 272 [NVME_ADM_CMD_ABORT] = NVME_CMD_EFF_CSUPP, 273 [NVME_ADM_CMD_SET_FEATURES] = NVME_CMD_EFF_CSUPP, 274 [NVME_ADM_CMD_GET_FEATURES] = NVME_CMD_EFF_CSUPP, 275 [NVME_ADM_CMD_ASYNC_EV_REQ] = NVME_CMD_EFF_CSUPP, 276 [NVME_ADM_CMD_NS_ATTACHMENT] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC, 277 [NVME_ADM_CMD_VIRT_MNGMT] = NVME_CMD_EFF_CSUPP, 278 [NVME_ADM_CMD_DBBUF_CONFIG] = NVME_CMD_EFF_CSUPP, 279 [NVME_ADM_CMD_FORMAT_NVM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 280 [NVME_ADM_CMD_DIRECTIVE_RECV] = NVME_CMD_EFF_CSUPP, 281 [NVME_ADM_CMD_DIRECTIVE_SEND] = NVME_CMD_EFF_CSUPP, 282 }; 283 284 static const uint32_t nvme_cse_iocs_none[256]; 285 286 static const uint32_t nvme_cse_iocs_nvm[256] = { 287 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 288 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 289 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 290 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP, 291 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 292 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP, 293 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 294 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP, 295 [NVME_CMD_IO_MGMT_RECV] = NVME_CMD_EFF_CSUPP, 296 [NVME_CMD_IO_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 297 }; 298 299 static const uint32_t nvme_cse_iocs_zoned[256] = { 300 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 301 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 302 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 303 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP, 304 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 305 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP, 306 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 307 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP, 308 [NVME_CMD_ZONE_APPEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 309 [NVME_CMD_ZONE_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, 310 [NVME_CMD_ZONE_MGMT_RECV] = NVME_CMD_EFF_CSUPP, 311 }; 312 313 static void nvme_process_sq(void *opaque); 314 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst); 315 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n); 316 317 static uint16_t nvme_sqid(NvmeRequest *req) 318 { 319 return le16_to_cpu(req->sq->sqid); 320 } 321 322 static inline uint16_t nvme_make_pid(NvmeNamespace *ns, uint16_t rg, 323 uint16_t ph) 324 { 325 uint16_t rgif = ns->endgrp->fdp.rgif; 326 327 if (!rgif) { 328 return ph; 329 } 330 331 return (rg << (16 - rgif)) | ph; 332 } 333 334 static inline bool nvme_ph_valid(NvmeNamespace *ns, uint16_t ph) 335 { 336 return ph < ns->fdp.nphs; 337 } 338 339 static inline bool nvme_rg_valid(NvmeEnduranceGroup *endgrp, uint16_t rg) 340 { 341 return rg < endgrp->fdp.nrg; 342 } 343 344 static inline uint16_t nvme_pid2ph(NvmeNamespace *ns, uint16_t pid) 345 { 346 uint16_t rgif = ns->endgrp->fdp.rgif; 347 348 if (!rgif) { 349 return pid; 350 } 351 352 return pid & ((1 << (15 - rgif)) - 1); 353 } 354 355 static inline uint16_t nvme_pid2rg(NvmeNamespace *ns, uint16_t pid) 356 { 357 uint16_t rgif = ns->endgrp->fdp.rgif; 358 359 if (!rgif) { 360 return 0; 361 } 362 363 return pid >> (16 - rgif); 364 } 365 366 static inline bool nvme_parse_pid(NvmeNamespace *ns, uint16_t pid, 367 uint16_t *ph, uint16_t *rg) 368 { 369 *rg = nvme_pid2rg(ns, pid); 370 *ph = nvme_pid2ph(ns, pid); 371 372 return nvme_ph_valid(ns, *ph) && nvme_rg_valid(ns->endgrp, *rg); 373 } 374 375 static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone, 376 NvmeZoneState state) 377 { 378 if (QTAILQ_IN_USE(zone, entry)) { 379 switch (nvme_get_zone_state(zone)) { 380 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 381 QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry); 382 break; 383 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 384 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry); 385 break; 386 case NVME_ZONE_STATE_CLOSED: 387 QTAILQ_REMOVE(&ns->closed_zones, zone, entry); 388 break; 389 case NVME_ZONE_STATE_FULL: 390 QTAILQ_REMOVE(&ns->full_zones, zone, entry); 391 default: 392 ; 393 } 394 } 395 396 nvme_set_zone_state(zone, state); 397 398 switch (state) { 399 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 400 QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry); 401 break; 402 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 403 QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry); 404 break; 405 case NVME_ZONE_STATE_CLOSED: 406 QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry); 407 break; 408 case NVME_ZONE_STATE_FULL: 409 QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry); 410 case NVME_ZONE_STATE_READ_ONLY: 411 break; 412 default: 413 zone->d.za = 0; 414 } 415 } 416 417 static uint16_t nvme_zns_check_resources(NvmeNamespace *ns, uint32_t act, 418 uint32_t opn, uint32_t zrwa) 419 { 420 if (ns->params.max_active_zones != 0 && 421 ns->nr_active_zones + act > ns->params.max_active_zones) { 422 trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones); 423 return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR; 424 } 425 426 if (ns->params.max_open_zones != 0 && 427 ns->nr_open_zones + opn > ns->params.max_open_zones) { 428 trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones); 429 return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR; 430 } 431 432 if (zrwa > ns->zns.numzrwa) { 433 return NVME_NOZRWA | NVME_DNR; 434 } 435 436 return NVME_SUCCESS; 437 } 438 439 /* 440 * Check if we can open a zone without exceeding open/active limits. 441 * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5). 442 */ 443 static uint16_t nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn) 444 { 445 return nvme_zns_check_resources(ns, act, opn, 0); 446 } 447 448 static NvmeFdpEvent *nvme_fdp_alloc_event(NvmeCtrl *n, NvmeFdpEventBuffer *ebuf) 449 { 450 NvmeFdpEvent *ret = NULL; 451 bool is_full = ebuf->next == ebuf->start && ebuf->nelems; 452 453 ret = &ebuf->events[ebuf->next++]; 454 if (unlikely(ebuf->next == NVME_FDP_MAX_EVENTS)) { 455 ebuf->next = 0; 456 } 457 if (is_full) { 458 ebuf->start = ebuf->next; 459 } else { 460 ebuf->nelems++; 461 } 462 463 memset(ret, 0, sizeof(NvmeFdpEvent)); 464 ret->timestamp = nvme_get_timestamp(n); 465 466 return ret; 467 } 468 469 static inline int log_event(NvmeRuHandle *ruh, uint8_t event_type) 470 { 471 return (ruh->event_filter >> nvme_fdp_evf_shifts[event_type]) & 0x1; 472 } 473 474 static bool nvme_update_ruh(NvmeCtrl *n, NvmeNamespace *ns, uint16_t pid) 475 { 476 NvmeEnduranceGroup *endgrp = ns->endgrp; 477 NvmeRuHandle *ruh; 478 NvmeReclaimUnit *ru; 479 NvmeFdpEvent *e = NULL; 480 uint16_t ph, rg, ruhid; 481 482 if (!nvme_parse_pid(ns, pid, &ph, &rg)) { 483 return false; 484 } 485 486 ruhid = ns->fdp.phs[ph]; 487 488 ruh = &endgrp->fdp.ruhs[ruhid]; 489 ru = &ruh->rus[rg]; 490 491 if (ru->ruamw) { 492 if (log_event(ruh, FDP_EVT_RU_NOT_FULLY_WRITTEN)) { 493 e = nvme_fdp_alloc_event(n, &endgrp->fdp.host_events); 494 e->type = FDP_EVT_RU_NOT_FULLY_WRITTEN; 495 e->flags = FDPEF_PIV | FDPEF_NSIDV | FDPEF_LV; 496 e->pid = cpu_to_le16(pid); 497 e->nsid = cpu_to_le32(ns->params.nsid); 498 e->rgid = cpu_to_le16(rg); 499 e->ruhid = cpu_to_le16(ruhid); 500 } 501 502 /* log (eventual) GC overhead of prematurely swapping the RU */ 503 nvme_fdp_stat_inc(&endgrp->fdp.mbmw, nvme_l2b(ns, ru->ruamw)); 504 } 505 506 ru->ruamw = ruh->ruamw; 507 508 return true; 509 } 510 511 static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr) 512 { 513 hwaddr hi, lo; 514 515 if (!n->cmb.cmse) { 516 return false; 517 } 518 519 lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba; 520 hi = lo + int128_get64(n->cmb.mem.size); 521 522 return addr >= lo && addr < hi; 523 } 524 525 static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr) 526 { 527 hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba; 528 return &n->cmb.buf[addr - base]; 529 } 530 531 static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr) 532 { 533 hwaddr hi; 534 535 if (!n->pmr.cmse) { 536 return false; 537 } 538 539 hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size); 540 541 return addr >= n->pmr.cba && addr < hi; 542 } 543 544 static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr) 545 { 546 return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba); 547 } 548 549 static inline bool nvme_addr_is_iomem(NvmeCtrl *n, hwaddr addr) 550 { 551 hwaddr hi, lo; 552 553 /* 554 * The purpose of this check is to guard against invalid "local" access to 555 * the iomem (i.e. controller registers). Thus, we check against the range 556 * covered by the 'bar0' MemoryRegion since that is currently composed of 557 * two subregions (the NVMe "MBAR" and the MSI-X table/pba). Note, however, 558 * that if the device model is ever changed to allow the CMB to be located 559 * in BAR0 as well, then this must be changed. 560 */ 561 lo = n->bar0.addr; 562 hi = lo + int128_get64(n->bar0.size); 563 564 return addr >= lo && addr < hi; 565 } 566 567 static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size) 568 { 569 hwaddr hi = addr + size - 1; 570 if (hi < addr) { 571 return 1; 572 } 573 574 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) { 575 memcpy(buf, nvme_addr_to_cmb(n, addr), size); 576 return 0; 577 } 578 579 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) { 580 memcpy(buf, nvme_addr_to_pmr(n, addr), size); 581 return 0; 582 } 583 584 return pci_dma_read(PCI_DEVICE(n), addr, buf, size); 585 } 586 587 static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, const void *buf, int size) 588 { 589 hwaddr hi = addr + size - 1; 590 if (hi < addr) { 591 return 1; 592 } 593 594 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) { 595 memcpy(nvme_addr_to_cmb(n, addr), buf, size); 596 return 0; 597 } 598 599 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) { 600 memcpy(nvme_addr_to_pmr(n, addr), buf, size); 601 return 0; 602 } 603 604 return pci_dma_write(PCI_DEVICE(n), addr, buf, size); 605 } 606 607 static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid) 608 { 609 return nsid && 610 (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES); 611 } 612 613 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid) 614 { 615 return sqid < n->conf_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1; 616 } 617 618 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid) 619 { 620 return cqid < n->conf_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1; 621 } 622 623 static void nvme_inc_cq_tail(NvmeCQueue *cq) 624 { 625 cq->tail++; 626 if (cq->tail >= cq->size) { 627 cq->tail = 0; 628 cq->phase = !cq->phase; 629 } 630 } 631 632 static void nvme_inc_sq_head(NvmeSQueue *sq) 633 { 634 sq->head = (sq->head + 1) % sq->size; 635 } 636 637 static uint8_t nvme_cq_full(NvmeCQueue *cq) 638 { 639 return (cq->tail + 1) % cq->size == cq->head; 640 } 641 642 static uint8_t nvme_sq_empty(NvmeSQueue *sq) 643 { 644 return sq->head == sq->tail; 645 } 646 647 static void nvme_irq_check(NvmeCtrl *n) 648 { 649 PCIDevice *pci = PCI_DEVICE(n); 650 uint32_t intms = ldl_le_p(&n->bar.intms); 651 652 if (msix_enabled(pci)) { 653 return; 654 } 655 if (~intms & n->irq_status) { 656 pci_irq_assert(pci); 657 } else { 658 pci_irq_deassert(pci); 659 } 660 } 661 662 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq) 663 { 664 PCIDevice *pci = PCI_DEVICE(n); 665 666 if (cq->irq_enabled) { 667 if (msix_enabled(pci)) { 668 trace_pci_nvme_irq_msix(cq->vector); 669 msix_notify(pci, cq->vector); 670 } else { 671 trace_pci_nvme_irq_pin(); 672 assert(cq->vector < 32); 673 n->irq_status |= 1 << cq->vector; 674 nvme_irq_check(n); 675 } 676 } else { 677 trace_pci_nvme_irq_masked(); 678 } 679 } 680 681 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq) 682 { 683 if (cq->irq_enabled) { 684 if (msix_enabled(PCI_DEVICE(n))) { 685 return; 686 } else { 687 assert(cq->vector < 32); 688 if (!n->cq_pending) { 689 n->irq_status &= ~(1 << cq->vector); 690 } 691 nvme_irq_check(n); 692 } 693 } 694 } 695 696 static void nvme_req_clear(NvmeRequest *req) 697 { 698 req->ns = NULL; 699 req->opaque = NULL; 700 req->aiocb = NULL; 701 memset(&req->cqe, 0x0, sizeof(req->cqe)); 702 req->status = NVME_SUCCESS; 703 } 704 705 static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma) 706 { 707 if (dma) { 708 pci_dma_sglist_init(&sg->qsg, PCI_DEVICE(n), 0); 709 sg->flags = NVME_SG_DMA; 710 } else { 711 qemu_iovec_init(&sg->iov, 0); 712 } 713 714 sg->flags |= NVME_SG_ALLOC; 715 } 716 717 static inline void nvme_sg_unmap(NvmeSg *sg) 718 { 719 if (!(sg->flags & NVME_SG_ALLOC)) { 720 return; 721 } 722 723 if (sg->flags & NVME_SG_DMA) { 724 qemu_sglist_destroy(&sg->qsg); 725 } else { 726 qemu_iovec_destroy(&sg->iov); 727 } 728 729 memset(sg, 0x0, sizeof(*sg)); 730 } 731 732 /* 733 * When metadata is transfered as extended LBAs, the DPTR mapped into `sg` 734 * holds both data and metadata. This function splits the data and metadata 735 * into two separate QSG/IOVs. 736 */ 737 static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data, 738 NvmeSg *mdata) 739 { 740 NvmeSg *dst = data; 741 uint32_t trans_len, count = ns->lbasz; 742 uint64_t offset = 0; 743 bool dma = sg->flags & NVME_SG_DMA; 744 size_t sge_len; 745 size_t sg_len = dma ? sg->qsg.size : sg->iov.size; 746 int sg_idx = 0; 747 748 assert(sg->flags & NVME_SG_ALLOC); 749 750 while (sg_len) { 751 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len; 752 753 trans_len = MIN(sg_len, count); 754 trans_len = MIN(trans_len, sge_len - offset); 755 756 if (dst) { 757 if (dma) { 758 qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset, 759 trans_len); 760 } else { 761 qemu_iovec_add(&dst->iov, 762 sg->iov.iov[sg_idx].iov_base + offset, 763 trans_len); 764 } 765 } 766 767 sg_len -= trans_len; 768 count -= trans_len; 769 offset += trans_len; 770 771 if (count == 0) { 772 dst = (dst == data) ? mdata : data; 773 count = (dst == data) ? ns->lbasz : ns->lbaf.ms; 774 } 775 776 if (sge_len == offset) { 777 offset = 0; 778 sg_idx++; 779 } 780 } 781 } 782 783 static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr, 784 size_t len) 785 { 786 if (!len) { 787 return NVME_SUCCESS; 788 } 789 790 trace_pci_nvme_map_addr_cmb(addr, len); 791 792 if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) { 793 return NVME_DATA_TRAS_ERROR; 794 } 795 796 qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len); 797 798 return NVME_SUCCESS; 799 } 800 801 static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr, 802 size_t len) 803 { 804 if (!len) { 805 return NVME_SUCCESS; 806 } 807 808 if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) { 809 return NVME_DATA_TRAS_ERROR; 810 } 811 812 qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len); 813 814 return NVME_SUCCESS; 815 } 816 817 static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len) 818 { 819 bool cmb = false, pmr = false; 820 821 if (!len) { 822 return NVME_SUCCESS; 823 } 824 825 trace_pci_nvme_map_addr(addr, len); 826 827 if (nvme_addr_is_iomem(n, addr)) { 828 return NVME_DATA_TRAS_ERROR; 829 } 830 831 if (nvme_addr_is_cmb(n, addr)) { 832 cmb = true; 833 } else if (nvme_addr_is_pmr(n, addr)) { 834 pmr = true; 835 } 836 837 if (cmb || pmr) { 838 if (sg->flags & NVME_SG_DMA) { 839 return NVME_INVALID_USE_OF_CMB | NVME_DNR; 840 } 841 842 if (sg->iov.niov + 1 > IOV_MAX) { 843 goto max_mappings_exceeded; 844 } 845 846 if (cmb) { 847 return nvme_map_addr_cmb(n, &sg->iov, addr, len); 848 } else { 849 return nvme_map_addr_pmr(n, &sg->iov, addr, len); 850 } 851 } 852 853 if (!(sg->flags & NVME_SG_DMA)) { 854 return NVME_INVALID_USE_OF_CMB | NVME_DNR; 855 } 856 857 if (sg->qsg.nsg + 1 > IOV_MAX) { 858 goto max_mappings_exceeded; 859 } 860 861 qemu_sglist_add(&sg->qsg, addr, len); 862 863 return NVME_SUCCESS; 864 865 max_mappings_exceeded: 866 NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings, 867 "number of mappings exceed 1024"); 868 return NVME_INTERNAL_DEV_ERROR | NVME_DNR; 869 } 870 871 static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr) 872 { 873 return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr)); 874 } 875 876 static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1, 877 uint64_t prp2, uint32_t len) 878 { 879 hwaddr trans_len = n->page_size - (prp1 % n->page_size); 880 trans_len = MIN(len, trans_len); 881 int num_prps = (len >> n->page_bits) + 1; 882 uint16_t status; 883 int ret; 884 885 trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps); 886 887 nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1)); 888 889 status = nvme_map_addr(n, sg, prp1, trans_len); 890 if (status) { 891 goto unmap; 892 } 893 894 len -= trans_len; 895 if (len) { 896 if (len > n->page_size) { 897 uint64_t prp_list[n->max_prp_ents]; 898 uint32_t nents, prp_trans; 899 int i = 0; 900 901 /* 902 * The first PRP list entry, pointed to by PRP2 may contain offset. 903 * Hence, we need to calculate the number of entries in based on 904 * that offset. 905 */ 906 nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3; 907 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t); 908 ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans); 909 if (ret) { 910 trace_pci_nvme_err_addr_read(prp2); 911 status = NVME_DATA_TRAS_ERROR; 912 goto unmap; 913 } 914 while (len != 0) { 915 uint64_t prp_ent = le64_to_cpu(prp_list[i]); 916 917 if (i == nents - 1 && len > n->page_size) { 918 if (unlikely(prp_ent & (n->page_size - 1))) { 919 trace_pci_nvme_err_invalid_prplist_ent(prp_ent); 920 status = NVME_INVALID_PRP_OFFSET | NVME_DNR; 921 goto unmap; 922 } 923 924 i = 0; 925 nents = (len + n->page_size - 1) >> n->page_bits; 926 nents = MIN(nents, n->max_prp_ents); 927 prp_trans = nents * sizeof(uint64_t); 928 ret = nvme_addr_read(n, prp_ent, (void *)prp_list, 929 prp_trans); 930 if (ret) { 931 trace_pci_nvme_err_addr_read(prp_ent); 932 status = NVME_DATA_TRAS_ERROR; 933 goto unmap; 934 } 935 prp_ent = le64_to_cpu(prp_list[i]); 936 } 937 938 if (unlikely(prp_ent & (n->page_size - 1))) { 939 trace_pci_nvme_err_invalid_prplist_ent(prp_ent); 940 status = NVME_INVALID_PRP_OFFSET | NVME_DNR; 941 goto unmap; 942 } 943 944 trans_len = MIN(len, n->page_size); 945 status = nvme_map_addr(n, sg, prp_ent, trans_len); 946 if (status) { 947 goto unmap; 948 } 949 950 len -= trans_len; 951 i++; 952 } 953 } else { 954 if (unlikely(prp2 & (n->page_size - 1))) { 955 trace_pci_nvme_err_invalid_prp2_align(prp2); 956 status = NVME_INVALID_PRP_OFFSET | NVME_DNR; 957 goto unmap; 958 } 959 status = nvme_map_addr(n, sg, prp2, len); 960 if (status) { 961 goto unmap; 962 } 963 } 964 } 965 966 return NVME_SUCCESS; 967 968 unmap: 969 nvme_sg_unmap(sg); 970 return status; 971 } 972 973 /* 974 * Map 'nsgld' data descriptors from 'segment'. The function will subtract the 975 * number of bytes mapped in len. 976 */ 977 static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg, 978 NvmeSglDescriptor *segment, uint64_t nsgld, 979 size_t *len, NvmeCmd *cmd) 980 { 981 dma_addr_t addr, trans_len; 982 uint32_t dlen; 983 uint16_t status; 984 985 for (int i = 0; i < nsgld; i++) { 986 uint8_t type = NVME_SGL_TYPE(segment[i].type); 987 988 switch (type) { 989 case NVME_SGL_DESCR_TYPE_DATA_BLOCK: 990 break; 991 case NVME_SGL_DESCR_TYPE_SEGMENT: 992 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT: 993 return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR; 994 default: 995 return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR; 996 } 997 998 dlen = le32_to_cpu(segment[i].len); 999 1000 if (!dlen) { 1001 continue; 1002 } 1003 1004 if (*len == 0) { 1005 /* 1006 * All data has been mapped, but the SGL contains additional 1007 * segments and/or descriptors. The controller might accept 1008 * ignoring the rest of the SGL. 1009 */ 1010 uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls); 1011 if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) { 1012 break; 1013 } 1014 1015 trace_pci_nvme_err_invalid_sgl_excess_length(dlen); 1016 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; 1017 } 1018 1019 trans_len = MIN(*len, dlen); 1020 1021 addr = le64_to_cpu(segment[i].addr); 1022 1023 if (UINT64_MAX - addr < dlen) { 1024 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; 1025 } 1026 1027 status = nvme_map_addr(n, sg, addr, trans_len); 1028 if (status) { 1029 return status; 1030 } 1031 1032 *len -= trans_len; 1033 } 1034 1035 return NVME_SUCCESS; 1036 } 1037 1038 static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl, 1039 size_t len, NvmeCmd *cmd) 1040 { 1041 /* 1042 * Read the segment in chunks of 256 descriptors (one 4k page) to avoid 1043 * dynamically allocating a potentially huge SGL. The spec allows the SGL 1044 * to be larger (as in number of bytes required to describe the SGL 1045 * descriptors and segment chain) than the command transfer size, so it is 1046 * not bounded by MDTS. 1047 */ 1048 const int SEG_CHUNK_SIZE = 256; 1049 1050 NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld; 1051 uint64_t nsgld; 1052 uint32_t seg_len; 1053 uint16_t status; 1054 hwaddr addr; 1055 int ret; 1056 1057 sgld = &sgl; 1058 addr = le64_to_cpu(sgl.addr); 1059 1060 trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len); 1061 1062 nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr)); 1063 1064 /* 1065 * If the entire transfer can be described with a single data block it can 1066 * be mapped directly. 1067 */ 1068 if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) { 1069 status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd); 1070 if (status) { 1071 goto unmap; 1072 } 1073 1074 goto out; 1075 } 1076 1077 for (;;) { 1078 switch (NVME_SGL_TYPE(sgld->type)) { 1079 case NVME_SGL_DESCR_TYPE_SEGMENT: 1080 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT: 1081 break; 1082 default: 1083 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; 1084 } 1085 1086 seg_len = le32_to_cpu(sgld->len); 1087 1088 /* check the length of the (Last) Segment descriptor */ 1089 if (!seg_len || seg_len & 0xf) { 1090 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; 1091 } 1092 1093 if (UINT64_MAX - addr < seg_len) { 1094 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; 1095 } 1096 1097 nsgld = seg_len / sizeof(NvmeSglDescriptor); 1098 1099 while (nsgld > SEG_CHUNK_SIZE) { 1100 if (nvme_addr_read(n, addr, segment, sizeof(segment))) { 1101 trace_pci_nvme_err_addr_read(addr); 1102 status = NVME_DATA_TRAS_ERROR; 1103 goto unmap; 1104 } 1105 1106 status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE, 1107 &len, cmd); 1108 if (status) { 1109 goto unmap; 1110 } 1111 1112 nsgld -= SEG_CHUNK_SIZE; 1113 addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor); 1114 } 1115 1116 ret = nvme_addr_read(n, addr, segment, nsgld * 1117 sizeof(NvmeSglDescriptor)); 1118 if (ret) { 1119 trace_pci_nvme_err_addr_read(addr); 1120 status = NVME_DATA_TRAS_ERROR; 1121 goto unmap; 1122 } 1123 1124 last_sgld = &segment[nsgld - 1]; 1125 1126 /* 1127 * If the segment ends with a Data Block, then we are done. 1128 */ 1129 if (NVME_SGL_TYPE(last_sgld->type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) { 1130 status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd); 1131 if (status) { 1132 goto unmap; 1133 } 1134 1135 goto out; 1136 } 1137 1138 /* 1139 * If the last descriptor was not a Data Block, then the current 1140 * segment must not be a Last Segment. 1141 */ 1142 if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) { 1143 status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; 1144 goto unmap; 1145 } 1146 1147 sgld = last_sgld; 1148 addr = le64_to_cpu(sgld->addr); 1149 1150 /* 1151 * Do not map the last descriptor; it will be a Segment or Last Segment 1152 * descriptor and is handled by the next iteration. 1153 */ 1154 status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd); 1155 if (status) { 1156 goto unmap; 1157 } 1158 } 1159 1160 out: 1161 /* if there is any residual left in len, the SGL was too short */ 1162 if (len) { 1163 status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR; 1164 goto unmap; 1165 } 1166 1167 return NVME_SUCCESS; 1168 1169 unmap: 1170 nvme_sg_unmap(sg); 1171 return status; 1172 } 1173 1174 uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len, 1175 NvmeCmd *cmd) 1176 { 1177 uint64_t prp1, prp2; 1178 1179 switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) { 1180 case NVME_PSDT_PRP: 1181 prp1 = le64_to_cpu(cmd->dptr.prp1); 1182 prp2 = le64_to_cpu(cmd->dptr.prp2); 1183 1184 return nvme_map_prp(n, sg, prp1, prp2, len); 1185 case NVME_PSDT_SGL_MPTR_CONTIGUOUS: 1186 case NVME_PSDT_SGL_MPTR_SGL: 1187 return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd); 1188 default: 1189 return NVME_INVALID_FIELD; 1190 } 1191 } 1192 1193 static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len, 1194 NvmeCmd *cmd) 1195 { 1196 int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags); 1197 hwaddr mptr = le64_to_cpu(cmd->mptr); 1198 uint16_t status; 1199 1200 if (psdt == NVME_PSDT_SGL_MPTR_SGL) { 1201 NvmeSglDescriptor sgl; 1202 1203 if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) { 1204 return NVME_DATA_TRAS_ERROR; 1205 } 1206 1207 status = nvme_map_sgl(n, sg, sgl, len, cmd); 1208 if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) { 1209 status = NVME_MD_SGL_LEN_INVALID | NVME_DNR; 1210 } 1211 1212 return status; 1213 } 1214 1215 nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr)); 1216 status = nvme_map_addr(n, sg, mptr, len); 1217 if (status) { 1218 nvme_sg_unmap(sg); 1219 } 1220 1221 return status; 1222 } 1223 1224 static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req) 1225 { 1226 NvmeNamespace *ns = req->ns; 1227 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 1228 bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps); 1229 bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT); 1230 size_t len = nvme_l2b(ns, nlb); 1231 uint16_t status; 1232 1233 if (nvme_ns_ext(ns) && 1234 !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) { 1235 NvmeSg sg; 1236 1237 len += nvme_m2b(ns, nlb); 1238 1239 status = nvme_map_dptr(n, &sg, len, &req->cmd); 1240 if (status) { 1241 return status; 1242 } 1243 1244 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA); 1245 nvme_sg_split(&sg, ns, &req->sg, NULL); 1246 nvme_sg_unmap(&sg); 1247 1248 return NVME_SUCCESS; 1249 } 1250 1251 return nvme_map_dptr(n, &req->sg, len, &req->cmd); 1252 } 1253 1254 static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req) 1255 { 1256 NvmeNamespace *ns = req->ns; 1257 size_t len = nvme_m2b(ns, nlb); 1258 uint16_t status; 1259 1260 if (nvme_ns_ext(ns)) { 1261 NvmeSg sg; 1262 1263 len += nvme_l2b(ns, nlb); 1264 1265 status = nvme_map_dptr(n, &sg, len, &req->cmd); 1266 if (status) { 1267 return status; 1268 } 1269 1270 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA); 1271 nvme_sg_split(&sg, ns, NULL, &req->sg); 1272 nvme_sg_unmap(&sg); 1273 1274 return NVME_SUCCESS; 1275 } 1276 1277 return nvme_map_mptr(n, &req->sg, len, &req->cmd); 1278 } 1279 1280 static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr, 1281 uint32_t len, uint32_t bytes, 1282 int32_t skip_bytes, int64_t offset, 1283 NvmeTxDirection dir) 1284 { 1285 hwaddr addr; 1286 uint32_t trans_len, count = bytes; 1287 bool dma = sg->flags & NVME_SG_DMA; 1288 int64_t sge_len; 1289 int sg_idx = 0; 1290 int ret; 1291 1292 assert(sg->flags & NVME_SG_ALLOC); 1293 1294 while (len) { 1295 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len; 1296 1297 if (sge_len - offset < 0) { 1298 offset -= sge_len; 1299 sg_idx++; 1300 continue; 1301 } 1302 1303 if (sge_len == offset) { 1304 offset = 0; 1305 sg_idx++; 1306 continue; 1307 } 1308 1309 trans_len = MIN(len, count); 1310 trans_len = MIN(trans_len, sge_len - offset); 1311 1312 if (dma) { 1313 addr = sg->qsg.sg[sg_idx].base + offset; 1314 } else { 1315 addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset; 1316 } 1317 1318 if (dir == NVME_TX_DIRECTION_TO_DEVICE) { 1319 ret = nvme_addr_read(n, addr, ptr, trans_len); 1320 } else { 1321 ret = nvme_addr_write(n, addr, ptr, trans_len); 1322 } 1323 1324 if (ret) { 1325 return NVME_DATA_TRAS_ERROR; 1326 } 1327 1328 ptr += trans_len; 1329 len -= trans_len; 1330 count -= trans_len; 1331 offset += trans_len; 1332 1333 if (count == 0) { 1334 count = bytes; 1335 offset += skip_bytes; 1336 } 1337 } 1338 1339 return NVME_SUCCESS; 1340 } 1341 1342 static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, void *ptr, uint32_t len, 1343 NvmeTxDirection dir) 1344 { 1345 assert(sg->flags & NVME_SG_ALLOC); 1346 1347 if (sg->flags & NVME_SG_DMA) { 1348 const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; 1349 dma_addr_t residual; 1350 1351 if (dir == NVME_TX_DIRECTION_TO_DEVICE) { 1352 dma_buf_write(ptr, len, &residual, &sg->qsg, attrs); 1353 } else { 1354 dma_buf_read(ptr, len, &residual, &sg->qsg, attrs); 1355 } 1356 1357 if (unlikely(residual)) { 1358 trace_pci_nvme_err_invalid_dma(); 1359 return NVME_INVALID_FIELD | NVME_DNR; 1360 } 1361 } else { 1362 size_t bytes; 1363 1364 if (dir == NVME_TX_DIRECTION_TO_DEVICE) { 1365 bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len); 1366 } else { 1367 bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len); 1368 } 1369 1370 if (unlikely(bytes != len)) { 1371 trace_pci_nvme_err_invalid_dma(); 1372 return NVME_INVALID_FIELD | NVME_DNR; 1373 } 1374 } 1375 1376 return NVME_SUCCESS; 1377 } 1378 1379 static inline uint16_t nvme_c2h(NvmeCtrl *n, void *ptr, uint32_t len, 1380 NvmeRequest *req) 1381 { 1382 uint16_t status; 1383 1384 status = nvme_map_dptr(n, &req->sg, len, &req->cmd); 1385 if (status) { 1386 return status; 1387 } 1388 1389 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE); 1390 } 1391 1392 static inline uint16_t nvme_h2c(NvmeCtrl *n, void *ptr, uint32_t len, 1393 NvmeRequest *req) 1394 { 1395 uint16_t status; 1396 1397 status = nvme_map_dptr(n, &req->sg, len, &req->cmd); 1398 if (status) { 1399 return status; 1400 } 1401 1402 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE); 1403 } 1404 1405 uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len, 1406 NvmeTxDirection dir, NvmeRequest *req) 1407 { 1408 NvmeNamespace *ns = req->ns; 1409 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 1410 bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps); 1411 bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT); 1412 1413 if (nvme_ns_ext(ns) && 1414 !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) { 1415 return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz, 1416 ns->lbaf.ms, 0, dir); 1417 } 1418 1419 return nvme_tx(n, &req->sg, ptr, len, dir); 1420 } 1421 1422 uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len, 1423 NvmeTxDirection dir, NvmeRequest *req) 1424 { 1425 NvmeNamespace *ns = req->ns; 1426 uint16_t status; 1427 1428 if (nvme_ns_ext(ns)) { 1429 return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms, 1430 ns->lbasz, ns->lbasz, dir); 1431 } 1432 1433 nvme_sg_unmap(&req->sg); 1434 1435 status = nvme_map_mptr(n, &req->sg, len, &req->cmd); 1436 if (status) { 1437 return status; 1438 } 1439 1440 return nvme_tx(n, &req->sg, ptr, len, dir); 1441 } 1442 1443 static inline void nvme_blk_read(BlockBackend *blk, int64_t offset, 1444 uint32_t align, BlockCompletionFunc *cb, 1445 NvmeRequest *req) 1446 { 1447 assert(req->sg.flags & NVME_SG_ALLOC); 1448 1449 if (req->sg.flags & NVME_SG_DMA) { 1450 req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, align, cb, req); 1451 } else { 1452 req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req); 1453 } 1454 } 1455 1456 static inline void nvme_blk_write(BlockBackend *blk, int64_t offset, 1457 uint32_t align, BlockCompletionFunc *cb, 1458 NvmeRequest *req) 1459 { 1460 assert(req->sg.flags & NVME_SG_ALLOC); 1461 1462 if (req->sg.flags & NVME_SG_DMA) { 1463 req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, align, cb, req); 1464 } else { 1465 req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req); 1466 } 1467 } 1468 1469 static void nvme_update_cq_eventidx(const NvmeCQueue *cq) 1470 { 1471 uint32_t v = cpu_to_le32(cq->head); 1472 1473 trace_pci_nvme_update_cq_eventidx(cq->cqid, cq->head); 1474 1475 pci_dma_write(PCI_DEVICE(cq->ctrl), cq->ei_addr, &v, sizeof(v)); 1476 } 1477 1478 static void nvme_update_cq_head(NvmeCQueue *cq) 1479 { 1480 uint32_t v; 1481 1482 pci_dma_read(PCI_DEVICE(cq->ctrl), cq->db_addr, &v, sizeof(v)); 1483 1484 cq->head = le32_to_cpu(v); 1485 1486 trace_pci_nvme_update_cq_head(cq->cqid, cq->head); 1487 } 1488 1489 static void nvme_post_cqes(void *opaque) 1490 { 1491 NvmeCQueue *cq = opaque; 1492 NvmeCtrl *n = cq->ctrl; 1493 NvmeRequest *req, *next; 1494 bool pending = cq->head != cq->tail; 1495 int ret; 1496 1497 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) { 1498 NvmeSQueue *sq; 1499 hwaddr addr; 1500 1501 if (n->dbbuf_enabled) { 1502 nvme_update_cq_eventidx(cq); 1503 nvme_update_cq_head(cq); 1504 } 1505 1506 if (nvme_cq_full(cq)) { 1507 break; 1508 } 1509 1510 sq = req->sq; 1511 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase); 1512 req->cqe.sq_id = cpu_to_le16(sq->sqid); 1513 req->cqe.sq_head = cpu_to_le16(sq->head); 1514 addr = cq->dma_addr + cq->tail * n->cqe_size; 1515 ret = pci_dma_write(PCI_DEVICE(n), addr, (void *)&req->cqe, 1516 sizeof(req->cqe)); 1517 if (ret) { 1518 trace_pci_nvme_err_addr_write(addr); 1519 trace_pci_nvme_err_cfs(); 1520 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED); 1521 break; 1522 } 1523 QTAILQ_REMOVE(&cq->req_list, req, entry); 1524 nvme_inc_cq_tail(cq); 1525 nvme_sg_unmap(&req->sg); 1526 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry); 1527 } 1528 if (cq->tail != cq->head) { 1529 if (cq->irq_enabled && !pending) { 1530 n->cq_pending++; 1531 } 1532 1533 nvme_irq_assert(n, cq); 1534 } 1535 } 1536 1537 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req) 1538 { 1539 assert(cq->cqid == req->sq->cqid); 1540 trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid, 1541 le32_to_cpu(req->cqe.result), 1542 le32_to_cpu(req->cqe.dw1), 1543 req->status); 1544 1545 if (req->status) { 1546 trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns), 1547 req->status, req->cmd.opcode); 1548 } 1549 1550 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry); 1551 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry); 1552 1553 qemu_bh_schedule(cq->bh); 1554 } 1555 1556 static void nvme_process_aers(void *opaque) 1557 { 1558 NvmeCtrl *n = opaque; 1559 NvmeAsyncEvent *event, *next; 1560 1561 trace_pci_nvme_process_aers(n->aer_queued); 1562 1563 QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) { 1564 NvmeRequest *req; 1565 NvmeAerResult *result; 1566 1567 /* can't post cqe if there is nothing to complete */ 1568 if (!n->outstanding_aers) { 1569 trace_pci_nvme_no_outstanding_aers(); 1570 break; 1571 } 1572 1573 /* ignore if masked (cqe posted, but event not cleared) */ 1574 if (n->aer_mask & (1 << event->result.event_type)) { 1575 trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask); 1576 continue; 1577 } 1578 1579 QTAILQ_REMOVE(&n->aer_queue, event, entry); 1580 n->aer_queued--; 1581 1582 n->aer_mask |= 1 << event->result.event_type; 1583 n->outstanding_aers--; 1584 1585 req = n->aer_reqs[n->outstanding_aers]; 1586 1587 result = (NvmeAerResult *) &req->cqe.result; 1588 result->event_type = event->result.event_type; 1589 result->event_info = event->result.event_info; 1590 result->log_page = event->result.log_page; 1591 g_free(event); 1592 1593 trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info, 1594 result->log_page); 1595 1596 nvme_enqueue_req_completion(&n->admin_cq, req); 1597 } 1598 } 1599 1600 static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type, 1601 uint8_t event_info, uint8_t log_page) 1602 { 1603 NvmeAsyncEvent *event; 1604 1605 trace_pci_nvme_enqueue_event(event_type, event_info, log_page); 1606 1607 if (n->aer_queued == n->params.aer_max_queued) { 1608 trace_pci_nvme_enqueue_event_noqueue(n->aer_queued); 1609 return; 1610 } 1611 1612 event = g_new(NvmeAsyncEvent, 1); 1613 event->result = (NvmeAerResult) { 1614 .event_type = event_type, 1615 .event_info = event_info, 1616 .log_page = log_page, 1617 }; 1618 1619 QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry); 1620 n->aer_queued++; 1621 1622 nvme_process_aers(n); 1623 } 1624 1625 static void nvme_smart_event(NvmeCtrl *n, uint8_t event) 1626 { 1627 uint8_t aer_info; 1628 1629 /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */ 1630 if (!(NVME_AEC_SMART(n->features.async_config) & event)) { 1631 return; 1632 } 1633 1634 switch (event) { 1635 case NVME_SMART_SPARE: 1636 aer_info = NVME_AER_INFO_SMART_SPARE_THRESH; 1637 break; 1638 case NVME_SMART_TEMPERATURE: 1639 aer_info = NVME_AER_INFO_SMART_TEMP_THRESH; 1640 break; 1641 case NVME_SMART_RELIABILITY: 1642 case NVME_SMART_MEDIA_READ_ONLY: 1643 case NVME_SMART_FAILED_VOLATILE_MEDIA: 1644 case NVME_SMART_PMR_UNRELIABLE: 1645 aer_info = NVME_AER_INFO_SMART_RELIABILITY; 1646 break; 1647 default: 1648 return; 1649 } 1650 1651 nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO); 1652 } 1653 1654 static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type) 1655 { 1656 n->aer_mask &= ~(1 << event_type); 1657 if (!QTAILQ_EMPTY(&n->aer_queue)) { 1658 nvme_process_aers(n); 1659 } 1660 } 1661 1662 static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len) 1663 { 1664 uint8_t mdts = n->params.mdts; 1665 1666 if (mdts && len > n->page_size << mdts) { 1667 trace_pci_nvme_err_mdts(len); 1668 return NVME_INVALID_FIELD | NVME_DNR; 1669 } 1670 1671 return NVME_SUCCESS; 1672 } 1673 1674 static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba, 1675 uint32_t nlb) 1676 { 1677 uint64_t nsze = le64_to_cpu(ns->id_ns.nsze); 1678 1679 if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) { 1680 trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze); 1681 return NVME_LBA_RANGE | NVME_DNR; 1682 } 1683 1684 return NVME_SUCCESS; 1685 } 1686 1687 static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba, 1688 uint32_t nlb, int flags) 1689 { 1690 BlockDriverState *bs = blk_bs(ns->blkconf.blk); 1691 1692 int64_t pnum = 0, bytes = nvme_l2b(ns, nlb); 1693 int64_t offset = nvme_l2b(ns, slba); 1694 int ret; 1695 1696 /* 1697 * `pnum` holds the number of bytes after offset that shares the same 1698 * allocation status as the byte at offset. If `pnum` is different from 1699 * `bytes`, we should check the allocation status of the next range and 1700 * continue this until all bytes have been checked. 1701 */ 1702 do { 1703 bytes -= pnum; 1704 1705 ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL); 1706 if (ret < 0) { 1707 return ret; 1708 } 1709 1710 1711 trace_pci_nvme_block_status(offset, bytes, pnum, ret, 1712 !!(ret & BDRV_BLOCK_ZERO)); 1713 1714 if (!(ret & flags)) { 1715 return 1; 1716 } 1717 1718 offset += pnum; 1719 } while (pnum != bytes); 1720 1721 return 0; 1722 } 1723 1724 static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba, 1725 uint32_t nlb) 1726 { 1727 int ret; 1728 Error *err = NULL; 1729 1730 ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA); 1731 if (ret) { 1732 if (ret < 0) { 1733 error_setg_errno(&err, -ret, "unable to get block status"); 1734 error_report_err(err); 1735 1736 return NVME_INTERNAL_DEV_ERROR; 1737 } 1738 1739 return NVME_DULB; 1740 } 1741 1742 return NVME_SUCCESS; 1743 } 1744 1745 static void nvme_aio_err(NvmeRequest *req, int ret) 1746 { 1747 uint16_t status = NVME_SUCCESS; 1748 Error *local_err = NULL; 1749 1750 switch (req->cmd.opcode) { 1751 case NVME_CMD_READ: 1752 status = NVME_UNRECOVERED_READ; 1753 break; 1754 case NVME_CMD_FLUSH: 1755 case NVME_CMD_WRITE: 1756 case NVME_CMD_WRITE_ZEROES: 1757 case NVME_CMD_ZONE_APPEND: 1758 case NVME_CMD_COPY: 1759 status = NVME_WRITE_FAULT; 1760 break; 1761 default: 1762 status = NVME_INTERNAL_DEV_ERROR; 1763 break; 1764 } 1765 1766 trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status); 1767 1768 error_setg_errno(&local_err, -ret, "aio failed"); 1769 error_report_err(local_err); 1770 1771 /* 1772 * Set the command status code to the first encountered error but allow a 1773 * subsequent Internal Device Error to trump it. 1774 */ 1775 if (req->status && status != NVME_INTERNAL_DEV_ERROR) { 1776 return; 1777 } 1778 1779 req->status = status; 1780 } 1781 1782 static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba) 1783 { 1784 return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 : 1785 slba / ns->zone_size; 1786 } 1787 1788 static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba) 1789 { 1790 uint32_t zone_idx = nvme_zone_idx(ns, slba); 1791 1792 if (zone_idx >= ns->num_zones) { 1793 return NULL; 1794 } 1795 1796 return &ns->zone_array[zone_idx]; 1797 } 1798 1799 static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone) 1800 { 1801 uint64_t zslba = zone->d.zslba; 1802 1803 switch (nvme_get_zone_state(zone)) { 1804 case NVME_ZONE_STATE_EMPTY: 1805 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1806 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1807 case NVME_ZONE_STATE_CLOSED: 1808 return NVME_SUCCESS; 1809 case NVME_ZONE_STATE_FULL: 1810 trace_pci_nvme_err_zone_is_full(zslba); 1811 return NVME_ZONE_FULL; 1812 case NVME_ZONE_STATE_OFFLINE: 1813 trace_pci_nvme_err_zone_is_offline(zslba); 1814 return NVME_ZONE_OFFLINE; 1815 case NVME_ZONE_STATE_READ_ONLY: 1816 trace_pci_nvme_err_zone_is_read_only(zslba); 1817 return NVME_ZONE_READ_ONLY; 1818 default: 1819 assert(false); 1820 } 1821 1822 return NVME_INTERNAL_DEV_ERROR; 1823 } 1824 1825 static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone, 1826 uint64_t slba, uint32_t nlb) 1827 { 1828 uint64_t zcap = nvme_zone_wr_boundary(zone); 1829 uint16_t status; 1830 1831 status = nvme_check_zone_state_for_write(zone); 1832 if (status) { 1833 return status; 1834 } 1835 1836 if (zone->d.za & NVME_ZA_ZRWA_VALID) { 1837 uint64_t ezrwa = zone->w_ptr + 2 * ns->zns.zrwas; 1838 1839 if (slba < zone->w_ptr || slba + nlb > ezrwa) { 1840 trace_pci_nvme_err_zone_invalid_write(slba, zone->w_ptr); 1841 return NVME_ZONE_INVALID_WRITE; 1842 } 1843 } else { 1844 if (unlikely(slba != zone->w_ptr)) { 1845 trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba, 1846 zone->w_ptr); 1847 return NVME_ZONE_INVALID_WRITE; 1848 } 1849 } 1850 1851 if (unlikely((slba + nlb) > zcap)) { 1852 trace_pci_nvme_err_zone_boundary(slba, nlb, zcap); 1853 return NVME_ZONE_BOUNDARY_ERROR; 1854 } 1855 1856 return NVME_SUCCESS; 1857 } 1858 1859 static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone) 1860 { 1861 switch (nvme_get_zone_state(zone)) { 1862 case NVME_ZONE_STATE_EMPTY: 1863 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1864 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1865 case NVME_ZONE_STATE_FULL: 1866 case NVME_ZONE_STATE_CLOSED: 1867 case NVME_ZONE_STATE_READ_ONLY: 1868 return NVME_SUCCESS; 1869 case NVME_ZONE_STATE_OFFLINE: 1870 trace_pci_nvme_err_zone_is_offline(zone->d.zslba); 1871 return NVME_ZONE_OFFLINE; 1872 default: 1873 assert(false); 1874 } 1875 1876 return NVME_INTERNAL_DEV_ERROR; 1877 } 1878 1879 static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba, 1880 uint32_t nlb) 1881 { 1882 NvmeZone *zone; 1883 uint64_t bndry, end; 1884 uint16_t status; 1885 1886 zone = nvme_get_zone_by_slba(ns, slba); 1887 assert(zone); 1888 1889 bndry = nvme_zone_rd_boundary(ns, zone); 1890 end = slba + nlb; 1891 1892 status = nvme_check_zone_state_for_read(zone); 1893 if (status) { 1894 ; 1895 } else if (unlikely(end > bndry)) { 1896 if (!ns->params.cross_zone_read) { 1897 status = NVME_ZONE_BOUNDARY_ERROR; 1898 } else { 1899 /* 1900 * Read across zone boundary - check that all subsequent 1901 * zones that are being read have an appropriate state. 1902 */ 1903 do { 1904 zone++; 1905 status = nvme_check_zone_state_for_read(zone); 1906 if (status) { 1907 break; 1908 } 1909 } while (end > nvme_zone_rd_boundary(ns, zone)); 1910 } 1911 } 1912 1913 return status; 1914 } 1915 1916 static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone) 1917 { 1918 switch (nvme_get_zone_state(zone)) { 1919 case NVME_ZONE_STATE_FULL: 1920 return NVME_SUCCESS; 1921 1922 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1923 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1924 nvme_aor_dec_open(ns); 1925 /* fallthrough */ 1926 case NVME_ZONE_STATE_CLOSED: 1927 nvme_aor_dec_active(ns); 1928 1929 if (zone->d.za & NVME_ZA_ZRWA_VALID) { 1930 zone->d.za &= ~NVME_ZA_ZRWA_VALID; 1931 if (ns->params.numzrwa) { 1932 ns->zns.numzrwa++; 1933 } 1934 } 1935 1936 /* fallthrough */ 1937 case NVME_ZONE_STATE_EMPTY: 1938 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL); 1939 return NVME_SUCCESS; 1940 1941 default: 1942 return NVME_ZONE_INVAL_TRANSITION; 1943 } 1944 } 1945 1946 static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone) 1947 { 1948 switch (nvme_get_zone_state(zone)) { 1949 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1950 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1951 nvme_aor_dec_open(ns); 1952 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED); 1953 /* fall through */ 1954 case NVME_ZONE_STATE_CLOSED: 1955 return NVME_SUCCESS; 1956 1957 default: 1958 return NVME_ZONE_INVAL_TRANSITION; 1959 } 1960 } 1961 1962 static uint16_t nvme_zrm_reset(NvmeNamespace *ns, NvmeZone *zone) 1963 { 1964 switch (nvme_get_zone_state(zone)) { 1965 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 1966 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 1967 nvme_aor_dec_open(ns); 1968 /* fallthrough */ 1969 case NVME_ZONE_STATE_CLOSED: 1970 nvme_aor_dec_active(ns); 1971 1972 if (zone->d.za & NVME_ZA_ZRWA_VALID) { 1973 if (ns->params.numzrwa) { 1974 ns->zns.numzrwa++; 1975 } 1976 } 1977 1978 /* fallthrough */ 1979 case NVME_ZONE_STATE_FULL: 1980 zone->w_ptr = zone->d.zslba; 1981 zone->d.wp = zone->w_ptr; 1982 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY); 1983 /* fallthrough */ 1984 case NVME_ZONE_STATE_EMPTY: 1985 return NVME_SUCCESS; 1986 1987 default: 1988 return NVME_ZONE_INVAL_TRANSITION; 1989 } 1990 } 1991 1992 static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns) 1993 { 1994 NvmeZone *zone; 1995 1996 if (ns->params.max_open_zones && 1997 ns->nr_open_zones == ns->params.max_open_zones) { 1998 zone = QTAILQ_FIRST(&ns->imp_open_zones); 1999 if (zone) { 2000 /* 2001 * Automatically close this implicitly open zone. 2002 */ 2003 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry); 2004 nvme_zrm_close(ns, zone); 2005 } 2006 } 2007 } 2008 2009 enum { 2010 NVME_ZRM_AUTO = 1 << 0, 2011 NVME_ZRM_ZRWA = 1 << 1, 2012 }; 2013 2014 static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns, 2015 NvmeZone *zone, int flags) 2016 { 2017 int act = 0; 2018 uint16_t status; 2019 2020 switch (nvme_get_zone_state(zone)) { 2021 case NVME_ZONE_STATE_EMPTY: 2022 act = 1; 2023 2024 /* fallthrough */ 2025 2026 case NVME_ZONE_STATE_CLOSED: 2027 if (n->params.auto_transition_zones) { 2028 nvme_zrm_auto_transition_zone(ns); 2029 } 2030 status = nvme_zns_check_resources(ns, act, 1, 2031 (flags & NVME_ZRM_ZRWA) ? 1 : 0); 2032 if (status) { 2033 return status; 2034 } 2035 2036 if (act) { 2037 nvme_aor_inc_active(ns); 2038 } 2039 2040 nvme_aor_inc_open(ns); 2041 2042 if (flags & NVME_ZRM_AUTO) { 2043 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN); 2044 return NVME_SUCCESS; 2045 } 2046 2047 /* fallthrough */ 2048 2049 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 2050 if (flags & NVME_ZRM_AUTO) { 2051 return NVME_SUCCESS; 2052 } 2053 2054 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN); 2055 2056 /* fallthrough */ 2057 2058 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 2059 if (flags & NVME_ZRM_ZRWA) { 2060 ns->zns.numzrwa--; 2061 2062 zone->d.za |= NVME_ZA_ZRWA_VALID; 2063 } 2064 2065 return NVME_SUCCESS; 2066 2067 default: 2068 return NVME_ZONE_INVAL_TRANSITION; 2069 } 2070 } 2071 2072 static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns, 2073 NvmeZone *zone) 2074 { 2075 return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO); 2076 } 2077 2078 static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone, 2079 uint32_t nlb) 2080 { 2081 zone->d.wp += nlb; 2082 2083 if (zone->d.wp == nvme_zone_wr_boundary(zone)) { 2084 nvme_zrm_finish(ns, zone); 2085 } 2086 } 2087 2088 static void nvme_zoned_zrwa_implicit_flush(NvmeNamespace *ns, NvmeZone *zone, 2089 uint32_t nlbc) 2090 { 2091 uint16_t nzrwafgs = DIV_ROUND_UP(nlbc, ns->zns.zrwafg); 2092 2093 nlbc = nzrwafgs * ns->zns.zrwafg; 2094 2095 trace_pci_nvme_zoned_zrwa_implicit_flush(zone->d.zslba, nlbc); 2096 2097 zone->w_ptr += nlbc; 2098 2099 nvme_advance_zone_wp(ns, zone, nlbc); 2100 } 2101 2102 static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req) 2103 { 2104 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2105 NvmeZone *zone; 2106 uint64_t slba; 2107 uint32_t nlb; 2108 2109 slba = le64_to_cpu(rw->slba); 2110 nlb = le16_to_cpu(rw->nlb) + 1; 2111 zone = nvme_get_zone_by_slba(ns, slba); 2112 assert(zone); 2113 2114 if (zone->d.za & NVME_ZA_ZRWA_VALID) { 2115 uint64_t ezrwa = zone->w_ptr + ns->zns.zrwas - 1; 2116 uint64_t elba = slba + nlb - 1; 2117 2118 if (elba > ezrwa) { 2119 nvme_zoned_zrwa_implicit_flush(ns, zone, elba - ezrwa); 2120 } 2121 2122 return; 2123 } 2124 2125 nvme_advance_zone_wp(ns, zone, nlb); 2126 } 2127 2128 static inline bool nvme_is_write(NvmeRequest *req) 2129 { 2130 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2131 2132 return rw->opcode == NVME_CMD_WRITE || 2133 rw->opcode == NVME_CMD_ZONE_APPEND || 2134 rw->opcode == NVME_CMD_WRITE_ZEROES; 2135 } 2136 2137 static AioContext *nvme_get_aio_context(BlockAIOCB *acb) 2138 { 2139 return qemu_get_aio_context(); 2140 } 2141 2142 static void nvme_misc_cb(void *opaque, int ret) 2143 { 2144 NvmeRequest *req = opaque; 2145 2146 trace_pci_nvme_misc_cb(nvme_cid(req)); 2147 2148 if (ret) { 2149 nvme_aio_err(req, ret); 2150 } 2151 2152 nvme_enqueue_req_completion(nvme_cq(req), req); 2153 } 2154 2155 void nvme_rw_complete_cb(void *opaque, int ret) 2156 { 2157 NvmeRequest *req = opaque; 2158 NvmeNamespace *ns = req->ns; 2159 BlockBackend *blk = ns->blkconf.blk; 2160 BlockAcctCookie *acct = &req->acct; 2161 BlockAcctStats *stats = blk_get_stats(blk); 2162 2163 trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk)); 2164 2165 if (ret) { 2166 block_acct_failed(stats, acct); 2167 nvme_aio_err(req, ret); 2168 } else { 2169 block_acct_done(stats, acct); 2170 } 2171 2172 if (ns->params.zoned && nvme_is_write(req)) { 2173 nvme_finalize_zoned_write(ns, req); 2174 } 2175 2176 nvme_enqueue_req_completion(nvme_cq(req), req); 2177 } 2178 2179 static void nvme_rw_cb(void *opaque, int ret) 2180 { 2181 NvmeRequest *req = opaque; 2182 NvmeNamespace *ns = req->ns; 2183 2184 BlockBackend *blk = ns->blkconf.blk; 2185 2186 trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk)); 2187 2188 if (ret) { 2189 goto out; 2190 } 2191 2192 if (ns->lbaf.ms) { 2193 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2194 uint64_t slba = le64_to_cpu(rw->slba); 2195 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; 2196 uint64_t offset = nvme_moff(ns, slba); 2197 2198 if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) { 2199 size_t mlen = nvme_m2b(ns, nlb); 2200 2201 req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen, 2202 BDRV_REQ_MAY_UNMAP, 2203 nvme_rw_complete_cb, req); 2204 return; 2205 } 2206 2207 if (nvme_ns_ext(ns) || req->cmd.mptr) { 2208 uint16_t status; 2209 2210 nvme_sg_unmap(&req->sg); 2211 status = nvme_map_mdata(nvme_ctrl(req), nlb, req); 2212 if (status) { 2213 ret = -EFAULT; 2214 goto out; 2215 } 2216 2217 if (req->cmd.opcode == NVME_CMD_READ) { 2218 return nvme_blk_read(blk, offset, 1, nvme_rw_complete_cb, req); 2219 } 2220 2221 return nvme_blk_write(blk, offset, 1, nvme_rw_complete_cb, req); 2222 } 2223 } 2224 2225 out: 2226 nvme_rw_complete_cb(req, ret); 2227 } 2228 2229 static void nvme_verify_cb(void *opaque, int ret) 2230 { 2231 NvmeBounceContext *ctx = opaque; 2232 NvmeRequest *req = ctx->req; 2233 NvmeNamespace *ns = req->ns; 2234 BlockBackend *blk = ns->blkconf.blk; 2235 BlockAcctCookie *acct = &req->acct; 2236 BlockAcctStats *stats = blk_get_stats(blk); 2237 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2238 uint64_t slba = le64_to_cpu(rw->slba); 2239 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 2240 uint16_t apptag = le16_to_cpu(rw->apptag); 2241 uint16_t appmask = le16_to_cpu(rw->appmask); 2242 uint64_t reftag = le32_to_cpu(rw->reftag); 2243 uint64_t cdw3 = le32_to_cpu(rw->cdw3); 2244 uint16_t status; 2245 2246 reftag |= cdw3 << 32; 2247 2248 trace_pci_nvme_verify_cb(nvme_cid(req), prinfo, apptag, appmask, reftag); 2249 2250 if (ret) { 2251 block_acct_failed(stats, acct); 2252 nvme_aio_err(req, ret); 2253 goto out; 2254 } 2255 2256 block_acct_done(stats, acct); 2257 2258 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 2259 status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce, 2260 ctx->mdata.iov.size, slba); 2261 if (status) { 2262 req->status = status; 2263 goto out; 2264 } 2265 2266 req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size, 2267 ctx->mdata.bounce, ctx->mdata.iov.size, 2268 prinfo, slba, apptag, appmask, &reftag); 2269 } 2270 2271 out: 2272 qemu_iovec_destroy(&ctx->data.iov); 2273 g_free(ctx->data.bounce); 2274 2275 qemu_iovec_destroy(&ctx->mdata.iov); 2276 g_free(ctx->mdata.bounce); 2277 2278 g_free(ctx); 2279 2280 nvme_enqueue_req_completion(nvme_cq(req), req); 2281 } 2282 2283 2284 static void nvme_verify_mdata_in_cb(void *opaque, int ret) 2285 { 2286 NvmeBounceContext *ctx = opaque; 2287 NvmeRequest *req = ctx->req; 2288 NvmeNamespace *ns = req->ns; 2289 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2290 uint64_t slba = le64_to_cpu(rw->slba); 2291 uint32_t nlb = le16_to_cpu(rw->nlb) + 1; 2292 size_t mlen = nvme_m2b(ns, nlb); 2293 uint64_t offset = nvme_moff(ns, slba); 2294 BlockBackend *blk = ns->blkconf.blk; 2295 2296 trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk)); 2297 2298 if (ret) { 2299 goto out; 2300 } 2301 2302 ctx->mdata.bounce = g_malloc(mlen); 2303 2304 qemu_iovec_reset(&ctx->mdata.iov); 2305 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen); 2306 2307 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0, 2308 nvme_verify_cb, ctx); 2309 return; 2310 2311 out: 2312 nvme_verify_cb(ctx, ret); 2313 } 2314 2315 struct nvme_compare_ctx { 2316 struct { 2317 QEMUIOVector iov; 2318 uint8_t *bounce; 2319 } data; 2320 2321 struct { 2322 QEMUIOVector iov; 2323 uint8_t *bounce; 2324 } mdata; 2325 }; 2326 2327 static void nvme_compare_mdata_cb(void *opaque, int ret) 2328 { 2329 NvmeRequest *req = opaque; 2330 NvmeNamespace *ns = req->ns; 2331 NvmeCtrl *n = nvme_ctrl(req); 2332 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2333 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 2334 uint16_t apptag = le16_to_cpu(rw->apptag); 2335 uint16_t appmask = le16_to_cpu(rw->appmask); 2336 uint64_t reftag = le32_to_cpu(rw->reftag); 2337 uint64_t cdw3 = le32_to_cpu(rw->cdw3); 2338 struct nvme_compare_ctx *ctx = req->opaque; 2339 g_autofree uint8_t *buf = NULL; 2340 BlockBackend *blk = ns->blkconf.blk; 2341 BlockAcctCookie *acct = &req->acct; 2342 BlockAcctStats *stats = blk_get_stats(blk); 2343 uint16_t status = NVME_SUCCESS; 2344 2345 reftag |= cdw3 << 32; 2346 2347 trace_pci_nvme_compare_mdata_cb(nvme_cid(req)); 2348 2349 if (ret) { 2350 block_acct_failed(stats, acct); 2351 nvme_aio_err(req, ret); 2352 goto out; 2353 } 2354 2355 buf = g_malloc(ctx->mdata.iov.size); 2356 2357 status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size, 2358 NVME_TX_DIRECTION_TO_DEVICE, req); 2359 if (status) { 2360 req->status = status; 2361 goto out; 2362 } 2363 2364 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 2365 uint64_t slba = le64_to_cpu(rw->slba); 2366 uint8_t *bufp; 2367 uint8_t *mbufp = ctx->mdata.bounce; 2368 uint8_t *end = mbufp + ctx->mdata.iov.size; 2369 int16_t pil = 0; 2370 2371 status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size, 2372 ctx->mdata.bounce, ctx->mdata.iov.size, prinfo, 2373 slba, apptag, appmask, &reftag); 2374 if (status) { 2375 req->status = status; 2376 goto out; 2377 } 2378 2379 /* 2380 * When formatted with protection information, do not compare the DIF 2381 * tuple. 2382 */ 2383 if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) { 2384 pil = ns->lbaf.ms - nvme_pi_tuple_size(ns); 2385 } 2386 2387 for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) { 2388 if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) { 2389 req->status = NVME_CMP_FAILURE | NVME_DNR; 2390 goto out; 2391 } 2392 } 2393 2394 goto out; 2395 } 2396 2397 if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) { 2398 req->status = NVME_CMP_FAILURE | NVME_DNR; 2399 goto out; 2400 } 2401 2402 block_acct_done(stats, acct); 2403 2404 out: 2405 qemu_iovec_destroy(&ctx->data.iov); 2406 g_free(ctx->data.bounce); 2407 2408 qemu_iovec_destroy(&ctx->mdata.iov); 2409 g_free(ctx->mdata.bounce); 2410 2411 g_free(ctx); 2412 2413 nvme_enqueue_req_completion(nvme_cq(req), req); 2414 } 2415 2416 static void nvme_compare_data_cb(void *opaque, int ret) 2417 { 2418 NvmeRequest *req = opaque; 2419 NvmeCtrl *n = nvme_ctrl(req); 2420 NvmeNamespace *ns = req->ns; 2421 BlockBackend *blk = ns->blkconf.blk; 2422 BlockAcctCookie *acct = &req->acct; 2423 BlockAcctStats *stats = blk_get_stats(blk); 2424 2425 struct nvme_compare_ctx *ctx = req->opaque; 2426 g_autofree uint8_t *buf = NULL; 2427 uint16_t status; 2428 2429 trace_pci_nvme_compare_data_cb(nvme_cid(req)); 2430 2431 if (ret) { 2432 block_acct_failed(stats, acct); 2433 nvme_aio_err(req, ret); 2434 goto out; 2435 } 2436 2437 buf = g_malloc(ctx->data.iov.size); 2438 2439 status = nvme_bounce_data(n, buf, ctx->data.iov.size, 2440 NVME_TX_DIRECTION_TO_DEVICE, req); 2441 if (status) { 2442 req->status = status; 2443 goto out; 2444 } 2445 2446 if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) { 2447 req->status = NVME_CMP_FAILURE | NVME_DNR; 2448 goto out; 2449 } 2450 2451 if (ns->lbaf.ms) { 2452 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2453 uint64_t slba = le64_to_cpu(rw->slba); 2454 uint32_t nlb = le16_to_cpu(rw->nlb) + 1; 2455 size_t mlen = nvme_m2b(ns, nlb); 2456 uint64_t offset = nvme_moff(ns, slba); 2457 2458 ctx->mdata.bounce = g_malloc(mlen); 2459 2460 qemu_iovec_init(&ctx->mdata.iov, 1); 2461 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen); 2462 2463 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0, 2464 nvme_compare_mdata_cb, req); 2465 return; 2466 } 2467 2468 block_acct_done(stats, acct); 2469 2470 out: 2471 qemu_iovec_destroy(&ctx->data.iov); 2472 g_free(ctx->data.bounce); 2473 g_free(ctx); 2474 2475 nvme_enqueue_req_completion(nvme_cq(req), req); 2476 } 2477 2478 typedef struct NvmeDSMAIOCB { 2479 BlockAIOCB common; 2480 BlockAIOCB *aiocb; 2481 NvmeRequest *req; 2482 int ret; 2483 2484 NvmeDsmRange *range; 2485 unsigned int nr; 2486 unsigned int idx; 2487 } NvmeDSMAIOCB; 2488 2489 static void nvme_dsm_cancel(BlockAIOCB *aiocb) 2490 { 2491 NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common); 2492 2493 /* break nvme_dsm_cb loop */ 2494 iocb->idx = iocb->nr; 2495 iocb->ret = -ECANCELED; 2496 2497 if (iocb->aiocb) { 2498 blk_aio_cancel_async(iocb->aiocb); 2499 iocb->aiocb = NULL; 2500 } else { 2501 /* 2502 * We only reach this if nvme_dsm_cancel() has already been called or 2503 * the command ran to completion. 2504 */ 2505 assert(iocb->idx == iocb->nr); 2506 } 2507 } 2508 2509 static const AIOCBInfo nvme_dsm_aiocb_info = { 2510 .aiocb_size = sizeof(NvmeDSMAIOCB), 2511 .cancel_async = nvme_dsm_cancel, 2512 }; 2513 2514 static void nvme_dsm_cb(void *opaque, int ret); 2515 2516 static void nvme_dsm_md_cb(void *opaque, int ret) 2517 { 2518 NvmeDSMAIOCB *iocb = opaque; 2519 NvmeRequest *req = iocb->req; 2520 NvmeNamespace *ns = req->ns; 2521 NvmeDsmRange *range; 2522 uint64_t slba; 2523 uint32_t nlb; 2524 2525 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) { 2526 goto done; 2527 } 2528 2529 range = &iocb->range[iocb->idx - 1]; 2530 slba = le64_to_cpu(range->slba); 2531 nlb = le32_to_cpu(range->nlb); 2532 2533 /* 2534 * Check that all block were discarded (zeroed); otherwise we do not zero 2535 * the metadata. 2536 */ 2537 2538 ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO); 2539 if (ret) { 2540 if (ret < 0) { 2541 goto done; 2542 } 2543 2544 nvme_dsm_cb(iocb, 0); 2545 return; 2546 } 2547 2548 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba), 2549 nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP, 2550 nvme_dsm_cb, iocb); 2551 return; 2552 2553 done: 2554 nvme_dsm_cb(iocb, ret); 2555 } 2556 2557 static void nvme_dsm_cb(void *opaque, int ret) 2558 { 2559 NvmeDSMAIOCB *iocb = opaque; 2560 NvmeRequest *req = iocb->req; 2561 NvmeCtrl *n = nvme_ctrl(req); 2562 NvmeNamespace *ns = req->ns; 2563 NvmeDsmRange *range; 2564 uint64_t slba; 2565 uint32_t nlb; 2566 2567 if (iocb->ret < 0) { 2568 goto done; 2569 } else if (ret < 0) { 2570 iocb->ret = ret; 2571 goto done; 2572 } 2573 2574 next: 2575 if (iocb->idx == iocb->nr) { 2576 goto done; 2577 } 2578 2579 range = &iocb->range[iocb->idx++]; 2580 slba = le64_to_cpu(range->slba); 2581 nlb = le32_to_cpu(range->nlb); 2582 2583 trace_pci_nvme_dsm_deallocate(slba, nlb); 2584 2585 if (nlb > n->dmrsl) { 2586 trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl); 2587 goto next; 2588 } 2589 2590 if (nvme_check_bounds(ns, slba, nlb)) { 2591 trace_pci_nvme_err_invalid_lba_range(slba, nlb, 2592 ns->id_ns.nsze); 2593 goto next; 2594 } 2595 2596 iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba), 2597 nvme_l2b(ns, nlb), 2598 nvme_dsm_md_cb, iocb); 2599 return; 2600 2601 done: 2602 iocb->aiocb = NULL; 2603 iocb->common.cb(iocb->common.opaque, iocb->ret); 2604 qemu_aio_unref(iocb); 2605 } 2606 2607 static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req) 2608 { 2609 NvmeNamespace *ns = req->ns; 2610 NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd; 2611 uint32_t attr = le32_to_cpu(dsm->attributes); 2612 uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1; 2613 uint16_t status = NVME_SUCCESS; 2614 2615 trace_pci_nvme_dsm(nr, attr); 2616 2617 if (attr & NVME_DSMGMT_AD) { 2618 NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk, 2619 nvme_misc_cb, req); 2620 2621 iocb->req = req; 2622 iocb->ret = 0; 2623 iocb->range = g_new(NvmeDsmRange, nr); 2624 iocb->nr = nr; 2625 iocb->idx = 0; 2626 2627 status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr, 2628 req); 2629 if (status) { 2630 g_free(iocb->range); 2631 qemu_aio_unref(iocb); 2632 2633 return status; 2634 } 2635 2636 req->aiocb = &iocb->common; 2637 nvme_dsm_cb(iocb, 0); 2638 2639 return NVME_NO_COMPLETE; 2640 } 2641 2642 return status; 2643 } 2644 2645 static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req) 2646 { 2647 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 2648 NvmeNamespace *ns = req->ns; 2649 BlockBackend *blk = ns->blkconf.blk; 2650 uint64_t slba = le64_to_cpu(rw->slba); 2651 uint32_t nlb = le16_to_cpu(rw->nlb) + 1; 2652 size_t len = nvme_l2b(ns, nlb); 2653 int64_t offset = nvme_l2b(ns, slba); 2654 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 2655 uint32_t reftag = le32_to_cpu(rw->reftag); 2656 NvmeBounceContext *ctx = NULL; 2657 uint16_t status; 2658 2659 trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb); 2660 2661 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 2662 status = nvme_check_prinfo(ns, prinfo, slba, reftag); 2663 if (status) { 2664 return status; 2665 } 2666 2667 if (prinfo & NVME_PRINFO_PRACT) { 2668 return NVME_INVALID_PROT_INFO | NVME_DNR; 2669 } 2670 } 2671 2672 if (len > n->page_size << n->params.vsl) { 2673 return NVME_INVALID_FIELD | NVME_DNR; 2674 } 2675 2676 status = nvme_check_bounds(ns, slba, nlb); 2677 if (status) { 2678 return status; 2679 } 2680 2681 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { 2682 status = nvme_check_dulbe(ns, slba, nlb); 2683 if (status) { 2684 return status; 2685 } 2686 } 2687 2688 ctx = g_new0(NvmeBounceContext, 1); 2689 ctx->req = req; 2690 2691 ctx->data.bounce = g_malloc(len); 2692 2693 qemu_iovec_init(&ctx->data.iov, 1); 2694 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len); 2695 2696 block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size, 2697 BLOCK_ACCT_READ); 2698 2699 req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0, 2700 nvme_verify_mdata_in_cb, ctx); 2701 return NVME_NO_COMPLETE; 2702 } 2703 2704 typedef struct NvmeCopyAIOCB { 2705 BlockAIOCB common; 2706 BlockAIOCB *aiocb; 2707 NvmeRequest *req; 2708 int ret; 2709 2710 void *ranges; 2711 unsigned int format; 2712 int nr; 2713 int idx; 2714 2715 uint8_t *bounce; 2716 QEMUIOVector iov; 2717 struct { 2718 BlockAcctCookie read; 2719 BlockAcctCookie write; 2720 } acct; 2721 2722 uint64_t reftag; 2723 uint64_t slba; 2724 2725 NvmeZone *zone; 2726 } NvmeCopyAIOCB; 2727 2728 static void nvme_copy_cancel(BlockAIOCB *aiocb) 2729 { 2730 NvmeCopyAIOCB *iocb = container_of(aiocb, NvmeCopyAIOCB, common); 2731 2732 iocb->ret = -ECANCELED; 2733 2734 if (iocb->aiocb) { 2735 blk_aio_cancel_async(iocb->aiocb); 2736 iocb->aiocb = NULL; 2737 } 2738 } 2739 2740 static const AIOCBInfo nvme_copy_aiocb_info = { 2741 .aiocb_size = sizeof(NvmeCopyAIOCB), 2742 .cancel_async = nvme_copy_cancel, 2743 }; 2744 2745 static void nvme_copy_done(NvmeCopyAIOCB *iocb) 2746 { 2747 NvmeRequest *req = iocb->req; 2748 NvmeNamespace *ns = req->ns; 2749 BlockAcctStats *stats = blk_get_stats(ns->blkconf.blk); 2750 2751 if (iocb->idx != iocb->nr) { 2752 req->cqe.result = cpu_to_le32(iocb->idx); 2753 } 2754 2755 qemu_iovec_destroy(&iocb->iov); 2756 g_free(iocb->bounce); 2757 2758 if (iocb->ret < 0) { 2759 block_acct_failed(stats, &iocb->acct.read); 2760 block_acct_failed(stats, &iocb->acct.write); 2761 } else { 2762 block_acct_done(stats, &iocb->acct.read); 2763 block_acct_done(stats, &iocb->acct.write); 2764 } 2765 2766 iocb->common.cb(iocb->common.opaque, iocb->ret); 2767 qemu_aio_unref(iocb); 2768 } 2769 2770 static void nvme_do_copy(NvmeCopyAIOCB *iocb); 2771 2772 static void nvme_copy_source_range_parse_format0(void *ranges, int idx, 2773 uint64_t *slba, uint32_t *nlb, 2774 uint16_t *apptag, 2775 uint16_t *appmask, 2776 uint64_t *reftag) 2777 { 2778 NvmeCopySourceRangeFormat0 *_ranges = ranges; 2779 2780 if (slba) { 2781 *slba = le64_to_cpu(_ranges[idx].slba); 2782 } 2783 2784 if (nlb) { 2785 *nlb = le16_to_cpu(_ranges[idx].nlb) + 1; 2786 } 2787 2788 if (apptag) { 2789 *apptag = le16_to_cpu(_ranges[idx].apptag); 2790 } 2791 2792 if (appmask) { 2793 *appmask = le16_to_cpu(_ranges[idx].appmask); 2794 } 2795 2796 if (reftag) { 2797 *reftag = le32_to_cpu(_ranges[idx].reftag); 2798 } 2799 } 2800 2801 static void nvme_copy_source_range_parse_format1(void *ranges, int idx, 2802 uint64_t *slba, uint32_t *nlb, 2803 uint16_t *apptag, 2804 uint16_t *appmask, 2805 uint64_t *reftag) 2806 { 2807 NvmeCopySourceRangeFormat1 *_ranges = ranges; 2808 2809 if (slba) { 2810 *slba = le64_to_cpu(_ranges[idx].slba); 2811 } 2812 2813 if (nlb) { 2814 *nlb = le16_to_cpu(_ranges[idx].nlb) + 1; 2815 } 2816 2817 if (apptag) { 2818 *apptag = le16_to_cpu(_ranges[idx].apptag); 2819 } 2820 2821 if (appmask) { 2822 *appmask = le16_to_cpu(_ranges[idx].appmask); 2823 } 2824 2825 if (reftag) { 2826 *reftag = 0; 2827 2828 *reftag |= (uint64_t)_ranges[idx].sr[4] << 40; 2829 *reftag |= (uint64_t)_ranges[idx].sr[5] << 32; 2830 *reftag |= (uint64_t)_ranges[idx].sr[6] << 24; 2831 *reftag |= (uint64_t)_ranges[idx].sr[7] << 16; 2832 *reftag |= (uint64_t)_ranges[idx].sr[8] << 8; 2833 *reftag |= (uint64_t)_ranges[idx].sr[9]; 2834 } 2835 } 2836 2837 static void nvme_copy_source_range_parse(void *ranges, int idx, uint8_t format, 2838 uint64_t *slba, uint32_t *nlb, 2839 uint16_t *apptag, uint16_t *appmask, 2840 uint64_t *reftag) 2841 { 2842 switch (format) { 2843 case NVME_COPY_FORMAT_0: 2844 nvme_copy_source_range_parse_format0(ranges, idx, slba, nlb, apptag, 2845 appmask, reftag); 2846 break; 2847 2848 case NVME_COPY_FORMAT_1: 2849 nvme_copy_source_range_parse_format1(ranges, idx, slba, nlb, apptag, 2850 appmask, reftag); 2851 break; 2852 2853 default: 2854 abort(); 2855 } 2856 } 2857 2858 static inline uint16_t nvme_check_copy_mcl(NvmeNamespace *ns, 2859 NvmeCopyAIOCB *iocb, uint16_t nr) 2860 { 2861 uint32_t copy_len = 0; 2862 2863 for (int idx = 0; idx < nr; idx++) { 2864 uint32_t nlb; 2865 nvme_copy_source_range_parse(iocb->ranges, idx, iocb->format, NULL, 2866 &nlb, NULL, NULL, NULL); 2867 copy_len += nlb + 1; 2868 } 2869 2870 if (copy_len > ns->id_ns.mcl) { 2871 return NVME_CMD_SIZE_LIMIT | NVME_DNR; 2872 } 2873 2874 return NVME_SUCCESS; 2875 } 2876 2877 static void nvme_copy_out_completed_cb(void *opaque, int ret) 2878 { 2879 NvmeCopyAIOCB *iocb = opaque; 2880 NvmeRequest *req = iocb->req; 2881 NvmeNamespace *ns = req->ns; 2882 uint32_t nlb; 2883 2884 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL, 2885 &nlb, NULL, NULL, NULL); 2886 2887 if (ret < 0) { 2888 iocb->ret = ret; 2889 goto out; 2890 } else if (iocb->ret < 0) { 2891 goto out; 2892 } 2893 2894 if (ns->params.zoned) { 2895 nvme_advance_zone_wp(ns, iocb->zone, nlb); 2896 } 2897 2898 iocb->idx++; 2899 iocb->slba += nlb; 2900 out: 2901 nvme_do_copy(iocb); 2902 } 2903 2904 static void nvme_copy_out_cb(void *opaque, int ret) 2905 { 2906 NvmeCopyAIOCB *iocb = opaque; 2907 NvmeRequest *req = iocb->req; 2908 NvmeNamespace *ns = req->ns; 2909 uint32_t nlb; 2910 size_t mlen; 2911 uint8_t *mbounce; 2912 2913 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) { 2914 goto out; 2915 } 2916 2917 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL, 2918 &nlb, NULL, NULL, NULL); 2919 2920 mlen = nvme_m2b(ns, nlb); 2921 mbounce = iocb->bounce + nvme_l2b(ns, nlb); 2922 2923 qemu_iovec_reset(&iocb->iov); 2924 qemu_iovec_add(&iocb->iov, mbounce, mlen); 2925 2926 iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_moff(ns, iocb->slba), 2927 &iocb->iov, 0, nvme_copy_out_completed_cb, 2928 iocb); 2929 2930 return; 2931 2932 out: 2933 nvme_copy_out_completed_cb(iocb, ret); 2934 } 2935 2936 static void nvme_copy_in_completed_cb(void *opaque, int ret) 2937 { 2938 NvmeCopyAIOCB *iocb = opaque; 2939 NvmeRequest *req = iocb->req; 2940 NvmeNamespace *ns = req->ns; 2941 uint32_t nlb; 2942 uint64_t slba; 2943 uint16_t apptag, appmask; 2944 uint64_t reftag; 2945 size_t len; 2946 uint16_t status; 2947 2948 if (ret < 0) { 2949 iocb->ret = ret; 2950 goto out; 2951 } else if (iocb->ret < 0) { 2952 goto out; 2953 } 2954 2955 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba, 2956 &nlb, &apptag, &appmask, &reftag); 2957 len = nvme_l2b(ns, nlb); 2958 2959 trace_pci_nvme_copy_out(iocb->slba, nlb); 2960 2961 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 2962 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd; 2963 2964 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf); 2965 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf); 2966 2967 size_t mlen = nvme_m2b(ns, nlb); 2968 uint8_t *mbounce = iocb->bounce + nvme_l2b(ns, nlb); 2969 2970 status = nvme_dif_mangle_mdata(ns, mbounce, mlen, slba); 2971 if (status) { 2972 goto invalid; 2973 } 2974 status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, prinfor, 2975 slba, apptag, appmask, &reftag); 2976 if (status) { 2977 goto invalid; 2978 } 2979 2980 apptag = le16_to_cpu(copy->apptag); 2981 appmask = le16_to_cpu(copy->appmask); 2982 2983 if (prinfow & NVME_PRINFO_PRACT) { 2984 status = nvme_check_prinfo(ns, prinfow, iocb->slba, iocb->reftag); 2985 if (status) { 2986 goto invalid; 2987 } 2988 2989 nvme_dif_pract_generate_dif(ns, iocb->bounce, len, mbounce, mlen, 2990 apptag, &iocb->reftag); 2991 } else { 2992 status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, 2993 prinfow, iocb->slba, apptag, appmask, 2994 &iocb->reftag); 2995 if (status) { 2996 goto invalid; 2997 } 2998 } 2999 } 3000 3001 status = nvme_check_bounds(ns, iocb->slba, nlb); 3002 if (status) { 3003 goto invalid; 3004 } 3005 3006 if (ns->params.zoned) { 3007 status = nvme_check_zone_write(ns, iocb->zone, iocb->slba, nlb); 3008 if (status) { 3009 goto invalid; 3010 } 3011 3012 if (!(iocb->zone->d.za & NVME_ZA_ZRWA_VALID)) { 3013 iocb->zone->w_ptr += nlb; 3014 } 3015 } 3016 3017 qemu_iovec_reset(&iocb->iov); 3018 qemu_iovec_add(&iocb->iov, iocb->bounce, len); 3019 3020 iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, iocb->slba), 3021 &iocb->iov, 0, nvme_copy_out_cb, iocb); 3022 3023 return; 3024 3025 invalid: 3026 req->status = status; 3027 iocb->ret = -1; 3028 out: 3029 nvme_do_copy(iocb); 3030 } 3031 3032 static void nvme_copy_in_cb(void *opaque, int ret) 3033 { 3034 NvmeCopyAIOCB *iocb = opaque; 3035 NvmeRequest *req = iocb->req; 3036 NvmeNamespace *ns = req->ns; 3037 uint64_t slba; 3038 uint32_t nlb; 3039 3040 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) { 3041 goto out; 3042 } 3043 3044 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba, 3045 &nlb, NULL, NULL, NULL); 3046 3047 qemu_iovec_reset(&iocb->iov); 3048 qemu_iovec_add(&iocb->iov, iocb->bounce + nvme_l2b(ns, nlb), 3049 nvme_m2b(ns, nlb)); 3050 3051 iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_moff(ns, slba), 3052 &iocb->iov, 0, nvme_copy_in_completed_cb, 3053 iocb); 3054 return; 3055 3056 out: 3057 nvme_copy_in_completed_cb(iocb, ret); 3058 } 3059 3060 static void nvme_do_copy(NvmeCopyAIOCB *iocb) 3061 { 3062 NvmeRequest *req = iocb->req; 3063 NvmeNamespace *ns = req->ns; 3064 uint64_t slba; 3065 uint32_t nlb; 3066 size_t len; 3067 uint16_t status; 3068 3069 if (iocb->ret < 0) { 3070 goto done; 3071 } 3072 3073 if (iocb->idx == iocb->nr) { 3074 goto done; 3075 } 3076 3077 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba, 3078 &nlb, NULL, NULL, NULL); 3079 len = nvme_l2b(ns, nlb); 3080 3081 trace_pci_nvme_copy_source_range(slba, nlb); 3082 3083 if (nlb > le16_to_cpu(ns->id_ns.mssrl)) { 3084 status = NVME_CMD_SIZE_LIMIT | NVME_DNR; 3085 goto invalid; 3086 } 3087 3088 status = nvme_check_bounds(ns, slba, nlb); 3089 if (status) { 3090 goto invalid; 3091 } 3092 3093 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { 3094 status = nvme_check_dulbe(ns, slba, nlb); 3095 if (status) { 3096 goto invalid; 3097 } 3098 } 3099 3100 if (ns->params.zoned) { 3101 status = nvme_check_zone_read(ns, slba, nlb); 3102 if (status) { 3103 goto invalid; 3104 } 3105 } 3106 3107 qemu_iovec_reset(&iocb->iov); 3108 qemu_iovec_add(&iocb->iov, iocb->bounce, len); 3109 3110 iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_l2b(ns, slba), 3111 &iocb->iov, 0, nvme_copy_in_cb, iocb); 3112 return; 3113 3114 invalid: 3115 req->status = status; 3116 iocb->ret = -1; 3117 done: 3118 nvme_copy_done(iocb); 3119 } 3120 3121 static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req) 3122 { 3123 NvmeNamespace *ns = req->ns; 3124 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd; 3125 NvmeCopyAIOCB *iocb = blk_aio_get(&nvme_copy_aiocb_info, ns->blkconf.blk, 3126 nvme_misc_cb, req); 3127 uint16_t nr = copy->nr + 1; 3128 uint8_t format = copy->control[0] & 0xf; 3129 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf); 3130 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf); 3131 size_t len = sizeof(NvmeCopySourceRangeFormat0); 3132 3133 uint16_t status; 3134 3135 trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format); 3136 3137 iocb->ranges = NULL; 3138 iocb->zone = NULL; 3139 3140 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && 3141 ((prinfor & NVME_PRINFO_PRACT) != (prinfow & NVME_PRINFO_PRACT))) { 3142 status = NVME_INVALID_FIELD | NVME_DNR; 3143 goto invalid; 3144 } 3145 3146 if (!(n->id_ctrl.ocfs & (1 << format))) { 3147 trace_pci_nvme_err_copy_invalid_format(format); 3148 status = NVME_INVALID_FIELD | NVME_DNR; 3149 goto invalid; 3150 } 3151 3152 if (nr > ns->id_ns.msrc + 1) { 3153 status = NVME_CMD_SIZE_LIMIT | NVME_DNR; 3154 goto invalid; 3155 } 3156 3157 if ((ns->pif == 0x0 && format != 0x0) || 3158 (ns->pif != 0x0 && format != 0x1)) { 3159 status = NVME_INVALID_FORMAT | NVME_DNR; 3160 goto invalid; 3161 } 3162 3163 if (ns->pif) { 3164 len = sizeof(NvmeCopySourceRangeFormat1); 3165 } 3166 3167 iocb->format = format; 3168 iocb->ranges = g_malloc_n(nr, len); 3169 status = nvme_h2c(n, (uint8_t *)iocb->ranges, len * nr, req); 3170 if (status) { 3171 goto invalid; 3172 } 3173 3174 iocb->slba = le64_to_cpu(copy->sdlba); 3175 3176 if (ns->params.zoned) { 3177 iocb->zone = nvme_get_zone_by_slba(ns, iocb->slba); 3178 if (!iocb->zone) { 3179 status = NVME_LBA_RANGE | NVME_DNR; 3180 goto invalid; 3181 } 3182 3183 status = nvme_zrm_auto(n, ns, iocb->zone); 3184 if (status) { 3185 goto invalid; 3186 } 3187 } 3188 3189 status = nvme_check_copy_mcl(ns, iocb, nr); 3190 if (status) { 3191 goto invalid; 3192 } 3193 3194 iocb->req = req; 3195 iocb->ret = 0; 3196 iocb->nr = nr; 3197 iocb->idx = 0; 3198 iocb->reftag = le32_to_cpu(copy->reftag); 3199 iocb->reftag |= (uint64_t)le32_to_cpu(copy->cdw3) << 32; 3200 iocb->bounce = g_malloc_n(le16_to_cpu(ns->id_ns.mssrl), 3201 ns->lbasz + ns->lbaf.ms); 3202 3203 qemu_iovec_init(&iocb->iov, 1); 3204 3205 block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.read, 0, 3206 BLOCK_ACCT_READ); 3207 block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.write, 0, 3208 BLOCK_ACCT_WRITE); 3209 3210 req->aiocb = &iocb->common; 3211 nvme_do_copy(iocb); 3212 3213 return NVME_NO_COMPLETE; 3214 3215 invalid: 3216 g_free(iocb->ranges); 3217 qemu_aio_unref(iocb); 3218 return status; 3219 } 3220 3221 static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req) 3222 { 3223 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 3224 NvmeNamespace *ns = req->ns; 3225 BlockBackend *blk = ns->blkconf.blk; 3226 uint64_t slba = le64_to_cpu(rw->slba); 3227 uint32_t nlb = le16_to_cpu(rw->nlb) + 1; 3228 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 3229 size_t data_len = nvme_l2b(ns, nlb); 3230 size_t len = data_len; 3231 int64_t offset = nvme_l2b(ns, slba); 3232 struct nvme_compare_ctx *ctx = NULL; 3233 uint16_t status; 3234 3235 trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb); 3236 3237 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (prinfo & NVME_PRINFO_PRACT)) { 3238 return NVME_INVALID_PROT_INFO | NVME_DNR; 3239 } 3240 3241 if (nvme_ns_ext(ns)) { 3242 len += nvme_m2b(ns, nlb); 3243 } 3244 3245 status = nvme_check_mdts(n, len); 3246 if (status) { 3247 return status; 3248 } 3249 3250 status = nvme_check_bounds(ns, slba, nlb); 3251 if (status) { 3252 return status; 3253 } 3254 3255 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { 3256 status = nvme_check_dulbe(ns, slba, nlb); 3257 if (status) { 3258 return status; 3259 } 3260 } 3261 3262 status = nvme_map_dptr(n, &req->sg, len, &req->cmd); 3263 if (status) { 3264 return status; 3265 } 3266 3267 ctx = g_new(struct nvme_compare_ctx, 1); 3268 ctx->data.bounce = g_malloc(data_len); 3269 3270 req->opaque = ctx; 3271 3272 qemu_iovec_init(&ctx->data.iov, 1); 3273 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len); 3274 3275 block_acct_start(blk_get_stats(blk), &req->acct, data_len, 3276 BLOCK_ACCT_READ); 3277 req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0, 3278 nvme_compare_data_cb, req); 3279 3280 return NVME_NO_COMPLETE; 3281 } 3282 3283 typedef struct NvmeFlushAIOCB { 3284 BlockAIOCB common; 3285 BlockAIOCB *aiocb; 3286 NvmeRequest *req; 3287 int ret; 3288 3289 NvmeNamespace *ns; 3290 uint32_t nsid; 3291 bool broadcast; 3292 } NvmeFlushAIOCB; 3293 3294 static void nvme_flush_cancel(BlockAIOCB *acb) 3295 { 3296 NvmeFlushAIOCB *iocb = container_of(acb, NvmeFlushAIOCB, common); 3297 3298 iocb->ret = -ECANCELED; 3299 3300 if (iocb->aiocb) { 3301 blk_aio_cancel_async(iocb->aiocb); 3302 iocb->aiocb = NULL; 3303 } 3304 } 3305 3306 static const AIOCBInfo nvme_flush_aiocb_info = { 3307 .aiocb_size = sizeof(NvmeFlushAIOCB), 3308 .cancel_async = nvme_flush_cancel, 3309 .get_aio_context = nvme_get_aio_context, 3310 }; 3311 3312 static void nvme_do_flush(NvmeFlushAIOCB *iocb); 3313 3314 static void nvme_flush_ns_cb(void *opaque, int ret) 3315 { 3316 NvmeFlushAIOCB *iocb = opaque; 3317 NvmeNamespace *ns = iocb->ns; 3318 3319 if (ret < 0) { 3320 iocb->ret = ret; 3321 goto out; 3322 } else if (iocb->ret < 0) { 3323 goto out; 3324 } 3325 3326 if (ns) { 3327 trace_pci_nvme_flush_ns(iocb->nsid); 3328 3329 iocb->ns = NULL; 3330 iocb->aiocb = blk_aio_flush(ns->blkconf.blk, nvme_flush_ns_cb, iocb); 3331 return; 3332 } 3333 3334 out: 3335 nvme_do_flush(iocb); 3336 } 3337 3338 static void nvme_do_flush(NvmeFlushAIOCB *iocb) 3339 { 3340 NvmeRequest *req = iocb->req; 3341 NvmeCtrl *n = nvme_ctrl(req); 3342 int i; 3343 3344 if (iocb->ret < 0) { 3345 goto done; 3346 } 3347 3348 if (iocb->broadcast) { 3349 for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) { 3350 iocb->ns = nvme_ns(n, i); 3351 if (iocb->ns) { 3352 iocb->nsid = i; 3353 break; 3354 } 3355 } 3356 } 3357 3358 if (!iocb->ns) { 3359 goto done; 3360 } 3361 3362 nvme_flush_ns_cb(iocb, 0); 3363 return; 3364 3365 done: 3366 iocb->common.cb(iocb->common.opaque, iocb->ret); 3367 qemu_aio_unref(iocb); 3368 } 3369 3370 static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req) 3371 { 3372 NvmeFlushAIOCB *iocb; 3373 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 3374 uint16_t status; 3375 3376 iocb = qemu_aio_get(&nvme_flush_aiocb_info, NULL, nvme_misc_cb, req); 3377 3378 iocb->req = req; 3379 iocb->ret = 0; 3380 iocb->ns = NULL; 3381 iocb->nsid = 0; 3382 iocb->broadcast = (nsid == NVME_NSID_BROADCAST); 3383 3384 if (!iocb->broadcast) { 3385 if (!nvme_nsid_valid(n, nsid)) { 3386 status = NVME_INVALID_NSID | NVME_DNR; 3387 goto out; 3388 } 3389 3390 iocb->ns = nvme_ns(n, nsid); 3391 if (!iocb->ns) { 3392 status = NVME_INVALID_FIELD | NVME_DNR; 3393 goto out; 3394 } 3395 3396 iocb->nsid = nsid; 3397 } 3398 3399 req->aiocb = &iocb->common; 3400 nvme_do_flush(iocb); 3401 3402 return NVME_NO_COMPLETE; 3403 3404 out: 3405 qemu_aio_unref(iocb); 3406 3407 return status; 3408 } 3409 3410 static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req) 3411 { 3412 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 3413 NvmeNamespace *ns = req->ns; 3414 uint64_t slba = le64_to_cpu(rw->slba); 3415 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; 3416 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); 3417 uint64_t data_size = nvme_l2b(ns, nlb); 3418 uint64_t mapped_size = data_size; 3419 uint64_t data_offset; 3420 BlockBackend *blk = ns->blkconf.blk; 3421 uint16_t status; 3422 3423 if (nvme_ns_ext(ns)) { 3424 mapped_size += nvme_m2b(ns, nlb); 3425 3426 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3427 bool pract = prinfo & NVME_PRINFO_PRACT; 3428 3429 if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) { 3430 mapped_size = data_size; 3431 } 3432 } 3433 } 3434 3435 trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba); 3436 3437 status = nvme_check_mdts(n, mapped_size); 3438 if (status) { 3439 goto invalid; 3440 } 3441 3442 status = nvme_check_bounds(ns, slba, nlb); 3443 if (status) { 3444 goto invalid; 3445 } 3446 3447 if (ns->params.zoned) { 3448 status = nvme_check_zone_read(ns, slba, nlb); 3449 if (status) { 3450 trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status); 3451 goto invalid; 3452 } 3453 } 3454 3455 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { 3456 status = nvme_check_dulbe(ns, slba, nlb); 3457 if (status) { 3458 goto invalid; 3459 } 3460 } 3461 3462 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3463 return nvme_dif_rw(n, req); 3464 } 3465 3466 status = nvme_map_data(n, nlb, req); 3467 if (status) { 3468 goto invalid; 3469 } 3470 3471 data_offset = nvme_l2b(ns, slba); 3472 3473 block_acct_start(blk_get_stats(blk), &req->acct, data_size, 3474 BLOCK_ACCT_READ); 3475 nvme_blk_read(blk, data_offset, BDRV_SECTOR_SIZE, nvme_rw_cb, req); 3476 return NVME_NO_COMPLETE; 3477 3478 invalid: 3479 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ); 3480 return status | NVME_DNR; 3481 } 3482 3483 static void nvme_do_write_fdp(NvmeCtrl *n, NvmeRequest *req, uint64_t slba, 3484 uint32_t nlb) 3485 { 3486 NvmeNamespace *ns = req->ns; 3487 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 3488 uint64_t data_size = nvme_l2b(ns, nlb); 3489 uint32_t dw12 = le32_to_cpu(req->cmd.cdw12); 3490 uint8_t dtype = (dw12 >> 20) & 0xf; 3491 uint16_t pid = le16_to_cpu(rw->dspec); 3492 uint16_t ph, rg, ruhid; 3493 NvmeReclaimUnit *ru; 3494 3495 if (dtype != NVME_DIRECTIVE_DATA_PLACEMENT || 3496 !nvme_parse_pid(ns, pid, &ph, &rg)) { 3497 ph = 0; 3498 rg = 0; 3499 } 3500 3501 ruhid = ns->fdp.phs[ph]; 3502 ru = &ns->endgrp->fdp.ruhs[ruhid].rus[rg]; 3503 3504 nvme_fdp_stat_inc(&ns->endgrp->fdp.hbmw, data_size); 3505 nvme_fdp_stat_inc(&ns->endgrp->fdp.mbmw, data_size); 3506 3507 while (nlb) { 3508 if (nlb < ru->ruamw) { 3509 ru->ruamw -= nlb; 3510 break; 3511 } 3512 3513 nlb -= ru->ruamw; 3514 nvme_update_ruh(n, ns, pid); 3515 } 3516 } 3517 3518 static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append, 3519 bool wrz) 3520 { 3521 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; 3522 NvmeNamespace *ns = req->ns; 3523 uint64_t slba = le64_to_cpu(rw->slba); 3524 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; 3525 uint16_t ctrl = le16_to_cpu(rw->control); 3526 uint8_t prinfo = NVME_RW_PRINFO(ctrl); 3527 uint64_t data_size = nvme_l2b(ns, nlb); 3528 uint64_t mapped_size = data_size; 3529 uint64_t data_offset; 3530 NvmeZone *zone; 3531 NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe; 3532 BlockBackend *blk = ns->blkconf.blk; 3533 uint16_t status; 3534 3535 if (nvme_ns_ext(ns)) { 3536 mapped_size += nvme_m2b(ns, nlb); 3537 3538 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3539 bool pract = prinfo & NVME_PRINFO_PRACT; 3540 3541 if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) { 3542 mapped_size -= nvme_m2b(ns, nlb); 3543 } 3544 } 3545 } 3546 3547 trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode), 3548 nvme_nsid(ns), nlb, mapped_size, slba); 3549 3550 if (!wrz) { 3551 status = nvme_check_mdts(n, mapped_size); 3552 if (status) { 3553 goto invalid; 3554 } 3555 } 3556 3557 status = nvme_check_bounds(ns, slba, nlb); 3558 if (status) { 3559 goto invalid; 3560 } 3561 3562 if (ns->params.zoned) { 3563 zone = nvme_get_zone_by_slba(ns, slba); 3564 assert(zone); 3565 3566 if (append) { 3567 bool piremap = !!(ctrl & NVME_RW_PIREMAP); 3568 3569 if (unlikely(zone->d.za & NVME_ZA_ZRWA_VALID)) { 3570 return NVME_INVALID_ZONE_OP | NVME_DNR; 3571 } 3572 3573 if (unlikely(slba != zone->d.zslba)) { 3574 trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba); 3575 status = NVME_INVALID_FIELD; 3576 goto invalid; 3577 } 3578 3579 if (n->params.zasl && 3580 data_size > (uint64_t)n->page_size << n->params.zasl) { 3581 trace_pci_nvme_err_zasl(data_size); 3582 return NVME_INVALID_FIELD | NVME_DNR; 3583 } 3584 3585 slba = zone->w_ptr; 3586 rw->slba = cpu_to_le64(slba); 3587 res->slba = cpu_to_le64(slba); 3588 3589 switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3590 case NVME_ID_NS_DPS_TYPE_1: 3591 if (!piremap) { 3592 return NVME_INVALID_PROT_INFO | NVME_DNR; 3593 } 3594 3595 /* fallthrough */ 3596 3597 case NVME_ID_NS_DPS_TYPE_2: 3598 if (piremap) { 3599 uint32_t reftag = le32_to_cpu(rw->reftag); 3600 rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba)); 3601 } 3602 3603 break; 3604 3605 case NVME_ID_NS_DPS_TYPE_3: 3606 if (piremap) { 3607 return NVME_INVALID_PROT_INFO | NVME_DNR; 3608 } 3609 3610 break; 3611 } 3612 } 3613 3614 status = nvme_check_zone_write(ns, zone, slba, nlb); 3615 if (status) { 3616 goto invalid; 3617 } 3618 3619 status = nvme_zrm_auto(n, ns, zone); 3620 if (status) { 3621 goto invalid; 3622 } 3623 3624 if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) { 3625 zone->w_ptr += nlb; 3626 } 3627 } else if (ns->endgrp && ns->endgrp->fdp.enabled) { 3628 nvme_do_write_fdp(n, req, slba, nlb); 3629 } 3630 3631 data_offset = nvme_l2b(ns, slba); 3632 3633 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { 3634 return nvme_dif_rw(n, req); 3635 } 3636 3637 if (!wrz) { 3638 status = nvme_map_data(n, nlb, req); 3639 if (status) { 3640 goto invalid; 3641 } 3642 3643 block_acct_start(blk_get_stats(blk), &req->acct, data_size, 3644 BLOCK_ACCT_WRITE); 3645 nvme_blk_write(blk, data_offset, BDRV_SECTOR_SIZE, nvme_rw_cb, req); 3646 } else { 3647 req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size, 3648 BDRV_REQ_MAY_UNMAP, nvme_rw_cb, 3649 req); 3650 } 3651 3652 return NVME_NO_COMPLETE; 3653 3654 invalid: 3655 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE); 3656 return status | NVME_DNR; 3657 } 3658 3659 static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req) 3660 { 3661 return nvme_do_write(n, req, false, false); 3662 } 3663 3664 static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req) 3665 { 3666 return nvme_do_write(n, req, false, true); 3667 } 3668 3669 static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req) 3670 { 3671 return nvme_do_write(n, req, true, false); 3672 } 3673 3674 static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c, 3675 uint64_t *slba, uint32_t *zone_idx) 3676 { 3677 uint32_t dw10 = le32_to_cpu(c->cdw10); 3678 uint32_t dw11 = le32_to_cpu(c->cdw11); 3679 3680 if (!ns->params.zoned) { 3681 trace_pci_nvme_err_invalid_opc(c->opcode); 3682 return NVME_INVALID_OPCODE | NVME_DNR; 3683 } 3684 3685 *slba = ((uint64_t)dw11) << 32 | dw10; 3686 if (unlikely(*slba >= ns->id_ns.nsze)) { 3687 trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze); 3688 *slba = 0; 3689 return NVME_LBA_RANGE | NVME_DNR; 3690 } 3691 3692 *zone_idx = nvme_zone_idx(ns, *slba); 3693 assert(*zone_idx < ns->num_zones); 3694 3695 return NVME_SUCCESS; 3696 } 3697 3698 typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState, 3699 NvmeRequest *); 3700 3701 enum NvmeZoneProcessingMask { 3702 NVME_PROC_CURRENT_ZONE = 0, 3703 NVME_PROC_OPENED_ZONES = 1 << 0, 3704 NVME_PROC_CLOSED_ZONES = 1 << 1, 3705 NVME_PROC_READ_ONLY_ZONES = 1 << 2, 3706 NVME_PROC_FULL_ZONES = 1 << 3, 3707 }; 3708 3709 static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone, 3710 NvmeZoneState state, NvmeRequest *req) 3711 { 3712 NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd; 3713 int flags = 0; 3714 3715 if (cmd->zsflags & NVME_ZSFLAG_ZRWA_ALLOC) { 3716 uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs); 3717 3718 if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) { 3719 return NVME_INVALID_ZONE_OP | NVME_DNR; 3720 } 3721 3722 if (zone->w_ptr % ns->zns.zrwafg) { 3723 return NVME_NOZRWA | NVME_DNR; 3724 } 3725 3726 flags = NVME_ZRM_ZRWA; 3727 } 3728 3729 return nvme_zrm_open_flags(nvme_ctrl(req), ns, zone, flags); 3730 } 3731 3732 static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone, 3733 NvmeZoneState state, NvmeRequest *req) 3734 { 3735 return nvme_zrm_close(ns, zone); 3736 } 3737 3738 static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone, 3739 NvmeZoneState state, NvmeRequest *req) 3740 { 3741 return nvme_zrm_finish(ns, zone); 3742 } 3743 3744 static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone, 3745 NvmeZoneState state, NvmeRequest *req) 3746 { 3747 switch (state) { 3748 case NVME_ZONE_STATE_READ_ONLY: 3749 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE); 3750 /* fall through */ 3751 case NVME_ZONE_STATE_OFFLINE: 3752 return NVME_SUCCESS; 3753 default: 3754 return NVME_ZONE_INVAL_TRANSITION; 3755 } 3756 } 3757 3758 static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone) 3759 { 3760 uint16_t status; 3761 uint8_t state = nvme_get_zone_state(zone); 3762 3763 if (state == NVME_ZONE_STATE_EMPTY) { 3764 status = nvme_aor_check(ns, 1, 0); 3765 if (status) { 3766 return status; 3767 } 3768 nvme_aor_inc_active(ns); 3769 zone->d.za |= NVME_ZA_ZD_EXT_VALID; 3770 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED); 3771 return NVME_SUCCESS; 3772 } 3773 3774 return NVME_ZONE_INVAL_TRANSITION; 3775 } 3776 3777 static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone, 3778 enum NvmeZoneProcessingMask proc_mask, 3779 op_handler_t op_hndlr, NvmeRequest *req) 3780 { 3781 uint16_t status = NVME_SUCCESS; 3782 NvmeZoneState zs = nvme_get_zone_state(zone); 3783 bool proc_zone; 3784 3785 switch (zs) { 3786 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 3787 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 3788 proc_zone = proc_mask & NVME_PROC_OPENED_ZONES; 3789 break; 3790 case NVME_ZONE_STATE_CLOSED: 3791 proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES; 3792 break; 3793 case NVME_ZONE_STATE_READ_ONLY: 3794 proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES; 3795 break; 3796 case NVME_ZONE_STATE_FULL: 3797 proc_zone = proc_mask & NVME_PROC_FULL_ZONES; 3798 break; 3799 default: 3800 proc_zone = false; 3801 } 3802 3803 if (proc_zone) { 3804 status = op_hndlr(ns, zone, zs, req); 3805 } 3806 3807 return status; 3808 } 3809 3810 static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone, 3811 enum NvmeZoneProcessingMask proc_mask, 3812 op_handler_t op_hndlr, NvmeRequest *req) 3813 { 3814 NvmeZone *next; 3815 uint16_t status = NVME_SUCCESS; 3816 int i; 3817 3818 if (!proc_mask) { 3819 status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req); 3820 } else { 3821 if (proc_mask & NVME_PROC_CLOSED_ZONES) { 3822 QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) { 3823 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 3824 req); 3825 if (status && status != NVME_NO_COMPLETE) { 3826 goto out; 3827 } 3828 } 3829 } 3830 if (proc_mask & NVME_PROC_OPENED_ZONES) { 3831 QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) { 3832 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 3833 req); 3834 if (status && status != NVME_NO_COMPLETE) { 3835 goto out; 3836 } 3837 } 3838 3839 QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) { 3840 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 3841 req); 3842 if (status && status != NVME_NO_COMPLETE) { 3843 goto out; 3844 } 3845 } 3846 } 3847 if (proc_mask & NVME_PROC_FULL_ZONES) { 3848 QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) { 3849 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 3850 req); 3851 if (status && status != NVME_NO_COMPLETE) { 3852 goto out; 3853 } 3854 } 3855 } 3856 3857 if (proc_mask & NVME_PROC_READ_ONLY_ZONES) { 3858 for (i = 0; i < ns->num_zones; i++, zone++) { 3859 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, 3860 req); 3861 if (status && status != NVME_NO_COMPLETE) { 3862 goto out; 3863 } 3864 } 3865 } 3866 } 3867 3868 out: 3869 return status; 3870 } 3871 3872 typedef struct NvmeZoneResetAIOCB { 3873 BlockAIOCB common; 3874 BlockAIOCB *aiocb; 3875 NvmeRequest *req; 3876 int ret; 3877 3878 bool all; 3879 int idx; 3880 NvmeZone *zone; 3881 } NvmeZoneResetAIOCB; 3882 3883 static void nvme_zone_reset_cancel(BlockAIOCB *aiocb) 3884 { 3885 NvmeZoneResetAIOCB *iocb = container_of(aiocb, NvmeZoneResetAIOCB, common); 3886 NvmeRequest *req = iocb->req; 3887 NvmeNamespace *ns = req->ns; 3888 3889 iocb->idx = ns->num_zones; 3890 3891 iocb->ret = -ECANCELED; 3892 3893 if (iocb->aiocb) { 3894 blk_aio_cancel_async(iocb->aiocb); 3895 iocb->aiocb = NULL; 3896 } 3897 } 3898 3899 static const AIOCBInfo nvme_zone_reset_aiocb_info = { 3900 .aiocb_size = sizeof(NvmeZoneResetAIOCB), 3901 .cancel_async = nvme_zone_reset_cancel, 3902 }; 3903 3904 static void nvme_zone_reset_cb(void *opaque, int ret); 3905 3906 static void nvme_zone_reset_epilogue_cb(void *opaque, int ret) 3907 { 3908 NvmeZoneResetAIOCB *iocb = opaque; 3909 NvmeRequest *req = iocb->req; 3910 NvmeNamespace *ns = req->ns; 3911 int64_t moff; 3912 int count; 3913 3914 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) { 3915 goto out; 3916 } 3917 3918 moff = nvme_moff(ns, iocb->zone->d.zslba); 3919 count = nvme_m2b(ns, ns->zone_size); 3920 3921 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, moff, count, 3922 BDRV_REQ_MAY_UNMAP, 3923 nvme_zone_reset_cb, iocb); 3924 return; 3925 3926 out: 3927 nvme_zone_reset_cb(iocb, ret); 3928 } 3929 3930 static void nvme_zone_reset_cb(void *opaque, int ret) 3931 { 3932 NvmeZoneResetAIOCB *iocb = opaque; 3933 NvmeRequest *req = iocb->req; 3934 NvmeNamespace *ns = req->ns; 3935 3936 if (iocb->ret < 0) { 3937 goto done; 3938 } else if (ret < 0) { 3939 iocb->ret = ret; 3940 goto done; 3941 } 3942 3943 if (iocb->zone) { 3944 nvme_zrm_reset(ns, iocb->zone); 3945 3946 if (!iocb->all) { 3947 goto done; 3948 } 3949 } 3950 3951 while (iocb->idx < ns->num_zones) { 3952 NvmeZone *zone = &ns->zone_array[iocb->idx++]; 3953 3954 switch (nvme_get_zone_state(zone)) { 3955 case NVME_ZONE_STATE_EMPTY: 3956 if (!iocb->all) { 3957 goto done; 3958 } 3959 3960 continue; 3961 3962 case NVME_ZONE_STATE_EXPLICITLY_OPEN: 3963 case NVME_ZONE_STATE_IMPLICITLY_OPEN: 3964 case NVME_ZONE_STATE_CLOSED: 3965 case NVME_ZONE_STATE_FULL: 3966 iocb->zone = zone; 3967 break; 3968 3969 default: 3970 continue; 3971 } 3972 3973 trace_pci_nvme_zns_zone_reset(zone->d.zslba); 3974 3975 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, 3976 nvme_l2b(ns, zone->d.zslba), 3977 nvme_l2b(ns, ns->zone_size), 3978 BDRV_REQ_MAY_UNMAP, 3979 nvme_zone_reset_epilogue_cb, 3980 iocb); 3981 return; 3982 } 3983 3984 done: 3985 iocb->aiocb = NULL; 3986 3987 iocb->common.cb(iocb->common.opaque, iocb->ret); 3988 qemu_aio_unref(iocb); 3989 } 3990 3991 static uint16_t nvme_zone_mgmt_send_zrwa_flush(NvmeCtrl *n, NvmeZone *zone, 3992 uint64_t elba, NvmeRequest *req) 3993 { 3994 NvmeNamespace *ns = req->ns; 3995 uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs); 3996 uint64_t wp = zone->d.wp; 3997 uint32_t nlb = elba - wp + 1; 3998 uint16_t status; 3999 4000 4001 if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) { 4002 return NVME_INVALID_ZONE_OP | NVME_DNR; 4003 } 4004 4005 if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) { 4006 return NVME_INVALID_FIELD | NVME_DNR; 4007 } 4008 4009 if (elba < wp || elba > wp + ns->zns.zrwas) { 4010 return NVME_ZONE_BOUNDARY_ERROR | NVME_DNR; 4011 } 4012 4013 if (nlb % ns->zns.zrwafg) { 4014 return NVME_INVALID_FIELD | NVME_DNR; 4015 } 4016 4017 status = nvme_zrm_auto(n, ns, zone); 4018 if (status) { 4019 return status; 4020 } 4021 4022 zone->w_ptr += nlb; 4023 4024 nvme_advance_zone_wp(ns, zone, nlb); 4025 4026 return NVME_SUCCESS; 4027 } 4028 4029 static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req) 4030 { 4031 NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd; 4032 NvmeNamespace *ns = req->ns; 4033 NvmeZone *zone; 4034 NvmeZoneResetAIOCB *iocb; 4035 uint8_t *zd_ext; 4036 uint64_t slba = 0; 4037 uint32_t zone_idx = 0; 4038 uint16_t status; 4039 uint8_t action = cmd->zsa; 4040 bool all; 4041 enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE; 4042 4043 all = cmd->zsflags & NVME_ZSFLAG_SELECT_ALL; 4044 4045 req->status = NVME_SUCCESS; 4046 4047 if (!all) { 4048 status = nvme_get_mgmt_zone_slba_idx(ns, &req->cmd, &slba, &zone_idx); 4049 if (status) { 4050 return status; 4051 } 4052 } 4053 4054 zone = &ns->zone_array[zone_idx]; 4055 if (slba != zone->d.zslba && action != NVME_ZONE_ACTION_ZRWA_FLUSH) { 4056 trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba); 4057 return NVME_INVALID_FIELD | NVME_DNR; 4058 } 4059 4060 switch (action) { 4061 4062 case NVME_ZONE_ACTION_OPEN: 4063 if (all) { 4064 proc_mask = NVME_PROC_CLOSED_ZONES; 4065 } 4066 trace_pci_nvme_open_zone(slba, zone_idx, all); 4067 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req); 4068 break; 4069 4070 case NVME_ZONE_ACTION_CLOSE: 4071 if (all) { 4072 proc_mask = NVME_PROC_OPENED_ZONES; 4073 } 4074 trace_pci_nvme_close_zone(slba, zone_idx, all); 4075 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req); 4076 break; 4077 4078 case NVME_ZONE_ACTION_FINISH: 4079 if (all) { 4080 proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES; 4081 } 4082 trace_pci_nvme_finish_zone(slba, zone_idx, all); 4083 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req); 4084 break; 4085 4086 case NVME_ZONE_ACTION_RESET: 4087 trace_pci_nvme_reset_zone(slba, zone_idx, all); 4088 4089 iocb = blk_aio_get(&nvme_zone_reset_aiocb_info, ns->blkconf.blk, 4090 nvme_misc_cb, req); 4091 4092 iocb->req = req; 4093 iocb->ret = 0; 4094 iocb->all = all; 4095 iocb->idx = zone_idx; 4096 iocb->zone = NULL; 4097 4098 req->aiocb = &iocb->common; 4099 nvme_zone_reset_cb(iocb, 0); 4100 4101 return NVME_NO_COMPLETE; 4102 4103 case NVME_ZONE_ACTION_OFFLINE: 4104 if (all) { 4105 proc_mask = NVME_PROC_READ_ONLY_ZONES; 4106 } 4107 trace_pci_nvme_offline_zone(slba, zone_idx, all); 4108 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req); 4109 break; 4110 4111 case NVME_ZONE_ACTION_SET_ZD_EXT: 4112 trace_pci_nvme_set_descriptor_extension(slba, zone_idx); 4113 if (all || !ns->params.zd_extension_size) { 4114 return NVME_INVALID_FIELD | NVME_DNR; 4115 } 4116 zd_ext = nvme_get_zd_extension(ns, zone_idx); 4117 status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req); 4118 if (status) { 4119 trace_pci_nvme_err_zd_extension_map_error(zone_idx); 4120 return status; 4121 } 4122 4123 status = nvme_set_zd_ext(ns, zone); 4124 if (status == NVME_SUCCESS) { 4125 trace_pci_nvme_zd_extension_set(zone_idx); 4126 return status; 4127 } 4128 break; 4129 4130 case NVME_ZONE_ACTION_ZRWA_FLUSH: 4131 if (all) { 4132 return NVME_INVALID_FIELD | NVME_DNR; 4133 } 4134 4135 return nvme_zone_mgmt_send_zrwa_flush(n, zone, slba, req); 4136 4137 default: 4138 trace_pci_nvme_err_invalid_mgmt_action(action); 4139 status = NVME_INVALID_FIELD; 4140 } 4141 4142 if (status == NVME_ZONE_INVAL_TRANSITION) { 4143 trace_pci_nvme_err_invalid_zone_state_transition(action, slba, 4144 zone->d.za); 4145 } 4146 if (status) { 4147 status |= NVME_DNR; 4148 } 4149 4150 return status; 4151 } 4152 4153 static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl) 4154 { 4155 NvmeZoneState zs = nvme_get_zone_state(zl); 4156 4157 switch (zafs) { 4158 case NVME_ZONE_REPORT_ALL: 4159 return true; 4160 case NVME_ZONE_REPORT_EMPTY: 4161 return zs == NVME_ZONE_STATE_EMPTY; 4162 case NVME_ZONE_REPORT_IMPLICITLY_OPEN: 4163 return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN; 4164 case NVME_ZONE_REPORT_EXPLICITLY_OPEN: 4165 return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN; 4166 case NVME_ZONE_REPORT_CLOSED: 4167 return zs == NVME_ZONE_STATE_CLOSED; 4168 case NVME_ZONE_REPORT_FULL: 4169 return zs == NVME_ZONE_STATE_FULL; 4170 case NVME_ZONE_REPORT_READ_ONLY: 4171 return zs == NVME_ZONE_STATE_READ_ONLY; 4172 case NVME_ZONE_REPORT_OFFLINE: 4173 return zs == NVME_ZONE_STATE_OFFLINE; 4174 default: 4175 return false; 4176 } 4177 } 4178 4179 static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req) 4180 { 4181 NvmeCmd *cmd = (NvmeCmd *)&req->cmd; 4182 NvmeNamespace *ns = req->ns; 4183 /* cdw12 is zero-based number of dwords to return. Convert to bytes */ 4184 uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2; 4185 uint32_t dw13 = le32_to_cpu(cmd->cdw13); 4186 uint32_t zone_idx, zra, zrasf, partial; 4187 uint64_t max_zones, nr_zones = 0; 4188 uint16_t status; 4189 uint64_t slba; 4190 NvmeZoneDescr *z; 4191 NvmeZone *zone; 4192 NvmeZoneReportHeader *header; 4193 void *buf, *buf_p; 4194 size_t zone_entry_sz; 4195 int i; 4196 4197 req->status = NVME_SUCCESS; 4198 4199 status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx); 4200 if (status) { 4201 return status; 4202 } 4203 4204 zra = dw13 & 0xff; 4205 if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) { 4206 return NVME_INVALID_FIELD | NVME_DNR; 4207 } 4208 if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) { 4209 return NVME_INVALID_FIELD | NVME_DNR; 4210 } 4211 4212 zrasf = (dw13 >> 8) & 0xff; 4213 if (zrasf > NVME_ZONE_REPORT_OFFLINE) { 4214 return NVME_INVALID_FIELD | NVME_DNR; 4215 } 4216 4217 if (data_size < sizeof(NvmeZoneReportHeader)) { 4218 return NVME_INVALID_FIELD | NVME_DNR; 4219 } 4220 4221 status = nvme_check_mdts(n, data_size); 4222 if (status) { 4223 return status; 4224 } 4225 4226 partial = (dw13 >> 16) & 0x01; 4227 4228 zone_entry_sz = sizeof(NvmeZoneDescr); 4229 if (zra == NVME_ZONE_REPORT_EXTENDED) { 4230 zone_entry_sz += ns->params.zd_extension_size; 4231 } 4232 4233 max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz; 4234 buf = g_malloc0(data_size); 4235 4236 zone = &ns->zone_array[zone_idx]; 4237 for (i = zone_idx; i < ns->num_zones; i++) { 4238 if (partial && nr_zones >= max_zones) { 4239 break; 4240 } 4241 if (nvme_zone_matches_filter(zrasf, zone++)) { 4242 nr_zones++; 4243 } 4244 } 4245 header = buf; 4246 header->nr_zones = cpu_to_le64(nr_zones); 4247 4248 buf_p = buf + sizeof(NvmeZoneReportHeader); 4249 for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) { 4250 zone = &ns->zone_array[zone_idx]; 4251 if (nvme_zone_matches_filter(zrasf, zone)) { 4252 z = buf_p; 4253 buf_p += sizeof(NvmeZoneDescr); 4254 4255 z->zt = zone->d.zt; 4256 z->zs = zone->d.zs; 4257 z->zcap = cpu_to_le64(zone->d.zcap); 4258 z->zslba = cpu_to_le64(zone->d.zslba); 4259 z->za = zone->d.za; 4260 4261 if (nvme_wp_is_valid(zone)) { 4262 z->wp = cpu_to_le64(zone->d.wp); 4263 } else { 4264 z->wp = cpu_to_le64(~0ULL); 4265 } 4266 4267 if (zra == NVME_ZONE_REPORT_EXTENDED) { 4268 if (zone->d.za & NVME_ZA_ZD_EXT_VALID) { 4269 memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx), 4270 ns->params.zd_extension_size); 4271 } 4272 buf_p += ns->params.zd_extension_size; 4273 } 4274 4275 max_zones--; 4276 } 4277 } 4278 4279 status = nvme_c2h(n, (uint8_t *)buf, data_size, req); 4280 4281 g_free(buf); 4282 4283 return status; 4284 } 4285 4286 static uint16_t nvme_io_mgmt_recv_ruhs(NvmeCtrl *n, NvmeRequest *req, 4287 size_t len) 4288 { 4289 NvmeNamespace *ns = req->ns; 4290 NvmeEnduranceGroup *endgrp; 4291 NvmeRuhStatus *hdr; 4292 NvmeRuhStatusDescr *ruhsd; 4293 unsigned int nruhsd; 4294 uint16_t rg, ph, *ruhid; 4295 size_t trans_len; 4296 g_autofree uint8_t *buf = NULL; 4297 4298 if (!n->subsys) { 4299 return NVME_INVALID_FIELD | NVME_DNR; 4300 } 4301 4302 if (ns->params.nsid == 0 || ns->params.nsid == 0xffffffff) { 4303 return NVME_INVALID_NSID | NVME_DNR; 4304 } 4305 4306 if (!n->subsys->endgrp.fdp.enabled) { 4307 return NVME_FDP_DISABLED | NVME_DNR; 4308 } 4309 4310 endgrp = ns->endgrp; 4311 4312 nruhsd = ns->fdp.nphs * endgrp->fdp.nrg; 4313 trans_len = sizeof(NvmeRuhStatus) + nruhsd * sizeof(NvmeRuhStatusDescr); 4314 buf = g_malloc(trans_len); 4315 4316 trans_len = MIN(trans_len, len); 4317 4318 hdr = (NvmeRuhStatus *)buf; 4319 ruhsd = (NvmeRuhStatusDescr *)(buf + sizeof(NvmeRuhStatus)); 4320 4321 hdr->nruhsd = cpu_to_le16(nruhsd); 4322 4323 ruhid = ns->fdp.phs; 4324 4325 for (ph = 0; ph < ns->fdp.nphs; ph++, ruhid++) { 4326 NvmeRuHandle *ruh = &endgrp->fdp.ruhs[*ruhid]; 4327 4328 for (rg = 0; rg < endgrp->fdp.nrg; rg++, ruhsd++) { 4329 uint16_t pid = nvme_make_pid(ns, rg, ph); 4330 4331 ruhsd->pid = cpu_to_le16(pid); 4332 ruhsd->ruhid = *ruhid; 4333 ruhsd->earutr = 0; 4334 ruhsd->ruamw = cpu_to_le64(ruh->rus[rg].ruamw); 4335 } 4336 } 4337 4338 return nvme_c2h(n, buf, trans_len, req); 4339 } 4340 4341 static uint16_t nvme_io_mgmt_recv(NvmeCtrl *n, NvmeRequest *req) 4342 { 4343 NvmeCmd *cmd = &req->cmd; 4344 uint32_t cdw10 = le32_to_cpu(cmd->cdw10); 4345 uint32_t numd = le32_to_cpu(cmd->cdw11); 4346 uint8_t mo = (cdw10 & 0xff); 4347 size_t len = (numd + 1) << 2; 4348 4349 switch (mo) { 4350 case NVME_IOMR_MO_NOP: 4351 return 0; 4352 case NVME_IOMR_MO_RUH_STATUS: 4353 return nvme_io_mgmt_recv_ruhs(n, req, len); 4354 default: 4355 return NVME_INVALID_FIELD | NVME_DNR; 4356 }; 4357 } 4358 4359 static uint16_t nvme_io_mgmt_send_ruh_update(NvmeCtrl *n, NvmeRequest *req) 4360 { 4361 NvmeCmd *cmd = &req->cmd; 4362 NvmeNamespace *ns = req->ns; 4363 uint32_t cdw10 = le32_to_cpu(cmd->cdw10); 4364 uint16_t ret = NVME_SUCCESS; 4365 uint32_t npid = (cdw10 >> 1) + 1; 4366 unsigned int i = 0; 4367 g_autofree uint16_t *pids = NULL; 4368 uint32_t maxnpid = n->subsys->endgrp.fdp.nrg * n->subsys->endgrp.fdp.nruh; 4369 4370 if (unlikely(npid >= MIN(NVME_FDP_MAXPIDS, maxnpid))) { 4371 return NVME_INVALID_FIELD | NVME_DNR; 4372 } 4373 4374 pids = g_new(uint16_t, npid); 4375 4376 ret = nvme_h2c(n, pids, npid * sizeof(uint16_t), req); 4377 if (ret) { 4378 return ret; 4379 } 4380 4381 for (; i < npid; i++) { 4382 if (!nvme_update_ruh(n, ns, pids[i])) { 4383 return NVME_INVALID_FIELD | NVME_DNR; 4384 } 4385 } 4386 4387 return ret; 4388 } 4389 4390 static uint16_t nvme_io_mgmt_send(NvmeCtrl *n, NvmeRequest *req) 4391 { 4392 NvmeCmd *cmd = &req->cmd; 4393 uint32_t cdw10 = le32_to_cpu(cmd->cdw10); 4394 uint8_t mo = (cdw10 & 0xff); 4395 4396 switch (mo) { 4397 case NVME_IOMS_MO_NOP: 4398 return 0; 4399 case NVME_IOMS_MO_RUH_UPDATE: 4400 return nvme_io_mgmt_send_ruh_update(n, req); 4401 default: 4402 return NVME_INVALID_FIELD | NVME_DNR; 4403 }; 4404 } 4405 4406 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req) 4407 { 4408 NvmeNamespace *ns; 4409 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 4410 4411 trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req), 4412 req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode)); 4413 4414 if (!nvme_nsid_valid(n, nsid)) { 4415 return NVME_INVALID_NSID | NVME_DNR; 4416 } 4417 4418 /* 4419 * In the base NVM command set, Flush may apply to all namespaces 4420 * (indicated by NSID being set to FFFFFFFFh). But if that feature is used 4421 * along with TP 4056 (Namespace Types), it may be pretty screwed up. 4422 * 4423 * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the 4424 * opcode with a specific command since we cannot determine a unique I/O 4425 * command set. Opcode 0h could have any other meaning than something 4426 * equivalent to flushing and say it DOES have completely different 4427 * semantics in some other command set - does an NSID of FFFFFFFFh then 4428 * mean "for all namespaces, apply whatever command set specific command 4429 * that uses the 0h opcode?" Or does it mean "for all namespaces, apply 4430 * whatever command that uses the 0h opcode if, and only if, it allows NSID 4431 * to be FFFFFFFFh"? 4432 * 4433 * Anyway (and luckily), for now, we do not care about this since the 4434 * device only supports namespace types that includes the NVM Flush command 4435 * (NVM and Zoned), so always do an NVM Flush. 4436 */ 4437 if (req->cmd.opcode == NVME_CMD_FLUSH) { 4438 return nvme_flush(n, req); 4439 } 4440 4441 ns = nvme_ns(n, nsid); 4442 if (unlikely(!ns)) { 4443 return NVME_INVALID_FIELD | NVME_DNR; 4444 } 4445 4446 if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) { 4447 trace_pci_nvme_err_invalid_opc(req->cmd.opcode); 4448 return NVME_INVALID_OPCODE | NVME_DNR; 4449 } 4450 4451 if (ns->status) { 4452 return ns->status; 4453 } 4454 4455 if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) { 4456 return NVME_INVALID_FIELD; 4457 } 4458 4459 req->ns = ns; 4460 4461 switch (req->cmd.opcode) { 4462 case NVME_CMD_WRITE_ZEROES: 4463 return nvme_write_zeroes(n, req); 4464 case NVME_CMD_ZONE_APPEND: 4465 return nvme_zone_append(n, req); 4466 case NVME_CMD_WRITE: 4467 return nvme_write(n, req); 4468 case NVME_CMD_READ: 4469 return nvme_read(n, req); 4470 case NVME_CMD_COMPARE: 4471 return nvme_compare(n, req); 4472 case NVME_CMD_DSM: 4473 return nvme_dsm(n, req); 4474 case NVME_CMD_VERIFY: 4475 return nvme_verify(n, req); 4476 case NVME_CMD_COPY: 4477 return nvme_copy(n, req); 4478 case NVME_CMD_ZONE_MGMT_SEND: 4479 return nvme_zone_mgmt_send(n, req); 4480 case NVME_CMD_ZONE_MGMT_RECV: 4481 return nvme_zone_mgmt_recv(n, req); 4482 case NVME_CMD_IO_MGMT_RECV: 4483 return nvme_io_mgmt_recv(n, req); 4484 case NVME_CMD_IO_MGMT_SEND: 4485 return nvme_io_mgmt_send(n, req); 4486 default: 4487 assert(false); 4488 } 4489 4490 return NVME_INVALID_OPCODE | NVME_DNR; 4491 } 4492 4493 static void nvme_cq_notifier(EventNotifier *e) 4494 { 4495 NvmeCQueue *cq = container_of(e, NvmeCQueue, notifier); 4496 NvmeCtrl *n = cq->ctrl; 4497 4498 if (!event_notifier_test_and_clear(e)) { 4499 return; 4500 } 4501 4502 nvme_update_cq_head(cq); 4503 4504 if (cq->tail == cq->head) { 4505 if (cq->irq_enabled) { 4506 n->cq_pending--; 4507 } 4508 4509 nvme_irq_deassert(n, cq); 4510 } 4511 4512 qemu_bh_schedule(cq->bh); 4513 } 4514 4515 static int nvme_init_cq_ioeventfd(NvmeCQueue *cq) 4516 { 4517 NvmeCtrl *n = cq->ctrl; 4518 uint16_t offset = (cq->cqid << 3) + (1 << 2); 4519 int ret; 4520 4521 ret = event_notifier_init(&cq->notifier, 0); 4522 if (ret < 0) { 4523 return ret; 4524 } 4525 4526 event_notifier_set_handler(&cq->notifier, nvme_cq_notifier); 4527 memory_region_add_eventfd(&n->iomem, 4528 0x1000 + offset, 4, false, 0, &cq->notifier); 4529 4530 return 0; 4531 } 4532 4533 static void nvme_sq_notifier(EventNotifier *e) 4534 { 4535 NvmeSQueue *sq = container_of(e, NvmeSQueue, notifier); 4536 4537 if (!event_notifier_test_and_clear(e)) { 4538 return; 4539 } 4540 4541 nvme_process_sq(sq); 4542 } 4543 4544 static int nvme_init_sq_ioeventfd(NvmeSQueue *sq) 4545 { 4546 NvmeCtrl *n = sq->ctrl; 4547 uint16_t offset = sq->sqid << 3; 4548 int ret; 4549 4550 ret = event_notifier_init(&sq->notifier, 0); 4551 if (ret < 0) { 4552 return ret; 4553 } 4554 4555 event_notifier_set_handler(&sq->notifier, nvme_sq_notifier); 4556 memory_region_add_eventfd(&n->iomem, 4557 0x1000 + offset, 4, false, 0, &sq->notifier); 4558 4559 return 0; 4560 } 4561 4562 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n) 4563 { 4564 uint16_t offset = sq->sqid << 3; 4565 4566 n->sq[sq->sqid] = NULL; 4567 qemu_bh_delete(sq->bh); 4568 if (sq->ioeventfd_enabled) { 4569 memory_region_del_eventfd(&n->iomem, 4570 0x1000 + offset, 4, false, 0, &sq->notifier); 4571 event_notifier_set_handler(&sq->notifier, NULL); 4572 event_notifier_cleanup(&sq->notifier); 4573 } 4574 g_free(sq->io_req); 4575 if (sq->sqid) { 4576 g_free(sq); 4577 } 4578 } 4579 4580 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req) 4581 { 4582 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd; 4583 NvmeRequest *r, *next; 4584 NvmeSQueue *sq; 4585 NvmeCQueue *cq; 4586 uint16_t qid = le16_to_cpu(c->qid); 4587 4588 if (unlikely(!qid || nvme_check_sqid(n, qid))) { 4589 trace_pci_nvme_err_invalid_del_sq(qid); 4590 return NVME_INVALID_QID | NVME_DNR; 4591 } 4592 4593 trace_pci_nvme_del_sq(qid); 4594 4595 sq = n->sq[qid]; 4596 while (!QTAILQ_EMPTY(&sq->out_req_list)) { 4597 r = QTAILQ_FIRST(&sq->out_req_list); 4598 assert(r->aiocb); 4599 blk_aio_cancel(r->aiocb); 4600 } 4601 4602 assert(QTAILQ_EMPTY(&sq->out_req_list)); 4603 4604 if (!nvme_check_cqid(n, sq->cqid)) { 4605 cq = n->cq[sq->cqid]; 4606 QTAILQ_REMOVE(&cq->sq_list, sq, entry); 4607 4608 nvme_post_cqes(cq); 4609 QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) { 4610 if (r->sq == sq) { 4611 QTAILQ_REMOVE(&cq->req_list, r, entry); 4612 QTAILQ_INSERT_TAIL(&sq->req_list, r, entry); 4613 } 4614 } 4615 } 4616 4617 nvme_free_sq(sq, n); 4618 return NVME_SUCCESS; 4619 } 4620 4621 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr, 4622 uint16_t sqid, uint16_t cqid, uint16_t size) 4623 { 4624 int i; 4625 NvmeCQueue *cq; 4626 4627 sq->ctrl = n; 4628 sq->dma_addr = dma_addr; 4629 sq->sqid = sqid; 4630 sq->size = size; 4631 sq->cqid = cqid; 4632 sq->head = sq->tail = 0; 4633 sq->io_req = g_new0(NvmeRequest, sq->size); 4634 4635 QTAILQ_INIT(&sq->req_list); 4636 QTAILQ_INIT(&sq->out_req_list); 4637 for (i = 0; i < sq->size; i++) { 4638 sq->io_req[i].sq = sq; 4639 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry); 4640 } 4641 4642 sq->bh = qemu_bh_new_guarded(nvme_process_sq, sq, 4643 &DEVICE(sq->ctrl)->mem_reentrancy_guard); 4644 4645 if (n->dbbuf_enabled) { 4646 sq->db_addr = n->dbbuf_dbs + (sqid << 3); 4647 sq->ei_addr = n->dbbuf_eis + (sqid << 3); 4648 4649 if (n->params.ioeventfd && sq->sqid != 0) { 4650 if (!nvme_init_sq_ioeventfd(sq)) { 4651 sq->ioeventfd_enabled = true; 4652 } 4653 } 4654 } 4655 4656 assert(n->cq[cqid]); 4657 cq = n->cq[cqid]; 4658 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry); 4659 n->sq[sqid] = sq; 4660 } 4661 4662 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req) 4663 { 4664 NvmeSQueue *sq; 4665 NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd; 4666 4667 uint16_t cqid = le16_to_cpu(c->cqid); 4668 uint16_t sqid = le16_to_cpu(c->sqid); 4669 uint16_t qsize = le16_to_cpu(c->qsize); 4670 uint16_t qflags = le16_to_cpu(c->sq_flags); 4671 uint64_t prp1 = le64_to_cpu(c->prp1); 4672 4673 trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags); 4674 4675 if (unlikely(!cqid || nvme_check_cqid(n, cqid))) { 4676 trace_pci_nvme_err_invalid_create_sq_cqid(cqid); 4677 return NVME_INVALID_CQID | NVME_DNR; 4678 } 4679 if (unlikely(!sqid || sqid > n->conf_ioqpairs || n->sq[sqid] != NULL)) { 4680 trace_pci_nvme_err_invalid_create_sq_sqid(sqid); 4681 return NVME_INVALID_QID | NVME_DNR; 4682 } 4683 if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) { 4684 trace_pci_nvme_err_invalid_create_sq_size(qsize); 4685 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR; 4686 } 4687 if (unlikely(prp1 & (n->page_size - 1))) { 4688 trace_pci_nvme_err_invalid_create_sq_addr(prp1); 4689 return NVME_INVALID_PRP_OFFSET | NVME_DNR; 4690 } 4691 if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) { 4692 trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags)); 4693 return NVME_INVALID_FIELD | NVME_DNR; 4694 } 4695 sq = g_malloc0(sizeof(*sq)); 4696 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1); 4697 return NVME_SUCCESS; 4698 } 4699 4700 struct nvme_stats { 4701 uint64_t units_read; 4702 uint64_t units_written; 4703 uint64_t read_commands; 4704 uint64_t write_commands; 4705 }; 4706 4707 static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats) 4708 { 4709 BlockAcctStats *s = blk_get_stats(ns->blkconf.blk); 4710 4711 stats->units_read += s->nr_bytes[BLOCK_ACCT_READ]; 4712 stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE]; 4713 stats->read_commands += s->nr_ops[BLOCK_ACCT_READ]; 4714 stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE]; 4715 } 4716 4717 static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, 4718 uint64_t off, NvmeRequest *req) 4719 { 4720 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 4721 struct nvme_stats stats = { 0 }; 4722 NvmeSmartLog smart = { 0 }; 4723 uint32_t trans_len; 4724 NvmeNamespace *ns; 4725 time_t current_ms; 4726 uint64_t u_read, u_written; 4727 4728 if (off >= sizeof(smart)) { 4729 return NVME_INVALID_FIELD | NVME_DNR; 4730 } 4731 4732 if (nsid != 0xffffffff) { 4733 ns = nvme_ns(n, nsid); 4734 if (!ns) { 4735 return NVME_INVALID_NSID | NVME_DNR; 4736 } 4737 nvme_set_blk_stats(ns, &stats); 4738 } else { 4739 int i; 4740 4741 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 4742 ns = nvme_ns(n, i); 4743 if (!ns) { 4744 continue; 4745 } 4746 nvme_set_blk_stats(ns, &stats); 4747 } 4748 } 4749 4750 trans_len = MIN(sizeof(smart) - off, buf_len); 4751 smart.critical_warning = n->smart_critical_warning; 4752 4753 u_read = DIV_ROUND_UP(stats.units_read >> BDRV_SECTOR_BITS, 1000); 4754 u_written = DIV_ROUND_UP(stats.units_written >> BDRV_SECTOR_BITS, 1000); 4755 4756 smart.data_units_read[0] = cpu_to_le64(u_read); 4757 smart.data_units_written[0] = cpu_to_le64(u_written); 4758 smart.host_read_commands[0] = cpu_to_le64(stats.read_commands); 4759 smart.host_write_commands[0] = cpu_to_le64(stats.write_commands); 4760 4761 smart.temperature = cpu_to_le16(n->temperature); 4762 4763 if ((n->temperature >= n->features.temp_thresh_hi) || 4764 (n->temperature <= n->features.temp_thresh_low)) { 4765 smart.critical_warning |= NVME_SMART_TEMPERATURE; 4766 } 4767 4768 current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); 4769 smart.power_on_hours[0] = 4770 cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60); 4771 4772 if (!rae) { 4773 nvme_clear_events(n, NVME_AER_TYPE_SMART); 4774 } 4775 4776 return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req); 4777 } 4778 4779 static uint16_t nvme_endgrp_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, 4780 uint64_t off, NvmeRequest *req) 4781 { 4782 uint32_t dw11 = le32_to_cpu(req->cmd.cdw11); 4783 uint16_t endgrpid = (dw11 >> 16) & 0xffff; 4784 struct nvme_stats stats = {}; 4785 NvmeEndGrpLog info = {}; 4786 int i; 4787 4788 if (!n->subsys || endgrpid != 0x1) { 4789 return NVME_INVALID_FIELD | NVME_DNR; 4790 } 4791 4792 if (off >= sizeof(info)) { 4793 return NVME_INVALID_FIELD | NVME_DNR; 4794 } 4795 4796 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 4797 NvmeNamespace *ns = nvme_subsys_ns(n->subsys, i); 4798 if (!ns) { 4799 continue; 4800 } 4801 4802 nvme_set_blk_stats(ns, &stats); 4803 } 4804 4805 info.data_units_read[0] = 4806 cpu_to_le64(DIV_ROUND_UP(stats.units_read / 1000000000, 1000000000)); 4807 info.data_units_written[0] = 4808 cpu_to_le64(DIV_ROUND_UP(stats.units_written / 1000000000, 1000000000)); 4809 info.media_units_written[0] = 4810 cpu_to_le64(DIV_ROUND_UP(stats.units_written / 1000000000, 1000000000)); 4811 4812 info.host_read_commands[0] = cpu_to_le64(stats.read_commands); 4813 info.host_write_commands[0] = cpu_to_le64(stats.write_commands); 4814 4815 buf_len = MIN(sizeof(info) - off, buf_len); 4816 4817 return nvme_c2h(n, (uint8_t *)&info + off, buf_len, req); 4818 } 4819 4820 4821 static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off, 4822 NvmeRequest *req) 4823 { 4824 uint32_t trans_len; 4825 NvmeFwSlotInfoLog fw_log = { 4826 .afi = 0x1, 4827 }; 4828 4829 if (off >= sizeof(fw_log)) { 4830 return NVME_INVALID_FIELD | NVME_DNR; 4831 } 4832 4833 strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' '); 4834 trans_len = MIN(sizeof(fw_log) - off, buf_len); 4835 4836 return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req); 4837 } 4838 4839 static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, 4840 uint64_t off, NvmeRequest *req) 4841 { 4842 uint32_t trans_len; 4843 NvmeErrorLog errlog; 4844 4845 if (off >= sizeof(errlog)) { 4846 return NVME_INVALID_FIELD | NVME_DNR; 4847 } 4848 4849 if (!rae) { 4850 nvme_clear_events(n, NVME_AER_TYPE_ERROR); 4851 } 4852 4853 memset(&errlog, 0x0, sizeof(errlog)); 4854 trans_len = MIN(sizeof(errlog) - off, buf_len); 4855 4856 return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req); 4857 } 4858 4859 static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, 4860 uint64_t off, NvmeRequest *req) 4861 { 4862 uint32_t nslist[1024]; 4863 uint32_t trans_len; 4864 int i = 0; 4865 uint32_t nsid; 4866 4867 if (off >= sizeof(nslist)) { 4868 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(nslist)); 4869 return NVME_INVALID_FIELD | NVME_DNR; 4870 } 4871 4872 memset(nslist, 0x0, sizeof(nslist)); 4873 trans_len = MIN(sizeof(nslist) - off, buf_len); 4874 4875 while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) != 4876 NVME_CHANGED_NSID_SIZE) { 4877 /* 4878 * If more than 1024 namespaces, the first entry in the log page should 4879 * be set to FFFFFFFFh and the others to 0 as spec. 4880 */ 4881 if (i == ARRAY_SIZE(nslist)) { 4882 memset(nslist, 0x0, sizeof(nslist)); 4883 nslist[0] = 0xffffffff; 4884 break; 4885 } 4886 4887 nslist[i++] = nsid; 4888 clear_bit(nsid, n->changed_nsids); 4889 } 4890 4891 /* 4892 * Remove all the remaining list entries in case returns directly due to 4893 * more than 1024 namespaces. 4894 */ 4895 if (nslist[0] == 0xffffffff) { 4896 bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE); 4897 } 4898 4899 if (!rae) { 4900 nvme_clear_events(n, NVME_AER_TYPE_NOTICE); 4901 } 4902 4903 return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req); 4904 } 4905 4906 static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len, 4907 uint64_t off, NvmeRequest *req) 4908 { 4909 NvmeEffectsLog log = {}; 4910 const uint32_t *src_iocs = NULL; 4911 uint32_t trans_len; 4912 4913 if (off >= sizeof(log)) { 4914 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log)); 4915 return NVME_INVALID_FIELD | NVME_DNR; 4916 } 4917 4918 switch (NVME_CC_CSS(ldl_le_p(&n->bar.cc))) { 4919 case NVME_CC_CSS_NVM: 4920 src_iocs = nvme_cse_iocs_nvm; 4921 /* fall through */ 4922 case NVME_CC_CSS_ADMIN_ONLY: 4923 break; 4924 case NVME_CC_CSS_CSI: 4925 switch (csi) { 4926 case NVME_CSI_NVM: 4927 src_iocs = nvme_cse_iocs_nvm; 4928 break; 4929 case NVME_CSI_ZONED: 4930 src_iocs = nvme_cse_iocs_zoned; 4931 break; 4932 } 4933 } 4934 4935 memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs)); 4936 4937 if (src_iocs) { 4938 memcpy(log.iocs, src_iocs, sizeof(log.iocs)); 4939 } 4940 4941 trans_len = MIN(sizeof(log) - off, buf_len); 4942 4943 return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req); 4944 } 4945 4946 static size_t sizeof_fdp_conf_descr(size_t nruh, size_t vss) 4947 { 4948 size_t entry_siz = sizeof(NvmeFdpDescrHdr) + nruh * sizeof(NvmeRuhDescr) 4949 + vss; 4950 return ROUND_UP(entry_siz, 8); 4951 } 4952 4953 static uint16_t nvme_fdp_confs(NvmeCtrl *n, uint32_t endgrpid, uint32_t buf_len, 4954 uint64_t off, NvmeRequest *req) 4955 { 4956 uint32_t log_size, trans_len; 4957 g_autofree uint8_t *buf = NULL; 4958 NvmeFdpDescrHdr *hdr; 4959 NvmeRuhDescr *ruhd; 4960 NvmeEnduranceGroup *endgrp; 4961 NvmeFdpConfsHdr *log; 4962 size_t nruh, fdp_descr_size; 4963 int i; 4964 4965 if (endgrpid != 1 || !n->subsys) { 4966 return NVME_INVALID_FIELD | NVME_DNR; 4967 } 4968 4969 endgrp = &n->subsys->endgrp; 4970 4971 if (endgrp->fdp.enabled) { 4972 nruh = endgrp->fdp.nruh; 4973 } else { 4974 nruh = 1; 4975 } 4976 4977 fdp_descr_size = sizeof_fdp_conf_descr(nruh, FDPVSS); 4978 log_size = sizeof(NvmeFdpConfsHdr) + fdp_descr_size; 4979 4980 if (off >= log_size) { 4981 return NVME_INVALID_FIELD | NVME_DNR; 4982 } 4983 4984 trans_len = MIN(log_size - off, buf_len); 4985 4986 buf = g_malloc0(log_size); 4987 log = (NvmeFdpConfsHdr *)buf; 4988 hdr = (NvmeFdpDescrHdr *)(log + 1); 4989 ruhd = (NvmeRuhDescr *)(buf + sizeof(*log) + sizeof(*hdr)); 4990 4991 log->num_confs = cpu_to_le16(0); 4992 log->size = cpu_to_le32(log_size); 4993 4994 hdr->descr_size = cpu_to_le16(fdp_descr_size); 4995 if (endgrp->fdp.enabled) { 4996 hdr->fdpa = FIELD_DP8(hdr->fdpa, FDPA, VALID, 1); 4997 hdr->fdpa = FIELD_DP8(hdr->fdpa, FDPA, RGIF, endgrp->fdp.rgif); 4998 hdr->nrg = cpu_to_le16(endgrp->fdp.nrg); 4999 hdr->nruh = cpu_to_le16(endgrp->fdp.nruh); 5000 hdr->maxpids = cpu_to_le16(NVME_FDP_MAXPIDS - 1); 5001 hdr->nnss = cpu_to_le32(NVME_MAX_NAMESPACES); 5002 hdr->runs = cpu_to_le64(endgrp->fdp.runs); 5003 5004 for (i = 0; i < nruh; i++) { 5005 ruhd->ruht = NVME_RUHT_INITIALLY_ISOLATED; 5006 ruhd++; 5007 } 5008 } else { 5009 /* 1 bit for RUH in PIF -> 2 RUHs max. */ 5010 hdr->nrg = cpu_to_le16(1); 5011 hdr->nruh = cpu_to_le16(1); 5012 hdr->maxpids = cpu_to_le16(NVME_FDP_MAXPIDS - 1); 5013 hdr->nnss = cpu_to_le32(1); 5014 hdr->runs = cpu_to_le64(96 * MiB); 5015 5016 ruhd->ruht = NVME_RUHT_INITIALLY_ISOLATED; 5017 } 5018 5019 return nvme_c2h(n, (uint8_t *)buf + off, trans_len, req); 5020 } 5021 5022 static uint16_t nvme_fdp_ruh_usage(NvmeCtrl *n, uint32_t endgrpid, 5023 uint32_t dw10, uint32_t dw12, 5024 uint32_t buf_len, uint64_t off, 5025 NvmeRequest *req) 5026 { 5027 NvmeRuHandle *ruh; 5028 NvmeRuhuLog *hdr; 5029 NvmeRuhuDescr *ruhud; 5030 NvmeEnduranceGroup *endgrp; 5031 g_autofree uint8_t *buf = NULL; 5032 uint32_t log_size, trans_len; 5033 uint16_t i; 5034 5035 if (endgrpid != 1 || !n->subsys) { 5036 return NVME_INVALID_FIELD | NVME_DNR; 5037 } 5038 5039 endgrp = &n->subsys->endgrp; 5040 5041 if (!endgrp->fdp.enabled) { 5042 return NVME_FDP_DISABLED | NVME_DNR; 5043 } 5044 5045 log_size = sizeof(NvmeRuhuLog) + endgrp->fdp.nruh * sizeof(NvmeRuhuDescr); 5046 5047 if (off >= log_size) { 5048 return NVME_INVALID_FIELD | NVME_DNR; 5049 } 5050 5051 trans_len = MIN(log_size - off, buf_len); 5052 5053 buf = g_malloc0(log_size); 5054 hdr = (NvmeRuhuLog *)buf; 5055 ruhud = (NvmeRuhuDescr *)(hdr + 1); 5056 5057 ruh = endgrp->fdp.ruhs; 5058 hdr->nruh = cpu_to_le16(endgrp->fdp.nruh); 5059 5060 for (i = 0; i < endgrp->fdp.nruh; i++, ruhud++, ruh++) { 5061 ruhud->ruha = ruh->ruha; 5062 } 5063 5064 return nvme_c2h(n, (uint8_t *)buf + off, trans_len, req); 5065 } 5066 5067 static uint16_t nvme_fdp_stats(NvmeCtrl *n, uint32_t endgrpid, uint32_t buf_len, 5068 uint64_t off, NvmeRequest *req) 5069 { 5070 NvmeEnduranceGroup *endgrp; 5071 NvmeFdpStatsLog log = {}; 5072 uint32_t trans_len; 5073 5074 if (off >= sizeof(NvmeFdpStatsLog)) { 5075 return NVME_INVALID_FIELD | NVME_DNR; 5076 } 5077 5078 if (endgrpid != 1 || !n->subsys) { 5079 return NVME_INVALID_FIELD | NVME_DNR; 5080 } 5081 5082 if (!n->subsys->endgrp.fdp.enabled) { 5083 return NVME_FDP_DISABLED | NVME_DNR; 5084 } 5085 5086 endgrp = &n->subsys->endgrp; 5087 5088 trans_len = MIN(sizeof(log) - off, buf_len); 5089 5090 /* spec value is 128 bit, we only use 64 bit */ 5091 log.hbmw[0] = cpu_to_le64(endgrp->fdp.hbmw); 5092 log.mbmw[0] = cpu_to_le64(endgrp->fdp.mbmw); 5093 log.mbe[0] = cpu_to_le64(endgrp->fdp.mbe); 5094 5095 return nvme_c2h(n, (uint8_t *)&log + off, trans_len, req); 5096 } 5097 5098 static uint16_t nvme_fdp_events(NvmeCtrl *n, uint32_t endgrpid, 5099 uint32_t buf_len, uint64_t off, 5100 NvmeRequest *req) 5101 { 5102 NvmeEnduranceGroup *endgrp; 5103 NvmeCmd *cmd = &req->cmd; 5104 bool host_events = (cmd->cdw10 >> 8) & 0x1; 5105 uint32_t log_size, trans_len; 5106 NvmeFdpEventBuffer *ebuf; 5107 g_autofree NvmeFdpEventsLog *elog = NULL; 5108 NvmeFdpEvent *event; 5109 5110 if (endgrpid != 1 || !n->subsys) { 5111 return NVME_INVALID_FIELD | NVME_DNR; 5112 } 5113 5114 endgrp = &n->subsys->endgrp; 5115 5116 if (!endgrp->fdp.enabled) { 5117 return NVME_FDP_DISABLED | NVME_DNR; 5118 } 5119 5120 if (host_events) { 5121 ebuf = &endgrp->fdp.host_events; 5122 } else { 5123 ebuf = &endgrp->fdp.ctrl_events; 5124 } 5125 5126 log_size = sizeof(NvmeFdpEventsLog) + ebuf->nelems * sizeof(NvmeFdpEvent); 5127 trans_len = MIN(log_size - off, buf_len); 5128 elog = g_malloc0(log_size); 5129 elog->num_events = cpu_to_le32(ebuf->nelems); 5130 event = (NvmeFdpEvent *)(elog + 1); 5131 5132 if (ebuf->nelems && ebuf->start == ebuf->next) { 5133 unsigned int nelems = (NVME_FDP_MAX_EVENTS - ebuf->start); 5134 /* wrap over, copy [start;NVME_FDP_MAX_EVENTS[ and [0; next[ */ 5135 memcpy(event, &ebuf->events[ebuf->start], 5136 sizeof(NvmeFdpEvent) * nelems); 5137 memcpy(event + nelems, ebuf->events, 5138 sizeof(NvmeFdpEvent) * ebuf->next); 5139 } else if (ebuf->start < ebuf->next) { 5140 memcpy(event, &ebuf->events[ebuf->start], 5141 sizeof(NvmeFdpEvent) * (ebuf->next - ebuf->start)); 5142 } 5143 5144 return nvme_c2h(n, (uint8_t *)elog + off, trans_len, req); 5145 } 5146 5147 static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req) 5148 { 5149 NvmeCmd *cmd = &req->cmd; 5150 5151 uint32_t dw10 = le32_to_cpu(cmd->cdw10); 5152 uint32_t dw11 = le32_to_cpu(cmd->cdw11); 5153 uint32_t dw12 = le32_to_cpu(cmd->cdw12); 5154 uint32_t dw13 = le32_to_cpu(cmd->cdw13); 5155 uint8_t lid = dw10 & 0xff; 5156 uint8_t lsp = (dw10 >> 8) & 0xf; 5157 uint8_t rae = (dw10 >> 15) & 0x1; 5158 uint8_t csi = le32_to_cpu(cmd->cdw14) >> 24; 5159 uint32_t numdl, numdu, lspi; 5160 uint64_t off, lpol, lpou; 5161 size_t len; 5162 uint16_t status; 5163 5164 numdl = (dw10 >> 16); 5165 numdu = (dw11 & 0xffff); 5166 lspi = (dw11 >> 16); 5167 lpol = dw12; 5168 lpou = dw13; 5169 5170 len = (((numdu << 16) | numdl) + 1) << 2; 5171 off = (lpou << 32ULL) | lpol; 5172 5173 if (off & 0x3) { 5174 return NVME_INVALID_FIELD | NVME_DNR; 5175 } 5176 5177 trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off); 5178 5179 status = nvme_check_mdts(n, len); 5180 if (status) { 5181 return status; 5182 } 5183 5184 switch (lid) { 5185 case NVME_LOG_ERROR_INFO: 5186 return nvme_error_info(n, rae, len, off, req); 5187 case NVME_LOG_SMART_INFO: 5188 return nvme_smart_info(n, rae, len, off, req); 5189 case NVME_LOG_FW_SLOT_INFO: 5190 return nvme_fw_log_info(n, len, off, req); 5191 case NVME_LOG_CHANGED_NSLIST: 5192 return nvme_changed_nslist(n, rae, len, off, req); 5193 case NVME_LOG_CMD_EFFECTS: 5194 return nvme_cmd_effects(n, csi, len, off, req); 5195 case NVME_LOG_ENDGRP: 5196 return nvme_endgrp_info(n, rae, len, off, req); 5197 case NVME_LOG_FDP_CONFS: 5198 return nvme_fdp_confs(n, lspi, len, off, req); 5199 case NVME_LOG_FDP_RUH_USAGE: 5200 return nvme_fdp_ruh_usage(n, lspi, dw10, dw12, len, off, req); 5201 case NVME_LOG_FDP_STATS: 5202 return nvme_fdp_stats(n, lspi, len, off, req); 5203 case NVME_LOG_FDP_EVENTS: 5204 return nvme_fdp_events(n, lspi, len, off, req); 5205 default: 5206 trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid); 5207 return NVME_INVALID_FIELD | NVME_DNR; 5208 } 5209 } 5210 5211 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n) 5212 { 5213 PCIDevice *pci = PCI_DEVICE(n); 5214 uint16_t offset = (cq->cqid << 3) + (1 << 2); 5215 5216 n->cq[cq->cqid] = NULL; 5217 qemu_bh_delete(cq->bh); 5218 if (cq->ioeventfd_enabled) { 5219 memory_region_del_eventfd(&n->iomem, 5220 0x1000 + offset, 4, false, 0, &cq->notifier); 5221 event_notifier_set_handler(&cq->notifier, NULL); 5222 event_notifier_cleanup(&cq->notifier); 5223 } 5224 if (msix_enabled(pci)) { 5225 msix_vector_unuse(pci, cq->vector); 5226 } 5227 if (cq->cqid) { 5228 g_free(cq); 5229 } 5230 } 5231 5232 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req) 5233 { 5234 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd; 5235 NvmeCQueue *cq; 5236 uint16_t qid = le16_to_cpu(c->qid); 5237 5238 if (unlikely(!qid || nvme_check_cqid(n, qid))) { 5239 trace_pci_nvme_err_invalid_del_cq_cqid(qid); 5240 return NVME_INVALID_CQID | NVME_DNR; 5241 } 5242 5243 cq = n->cq[qid]; 5244 if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) { 5245 trace_pci_nvme_err_invalid_del_cq_notempty(qid); 5246 return NVME_INVALID_QUEUE_DEL; 5247 } 5248 5249 if (cq->irq_enabled && cq->tail != cq->head) { 5250 n->cq_pending--; 5251 } 5252 5253 nvme_irq_deassert(n, cq); 5254 trace_pci_nvme_del_cq(qid); 5255 nvme_free_cq(cq, n); 5256 return NVME_SUCCESS; 5257 } 5258 5259 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr, 5260 uint16_t cqid, uint16_t vector, uint16_t size, 5261 uint16_t irq_enabled) 5262 { 5263 PCIDevice *pci = PCI_DEVICE(n); 5264 5265 if (msix_enabled(pci)) { 5266 msix_vector_use(pci, vector); 5267 } 5268 cq->ctrl = n; 5269 cq->cqid = cqid; 5270 cq->size = size; 5271 cq->dma_addr = dma_addr; 5272 cq->phase = 1; 5273 cq->irq_enabled = irq_enabled; 5274 cq->vector = vector; 5275 cq->head = cq->tail = 0; 5276 QTAILQ_INIT(&cq->req_list); 5277 QTAILQ_INIT(&cq->sq_list); 5278 if (n->dbbuf_enabled) { 5279 cq->db_addr = n->dbbuf_dbs + (cqid << 3) + (1 << 2); 5280 cq->ei_addr = n->dbbuf_eis + (cqid << 3) + (1 << 2); 5281 5282 if (n->params.ioeventfd && cqid != 0) { 5283 if (!nvme_init_cq_ioeventfd(cq)) { 5284 cq->ioeventfd_enabled = true; 5285 } 5286 } 5287 } 5288 n->cq[cqid] = cq; 5289 cq->bh = qemu_bh_new_guarded(nvme_post_cqes, cq, 5290 &DEVICE(cq->ctrl)->mem_reentrancy_guard); 5291 } 5292 5293 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req) 5294 { 5295 NvmeCQueue *cq; 5296 NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd; 5297 uint16_t cqid = le16_to_cpu(c->cqid); 5298 uint16_t vector = le16_to_cpu(c->irq_vector); 5299 uint16_t qsize = le16_to_cpu(c->qsize); 5300 uint16_t qflags = le16_to_cpu(c->cq_flags); 5301 uint64_t prp1 = le64_to_cpu(c->prp1); 5302 5303 trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags, 5304 NVME_CQ_FLAGS_IEN(qflags) != 0); 5305 5306 if (unlikely(!cqid || cqid > n->conf_ioqpairs || n->cq[cqid] != NULL)) { 5307 trace_pci_nvme_err_invalid_create_cq_cqid(cqid); 5308 return NVME_INVALID_QID | NVME_DNR; 5309 } 5310 if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) { 5311 trace_pci_nvme_err_invalid_create_cq_size(qsize); 5312 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR; 5313 } 5314 if (unlikely(prp1 & (n->page_size - 1))) { 5315 trace_pci_nvme_err_invalid_create_cq_addr(prp1); 5316 return NVME_INVALID_PRP_OFFSET | NVME_DNR; 5317 } 5318 if (unlikely(!msix_enabled(PCI_DEVICE(n)) && vector)) { 5319 trace_pci_nvme_err_invalid_create_cq_vector(vector); 5320 return NVME_INVALID_IRQ_VECTOR | NVME_DNR; 5321 } 5322 if (unlikely(vector >= n->conf_msix_qsize)) { 5323 trace_pci_nvme_err_invalid_create_cq_vector(vector); 5324 return NVME_INVALID_IRQ_VECTOR | NVME_DNR; 5325 } 5326 if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) { 5327 trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags)); 5328 return NVME_INVALID_FIELD | NVME_DNR; 5329 } 5330 5331 cq = g_malloc0(sizeof(*cq)); 5332 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1, 5333 NVME_CQ_FLAGS_IEN(qflags)); 5334 5335 /* 5336 * It is only required to set qs_created when creating a completion queue; 5337 * creating a submission queue without a matching completion queue will 5338 * fail. 5339 */ 5340 n->qs_created = true; 5341 return NVME_SUCCESS; 5342 } 5343 5344 static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req) 5345 { 5346 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {}; 5347 5348 return nvme_c2h(n, id, sizeof(id), req); 5349 } 5350 5351 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req) 5352 { 5353 trace_pci_nvme_identify_ctrl(); 5354 5355 return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req); 5356 } 5357 5358 static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req) 5359 { 5360 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5361 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {}; 5362 NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id; 5363 5364 trace_pci_nvme_identify_ctrl_csi(c->csi); 5365 5366 switch (c->csi) { 5367 case NVME_CSI_NVM: 5368 id_nvm->vsl = n->params.vsl; 5369 id_nvm->dmrsl = cpu_to_le32(n->dmrsl); 5370 break; 5371 5372 case NVME_CSI_ZONED: 5373 ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl; 5374 break; 5375 5376 default: 5377 return NVME_INVALID_FIELD | NVME_DNR; 5378 } 5379 5380 return nvme_c2h(n, id, sizeof(id), req); 5381 } 5382 5383 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active) 5384 { 5385 NvmeNamespace *ns; 5386 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5387 uint32_t nsid = le32_to_cpu(c->nsid); 5388 5389 trace_pci_nvme_identify_ns(nsid); 5390 5391 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { 5392 return NVME_INVALID_NSID | NVME_DNR; 5393 } 5394 5395 ns = nvme_ns(n, nsid); 5396 if (unlikely(!ns)) { 5397 if (!active) { 5398 ns = nvme_subsys_ns(n->subsys, nsid); 5399 if (!ns) { 5400 return nvme_rpt_empty_id_struct(n, req); 5401 } 5402 } else { 5403 return nvme_rpt_empty_id_struct(n, req); 5404 } 5405 } 5406 5407 if (active || ns->csi == NVME_CSI_NVM) { 5408 return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req); 5409 } 5410 5411 return NVME_INVALID_CMD_SET | NVME_DNR; 5412 } 5413 5414 static uint16_t nvme_identify_ctrl_list(NvmeCtrl *n, NvmeRequest *req, 5415 bool attached) 5416 { 5417 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5418 uint32_t nsid = le32_to_cpu(c->nsid); 5419 uint16_t min_id = le16_to_cpu(c->ctrlid); 5420 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {}; 5421 uint16_t *ids = &list[1]; 5422 NvmeNamespace *ns; 5423 NvmeCtrl *ctrl; 5424 int cntlid, nr_ids = 0; 5425 5426 trace_pci_nvme_identify_ctrl_list(c->cns, min_id); 5427 5428 if (!n->subsys) { 5429 return NVME_INVALID_FIELD | NVME_DNR; 5430 } 5431 5432 if (attached) { 5433 if (nsid == NVME_NSID_BROADCAST) { 5434 return NVME_INVALID_FIELD | NVME_DNR; 5435 } 5436 5437 ns = nvme_subsys_ns(n->subsys, nsid); 5438 if (!ns) { 5439 return NVME_INVALID_FIELD | NVME_DNR; 5440 } 5441 } 5442 5443 for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) { 5444 ctrl = nvme_subsys_ctrl(n->subsys, cntlid); 5445 if (!ctrl) { 5446 continue; 5447 } 5448 5449 if (attached && !nvme_ns(ctrl, nsid)) { 5450 continue; 5451 } 5452 5453 ids[nr_ids++] = cntlid; 5454 } 5455 5456 list[0] = nr_ids; 5457 5458 return nvme_c2h(n, (uint8_t *)list, sizeof(list), req); 5459 } 5460 5461 static uint16_t nvme_identify_pri_ctrl_cap(NvmeCtrl *n, NvmeRequest *req) 5462 { 5463 trace_pci_nvme_identify_pri_ctrl_cap(le16_to_cpu(n->pri_ctrl_cap.cntlid)); 5464 5465 return nvme_c2h(n, (uint8_t *)&n->pri_ctrl_cap, 5466 sizeof(NvmePriCtrlCap), req); 5467 } 5468 5469 static uint16_t nvme_identify_sec_ctrl_list(NvmeCtrl *n, NvmeRequest *req) 5470 { 5471 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5472 uint16_t pri_ctrl_id = le16_to_cpu(n->pri_ctrl_cap.cntlid); 5473 uint16_t min_id = le16_to_cpu(c->ctrlid); 5474 uint8_t num_sec_ctrl = n->sec_ctrl_list.numcntl; 5475 NvmeSecCtrlList list = {0}; 5476 uint8_t i; 5477 5478 for (i = 0; i < num_sec_ctrl; i++) { 5479 if (n->sec_ctrl_list.sec[i].scid >= min_id) { 5480 list.numcntl = num_sec_ctrl - i; 5481 memcpy(&list.sec, n->sec_ctrl_list.sec + i, 5482 list.numcntl * sizeof(NvmeSecCtrlEntry)); 5483 break; 5484 } 5485 } 5486 5487 trace_pci_nvme_identify_sec_ctrl_list(pri_ctrl_id, list.numcntl); 5488 5489 return nvme_c2h(n, (uint8_t *)&list, sizeof(list), req); 5490 } 5491 5492 static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req, 5493 bool active) 5494 { 5495 NvmeNamespace *ns; 5496 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5497 uint32_t nsid = le32_to_cpu(c->nsid); 5498 5499 trace_pci_nvme_identify_ns_csi(nsid, c->csi); 5500 5501 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { 5502 return NVME_INVALID_NSID | NVME_DNR; 5503 } 5504 5505 ns = nvme_ns(n, nsid); 5506 if (unlikely(!ns)) { 5507 if (!active) { 5508 ns = nvme_subsys_ns(n->subsys, nsid); 5509 if (!ns) { 5510 return nvme_rpt_empty_id_struct(n, req); 5511 } 5512 } else { 5513 return nvme_rpt_empty_id_struct(n, req); 5514 } 5515 } 5516 5517 if (c->csi == NVME_CSI_NVM) { 5518 return nvme_c2h(n, (uint8_t *)&ns->id_ns_nvm, sizeof(NvmeIdNsNvm), 5519 req); 5520 } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) { 5521 return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned), 5522 req); 5523 } 5524 5525 return NVME_INVALID_FIELD | NVME_DNR; 5526 } 5527 5528 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req, 5529 bool active) 5530 { 5531 NvmeNamespace *ns; 5532 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5533 uint32_t min_nsid = le32_to_cpu(c->nsid); 5534 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; 5535 static const int data_len = sizeof(list); 5536 uint32_t *list_ptr = (uint32_t *)list; 5537 int i, j = 0; 5538 5539 trace_pci_nvme_identify_nslist(min_nsid); 5540 5541 /* 5542 * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values 5543 * since the Active Namespace ID List should return namespaces with ids 5544 * *higher* than the NSID specified in the command. This is also specified 5545 * in the spec (NVM Express v1.3d, Section 5.15.4). 5546 */ 5547 if (min_nsid >= NVME_NSID_BROADCAST - 1) { 5548 return NVME_INVALID_NSID | NVME_DNR; 5549 } 5550 5551 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 5552 ns = nvme_ns(n, i); 5553 if (!ns) { 5554 if (!active) { 5555 ns = nvme_subsys_ns(n->subsys, i); 5556 if (!ns) { 5557 continue; 5558 } 5559 } else { 5560 continue; 5561 } 5562 } 5563 if (ns->params.nsid <= min_nsid) { 5564 continue; 5565 } 5566 list_ptr[j++] = cpu_to_le32(ns->params.nsid); 5567 if (j == data_len / sizeof(uint32_t)) { 5568 break; 5569 } 5570 } 5571 5572 return nvme_c2h(n, list, data_len, req); 5573 } 5574 5575 static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req, 5576 bool active) 5577 { 5578 NvmeNamespace *ns; 5579 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5580 uint32_t min_nsid = le32_to_cpu(c->nsid); 5581 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; 5582 static const int data_len = sizeof(list); 5583 uint32_t *list_ptr = (uint32_t *)list; 5584 int i, j = 0; 5585 5586 trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi); 5587 5588 /* 5589 * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid. 5590 */ 5591 if (min_nsid >= NVME_NSID_BROADCAST - 1) { 5592 return NVME_INVALID_NSID | NVME_DNR; 5593 } 5594 5595 if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) { 5596 return NVME_INVALID_FIELD | NVME_DNR; 5597 } 5598 5599 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 5600 ns = nvme_ns(n, i); 5601 if (!ns) { 5602 if (!active) { 5603 ns = nvme_subsys_ns(n->subsys, i); 5604 if (!ns) { 5605 continue; 5606 } 5607 } else { 5608 continue; 5609 } 5610 } 5611 if (ns->params.nsid <= min_nsid || c->csi != ns->csi) { 5612 continue; 5613 } 5614 list_ptr[j++] = cpu_to_le32(ns->params.nsid); 5615 if (j == data_len / sizeof(uint32_t)) { 5616 break; 5617 } 5618 } 5619 5620 return nvme_c2h(n, list, data_len, req); 5621 } 5622 5623 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req) 5624 { 5625 NvmeNamespace *ns; 5626 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5627 uint32_t nsid = le32_to_cpu(c->nsid); 5628 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; 5629 uint8_t *pos = list; 5630 struct { 5631 NvmeIdNsDescr hdr; 5632 uint8_t v[NVME_NIDL_UUID]; 5633 } QEMU_PACKED uuid = {}; 5634 struct { 5635 NvmeIdNsDescr hdr; 5636 uint64_t v; 5637 } QEMU_PACKED eui64 = {}; 5638 struct { 5639 NvmeIdNsDescr hdr; 5640 uint8_t v; 5641 } QEMU_PACKED csi = {}; 5642 5643 trace_pci_nvme_identify_ns_descr_list(nsid); 5644 5645 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { 5646 return NVME_INVALID_NSID | NVME_DNR; 5647 } 5648 5649 ns = nvme_ns(n, nsid); 5650 if (unlikely(!ns)) { 5651 return NVME_INVALID_FIELD | NVME_DNR; 5652 } 5653 5654 if (!qemu_uuid_is_null(&ns->params.uuid)) { 5655 uuid.hdr.nidt = NVME_NIDT_UUID; 5656 uuid.hdr.nidl = NVME_NIDL_UUID; 5657 memcpy(uuid.v, ns->params.uuid.data, NVME_NIDL_UUID); 5658 memcpy(pos, &uuid, sizeof(uuid)); 5659 pos += sizeof(uuid); 5660 } 5661 5662 if (ns->params.eui64) { 5663 eui64.hdr.nidt = NVME_NIDT_EUI64; 5664 eui64.hdr.nidl = NVME_NIDL_EUI64; 5665 eui64.v = cpu_to_be64(ns->params.eui64); 5666 memcpy(pos, &eui64, sizeof(eui64)); 5667 pos += sizeof(eui64); 5668 } 5669 5670 csi.hdr.nidt = NVME_NIDT_CSI; 5671 csi.hdr.nidl = NVME_NIDL_CSI; 5672 csi.v = ns->csi; 5673 memcpy(pos, &csi, sizeof(csi)); 5674 pos += sizeof(csi); 5675 5676 return nvme_c2h(n, list, sizeof(list), req); 5677 } 5678 5679 static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req) 5680 { 5681 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; 5682 static const int data_len = sizeof(list); 5683 5684 trace_pci_nvme_identify_cmd_set(); 5685 5686 NVME_SET_CSI(*list, NVME_CSI_NVM); 5687 NVME_SET_CSI(*list, NVME_CSI_ZONED); 5688 5689 return nvme_c2h(n, list, data_len, req); 5690 } 5691 5692 static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req) 5693 { 5694 NvmeIdentify *c = (NvmeIdentify *)&req->cmd; 5695 5696 trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid), 5697 c->csi); 5698 5699 switch (c->cns) { 5700 case NVME_ID_CNS_NS: 5701 return nvme_identify_ns(n, req, true); 5702 case NVME_ID_CNS_NS_PRESENT: 5703 return nvme_identify_ns(n, req, false); 5704 case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST: 5705 return nvme_identify_ctrl_list(n, req, true); 5706 case NVME_ID_CNS_CTRL_LIST: 5707 return nvme_identify_ctrl_list(n, req, false); 5708 case NVME_ID_CNS_PRIMARY_CTRL_CAP: 5709 return nvme_identify_pri_ctrl_cap(n, req); 5710 case NVME_ID_CNS_SECONDARY_CTRL_LIST: 5711 return nvme_identify_sec_ctrl_list(n, req); 5712 case NVME_ID_CNS_CS_NS: 5713 return nvme_identify_ns_csi(n, req, true); 5714 case NVME_ID_CNS_CS_NS_PRESENT: 5715 return nvme_identify_ns_csi(n, req, false); 5716 case NVME_ID_CNS_CTRL: 5717 return nvme_identify_ctrl(n, req); 5718 case NVME_ID_CNS_CS_CTRL: 5719 return nvme_identify_ctrl_csi(n, req); 5720 case NVME_ID_CNS_NS_ACTIVE_LIST: 5721 return nvme_identify_nslist(n, req, true); 5722 case NVME_ID_CNS_NS_PRESENT_LIST: 5723 return nvme_identify_nslist(n, req, false); 5724 case NVME_ID_CNS_CS_NS_ACTIVE_LIST: 5725 return nvme_identify_nslist_csi(n, req, true); 5726 case NVME_ID_CNS_CS_NS_PRESENT_LIST: 5727 return nvme_identify_nslist_csi(n, req, false); 5728 case NVME_ID_CNS_NS_DESCR_LIST: 5729 return nvme_identify_ns_descr_list(n, req); 5730 case NVME_ID_CNS_IO_COMMAND_SET: 5731 return nvme_identify_cmd_set(n, req); 5732 default: 5733 trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns)); 5734 return NVME_INVALID_FIELD | NVME_DNR; 5735 } 5736 } 5737 5738 static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req) 5739 { 5740 uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff; 5741 5742 req->cqe.result = 1; 5743 if (nvme_check_sqid(n, sqid)) { 5744 return NVME_INVALID_FIELD | NVME_DNR; 5745 } 5746 5747 return NVME_SUCCESS; 5748 } 5749 5750 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts) 5751 { 5752 trace_pci_nvme_setfeat_timestamp(ts); 5753 5754 n->host_timestamp = le64_to_cpu(ts); 5755 n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); 5756 } 5757 5758 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n) 5759 { 5760 uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); 5761 uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms; 5762 5763 union nvme_timestamp { 5764 struct { 5765 uint64_t timestamp:48; 5766 uint64_t sync:1; 5767 uint64_t origin:3; 5768 uint64_t rsvd1:12; 5769 }; 5770 uint64_t all; 5771 }; 5772 5773 union nvme_timestamp ts; 5774 ts.all = 0; 5775 ts.timestamp = n->host_timestamp + elapsed_time; 5776 5777 /* If the host timestamp is non-zero, set the timestamp origin */ 5778 ts.origin = n->host_timestamp ? 0x01 : 0x00; 5779 5780 trace_pci_nvme_getfeat_timestamp(ts.all); 5781 5782 return cpu_to_le64(ts.all); 5783 } 5784 5785 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req) 5786 { 5787 uint64_t timestamp = nvme_get_timestamp(n); 5788 5789 return nvme_c2h(n, (uint8_t *)×tamp, sizeof(timestamp), req); 5790 } 5791 5792 static int nvme_get_feature_fdp(NvmeCtrl *n, uint32_t endgrpid, 5793 uint32_t *result) 5794 { 5795 *result = 0; 5796 5797 if (!n->subsys || !n->subsys->endgrp.fdp.enabled) { 5798 return NVME_INVALID_FIELD | NVME_DNR; 5799 } 5800 5801 *result = FIELD_DP16(0, FEAT_FDP, FDPE, 1); 5802 *result = FIELD_DP16(*result, FEAT_FDP, CONF_NDX, 0); 5803 5804 return NVME_SUCCESS; 5805 } 5806 5807 static uint16_t nvme_get_feature_fdp_events(NvmeCtrl *n, NvmeNamespace *ns, 5808 NvmeRequest *req, uint32_t *result) 5809 { 5810 NvmeCmd *cmd = &req->cmd; 5811 uint32_t cdw11 = le32_to_cpu(cmd->cdw11); 5812 uint16_t ph = cdw11 & 0xffff; 5813 uint8_t noet = (cdw11 >> 16) & 0xff; 5814 uint16_t ruhid, ret; 5815 uint32_t nentries = 0; 5816 uint8_t s_events_ndx = 0; 5817 size_t s_events_siz = sizeof(NvmeFdpEventDescr) * noet; 5818 g_autofree NvmeFdpEventDescr *s_events = g_malloc0(s_events_siz); 5819 NvmeRuHandle *ruh; 5820 NvmeFdpEventDescr *s_event; 5821 5822 if (!n->subsys || !n->subsys->endgrp.fdp.enabled) { 5823 return NVME_FDP_DISABLED | NVME_DNR; 5824 } 5825 5826 if (!nvme_ph_valid(ns, ph)) { 5827 return NVME_INVALID_FIELD | NVME_DNR; 5828 } 5829 5830 ruhid = ns->fdp.phs[ph]; 5831 ruh = &n->subsys->endgrp.fdp.ruhs[ruhid]; 5832 5833 assert(ruh); 5834 5835 if (unlikely(noet == 0)) { 5836 return NVME_INVALID_FIELD | NVME_DNR; 5837 } 5838 5839 for (uint8_t event_type = 0; event_type < FDP_EVT_MAX; event_type++) { 5840 uint8_t shift = nvme_fdp_evf_shifts[event_type]; 5841 if (!shift && event_type) { 5842 /* 5843 * only first entry (event_type == 0) has a shift value of 0 5844 * other entries are simply unpopulated. 5845 */ 5846 continue; 5847 } 5848 5849 nentries++; 5850 5851 s_event = &s_events[s_events_ndx]; 5852 s_event->evt = event_type; 5853 s_event->evta = (ruh->event_filter >> shift) & 0x1; 5854 5855 /* break if all `noet` entries are filled */ 5856 if ((++s_events_ndx) == noet) { 5857 break; 5858 } 5859 } 5860 5861 ret = nvme_c2h(n, s_events, s_events_siz, req); 5862 if (ret) { 5863 return ret; 5864 } 5865 5866 *result = nentries; 5867 return NVME_SUCCESS; 5868 } 5869 5870 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req) 5871 { 5872 NvmeCmd *cmd = &req->cmd; 5873 uint32_t dw10 = le32_to_cpu(cmd->cdw10); 5874 uint32_t dw11 = le32_to_cpu(cmd->cdw11); 5875 uint32_t nsid = le32_to_cpu(cmd->nsid); 5876 uint32_t result; 5877 uint8_t fid = NVME_GETSETFEAT_FID(dw10); 5878 NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10); 5879 uint16_t iv; 5880 NvmeNamespace *ns; 5881 int i; 5882 uint16_t endgrpid = 0, ret = NVME_SUCCESS; 5883 5884 static const uint32_t nvme_feature_default[NVME_FID_MAX] = { 5885 [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT, 5886 }; 5887 5888 trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11); 5889 5890 if (!nvme_feature_support[fid]) { 5891 return NVME_INVALID_FIELD | NVME_DNR; 5892 } 5893 5894 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) { 5895 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { 5896 /* 5897 * The Reservation Notification Mask and Reservation Persistence 5898 * features require a status code of Invalid Field in Command when 5899 * NSID is FFFFFFFFh. Since the device does not support those 5900 * features we can always return Invalid Namespace or Format as we 5901 * should do for all other features. 5902 */ 5903 return NVME_INVALID_NSID | NVME_DNR; 5904 } 5905 5906 if (!nvme_ns(n, nsid)) { 5907 return NVME_INVALID_FIELD | NVME_DNR; 5908 } 5909 } 5910 5911 switch (sel) { 5912 case NVME_GETFEAT_SELECT_CURRENT: 5913 break; 5914 case NVME_GETFEAT_SELECT_SAVED: 5915 /* no features are saveable by the controller; fallthrough */ 5916 case NVME_GETFEAT_SELECT_DEFAULT: 5917 goto defaults; 5918 case NVME_GETFEAT_SELECT_CAP: 5919 result = nvme_feature_cap[fid]; 5920 goto out; 5921 } 5922 5923 switch (fid) { 5924 case NVME_TEMPERATURE_THRESHOLD: 5925 result = 0; 5926 5927 /* 5928 * The controller only implements the Composite Temperature sensor, so 5929 * return 0 for all other sensors. 5930 */ 5931 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { 5932 goto out; 5933 } 5934 5935 switch (NVME_TEMP_THSEL(dw11)) { 5936 case NVME_TEMP_THSEL_OVER: 5937 result = n->features.temp_thresh_hi; 5938 goto out; 5939 case NVME_TEMP_THSEL_UNDER: 5940 result = n->features.temp_thresh_low; 5941 goto out; 5942 } 5943 5944 return NVME_INVALID_FIELD | NVME_DNR; 5945 case NVME_ERROR_RECOVERY: 5946 if (!nvme_nsid_valid(n, nsid)) { 5947 return NVME_INVALID_NSID | NVME_DNR; 5948 } 5949 5950 ns = nvme_ns(n, nsid); 5951 if (unlikely(!ns)) { 5952 return NVME_INVALID_FIELD | NVME_DNR; 5953 } 5954 5955 result = ns->features.err_rec; 5956 goto out; 5957 case NVME_VOLATILE_WRITE_CACHE: 5958 result = 0; 5959 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 5960 ns = nvme_ns(n, i); 5961 if (!ns) { 5962 continue; 5963 } 5964 5965 result = blk_enable_write_cache(ns->blkconf.blk); 5966 if (result) { 5967 break; 5968 } 5969 } 5970 trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled"); 5971 goto out; 5972 case NVME_ASYNCHRONOUS_EVENT_CONF: 5973 result = n->features.async_config; 5974 goto out; 5975 case NVME_TIMESTAMP: 5976 return nvme_get_feature_timestamp(n, req); 5977 case NVME_HOST_BEHAVIOR_SUPPORT: 5978 return nvme_c2h(n, (uint8_t *)&n->features.hbs, 5979 sizeof(n->features.hbs), req); 5980 case NVME_FDP_MODE: 5981 endgrpid = dw11 & 0xff; 5982 5983 if (endgrpid != 0x1) { 5984 return NVME_INVALID_FIELD | NVME_DNR; 5985 } 5986 5987 ret = nvme_get_feature_fdp(n, endgrpid, &result); 5988 if (ret) { 5989 return ret; 5990 } 5991 goto out; 5992 case NVME_FDP_EVENTS: 5993 if (!nvme_nsid_valid(n, nsid)) { 5994 return NVME_INVALID_NSID | NVME_DNR; 5995 } 5996 5997 ns = nvme_ns(n, nsid); 5998 if (unlikely(!ns)) { 5999 return NVME_INVALID_FIELD | NVME_DNR; 6000 } 6001 6002 ret = nvme_get_feature_fdp_events(n, ns, req, &result); 6003 if (ret) { 6004 return ret; 6005 } 6006 goto out; 6007 default: 6008 break; 6009 } 6010 6011 defaults: 6012 switch (fid) { 6013 case NVME_TEMPERATURE_THRESHOLD: 6014 result = 0; 6015 6016 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { 6017 break; 6018 } 6019 6020 if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) { 6021 result = NVME_TEMPERATURE_WARNING; 6022 } 6023 6024 break; 6025 case NVME_NUMBER_OF_QUEUES: 6026 result = (n->conf_ioqpairs - 1) | ((n->conf_ioqpairs - 1) << 16); 6027 trace_pci_nvme_getfeat_numq(result); 6028 break; 6029 case NVME_INTERRUPT_VECTOR_CONF: 6030 iv = dw11 & 0xffff; 6031 if (iv >= n->conf_ioqpairs + 1) { 6032 return NVME_INVALID_FIELD | NVME_DNR; 6033 } 6034 6035 result = iv; 6036 if (iv == n->admin_cq.vector) { 6037 result |= NVME_INTVC_NOCOALESCING; 6038 } 6039 break; 6040 case NVME_FDP_MODE: 6041 endgrpid = dw11 & 0xff; 6042 6043 if (endgrpid != 0x1) { 6044 return NVME_INVALID_FIELD | NVME_DNR; 6045 } 6046 6047 ret = nvme_get_feature_fdp(n, endgrpid, &result); 6048 if (ret) { 6049 return ret; 6050 } 6051 goto out; 6052 6053 break; 6054 default: 6055 result = nvme_feature_default[fid]; 6056 break; 6057 } 6058 6059 out: 6060 req->cqe.result = cpu_to_le32(result); 6061 return ret; 6062 } 6063 6064 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req) 6065 { 6066 uint16_t ret; 6067 uint64_t timestamp; 6068 6069 ret = nvme_h2c(n, (uint8_t *)×tamp, sizeof(timestamp), req); 6070 if (ret) { 6071 return ret; 6072 } 6073 6074 nvme_set_timestamp(n, timestamp); 6075 6076 return NVME_SUCCESS; 6077 } 6078 6079 static uint16_t nvme_set_feature_fdp_events(NvmeCtrl *n, NvmeNamespace *ns, 6080 NvmeRequest *req) 6081 { 6082 NvmeCmd *cmd = &req->cmd; 6083 uint32_t cdw11 = le32_to_cpu(cmd->cdw11); 6084 uint16_t ph = cdw11 & 0xffff; 6085 uint8_t noet = (cdw11 >> 16) & 0xff; 6086 uint16_t ret, ruhid; 6087 uint8_t enable = le32_to_cpu(cmd->cdw12) & 0x1; 6088 uint8_t event_mask = 0; 6089 unsigned int i; 6090 g_autofree uint8_t *events = g_malloc0(noet); 6091 NvmeRuHandle *ruh = NULL; 6092 6093 assert(ns); 6094 6095 if (!n->subsys || !n->subsys->endgrp.fdp.enabled) { 6096 return NVME_FDP_DISABLED | NVME_DNR; 6097 } 6098 6099 if (!nvme_ph_valid(ns, ph)) { 6100 return NVME_INVALID_FIELD | NVME_DNR; 6101 } 6102 6103 ruhid = ns->fdp.phs[ph]; 6104 ruh = &n->subsys->endgrp.fdp.ruhs[ruhid]; 6105 6106 ret = nvme_h2c(n, events, noet, req); 6107 if (ret) { 6108 return ret; 6109 } 6110 6111 for (i = 0; i < noet; i++) { 6112 event_mask |= (1 << nvme_fdp_evf_shifts[events[i]]); 6113 } 6114 6115 if (enable) { 6116 ruh->event_filter |= event_mask; 6117 } else { 6118 ruh->event_filter = ruh->event_filter & ~event_mask; 6119 } 6120 6121 return NVME_SUCCESS; 6122 } 6123 6124 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req) 6125 { 6126 NvmeNamespace *ns = NULL; 6127 6128 NvmeCmd *cmd = &req->cmd; 6129 uint32_t dw10 = le32_to_cpu(cmd->cdw10); 6130 uint32_t dw11 = le32_to_cpu(cmd->cdw11); 6131 uint32_t nsid = le32_to_cpu(cmd->nsid); 6132 uint8_t fid = NVME_GETSETFEAT_FID(dw10); 6133 uint8_t save = NVME_SETFEAT_SAVE(dw10); 6134 uint16_t status; 6135 int i; 6136 6137 trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11); 6138 6139 if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) { 6140 return NVME_FID_NOT_SAVEABLE | NVME_DNR; 6141 } 6142 6143 if (!nvme_feature_support[fid]) { 6144 return NVME_INVALID_FIELD | NVME_DNR; 6145 } 6146 6147 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) { 6148 if (nsid != NVME_NSID_BROADCAST) { 6149 if (!nvme_nsid_valid(n, nsid)) { 6150 return NVME_INVALID_NSID | NVME_DNR; 6151 } 6152 6153 ns = nvme_ns(n, nsid); 6154 if (unlikely(!ns)) { 6155 return NVME_INVALID_FIELD | NVME_DNR; 6156 } 6157 } 6158 } else if (nsid && nsid != NVME_NSID_BROADCAST) { 6159 if (!nvme_nsid_valid(n, nsid)) { 6160 return NVME_INVALID_NSID | NVME_DNR; 6161 } 6162 6163 return NVME_FEAT_NOT_NS_SPEC | NVME_DNR; 6164 } 6165 6166 if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) { 6167 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR; 6168 } 6169 6170 switch (fid) { 6171 case NVME_TEMPERATURE_THRESHOLD: 6172 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { 6173 break; 6174 } 6175 6176 switch (NVME_TEMP_THSEL(dw11)) { 6177 case NVME_TEMP_THSEL_OVER: 6178 n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11); 6179 break; 6180 case NVME_TEMP_THSEL_UNDER: 6181 n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11); 6182 break; 6183 default: 6184 return NVME_INVALID_FIELD | NVME_DNR; 6185 } 6186 6187 if ((n->temperature >= n->features.temp_thresh_hi) || 6188 (n->temperature <= n->features.temp_thresh_low)) { 6189 nvme_smart_event(n, NVME_SMART_TEMPERATURE); 6190 } 6191 6192 break; 6193 case NVME_ERROR_RECOVERY: 6194 if (nsid == NVME_NSID_BROADCAST) { 6195 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 6196 ns = nvme_ns(n, i); 6197 6198 if (!ns) { 6199 continue; 6200 } 6201 6202 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) { 6203 ns->features.err_rec = dw11; 6204 } 6205 } 6206 6207 break; 6208 } 6209 6210 assert(ns); 6211 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) { 6212 ns->features.err_rec = dw11; 6213 } 6214 break; 6215 case NVME_VOLATILE_WRITE_CACHE: 6216 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 6217 ns = nvme_ns(n, i); 6218 if (!ns) { 6219 continue; 6220 } 6221 6222 if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) { 6223 blk_flush(ns->blkconf.blk); 6224 } 6225 6226 blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1); 6227 } 6228 6229 break; 6230 6231 case NVME_NUMBER_OF_QUEUES: 6232 if (n->qs_created) { 6233 return NVME_CMD_SEQ_ERROR | NVME_DNR; 6234 } 6235 6236 /* 6237 * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR 6238 * and NSQR. 6239 */ 6240 if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) { 6241 return NVME_INVALID_FIELD | NVME_DNR; 6242 } 6243 6244 trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1, 6245 ((dw11 >> 16) & 0xffff) + 1, 6246 n->conf_ioqpairs, 6247 n->conf_ioqpairs); 6248 req->cqe.result = cpu_to_le32((n->conf_ioqpairs - 1) | 6249 ((n->conf_ioqpairs - 1) << 16)); 6250 break; 6251 case NVME_ASYNCHRONOUS_EVENT_CONF: 6252 n->features.async_config = dw11; 6253 break; 6254 case NVME_TIMESTAMP: 6255 return nvme_set_feature_timestamp(n, req); 6256 case NVME_HOST_BEHAVIOR_SUPPORT: 6257 status = nvme_h2c(n, (uint8_t *)&n->features.hbs, 6258 sizeof(n->features.hbs), req); 6259 if (status) { 6260 return status; 6261 } 6262 6263 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 6264 ns = nvme_ns(n, i); 6265 6266 if (!ns) { 6267 continue; 6268 } 6269 6270 ns->id_ns.nlbaf = ns->nlbaf - 1; 6271 if (!n->features.hbs.lbafee) { 6272 ns->id_ns.nlbaf = MIN(ns->id_ns.nlbaf, 15); 6273 } 6274 } 6275 6276 return status; 6277 case NVME_COMMAND_SET_PROFILE: 6278 if (dw11 & 0x1ff) { 6279 trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff); 6280 return NVME_CMD_SET_CMB_REJECTED | NVME_DNR; 6281 } 6282 break; 6283 case NVME_FDP_MODE: 6284 /* spec: abort with cmd seq err if there's one or more NS' in endgrp */ 6285 return NVME_CMD_SEQ_ERROR | NVME_DNR; 6286 case NVME_FDP_EVENTS: 6287 return nvme_set_feature_fdp_events(n, ns, req); 6288 default: 6289 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR; 6290 } 6291 return NVME_SUCCESS; 6292 } 6293 6294 static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req) 6295 { 6296 trace_pci_nvme_aer(nvme_cid(req)); 6297 6298 if (n->outstanding_aers > n->params.aerl) { 6299 trace_pci_nvme_aer_aerl_exceeded(); 6300 return NVME_AER_LIMIT_EXCEEDED; 6301 } 6302 6303 n->aer_reqs[n->outstanding_aers] = req; 6304 n->outstanding_aers++; 6305 6306 if (!QTAILQ_EMPTY(&n->aer_queue)) { 6307 nvme_process_aers(n); 6308 } 6309 6310 return NVME_NO_COMPLETE; 6311 } 6312 6313 static void nvme_update_dmrsl(NvmeCtrl *n) 6314 { 6315 int nsid; 6316 6317 for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) { 6318 NvmeNamespace *ns = nvme_ns(n, nsid); 6319 if (!ns) { 6320 continue; 6321 } 6322 6323 n->dmrsl = MIN_NON_ZERO(n->dmrsl, 6324 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1)); 6325 } 6326 } 6327 6328 static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns) 6329 { 6330 uint32_t cc = ldl_le_p(&n->bar.cc); 6331 6332 ns->iocs = nvme_cse_iocs_none; 6333 switch (ns->csi) { 6334 case NVME_CSI_NVM: 6335 if (NVME_CC_CSS(cc) != NVME_CC_CSS_ADMIN_ONLY) { 6336 ns->iocs = nvme_cse_iocs_nvm; 6337 } 6338 break; 6339 case NVME_CSI_ZONED: 6340 if (NVME_CC_CSS(cc) == NVME_CC_CSS_CSI) { 6341 ns->iocs = nvme_cse_iocs_zoned; 6342 } else if (NVME_CC_CSS(cc) == NVME_CC_CSS_NVM) { 6343 ns->iocs = nvme_cse_iocs_nvm; 6344 } 6345 break; 6346 } 6347 } 6348 6349 static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req) 6350 { 6351 NvmeNamespace *ns; 6352 NvmeCtrl *ctrl; 6353 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {}; 6354 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 6355 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); 6356 uint8_t sel = dw10 & 0xf; 6357 uint16_t *nr_ids = &list[0]; 6358 uint16_t *ids = &list[1]; 6359 uint16_t ret; 6360 int i; 6361 6362 trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf); 6363 6364 if (!nvme_nsid_valid(n, nsid)) { 6365 return NVME_INVALID_NSID | NVME_DNR; 6366 } 6367 6368 ns = nvme_subsys_ns(n->subsys, nsid); 6369 if (!ns) { 6370 return NVME_INVALID_FIELD | NVME_DNR; 6371 } 6372 6373 ret = nvme_h2c(n, (uint8_t *)list, 4096, req); 6374 if (ret) { 6375 return ret; 6376 } 6377 6378 if (!*nr_ids) { 6379 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR; 6380 } 6381 6382 *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1); 6383 for (i = 0; i < *nr_ids; i++) { 6384 ctrl = nvme_subsys_ctrl(n->subsys, ids[i]); 6385 if (!ctrl) { 6386 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR; 6387 } 6388 6389 switch (sel) { 6390 case NVME_NS_ATTACHMENT_ATTACH: 6391 if (nvme_ns(ctrl, nsid)) { 6392 return NVME_NS_ALREADY_ATTACHED | NVME_DNR; 6393 } 6394 6395 if (ns->attached && !ns->params.shared) { 6396 return NVME_NS_PRIVATE | NVME_DNR; 6397 } 6398 6399 nvme_attach_ns(ctrl, ns); 6400 nvme_select_iocs_ns(ctrl, ns); 6401 6402 break; 6403 6404 case NVME_NS_ATTACHMENT_DETACH: 6405 if (!nvme_ns(ctrl, nsid)) { 6406 return NVME_NS_NOT_ATTACHED | NVME_DNR; 6407 } 6408 6409 ctrl->namespaces[nsid] = NULL; 6410 ns->attached--; 6411 6412 nvme_update_dmrsl(ctrl); 6413 6414 break; 6415 6416 default: 6417 return NVME_INVALID_FIELD | NVME_DNR; 6418 } 6419 6420 /* 6421 * Add namespace id to the changed namespace id list for event clearing 6422 * via Get Log Page command. 6423 */ 6424 if (!test_and_set_bit(nsid, ctrl->changed_nsids)) { 6425 nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE, 6426 NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED, 6427 NVME_LOG_CHANGED_NSLIST); 6428 } 6429 } 6430 6431 return NVME_SUCCESS; 6432 } 6433 6434 typedef struct NvmeFormatAIOCB { 6435 BlockAIOCB common; 6436 BlockAIOCB *aiocb; 6437 NvmeRequest *req; 6438 int ret; 6439 6440 NvmeNamespace *ns; 6441 uint32_t nsid; 6442 bool broadcast; 6443 int64_t offset; 6444 6445 uint8_t lbaf; 6446 uint8_t mset; 6447 uint8_t pi; 6448 uint8_t pil; 6449 } NvmeFormatAIOCB; 6450 6451 static void nvme_format_cancel(BlockAIOCB *aiocb) 6452 { 6453 NvmeFormatAIOCB *iocb = container_of(aiocb, NvmeFormatAIOCB, common); 6454 6455 iocb->ret = -ECANCELED; 6456 6457 if (iocb->aiocb) { 6458 blk_aio_cancel_async(iocb->aiocb); 6459 iocb->aiocb = NULL; 6460 } 6461 } 6462 6463 static const AIOCBInfo nvme_format_aiocb_info = { 6464 .aiocb_size = sizeof(NvmeFormatAIOCB), 6465 .cancel_async = nvme_format_cancel, 6466 .get_aio_context = nvme_get_aio_context, 6467 }; 6468 6469 static void nvme_format_set(NvmeNamespace *ns, uint8_t lbaf, uint8_t mset, 6470 uint8_t pi, uint8_t pil) 6471 { 6472 uint8_t lbafl = lbaf & 0xf; 6473 uint8_t lbafu = lbaf >> 4; 6474 6475 trace_pci_nvme_format_set(ns->params.nsid, lbaf, mset, pi, pil); 6476 6477 ns->id_ns.dps = (pil << 3) | pi; 6478 ns->id_ns.flbas = (lbafu << 5) | (mset << 4) | lbafl; 6479 6480 nvme_ns_init_format(ns); 6481 } 6482 6483 static void nvme_do_format(NvmeFormatAIOCB *iocb); 6484 6485 static void nvme_format_ns_cb(void *opaque, int ret) 6486 { 6487 NvmeFormatAIOCB *iocb = opaque; 6488 NvmeNamespace *ns = iocb->ns; 6489 int bytes; 6490 6491 if (iocb->ret < 0) { 6492 goto done; 6493 } else if (ret < 0) { 6494 iocb->ret = ret; 6495 goto done; 6496 } 6497 6498 assert(ns); 6499 6500 if (iocb->offset < ns->size) { 6501 bytes = MIN(BDRV_REQUEST_MAX_BYTES, ns->size - iocb->offset); 6502 6503 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, iocb->offset, 6504 bytes, BDRV_REQ_MAY_UNMAP, 6505 nvme_format_ns_cb, iocb); 6506 6507 iocb->offset += bytes; 6508 return; 6509 } 6510 6511 nvme_format_set(ns, iocb->lbaf, iocb->mset, iocb->pi, iocb->pil); 6512 ns->status = 0x0; 6513 iocb->ns = NULL; 6514 iocb->offset = 0; 6515 6516 done: 6517 nvme_do_format(iocb); 6518 } 6519 6520 static uint16_t nvme_format_check(NvmeNamespace *ns, uint8_t lbaf, uint8_t pi) 6521 { 6522 if (ns->params.zoned) { 6523 return NVME_INVALID_FORMAT | NVME_DNR; 6524 } 6525 6526 if (lbaf > ns->id_ns.nlbaf) { 6527 return NVME_INVALID_FORMAT | NVME_DNR; 6528 } 6529 6530 if (pi && (ns->id_ns.lbaf[lbaf].ms < nvme_pi_tuple_size(ns))) { 6531 return NVME_INVALID_FORMAT | NVME_DNR; 6532 } 6533 6534 if (pi && pi > NVME_ID_NS_DPS_TYPE_3) { 6535 return NVME_INVALID_FIELD | NVME_DNR; 6536 } 6537 6538 return NVME_SUCCESS; 6539 } 6540 6541 static void nvme_do_format(NvmeFormatAIOCB *iocb) 6542 { 6543 NvmeRequest *req = iocb->req; 6544 NvmeCtrl *n = nvme_ctrl(req); 6545 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); 6546 uint8_t lbaf = dw10 & 0xf; 6547 uint8_t pi = (dw10 >> 5) & 0x7; 6548 uint16_t status; 6549 int i; 6550 6551 if (iocb->ret < 0) { 6552 goto done; 6553 } 6554 6555 if (iocb->broadcast) { 6556 for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) { 6557 iocb->ns = nvme_ns(n, i); 6558 if (iocb->ns) { 6559 iocb->nsid = i; 6560 break; 6561 } 6562 } 6563 } 6564 6565 if (!iocb->ns) { 6566 goto done; 6567 } 6568 6569 status = nvme_format_check(iocb->ns, lbaf, pi); 6570 if (status) { 6571 req->status = status; 6572 goto done; 6573 } 6574 6575 iocb->ns->status = NVME_FORMAT_IN_PROGRESS; 6576 nvme_format_ns_cb(iocb, 0); 6577 return; 6578 6579 done: 6580 iocb->common.cb(iocb->common.opaque, iocb->ret); 6581 qemu_aio_unref(iocb); 6582 } 6583 6584 static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req) 6585 { 6586 NvmeFormatAIOCB *iocb; 6587 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 6588 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); 6589 uint8_t lbaf = dw10 & 0xf; 6590 uint8_t mset = (dw10 >> 4) & 0x1; 6591 uint8_t pi = (dw10 >> 5) & 0x7; 6592 uint8_t pil = (dw10 >> 8) & 0x1; 6593 uint8_t lbafu = (dw10 >> 12) & 0x3; 6594 uint16_t status; 6595 6596 iocb = qemu_aio_get(&nvme_format_aiocb_info, NULL, nvme_misc_cb, req); 6597 6598 iocb->req = req; 6599 iocb->ret = 0; 6600 iocb->ns = NULL; 6601 iocb->nsid = 0; 6602 iocb->lbaf = lbaf; 6603 iocb->mset = mset; 6604 iocb->pi = pi; 6605 iocb->pil = pil; 6606 iocb->broadcast = (nsid == NVME_NSID_BROADCAST); 6607 iocb->offset = 0; 6608 6609 if (n->features.hbs.lbafee) { 6610 iocb->lbaf |= lbafu << 4; 6611 } 6612 6613 if (!iocb->broadcast) { 6614 if (!nvme_nsid_valid(n, nsid)) { 6615 status = NVME_INVALID_NSID | NVME_DNR; 6616 goto out; 6617 } 6618 6619 iocb->ns = nvme_ns(n, nsid); 6620 if (!iocb->ns) { 6621 status = NVME_INVALID_FIELD | NVME_DNR; 6622 goto out; 6623 } 6624 } 6625 6626 req->aiocb = &iocb->common; 6627 nvme_do_format(iocb); 6628 6629 return NVME_NO_COMPLETE; 6630 6631 out: 6632 qemu_aio_unref(iocb); 6633 6634 return status; 6635 } 6636 6637 static void nvme_get_virt_res_num(NvmeCtrl *n, uint8_t rt, int *num_total, 6638 int *num_prim, int *num_sec) 6639 { 6640 *num_total = le32_to_cpu(rt ? 6641 n->pri_ctrl_cap.vifrt : n->pri_ctrl_cap.vqfrt); 6642 *num_prim = le16_to_cpu(rt ? 6643 n->pri_ctrl_cap.virfap : n->pri_ctrl_cap.vqrfap); 6644 *num_sec = le16_to_cpu(rt ? n->pri_ctrl_cap.virfa : n->pri_ctrl_cap.vqrfa); 6645 } 6646 6647 static uint16_t nvme_assign_virt_res_to_prim(NvmeCtrl *n, NvmeRequest *req, 6648 uint16_t cntlid, uint8_t rt, 6649 int nr) 6650 { 6651 int num_total, num_prim, num_sec; 6652 6653 if (cntlid != n->cntlid) { 6654 return NVME_INVALID_CTRL_ID | NVME_DNR; 6655 } 6656 6657 nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec); 6658 6659 if (nr > num_total) { 6660 return NVME_INVALID_NUM_RESOURCES | NVME_DNR; 6661 } 6662 6663 if (nr > num_total - num_sec) { 6664 return NVME_INVALID_RESOURCE_ID | NVME_DNR; 6665 } 6666 6667 if (rt) { 6668 n->next_pri_ctrl_cap.virfap = cpu_to_le16(nr); 6669 } else { 6670 n->next_pri_ctrl_cap.vqrfap = cpu_to_le16(nr); 6671 } 6672 6673 req->cqe.result = cpu_to_le32(nr); 6674 return req->status; 6675 } 6676 6677 static void nvme_update_virt_res(NvmeCtrl *n, NvmeSecCtrlEntry *sctrl, 6678 uint8_t rt, int nr) 6679 { 6680 int prev_nr, prev_total; 6681 6682 if (rt) { 6683 prev_nr = le16_to_cpu(sctrl->nvi); 6684 prev_total = le32_to_cpu(n->pri_ctrl_cap.virfa); 6685 sctrl->nvi = cpu_to_le16(nr); 6686 n->pri_ctrl_cap.virfa = cpu_to_le32(prev_total + nr - prev_nr); 6687 } else { 6688 prev_nr = le16_to_cpu(sctrl->nvq); 6689 prev_total = le32_to_cpu(n->pri_ctrl_cap.vqrfa); 6690 sctrl->nvq = cpu_to_le16(nr); 6691 n->pri_ctrl_cap.vqrfa = cpu_to_le32(prev_total + nr - prev_nr); 6692 } 6693 } 6694 6695 static uint16_t nvme_assign_virt_res_to_sec(NvmeCtrl *n, NvmeRequest *req, 6696 uint16_t cntlid, uint8_t rt, int nr) 6697 { 6698 int num_total, num_prim, num_sec, num_free, diff, limit; 6699 NvmeSecCtrlEntry *sctrl; 6700 6701 sctrl = nvme_sctrl_for_cntlid(n, cntlid); 6702 if (!sctrl) { 6703 return NVME_INVALID_CTRL_ID | NVME_DNR; 6704 } 6705 6706 if (sctrl->scs) { 6707 return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR; 6708 } 6709 6710 limit = le16_to_cpu(rt ? n->pri_ctrl_cap.vifrsm : n->pri_ctrl_cap.vqfrsm); 6711 if (nr > limit) { 6712 return NVME_INVALID_NUM_RESOURCES | NVME_DNR; 6713 } 6714 6715 nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec); 6716 num_free = num_total - num_prim - num_sec; 6717 diff = nr - le16_to_cpu(rt ? sctrl->nvi : sctrl->nvq); 6718 6719 if (diff > num_free) { 6720 return NVME_INVALID_RESOURCE_ID | NVME_DNR; 6721 } 6722 6723 nvme_update_virt_res(n, sctrl, rt, nr); 6724 req->cqe.result = cpu_to_le32(nr); 6725 6726 return req->status; 6727 } 6728 6729 static uint16_t nvme_virt_set_state(NvmeCtrl *n, uint16_t cntlid, bool online) 6730 { 6731 PCIDevice *pci = PCI_DEVICE(n); 6732 NvmeCtrl *sn = NULL; 6733 NvmeSecCtrlEntry *sctrl; 6734 int vf_index; 6735 6736 sctrl = nvme_sctrl_for_cntlid(n, cntlid); 6737 if (!sctrl) { 6738 return NVME_INVALID_CTRL_ID | NVME_DNR; 6739 } 6740 6741 if (!pci_is_vf(pci)) { 6742 vf_index = le16_to_cpu(sctrl->vfn) - 1; 6743 sn = NVME(pcie_sriov_get_vf_at_index(pci, vf_index)); 6744 } 6745 6746 if (online) { 6747 if (!sctrl->nvi || (le16_to_cpu(sctrl->nvq) < 2) || !sn) { 6748 return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR; 6749 } 6750 6751 if (!sctrl->scs) { 6752 sctrl->scs = 0x1; 6753 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION); 6754 } 6755 } else { 6756 nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_INTERRUPT, 0); 6757 nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_QUEUE, 0); 6758 6759 if (sctrl->scs) { 6760 sctrl->scs = 0x0; 6761 if (sn) { 6762 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION); 6763 } 6764 } 6765 } 6766 6767 return NVME_SUCCESS; 6768 } 6769 6770 static uint16_t nvme_virt_mngmt(NvmeCtrl *n, NvmeRequest *req) 6771 { 6772 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); 6773 uint32_t dw11 = le32_to_cpu(req->cmd.cdw11); 6774 uint8_t act = dw10 & 0xf; 6775 uint8_t rt = (dw10 >> 8) & 0x7; 6776 uint16_t cntlid = (dw10 >> 16) & 0xffff; 6777 int nr = dw11 & 0xffff; 6778 6779 trace_pci_nvme_virt_mngmt(nvme_cid(req), act, cntlid, rt ? "VI" : "VQ", nr); 6780 6781 if (rt != NVME_VIRT_RES_QUEUE && rt != NVME_VIRT_RES_INTERRUPT) { 6782 return NVME_INVALID_RESOURCE_ID | NVME_DNR; 6783 } 6784 6785 switch (act) { 6786 case NVME_VIRT_MNGMT_ACTION_SEC_ASSIGN: 6787 return nvme_assign_virt_res_to_sec(n, req, cntlid, rt, nr); 6788 case NVME_VIRT_MNGMT_ACTION_PRM_ALLOC: 6789 return nvme_assign_virt_res_to_prim(n, req, cntlid, rt, nr); 6790 case NVME_VIRT_MNGMT_ACTION_SEC_ONLINE: 6791 return nvme_virt_set_state(n, cntlid, true); 6792 case NVME_VIRT_MNGMT_ACTION_SEC_OFFLINE: 6793 return nvme_virt_set_state(n, cntlid, false); 6794 default: 6795 return NVME_INVALID_FIELD | NVME_DNR; 6796 } 6797 } 6798 6799 static uint16_t nvme_dbbuf_config(NvmeCtrl *n, const NvmeRequest *req) 6800 { 6801 PCIDevice *pci = PCI_DEVICE(n); 6802 uint64_t dbs_addr = le64_to_cpu(req->cmd.dptr.prp1); 6803 uint64_t eis_addr = le64_to_cpu(req->cmd.dptr.prp2); 6804 uint32_t v; 6805 int i; 6806 6807 /* Address should be page aligned */ 6808 if (dbs_addr & (n->page_size - 1) || eis_addr & (n->page_size - 1)) { 6809 return NVME_INVALID_FIELD | NVME_DNR; 6810 } 6811 6812 /* Save shadow buffer base addr for use during queue creation */ 6813 n->dbbuf_dbs = dbs_addr; 6814 n->dbbuf_eis = eis_addr; 6815 n->dbbuf_enabled = true; 6816 6817 for (i = 0; i < n->params.max_ioqpairs + 1; i++) { 6818 NvmeSQueue *sq = n->sq[i]; 6819 NvmeCQueue *cq = n->cq[i]; 6820 6821 if (sq) { 6822 v = cpu_to_le32(sq->tail); 6823 6824 /* 6825 * CAP.DSTRD is 0, so offset of ith sq db_addr is (i<<3) 6826 * nvme_process_db() uses this hard-coded way to calculate 6827 * doorbell offsets. Be consistent with that here. 6828 */ 6829 sq->db_addr = dbs_addr + (i << 3); 6830 sq->ei_addr = eis_addr + (i << 3); 6831 pci_dma_write(pci, sq->db_addr, &v, sizeof(sq->tail)); 6832 6833 if (n->params.ioeventfd && sq->sqid != 0) { 6834 if (!nvme_init_sq_ioeventfd(sq)) { 6835 sq->ioeventfd_enabled = true; 6836 } 6837 } 6838 } 6839 6840 if (cq) { 6841 v = cpu_to_le32(cq->head); 6842 6843 /* CAP.DSTRD is 0, so offset of ith cq db_addr is (i<<3)+(1<<2) */ 6844 cq->db_addr = dbs_addr + (i << 3) + (1 << 2); 6845 cq->ei_addr = eis_addr + (i << 3) + (1 << 2); 6846 pci_dma_write(pci, cq->db_addr, &v, sizeof(cq->head)); 6847 6848 if (n->params.ioeventfd && cq->cqid != 0) { 6849 if (!nvme_init_cq_ioeventfd(cq)) { 6850 cq->ioeventfd_enabled = true; 6851 } 6852 } 6853 } 6854 } 6855 6856 trace_pci_nvme_dbbuf_config(dbs_addr, eis_addr); 6857 6858 return NVME_SUCCESS; 6859 } 6860 6861 static uint16_t nvme_directive_send(NvmeCtrl *n, NvmeRequest *req) 6862 { 6863 return NVME_INVALID_FIELD | NVME_DNR; 6864 } 6865 6866 static uint16_t nvme_directive_receive(NvmeCtrl *n, NvmeRequest *req) 6867 { 6868 NvmeNamespace *ns; 6869 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); 6870 uint32_t dw11 = le32_to_cpu(req->cmd.cdw11); 6871 uint32_t nsid = le32_to_cpu(req->cmd.nsid); 6872 uint8_t doper, dtype; 6873 uint32_t numd, trans_len; 6874 NvmeDirectiveIdentify id = { 6875 .supported = 1 << NVME_DIRECTIVE_IDENTIFY, 6876 .enabled = 1 << NVME_DIRECTIVE_IDENTIFY, 6877 }; 6878 6879 numd = dw10 + 1; 6880 doper = dw11 & 0xff; 6881 dtype = (dw11 >> 8) & 0xff; 6882 6883 trans_len = MIN(sizeof(NvmeDirectiveIdentify), numd << 2); 6884 6885 if (nsid == NVME_NSID_BROADCAST || dtype != NVME_DIRECTIVE_IDENTIFY || 6886 doper != NVME_DIRECTIVE_RETURN_PARAMS) { 6887 return NVME_INVALID_FIELD | NVME_DNR; 6888 } 6889 6890 ns = nvme_ns(n, nsid); 6891 if (!ns) { 6892 return NVME_INVALID_FIELD | NVME_DNR; 6893 } 6894 6895 switch (dtype) { 6896 case NVME_DIRECTIVE_IDENTIFY: 6897 switch (doper) { 6898 case NVME_DIRECTIVE_RETURN_PARAMS: 6899 if (ns->endgrp->fdp.enabled) { 6900 id.supported |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT; 6901 id.enabled |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT; 6902 id.persistent |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT; 6903 } 6904 6905 return nvme_c2h(n, (uint8_t *)&id, trans_len, req); 6906 6907 default: 6908 return NVME_INVALID_FIELD | NVME_DNR; 6909 } 6910 6911 default: 6912 return NVME_INVALID_FIELD; 6913 } 6914 } 6915 6916 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req) 6917 { 6918 trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode, 6919 nvme_adm_opc_str(req->cmd.opcode)); 6920 6921 if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) { 6922 trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode); 6923 return NVME_INVALID_OPCODE | NVME_DNR; 6924 } 6925 6926 /* SGLs shall not be used for Admin commands in NVMe over PCIe */ 6927 if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) { 6928 return NVME_INVALID_FIELD | NVME_DNR; 6929 } 6930 6931 if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) { 6932 return NVME_INVALID_FIELD; 6933 } 6934 6935 switch (req->cmd.opcode) { 6936 case NVME_ADM_CMD_DELETE_SQ: 6937 return nvme_del_sq(n, req); 6938 case NVME_ADM_CMD_CREATE_SQ: 6939 return nvme_create_sq(n, req); 6940 case NVME_ADM_CMD_GET_LOG_PAGE: 6941 return nvme_get_log(n, req); 6942 case NVME_ADM_CMD_DELETE_CQ: 6943 return nvme_del_cq(n, req); 6944 case NVME_ADM_CMD_CREATE_CQ: 6945 return nvme_create_cq(n, req); 6946 case NVME_ADM_CMD_IDENTIFY: 6947 return nvme_identify(n, req); 6948 case NVME_ADM_CMD_ABORT: 6949 return nvme_abort(n, req); 6950 case NVME_ADM_CMD_SET_FEATURES: 6951 return nvme_set_feature(n, req); 6952 case NVME_ADM_CMD_GET_FEATURES: 6953 return nvme_get_feature(n, req); 6954 case NVME_ADM_CMD_ASYNC_EV_REQ: 6955 return nvme_aer(n, req); 6956 case NVME_ADM_CMD_NS_ATTACHMENT: 6957 return nvme_ns_attachment(n, req); 6958 case NVME_ADM_CMD_VIRT_MNGMT: 6959 return nvme_virt_mngmt(n, req); 6960 case NVME_ADM_CMD_DBBUF_CONFIG: 6961 return nvme_dbbuf_config(n, req); 6962 case NVME_ADM_CMD_FORMAT_NVM: 6963 return nvme_format(n, req); 6964 case NVME_ADM_CMD_DIRECTIVE_SEND: 6965 return nvme_directive_send(n, req); 6966 case NVME_ADM_CMD_DIRECTIVE_RECV: 6967 return nvme_directive_receive(n, req); 6968 default: 6969 assert(false); 6970 } 6971 6972 return NVME_INVALID_OPCODE | NVME_DNR; 6973 } 6974 6975 static void nvme_update_sq_eventidx(const NvmeSQueue *sq) 6976 { 6977 uint32_t v = cpu_to_le32(sq->tail); 6978 6979 trace_pci_nvme_update_sq_eventidx(sq->sqid, sq->tail); 6980 6981 pci_dma_write(PCI_DEVICE(sq->ctrl), sq->ei_addr, &v, sizeof(v)); 6982 } 6983 6984 static void nvme_update_sq_tail(NvmeSQueue *sq) 6985 { 6986 uint32_t v; 6987 6988 pci_dma_read(PCI_DEVICE(sq->ctrl), sq->db_addr, &v, sizeof(v)); 6989 6990 sq->tail = le32_to_cpu(v); 6991 6992 trace_pci_nvme_update_sq_tail(sq->sqid, sq->tail); 6993 } 6994 6995 static void nvme_process_sq(void *opaque) 6996 { 6997 NvmeSQueue *sq = opaque; 6998 NvmeCtrl *n = sq->ctrl; 6999 NvmeCQueue *cq = n->cq[sq->cqid]; 7000 7001 uint16_t status; 7002 hwaddr addr; 7003 NvmeCmd cmd; 7004 NvmeRequest *req; 7005 7006 if (n->dbbuf_enabled) { 7007 nvme_update_sq_tail(sq); 7008 } 7009 7010 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) { 7011 addr = sq->dma_addr + sq->head * n->sqe_size; 7012 if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) { 7013 trace_pci_nvme_err_addr_read(addr); 7014 trace_pci_nvme_err_cfs(); 7015 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED); 7016 break; 7017 } 7018 nvme_inc_sq_head(sq); 7019 7020 req = QTAILQ_FIRST(&sq->req_list); 7021 QTAILQ_REMOVE(&sq->req_list, req, entry); 7022 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry); 7023 nvme_req_clear(req); 7024 req->cqe.cid = cmd.cid; 7025 memcpy(&req->cmd, &cmd, sizeof(NvmeCmd)); 7026 7027 status = sq->sqid ? nvme_io_cmd(n, req) : 7028 nvme_admin_cmd(n, req); 7029 if (status != NVME_NO_COMPLETE) { 7030 req->status = status; 7031 nvme_enqueue_req_completion(cq, req); 7032 } 7033 7034 if (n->dbbuf_enabled) { 7035 nvme_update_sq_eventidx(sq); 7036 nvme_update_sq_tail(sq); 7037 } 7038 } 7039 } 7040 7041 static void nvme_update_msixcap_ts(PCIDevice *pci_dev, uint32_t table_size) 7042 { 7043 uint8_t *config; 7044 7045 if (!msix_present(pci_dev)) { 7046 return; 7047 } 7048 7049 assert(table_size > 0 && table_size <= pci_dev->msix_entries_nr); 7050 7051 config = pci_dev->config + pci_dev->msix_cap; 7052 pci_set_word_by_mask(config + PCI_MSIX_FLAGS, PCI_MSIX_FLAGS_QSIZE, 7053 table_size - 1); 7054 } 7055 7056 static void nvme_activate_virt_res(NvmeCtrl *n) 7057 { 7058 PCIDevice *pci_dev = PCI_DEVICE(n); 7059 NvmePriCtrlCap *cap = &n->pri_ctrl_cap; 7060 NvmeSecCtrlEntry *sctrl; 7061 7062 /* -1 to account for the admin queue */ 7063 if (pci_is_vf(pci_dev)) { 7064 sctrl = nvme_sctrl(n); 7065 cap->vqprt = sctrl->nvq; 7066 cap->viprt = sctrl->nvi; 7067 n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0; 7068 n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1; 7069 } else { 7070 cap->vqrfap = n->next_pri_ctrl_cap.vqrfap; 7071 cap->virfap = n->next_pri_ctrl_cap.virfap; 7072 n->conf_ioqpairs = le16_to_cpu(cap->vqprt) + 7073 le16_to_cpu(cap->vqrfap) - 1; 7074 n->conf_msix_qsize = le16_to_cpu(cap->viprt) + 7075 le16_to_cpu(cap->virfap); 7076 } 7077 } 7078 7079 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst) 7080 { 7081 PCIDevice *pci_dev = PCI_DEVICE(n); 7082 NvmeSecCtrlEntry *sctrl; 7083 NvmeNamespace *ns; 7084 int i; 7085 7086 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 7087 ns = nvme_ns(n, i); 7088 if (!ns) { 7089 continue; 7090 } 7091 7092 nvme_ns_drain(ns); 7093 } 7094 7095 for (i = 0; i < n->params.max_ioqpairs + 1; i++) { 7096 if (n->sq[i] != NULL) { 7097 nvme_free_sq(n->sq[i], n); 7098 } 7099 } 7100 for (i = 0; i < n->params.max_ioqpairs + 1; i++) { 7101 if (n->cq[i] != NULL) { 7102 nvme_free_cq(n->cq[i], n); 7103 } 7104 } 7105 7106 while (!QTAILQ_EMPTY(&n->aer_queue)) { 7107 NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue); 7108 QTAILQ_REMOVE(&n->aer_queue, event, entry); 7109 g_free(event); 7110 } 7111 7112 if (n->params.sriov_max_vfs) { 7113 if (!pci_is_vf(pci_dev)) { 7114 for (i = 0; i < n->sec_ctrl_list.numcntl; i++) { 7115 sctrl = &n->sec_ctrl_list.sec[i]; 7116 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false); 7117 } 7118 7119 if (rst != NVME_RESET_CONTROLLER) { 7120 pcie_sriov_pf_disable_vfs(pci_dev); 7121 } 7122 } 7123 7124 if (rst != NVME_RESET_CONTROLLER) { 7125 nvme_activate_virt_res(n); 7126 } 7127 } 7128 7129 n->aer_queued = 0; 7130 n->aer_mask = 0; 7131 n->outstanding_aers = 0; 7132 n->qs_created = false; 7133 7134 nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize); 7135 7136 if (pci_is_vf(pci_dev)) { 7137 sctrl = nvme_sctrl(n); 7138 7139 stl_le_p(&n->bar.csts, sctrl->scs ? 0 : NVME_CSTS_FAILED); 7140 } else { 7141 stl_le_p(&n->bar.csts, 0); 7142 } 7143 7144 stl_le_p(&n->bar.intms, 0); 7145 stl_le_p(&n->bar.intmc, 0); 7146 stl_le_p(&n->bar.cc, 0); 7147 7148 n->dbbuf_dbs = 0; 7149 n->dbbuf_eis = 0; 7150 n->dbbuf_enabled = false; 7151 } 7152 7153 static void nvme_ctrl_shutdown(NvmeCtrl *n) 7154 { 7155 NvmeNamespace *ns; 7156 int i; 7157 7158 if (n->pmr.dev) { 7159 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size); 7160 } 7161 7162 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 7163 ns = nvme_ns(n, i); 7164 if (!ns) { 7165 continue; 7166 } 7167 7168 nvme_ns_shutdown(ns); 7169 } 7170 } 7171 7172 static void nvme_select_iocs(NvmeCtrl *n) 7173 { 7174 NvmeNamespace *ns; 7175 int i; 7176 7177 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 7178 ns = nvme_ns(n, i); 7179 if (!ns) { 7180 continue; 7181 } 7182 7183 nvme_select_iocs_ns(n, ns); 7184 } 7185 } 7186 7187 static int nvme_start_ctrl(NvmeCtrl *n) 7188 { 7189 uint64_t cap = ldq_le_p(&n->bar.cap); 7190 uint32_t cc = ldl_le_p(&n->bar.cc); 7191 uint32_t aqa = ldl_le_p(&n->bar.aqa); 7192 uint64_t asq = ldq_le_p(&n->bar.asq); 7193 uint64_t acq = ldq_le_p(&n->bar.acq); 7194 uint32_t page_bits = NVME_CC_MPS(cc) + 12; 7195 uint32_t page_size = 1 << page_bits; 7196 NvmeSecCtrlEntry *sctrl = nvme_sctrl(n); 7197 7198 if (pci_is_vf(PCI_DEVICE(n)) && !sctrl->scs) { 7199 trace_pci_nvme_err_startfail_virt_state(le16_to_cpu(sctrl->nvi), 7200 le16_to_cpu(sctrl->nvq)); 7201 return -1; 7202 } 7203 if (unlikely(n->cq[0])) { 7204 trace_pci_nvme_err_startfail_cq(); 7205 return -1; 7206 } 7207 if (unlikely(n->sq[0])) { 7208 trace_pci_nvme_err_startfail_sq(); 7209 return -1; 7210 } 7211 if (unlikely(asq & (page_size - 1))) { 7212 trace_pci_nvme_err_startfail_asq_misaligned(asq); 7213 return -1; 7214 } 7215 if (unlikely(acq & (page_size - 1))) { 7216 trace_pci_nvme_err_startfail_acq_misaligned(acq); 7217 return -1; 7218 } 7219 if (unlikely(!(NVME_CAP_CSS(cap) & (1 << NVME_CC_CSS(cc))))) { 7220 trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc)); 7221 return -1; 7222 } 7223 if (unlikely(NVME_CC_MPS(cc) < NVME_CAP_MPSMIN(cap))) { 7224 trace_pci_nvme_err_startfail_page_too_small( 7225 NVME_CC_MPS(cc), 7226 NVME_CAP_MPSMIN(cap)); 7227 return -1; 7228 } 7229 if (unlikely(NVME_CC_MPS(cc) > 7230 NVME_CAP_MPSMAX(cap))) { 7231 trace_pci_nvme_err_startfail_page_too_large( 7232 NVME_CC_MPS(cc), 7233 NVME_CAP_MPSMAX(cap)); 7234 return -1; 7235 } 7236 if (unlikely(NVME_CC_IOCQES(cc) < 7237 NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) { 7238 trace_pci_nvme_err_startfail_cqent_too_small( 7239 NVME_CC_IOCQES(cc), 7240 NVME_CTRL_CQES_MIN(cap)); 7241 return -1; 7242 } 7243 if (unlikely(NVME_CC_IOCQES(cc) > 7244 NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) { 7245 trace_pci_nvme_err_startfail_cqent_too_large( 7246 NVME_CC_IOCQES(cc), 7247 NVME_CTRL_CQES_MAX(cap)); 7248 return -1; 7249 } 7250 if (unlikely(NVME_CC_IOSQES(cc) < 7251 NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) { 7252 trace_pci_nvme_err_startfail_sqent_too_small( 7253 NVME_CC_IOSQES(cc), 7254 NVME_CTRL_SQES_MIN(cap)); 7255 return -1; 7256 } 7257 if (unlikely(NVME_CC_IOSQES(cc) > 7258 NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) { 7259 trace_pci_nvme_err_startfail_sqent_too_large( 7260 NVME_CC_IOSQES(cc), 7261 NVME_CTRL_SQES_MAX(cap)); 7262 return -1; 7263 } 7264 if (unlikely(!NVME_AQA_ASQS(aqa))) { 7265 trace_pci_nvme_err_startfail_asqent_sz_zero(); 7266 return -1; 7267 } 7268 if (unlikely(!NVME_AQA_ACQS(aqa))) { 7269 trace_pci_nvme_err_startfail_acqent_sz_zero(); 7270 return -1; 7271 } 7272 7273 n->page_bits = page_bits; 7274 n->page_size = page_size; 7275 n->max_prp_ents = n->page_size / sizeof(uint64_t); 7276 n->cqe_size = 1 << NVME_CC_IOCQES(cc); 7277 n->sqe_size = 1 << NVME_CC_IOSQES(cc); 7278 nvme_init_cq(&n->admin_cq, n, acq, 0, 0, NVME_AQA_ACQS(aqa) + 1, 1); 7279 nvme_init_sq(&n->admin_sq, n, asq, 0, 0, NVME_AQA_ASQS(aqa) + 1); 7280 7281 nvme_set_timestamp(n, 0ULL); 7282 7283 nvme_select_iocs(n); 7284 7285 return 0; 7286 } 7287 7288 static void nvme_cmb_enable_regs(NvmeCtrl *n) 7289 { 7290 uint32_t cmbloc = ldl_le_p(&n->bar.cmbloc); 7291 uint32_t cmbsz = ldl_le_p(&n->bar.cmbsz); 7292 7293 NVME_CMBLOC_SET_CDPCILS(cmbloc, 1); 7294 NVME_CMBLOC_SET_CDPMLS(cmbloc, 1); 7295 NVME_CMBLOC_SET_BIR(cmbloc, NVME_CMB_BIR); 7296 stl_le_p(&n->bar.cmbloc, cmbloc); 7297 7298 NVME_CMBSZ_SET_SQS(cmbsz, 1); 7299 NVME_CMBSZ_SET_CQS(cmbsz, 0); 7300 NVME_CMBSZ_SET_LISTS(cmbsz, 1); 7301 NVME_CMBSZ_SET_RDS(cmbsz, 1); 7302 NVME_CMBSZ_SET_WDS(cmbsz, 1); 7303 NVME_CMBSZ_SET_SZU(cmbsz, 2); /* MBs */ 7304 NVME_CMBSZ_SET_SZ(cmbsz, n->params.cmb_size_mb); 7305 stl_le_p(&n->bar.cmbsz, cmbsz); 7306 } 7307 7308 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data, 7309 unsigned size) 7310 { 7311 PCIDevice *pci = PCI_DEVICE(n); 7312 uint64_t cap = ldq_le_p(&n->bar.cap); 7313 uint32_t cc = ldl_le_p(&n->bar.cc); 7314 uint32_t intms = ldl_le_p(&n->bar.intms); 7315 uint32_t csts = ldl_le_p(&n->bar.csts); 7316 uint32_t pmrsts = ldl_le_p(&n->bar.pmrsts); 7317 7318 if (unlikely(offset & (sizeof(uint32_t) - 1))) { 7319 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32, 7320 "MMIO write not 32-bit aligned," 7321 " offset=0x%"PRIx64"", offset); 7322 /* should be ignored, fall through for now */ 7323 } 7324 7325 if (unlikely(size < sizeof(uint32_t))) { 7326 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall, 7327 "MMIO write smaller than 32-bits," 7328 " offset=0x%"PRIx64", size=%u", 7329 offset, size); 7330 /* should be ignored, fall through for now */ 7331 } 7332 7333 switch (offset) { 7334 case NVME_REG_INTMS: 7335 if (unlikely(msix_enabled(pci))) { 7336 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix, 7337 "undefined access to interrupt mask set" 7338 " when MSI-X is enabled"); 7339 /* should be ignored, fall through for now */ 7340 } 7341 intms |= data; 7342 stl_le_p(&n->bar.intms, intms); 7343 n->bar.intmc = n->bar.intms; 7344 trace_pci_nvme_mmio_intm_set(data & 0xffffffff, intms); 7345 nvme_irq_check(n); 7346 break; 7347 case NVME_REG_INTMC: 7348 if (unlikely(msix_enabled(pci))) { 7349 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix, 7350 "undefined access to interrupt mask clr" 7351 " when MSI-X is enabled"); 7352 /* should be ignored, fall through for now */ 7353 } 7354 intms &= ~data; 7355 stl_le_p(&n->bar.intms, intms); 7356 n->bar.intmc = n->bar.intms; 7357 trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, intms); 7358 nvme_irq_check(n); 7359 break; 7360 case NVME_REG_CC: 7361 stl_le_p(&n->bar.cc, data); 7362 7363 trace_pci_nvme_mmio_cfg(data & 0xffffffff); 7364 7365 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(cc))) { 7366 trace_pci_nvme_mmio_shutdown_set(); 7367 nvme_ctrl_shutdown(n); 7368 csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT); 7369 csts |= NVME_CSTS_SHST_COMPLETE; 7370 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(cc)) { 7371 trace_pci_nvme_mmio_shutdown_cleared(); 7372 csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT); 7373 } 7374 7375 if (NVME_CC_EN(data) && !NVME_CC_EN(cc)) { 7376 if (unlikely(nvme_start_ctrl(n))) { 7377 trace_pci_nvme_err_startfail(); 7378 csts = NVME_CSTS_FAILED; 7379 } else { 7380 trace_pci_nvme_mmio_start_success(); 7381 csts = NVME_CSTS_READY; 7382 } 7383 } else if (!NVME_CC_EN(data) && NVME_CC_EN(cc)) { 7384 trace_pci_nvme_mmio_stopped(); 7385 nvme_ctrl_reset(n, NVME_RESET_CONTROLLER); 7386 7387 break; 7388 } 7389 7390 stl_le_p(&n->bar.csts, csts); 7391 7392 break; 7393 case NVME_REG_CSTS: 7394 if (data & (1 << 4)) { 7395 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported, 7396 "attempted to W1C CSTS.NSSRO" 7397 " but CAP.NSSRS is zero (not supported)"); 7398 } else if (data != 0) { 7399 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts, 7400 "attempted to set a read only bit" 7401 " of controller status"); 7402 } 7403 break; 7404 case NVME_REG_NSSR: 7405 if (data == 0x4e564d65) { 7406 trace_pci_nvme_ub_mmiowr_ssreset_unsupported(); 7407 } else { 7408 /* The spec says that writes of other values have no effect */ 7409 return; 7410 } 7411 break; 7412 case NVME_REG_AQA: 7413 stl_le_p(&n->bar.aqa, data); 7414 trace_pci_nvme_mmio_aqattr(data & 0xffffffff); 7415 break; 7416 case NVME_REG_ASQ: 7417 stn_le_p(&n->bar.asq, size, data); 7418 trace_pci_nvme_mmio_asqaddr(data); 7419 break; 7420 case NVME_REG_ASQ + 4: 7421 stl_le_p((uint8_t *)&n->bar.asq + 4, data); 7422 trace_pci_nvme_mmio_asqaddr_hi(data, ldq_le_p(&n->bar.asq)); 7423 break; 7424 case NVME_REG_ACQ: 7425 trace_pci_nvme_mmio_acqaddr(data); 7426 stn_le_p(&n->bar.acq, size, data); 7427 break; 7428 case NVME_REG_ACQ + 4: 7429 stl_le_p((uint8_t *)&n->bar.acq + 4, data); 7430 trace_pci_nvme_mmio_acqaddr_hi(data, ldq_le_p(&n->bar.acq)); 7431 break; 7432 case NVME_REG_CMBLOC: 7433 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved, 7434 "invalid write to reserved CMBLOC" 7435 " when CMBSZ is zero, ignored"); 7436 return; 7437 case NVME_REG_CMBSZ: 7438 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly, 7439 "invalid write to read only CMBSZ, ignored"); 7440 return; 7441 case NVME_REG_CMBMSC: 7442 if (!NVME_CAP_CMBS(cap)) { 7443 return; 7444 } 7445 7446 stn_le_p(&n->bar.cmbmsc, size, data); 7447 n->cmb.cmse = false; 7448 7449 if (NVME_CMBMSC_CRE(data)) { 7450 nvme_cmb_enable_regs(n); 7451 7452 if (NVME_CMBMSC_CMSE(data)) { 7453 uint64_t cmbmsc = ldq_le_p(&n->bar.cmbmsc); 7454 hwaddr cba = NVME_CMBMSC_CBA(cmbmsc) << CMBMSC_CBA_SHIFT; 7455 if (cba + int128_get64(n->cmb.mem.size) < cba) { 7456 uint32_t cmbsts = ldl_le_p(&n->bar.cmbsts); 7457 NVME_CMBSTS_SET_CBAI(cmbsts, 1); 7458 stl_le_p(&n->bar.cmbsts, cmbsts); 7459 return; 7460 } 7461 7462 n->cmb.cba = cba; 7463 n->cmb.cmse = true; 7464 } 7465 } else { 7466 n->bar.cmbsz = 0; 7467 n->bar.cmbloc = 0; 7468 } 7469 7470 return; 7471 case NVME_REG_CMBMSC + 4: 7472 stl_le_p((uint8_t *)&n->bar.cmbmsc + 4, data); 7473 return; 7474 7475 case NVME_REG_PMRCAP: 7476 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly, 7477 "invalid write to PMRCAP register, ignored"); 7478 return; 7479 case NVME_REG_PMRCTL: 7480 if (!NVME_CAP_PMRS(cap)) { 7481 return; 7482 } 7483 7484 stl_le_p(&n->bar.pmrctl, data); 7485 if (NVME_PMRCTL_EN(data)) { 7486 memory_region_set_enabled(&n->pmr.dev->mr, true); 7487 pmrsts = 0; 7488 } else { 7489 memory_region_set_enabled(&n->pmr.dev->mr, false); 7490 NVME_PMRSTS_SET_NRDY(pmrsts, 1); 7491 n->pmr.cmse = false; 7492 } 7493 stl_le_p(&n->bar.pmrsts, pmrsts); 7494 return; 7495 case NVME_REG_PMRSTS: 7496 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly, 7497 "invalid write to PMRSTS register, ignored"); 7498 return; 7499 case NVME_REG_PMREBS: 7500 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly, 7501 "invalid write to PMREBS register, ignored"); 7502 return; 7503 case NVME_REG_PMRSWTP: 7504 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly, 7505 "invalid write to PMRSWTP register, ignored"); 7506 return; 7507 case NVME_REG_PMRMSCL: 7508 if (!NVME_CAP_PMRS(cap)) { 7509 return; 7510 } 7511 7512 stl_le_p(&n->bar.pmrmscl, data); 7513 n->pmr.cmse = false; 7514 7515 if (NVME_PMRMSCL_CMSE(data)) { 7516 uint64_t pmrmscu = ldl_le_p(&n->bar.pmrmscu); 7517 hwaddr cba = pmrmscu << 32 | 7518 (NVME_PMRMSCL_CBA(data) << PMRMSCL_CBA_SHIFT); 7519 if (cba + int128_get64(n->pmr.dev->mr.size) < cba) { 7520 NVME_PMRSTS_SET_CBAI(pmrsts, 1); 7521 stl_le_p(&n->bar.pmrsts, pmrsts); 7522 return; 7523 } 7524 7525 n->pmr.cmse = true; 7526 n->pmr.cba = cba; 7527 } 7528 7529 return; 7530 case NVME_REG_PMRMSCU: 7531 if (!NVME_CAP_PMRS(cap)) { 7532 return; 7533 } 7534 7535 stl_le_p(&n->bar.pmrmscu, data); 7536 return; 7537 default: 7538 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid, 7539 "invalid MMIO write," 7540 " offset=0x%"PRIx64", data=%"PRIx64"", 7541 offset, data); 7542 break; 7543 } 7544 } 7545 7546 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size) 7547 { 7548 NvmeCtrl *n = (NvmeCtrl *)opaque; 7549 uint8_t *ptr = (uint8_t *)&n->bar; 7550 7551 trace_pci_nvme_mmio_read(addr, size); 7552 7553 if (unlikely(addr & (sizeof(uint32_t) - 1))) { 7554 NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32, 7555 "MMIO read not 32-bit aligned," 7556 " offset=0x%"PRIx64"", addr); 7557 /* should RAZ, fall through for now */ 7558 } else if (unlikely(size < sizeof(uint32_t))) { 7559 NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall, 7560 "MMIO read smaller than 32-bits," 7561 " offset=0x%"PRIx64"", addr); 7562 /* should RAZ, fall through for now */ 7563 } 7564 7565 if (addr > sizeof(n->bar) - size) { 7566 NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs, 7567 "MMIO read beyond last register," 7568 " offset=0x%"PRIx64", returning 0", addr); 7569 7570 return 0; 7571 } 7572 7573 if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs && 7574 addr != NVME_REG_CSTS) { 7575 trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size); 7576 return 0; 7577 } 7578 7579 /* 7580 * When PMRWBM bit 1 is set then read from 7581 * from PMRSTS should ensure prior writes 7582 * made it to persistent media 7583 */ 7584 if (addr == NVME_REG_PMRSTS && 7585 (NVME_PMRCAP_PMRWBM(ldl_le_p(&n->bar.pmrcap)) & 0x02)) { 7586 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size); 7587 } 7588 7589 return ldn_le_p(ptr + addr, size); 7590 } 7591 7592 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val) 7593 { 7594 PCIDevice *pci = PCI_DEVICE(n); 7595 uint32_t qid, v; 7596 7597 if (unlikely(addr & ((1 << 2) - 1))) { 7598 NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned, 7599 "doorbell write not 32-bit aligned," 7600 " offset=0x%"PRIx64", ignoring", addr); 7601 return; 7602 } 7603 7604 if (((addr - 0x1000) >> 2) & 1) { 7605 /* Completion queue doorbell write */ 7606 7607 uint16_t new_head = val & 0xffff; 7608 int start_sqs; 7609 NvmeCQueue *cq; 7610 7611 qid = (addr - (0x1000 + (1 << 2))) >> 3; 7612 if (unlikely(nvme_check_cqid(n, qid))) { 7613 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq, 7614 "completion queue doorbell write" 7615 " for nonexistent queue," 7616 " sqid=%"PRIu32", ignoring", qid); 7617 7618 /* 7619 * NVM Express v1.3d, Section 4.1 state: "If host software writes 7620 * an invalid value to the Submission Queue Tail Doorbell or 7621 * Completion Queue Head Doorbell regiter and an Asynchronous Event 7622 * Request command is outstanding, then an asynchronous event is 7623 * posted to the Admin Completion Queue with a status code of 7624 * Invalid Doorbell Write Value." 7625 * 7626 * Also note that the spec includes the "Invalid Doorbell Register" 7627 * status code, but nowhere does it specify when to use it. 7628 * However, it seems reasonable to use it here in a similar 7629 * fashion. 7630 */ 7631 if (n->outstanding_aers) { 7632 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, 7633 NVME_AER_INFO_ERR_INVALID_DB_REGISTER, 7634 NVME_LOG_ERROR_INFO); 7635 } 7636 7637 return; 7638 } 7639 7640 cq = n->cq[qid]; 7641 if (unlikely(new_head >= cq->size)) { 7642 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead, 7643 "completion queue doorbell write value" 7644 " beyond queue size, sqid=%"PRIu32"," 7645 " new_head=%"PRIu16", ignoring", 7646 qid, new_head); 7647 7648 if (n->outstanding_aers) { 7649 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, 7650 NVME_AER_INFO_ERR_INVALID_DB_VALUE, 7651 NVME_LOG_ERROR_INFO); 7652 } 7653 7654 return; 7655 } 7656 7657 trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head); 7658 7659 start_sqs = nvme_cq_full(cq) ? 1 : 0; 7660 cq->head = new_head; 7661 if (!qid && n->dbbuf_enabled) { 7662 v = cpu_to_le32(cq->head); 7663 pci_dma_write(pci, cq->db_addr, &v, sizeof(cq->head)); 7664 } 7665 if (start_sqs) { 7666 NvmeSQueue *sq; 7667 QTAILQ_FOREACH(sq, &cq->sq_list, entry) { 7668 qemu_bh_schedule(sq->bh); 7669 } 7670 qemu_bh_schedule(cq->bh); 7671 } 7672 7673 if (cq->tail == cq->head) { 7674 if (cq->irq_enabled) { 7675 n->cq_pending--; 7676 } 7677 7678 nvme_irq_deassert(n, cq); 7679 } 7680 } else { 7681 /* Submission queue doorbell write */ 7682 7683 uint16_t new_tail = val & 0xffff; 7684 NvmeSQueue *sq; 7685 7686 qid = (addr - 0x1000) >> 3; 7687 if (unlikely(nvme_check_sqid(n, qid))) { 7688 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq, 7689 "submission queue doorbell write" 7690 " for nonexistent queue," 7691 " sqid=%"PRIu32", ignoring", qid); 7692 7693 if (n->outstanding_aers) { 7694 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, 7695 NVME_AER_INFO_ERR_INVALID_DB_REGISTER, 7696 NVME_LOG_ERROR_INFO); 7697 } 7698 7699 return; 7700 } 7701 7702 sq = n->sq[qid]; 7703 if (unlikely(new_tail >= sq->size)) { 7704 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail, 7705 "submission queue doorbell write value" 7706 " beyond queue size, sqid=%"PRIu32"," 7707 " new_tail=%"PRIu16", ignoring", 7708 qid, new_tail); 7709 7710 if (n->outstanding_aers) { 7711 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, 7712 NVME_AER_INFO_ERR_INVALID_DB_VALUE, 7713 NVME_LOG_ERROR_INFO); 7714 } 7715 7716 return; 7717 } 7718 7719 trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail); 7720 7721 sq->tail = new_tail; 7722 if (!qid && n->dbbuf_enabled) { 7723 v = cpu_to_le32(sq->tail); 7724 7725 /* 7726 * The spec states "the host shall also update the controller's 7727 * corresponding doorbell property to match the value of that entry 7728 * in the Shadow Doorbell buffer." 7729 * 7730 * Since this context is currently a VM trap, we can safely enforce 7731 * the requirement from the device side in case the host is 7732 * misbehaving. 7733 * 7734 * Note, we shouldn't have to do this, but various drivers 7735 * including ones that run on Linux, are not updating Admin Queues, 7736 * so we can't trust reading it for an appropriate sq tail. 7737 */ 7738 pci_dma_write(pci, sq->db_addr, &v, sizeof(sq->tail)); 7739 } 7740 7741 qemu_bh_schedule(sq->bh); 7742 } 7743 } 7744 7745 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data, 7746 unsigned size) 7747 { 7748 NvmeCtrl *n = (NvmeCtrl *)opaque; 7749 7750 trace_pci_nvme_mmio_write(addr, data, size); 7751 7752 if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs && 7753 addr != NVME_REG_CSTS) { 7754 trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size); 7755 return; 7756 } 7757 7758 if (addr < sizeof(n->bar)) { 7759 nvme_write_bar(n, addr, data, size); 7760 } else { 7761 nvme_process_db(n, addr, data); 7762 } 7763 } 7764 7765 static const MemoryRegionOps nvme_mmio_ops = { 7766 .read = nvme_mmio_read, 7767 .write = nvme_mmio_write, 7768 .endianness = DEVICE_LITTLE_ENDIAN, 7769 .impl = { 7770 .min_access_size = 2, 7771 .max_access_size = 8, 7772 }, 7773 }; 7774 7775 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data, 7776 unsigned size) 7777 { 7778 NvmeCtrl *n = (NvmeCtrl *)opaque; 7779 stn_le_p(&n->cmb.buf[addr], size, data); 7780 } 7781 7782 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size) 7783 { 7784 NvmeCtrl *n = (NvmeCtrl *)opaque; 7785 return ldn_le_p(&n->cmb.buf[addr], size); 7786 } 7787 7788 static const MemoryRegionOps nvme_cmb_ops = { 7789 .read = nvme_cmb_read, 7790 .write = nvme_cmb_write, 7791 .endianness = DEVICE_LITTLE_ENDIAN, 7792 .impl = { 7793 .min_access_size = 1, 7794 .max_access_size = 8, 7795 }, 7796 }; 7797 7798 static bool nvme_check_params(NvmeCtrl *n, Error **errp) 7799 { 7800 NvmeParams *params = &n->params; 7801 7802 if (params->num_queues) { 7803 warn_report("num_queues is deprecated; please use max_ioqpairs " 7804 "instead"); 7805 7806 params->max_ioqpairs = params->num_queues - 1; 7807 } 7808 7809 if (n->namespace.blkconf.blk && n->subsys) { 7810 error_setg(errp, "subsystem support is unavailable with legacy " 7811 "namespace ('drive' property)"); 7812 return false; 7813 } 7814 7815 if (params->max_ioqpairs < 1 || 7816 params->max_ioqpairs > NVME_MAX_IOQPAIRS) { 7817 error_setg(errp, "max_ioqpairs must be between 1 and %d", 7818 NVME_MAX_IOQPAIRS); 7819 return false; 7820 } 7821 7822 if (params->msix_qsize < 1 || 7823 params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) { 7824 error_setg(errp, "msix_qsize must be between 1 and %d", 7825 PCI_MSIX_FLAGS_QSIZE + 1); 7826 return false; 7827 } 7828 7829 if (!params->serial) { 7830 error_setg(errp, "serial property not set"); 7831 return false; 7832 } 7833 7834 if (n->pmr.dev) { 7835 if (host_memory_backend_is_mapped(n->pmr.dev)) { 7836 error_setg(errp, "can't use already busy memdev: %s", 7837 object_get_canonical_path_component(OBJECT(n->pmr.dev))); 7838 return false; 7839 } 7840 7841 if (!is_power_of_2(n->pmr.dev->size)) { 7842 error_setg(errp, "pmr backend size needs to be power of 2 in size"); 7843 return false; 7844 } 7845 7846 host_memory_backend_set_mapped(n->pmr.dev, true); 7847 } 7848 7849 if (n->params.zasl > n->params.mdts) { 7850 error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less " 7851 "than or equal to mdts (Maximum Data Transfer Size)"); 7852 return false; 7853 } 7854 7855 if (!n->params.vsl) { 7856 error_setg(errp, "vsl must be non-zero"); 7857 return false; 7858 } 7859 7860 if (params->sriov_max_vfs) { 7861 if (!n->subsys) { 7862 error_setg(errp, "subsystem is required for the use of SR-IOV"); 7863 return false; 7864 } 7865 7866 if (params->sriov_max_vfs > NVME_MAX_VFS) { 7867 error_setg(errp, "sriov_max_vfs must be between 0 and %d", 7868 NVME_MAX_VFS); 7869 return false; 7870 } 7871 7872 if (params->cmb_size_mb) { 7873 error_setg(errp, "CMB is not supported with SR-IOV"); 7874 return false; 7875 } 7876 7877 if (n->pmr.dev) { 7878 error_setg(errp, "PMR is not supported with SR-IOV"); 7879 return false; 7880 } 7881 7882 if (!params->sriov_vq_flexible || !params->sriov_vi_flexible) { 7883 error_setg(errp, "both sriov_vq_flexible and sriov_vi_flexible" 7884 " must be set for the use of SR-IOV"); 7885 return false; 7886 } 7887 7888 if (params->sriov_vq_flexible < params->sriov_max_vfs * 2) { 7889 error_setg(errp, "sriov_vq_flexible must be greater than or equal" 7890 " to %d (sriov_max_vfs * 2)", params->sriov_max_vfs * 2); 7891 return false; 7892 } 7893 7894 if (params->max_ioqpairs < params->sriov_vq_flexible + 2) { 7895 error_setg(errp, "(max_ioqpairs - sriov_vq_flexible) must be" 7896 " greater than or equal to 2"); 7897 return false; 7898 } 7899 7900 if (params->sriov_vi_flexible < params->sriov_max_vfs) { 7901 error_setg(errp, "sriov_vi_flexible must be greater than or equal" 7902 " to %d (sriov_max_vfs)", params->sriov_max_vfs); 7903 return false; 7904 } 7905 7906 if (params->msix_qsize < params->sriov_vi_flexible + 1) { 7907 error_setg(errp, "(msix_qsize - sriov_vi_flexible) must be" 7908 " greater than or equal to 1"); 7909 return false; 7910 } 7911 7912 if (params->sriov_max_vi_per_vf && 7913 (params->sriov_max_vi_per_vf - 1) % NVME_VF_RES_GRANULARITY) { 7914 error_setg(errp, "sriov_max_vi_per_vf must meet:" 7915 " (sriov_max_vi_per_vf - 1) %% %d == 0 and" 7916 " sriov_max_vi_per_vf >= 1", NVME_VF_RES_GRANULARITY); 7917 return false; 7918 } 7919 7920 if (params->sriov_max_vq_per_vf && 7921 (params->sriov_max_vq_per_vf < 2 || 7922 (params->sriov_max_vq_per_vf - 1) % NVME_VF_RES_GRANULARITY)) { 7923 error_setg(errp, "sriov_max_vq_per_vf must meet:" 7924 " (sriov_max_vq_per_vf - 1) %% %d == 0 and" 7925 " sriov_max_vq_per_vf >= 2", NVME_VF_RES_GRANULARITY); 7926 return false; 7927 } 7928 } 7929 7930 return true; 7931 } 7932 7933 static void nvme_init_state(NvmeCtrl *n) 7934 { 7935 NvmePriCtrlCap *cap = &n->pri_ctrl_cap; 7936 NvmeSecCtrlList *list = &n->sec_ctrl_list; 7937 NvmeSecCtrlEntry *sctrl; 7938 PCIDevice *pci = PCI_DEVICE(n); 7939 uint8_t max_vfs; 7940 int i; 7941 7942 if (pci_is_vf(pci)) { 7943 sctrl = nvme_sctrl(n); 7944 max_vfs = 0; 7945 n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0; 7946 n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1; 7947 } else { 7948 max_vfs = n->params.sriov_max_vfs; 7949 n->conf_ioqpairs = n->params.max_ioqpairs; 7950 n->conf_msix_qsize = n->params.msix_qsize; 7951 } 7952 7953 n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1); 7954 n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1); 7955 n->temperature = NVME_TEMPERATURE; 7956 n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING; 7957 n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); 7958 n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1); 7959 QTAILQ_INIT(&n->aer_queue); 7960 7961 list->numcntl = cpu_to_le16(max_vfs); 7962 for (i = 0; i < max_vfs; i++) { 7963 sctrl = &list->sec[i]; 7964 sctrl->pcid = cpu_to_le16(n->cntlid); 7965 sctrl->vfn = cpu_to_le16(i + 1); 7966 } 7967 7968 cap->cntlid = cpu_to_le16(n->cntlid); 7969 cap->crt = NVME_CRT_VQ | NVME_CRT_VI; 7970 7971 if (pci_is_vf(pci)) { 7972 cap->vqprt = cpu_to_le16(1 + n->conf_ioqpairs); 7973 } else { 7974 cap->vqprt = cpu_to_le16(1 + n->params.max_ioqpairs - 7975 n->params.sriov_vq_flexible); 7976 cap->vqfrt = cpu_to_le32(n->params.sriov_vq_flexible); 7977 cap->vqrfap = cap->vqfrt; 7978 cap->vqgran = cpu_to_le16(NVME_VF_RES_GRANULARITY); 7979 cap->vqfrsm = n->params.sriov_max_vq_per_vf ? 7980 cpu_to_le16(n->params.sriov_max_vq_per_vf) : 7981 cap->vqfrt / MAX(max_vfs, 1); 7982 } 7983 7984 if (pci_is_vf(pci)) { 7985 cap->viprt = cpu_to_le16(n->conf_msix_qsize); 7986 } else { 7987 cap->viprt = cpu_to_le16(n->params.msix_qsize - 7988 n->params.sriov_vi_flexible); 7989 cap->vifrt = cpu_to_le32(n->params.sriov_vi_flexible); 7990 cap->virfap = cap->vifrt; 7991 cap->vigran = cpu_to_le16(NVME_VF_RES_GRANULARITY); 7992 cap->vifrsm = n->params.sriov_max_vi_per_vf ? 7993 cpu_to_le16(n->params.sriov_max_vi_per_vf) : 7994 cap->vifrt / MAX(max_vfs, 1); 7995 } 7996 } 7997 7998 static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev) 7999 { 8000 uint64_t cmb_size = n->params.cmb_size_mb * MiB; 8001 uint64_t cap = ldq_le_p(&n->bar.cap); 8002 8003 n->cmb.buf = g_malloc0(cmb_size); 8004 memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n, 8005 "nvme-cmb", cmb_size); 8006 pci_register_bar(pci_dev, NVME_CMB_BIR, 8007 PCI_BASE_ADDRESS_SPACE_MEMORY | 8008 PCI_BASE_ADDRESS_MEM_TYPE_64 | 8009 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem); 8010 8011 NVME_CAP_SET_CMBS(cap, 1); 8012 stq_le_p(&n->bar.cap, cap); 8013 8014 if (n->params.legacy_cmb) { 8015 nvme_cmb_enable_regs(n); 8016 n->cmb.cmse = true; 8017 } 8018 } 8019 8020 static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev) 8021 { 8022 uint32_t pmrcap = ldl_le_p(&n->bar.pmrcap); 8023 8024 NVME_PMRCAP_SET_RDS(pmrcap, 1); 8025 NVME_PMRCAP_SET_WDS(pmrcap, 1); 8026 NVME_PMRCAP_SET_BIR(pmrcap, NVME_PMR_BIR); 8027 /* Turn on bit 1 support */ 8028 NVME_PMRCAP_SET_PMRWBM(pmrcap, 0x02); 8029 NVME_PMRCAP_SET_CMSS(pmrcap, 1); 8030 stl_le_p(&n->bar.pmrcap, pmrcap); 8031 8032 pci_register_bar(pci_dev, NVME_PMR_BIR, 8033 PCI_BASE_ADDRESS_SPACE_MEMORY | 8034 PCI_BASE_ADDRESS_MEM_TYPE_64 | 8035 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr); 8036 8037 memory_region_set_enabled(&n->pmr.dev->mr, false); 8038 } 8039 8040 static uint64_t nvme_bar_size(unsigned total_queues, unsigned total_irqs, 8041 unsigned *msix_table_offset, 8042 unsigned *msix_pba_offset) 8043 { 8044 uint64_t bar_size, msix_table_size, msix_pba_size; 8045 8046 bar_size = sizeof(NvmeBar) + 2 * total_queues * NVME_DB_SIZE; 8047 bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB); 8048 8049 if (msix_table_offset) { 8050 *msix_table_offset = bar_size; 8051 } 8052 8053 msix_table_size = PCI_MSIX_ENTRY_SIZE * total_irqs; 8054 bar_size += msix_table_size; 8055 bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB); 8056 8057 if (msix_pba_offset) { 8058 *msix_pba_offset = bar_size; 8059 } 8060 8061 msix_pba_size = QEMU_ALIGN_UP(total_irqs, 64) / 8; 8062 bar_size += msix_pba_size; 8063 8064 bar_size = pow2ceil(bar_size); 8065 return bar_size; 8066 } 8067 8068 static void nvme_init_sriov(NvmeCtrl *n, PCIDevice *pci_dev, uint16_t offset) 8069 { 8070 uint16_t vf_dev_id = n->params.use_intel_id ? 8071 PCI_DEVICE_ID_INTEL_NVME : PCI_DEVICE_ID_REDHAT_NVME; 8072 NvmePriCtrlCap *cap = &n->pri_ctrl_cap; 8073 uint64_t bar_size = nvme_bar_size(le16_to_cpu(cap->vqfrsm), 8074 le16_to_cpu(cap->vifrsm), 8075 NULL, NULL); 8076 8077 pcie_sriov_pf_init(pci_dev, offset, "nvme", vf_dev_id, 8078 n->params.sriov_max_vfs, n->params.sriov_max_vfs, 8079 NVME_VF_OFFSET, NVME_VF_STRIDE); 8080 8081 pcie_sriov_pf_init_vf_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY | 8082 PCI_BASE_ADDRESS_MEM_TYPE_64, bar_size); 8083 } 8084 8085 static int nvme_add_pm_capability(PCIDevice *pci_dev, uint8_t offset) 8086 { 8087 Error *err = NULL; 8088 int ret; 8089 8090 ret = pci_add_capability(pci_dev, PCI_CAP_ID_PM, offset, 8091 PCI_PM_SIZEOF, &err); 8092 if (err) { 8093 error_report_err(err); 8094 return ret; 8095 } 8096 8097 pci_set_word(pci_dev->config + offset + PCI_PM_PMC, 8098 PCI_PM_CAP_VER_1_2); 8099 pci_set_word(pci_dev->config + offset + PCI_PM_CTRL, 8100 PCI_PM_CTRL_NO_SOFT_RESET); 8101 pci_set_word(pci_dev->wmask + offset + PCI_PM_CTRL, 8102 PCI_PM_CTRL_STATE_MASK); 8103 8104 return 0; 8105 } 8106 8107 static bool nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp) 8108 { 8109 ERRP_GUARD(); 8110 uint8_t *pci_conf = pci_dev->config; 8111 uint64_t bar_size; 8112 unsigned msix_table_offset, msix_pba_offset; 8113 int ret; 8114 8115 pci_conf[PCI_INTERRUPT_PIN] = 1; 8116 pci_config_set_prog_interface(pci_conf, 0x2); 8117 8118 if (n->params.use_intel_id) { 8119 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL); 8120 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_NVME); 8121 } else { 8122 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT); 8123 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME); 8124 } 8125 8126 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS); 8127 nvme_add_pm_capability(pci_dev, 0x60); 8128 pcie_endpoint_cap_init(pci_dev, 0x80); 8129 pcie_cap_flr_init(pci_dev); 8130 if (n->params.sriov_max_vfs) { 8131 pcie_ari_init(pci_dev, 0x100); 8132 } 8133 8134 /* add one to max_ioqpairs to account for the admin queue pair */ 8135 bar_size = nvme_bar_size(n->params.max_ioqpairs + 1, n->params.msix_qsize, 8136 &msix_table_offset, &msix_pba_offset); 8137 8138 memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size); 8139 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme", 8140 msix_table_offset); 8141 memory_region_add_subregion(&n->bar0, 0, &n->iomem); 8142 8143 if (pci_is_vf(pci_dev)) { 8144 pcie_sriov_vf_register_bar(pci_dev, 0, &n->bar0); 8145 } else { 8146 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY | 8147 PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0); 8148 } 8149 ret = msix_init(pci_dev, n->params.msix_qsize, 8150 &n->bar0, 0, msix_table_offset, 8151 &n->bar0, 0, msix_pba_offset, 0, errp); 8152 if (ret == -ENOTSUP) { 8153 /* report that msix is not supported, but do not error out */ 8154 warn_report_err(*errp); 8155 *errp = NULL; 8156 } else if (ret < 0) { 8157 /* propagate error to caller */ 8158 return false; 8159 } 8160 8161 nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize); 8162 8163 if (n->params.cmb_size_mb) { 8164 nvme_init_cmb(n, pci_dev); 8165 } 8166 8167 if (n->pmr.dev) { 8168 nvme_init_pmr(n, pci_dev); 8169 } 8170 8171 if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) { 8172 nvme_init_sriov(n, pci_dev, 0x120); 8173 } 8174 8175 return true; 8176 } 8177 8178 static void nvme_init_subnqn(NvmeCtrl *n) 8179 { 8180 NvmeSubsystem *subsys = n->subsys; 8181 NvmeIdCtrl *id = &n->id_ctrl; 8182 8183 if (!subsys) { 8184 snprintf((char *)id->subnqn, sizeof(id->subnqn), 8185 "nqn.2019-08.org.qemu:%s", n->params.serial); 8186 } else { 8187 pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn); 8188 } 8189 } 8190 8191 static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev) 8192 { 8193 NvmeIdCtrl *id = &n->id_ctrl; 8194 uint8_t *pci_conf = pci_dev->config; 8195 uint64_t cap = ldq_le_p(&n->bar.cap); 8196 NvmeSecCtrlEntry *sctrl = nvme_sctrl(n); 8197 uint32_t ctratt; 8198 8199 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID)); 8200 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID)); 8201 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' '); 8202 strpadcpy((char *)id->fr, sizeof(id->fr), QEMU_VERSION, ' '); 8203 strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' '); 8204 8205 id->cntlid = cpu_to_le16(n->cntlid); 8206 8207 id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR); 8208 ctratt = NVME_CTRATT_ELBAS; 8209 8210 id->rab = 6; 8211 8212 if (n->params.use_intel_id) { 8213 id->ieee[0] = 0xb3; 8214 id->ieee[1] = 0x02; 8215 id->ieee[2] = 0x00; 8216 } else { 8217 id->ieee[0] = 0x00; 8218 id->ieee[1] = 0x54; 8219 id->ieee[2] = 0x52; 8220 } 8221 8222 id->mdts = n->params.mdts; 8223 id->ver = cpu_to_le32(NVME_SPEC_VER); 8224 id->oacs = 8225 cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT | NVME_OACS_DBBUF | 8226 NVME_OACS_DIRECTIVES); 8227 id->cntrltype = 0x1; 8228 8229 /* 8230 * Because the controller always completes the Abort command immediately, 8231 * there can never be more than one concurrently executing Abort command, 8232 * so this value is never used for anything. Note that there can easily be 8233 * many Abort commands in the queues, but they are not considered 8234 * "executing" until processed by nvme_abort. 8235 * 8236 * The specification recommends a value of 3 for Abort Command Limit (four 8237 * concurrently outstanding Abort commands), so lets use that though it is 8238 * inconsequential. 8239 */ 8240 id->acl = 3; 8241 id->aerl = n->params.aerl; 8242 id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO; 8243 id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED; 8244 8245 /* recommended default value (~70 C) */ 8246 id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING); 8247 id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL); 8248 8249 id->sqes = (0x6 << 4) | 0x6; 8250 id->cqes = (0x4 << 4) | 0x4; 8251 id->nn = cpu_to_le32(NVME_MAX_NAMESPACES); 8252 id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP | 8253 NVME_ONCS_FEATURES | NVME_ONCS_DSM | 8254 NVME_ONCS_COMPARE | NVME_ONCS_COPY); 8255 8256 /* 8257 * NOTE: If this device ever supports a command set that does NOT use 0x0 8258 * as a Flush-equivalent operation, support for the broadcast NSID in Flush 8259 * should probably be removed. 8260 * 8261 * See comment in nvme_io_cmd. 8262 */ 8263 id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT; 8264 8265 id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0 | NVME_OCFS_COPY_FORMAT_1); 8266 id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN); 8267 8268 nvme_init_subnqn(n); 8269 8270 id->psd[0].mp = cpu_to_le16(0x9c4); 8271 id->psd[0].enlat = cpu_to_le32(0x10); 8272 id->psd[0].exlat = cpu_to_le32(0x4); 8273 8274 if (n->subsys) { 8275 id->cmic |= NVME_CMIC_MULTI_CTRL; 8276 ctratt |= NVME_CTRATT_ENDGRPS; 8277 8278 id->endgidmax = cpu_to_le16(0x1); 8279 8280 if (n->subsys->endgrp.fdp.enabled) { 8281 ctratt |= NVME_CTRATT_FDPS; 8282 } 8283 } 8284 8285 id->ctratt = cpu_to_le32(ctratt); 8286 8287 NVME_CAP_SET_MQES(cap, 0x7ff); 8288 NVME_CAP_SET_CQR(cap, 1); 8289 NVME_CAP_SET_TO(cap, 0xf); 8290 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_NVM); 8291 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_CSI_SUPP); 8292 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_ADMIN_ONLY); 8293 NVME_CAP_SET_MPSMAX(cap, 4); 8294 NVME_CAP_SET_CMBS(cap, n->params.cmb_size_mb ? 1 : 0); 8295 NVME_CAP_SET_PMRS(cap, n->pmr.dev ? 1 : 0); 8296 stq_le_p(&n->bar.cap, cap); 8297 8298 stl_le_p(&n->bar.vs, NVME_SPEC_VER); 8299 n->bar.intmc = n->bar.intms = 0; 8300 8301 if (pci_is_vf(pci_dev) && !sctrl->scs) { 8302 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED); 8303 } 8304 } 8305 8306 static int nvme_init_subsys(NvmeCtrl *n, Error **errp) 8307 { 8308 int cntlid; 8309 8310 if (!n->subsys) { 8311 return 0; 8312 } 8313 8314 cntlid = nvme_subsys_register_ctrl(n, errp); 8315 if (cntlid < 0) { 8316 return -1; 8317 } 8318 8319 n->cntlid = cntlid; 8320 8321 return 0; 8322 } 8323 8324 void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns) 8325 { 8326 uint32_t nsid = ns->params.nsid; 8327 assert(nsid && nsid <= NVME_MAX_NAMESPACES); 8328 8329 n->namespaces[nsid] = ns; 8330 ns->attached++; 8331 8332 n->dmrsl = MIN_NON_ZERO(n->dmrsl, 8333 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1)); 8334 } 8335 8336 static void nvme_realize(PCIDevice *pci_dev, Error **errp) 8337 { 8338 NvmeCtrl *n = NVME(pci_dev); 8339 DeviceState *dev = DEVICE(pci_dev); 8340 NvmeNamespace *ns; 8341 NvmeCtrl *pn = NVME(pcie_sriov_get_pf(pci_dev)); 8342 8343 if (pci_is_vf(pci_dev)) { 8344 /* 8345 * VFs derive settings from the parent. PF's lifespan exceeds 8346 * that of VF's, so it's safe to share params.serial. 8347 */ 8348 memcpy(&n->params, &pn->params, sizeof(NvmeParams)); 8349 n->subsys = pn->subsys; 8350 } 8351 8352 if (!nvme_check_params(n, errp)) { 8353 return; 8354 } 8355 8356 qbus_init(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS, dev, dev->id); 8357 8358 if (nvme_init_subsys(n, errp)) { 8359 return; 8360 } 8361 nvme_init_state(n); 8362 if (!nvme_init_pci(n, pci_dev, errp)) { 8363 return; 8364 } 8365 nvme_init_ctrl(n, pci_dev); 8366 8367 /* setup a namespace if the controller drive property was given */ 8368 if (n->namespace.blkconf.blk) { 8369 ns = &n->namespace; 8370 ns->params.nsid = 1; 8371 8372 if (nvme_ns_setup(ns, errp)) { 8373 return; 8374 } 8375 8376 nvme_attach_ns(n, ns); 8377 } 8378 } 8379 8380 static void nvme_exit(PCIDevice *pci_dev) 8381 { 8382 NvmeCtrl *n = NVME(pci_dev); 8383 NvmeNamespace *ns; 8384 int i; 8385 8386 nvme_ctrl_reset(n, NVME_RESET_FUNCTION); 8387 8388 if (n->subsys) { 8389 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { 8390 ns = nvme_ns(n, i); 8391 if (ns) { 8392 ns->attached--; 8393 } 8394 } 8395 8396 nvme_subsys_unregister_ctrl(n->subsys, n); 8397 } 8398 8399 g_free(n->cq); 8400 g_free(n->sq); 8401 g_free(n->aer_reqs); 8402 8403 if (n->params.cmb_size_mb) { 8404 g_free(n->cmb.buf); 8405 } 8406 8407 if (n->pmr.dev) { 8408 host_memory_backend_set_mapped(n->pmr.dev, false); 8409 } 8410 8411 if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) { 8412 pcie_sriov_pf_exit(pci_dev); 8413 } 8414 8415 msix_uninit(pci_dev, &n->bar0, &n->bar0); 8416 memory_region_del_subregion(&n->bar0, &n->iomem); 8417 } 8418 8419 static Property nvme_props[] = { 8420 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf), 8421 DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND, 8422 HostMemoryBackend *), 8423 DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS, 8424 NvmeSubsystem *), 8425 DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial), 8426 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0), 8427 DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0), 8428 DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64), 8429 DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65), 8430 DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3), 8431 DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64), 8432 DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7), 8433 DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7), 8434 DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false), 8435 DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false), 8436 DEFINE_PROP_BOOL("ioeventfd", NvmeCtrl, params.ioeventfd, false), 8437 DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0), 8438 DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl, 8439 params.auto_transition_zones, true), 8440 DEFINE_PROP_UINT8("sriov_max_vfs", NvmeCtrl, params.sriov_max_vfs, 0), 8441 DEFINE_PROP_UINT16("sriov_vq_flexible", NvmeCtrl, 8442 params.sriov_vq_flexible, 0), 8443 DEFINE_PROP_UINT16("sriov_vi_flexible", NvmeCtrl, 8444 params.sriov_vi_flexible, 0), 8445 DEFINE_PROP_UINT8("sriov_max_vi_per_vf", NvmeCtrl, 8446 params.sriov_max_vi_per_vf, 0), 8447 DEFINE_PROP_UINT8("sriov_max_vq_per_vf", NvmeCtrl, 8448 params.sriov_max_vq_per_vf, 0), 8449 DEFINE_PROP_END_OF_LIST(), 8450 }; 8451 8452 static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name, 8453 void *opaque, Error **errp) 8454 { 8455 NvmeCtrl *n = NVME(obj); 8456 uint8_t value = n->smart_critical_warning; 8457 8458 visit_type_uint8(v, name, &value, errp); 8459 } 8460 8461 static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name, 8462 void *opaque, Error **errp) 8463 { 8464 NvmeCtrl *n = NVME(obj); 8465 uint8_t value, old_value, cap = 0, index, event; 8466 8467 if (!visit_type_uint8(v, name, &value, errp)) { 8468 return; 8469 } 8470 8471 cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY 8472 | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA; 8473 if (NVME_CAP_PMRS(ldq_le_p(&n->bar.cap))) { 8474 cap |= NVME_SMART_PMR_UNRELIABLE; 8475 } 8476 8477 if ((value & cap) != value) { 8478 error_setg(errp, "unsupported smart critical warning bits: 0x%x", 8479 value & ~cap); 8480 return; 8481 } 8482 8483 old_value = n->smart_critical_warning; 8484 n->smart_critical_warning = value; 8485 8486 /* only inject new bits of smart critical warning */ 8487 for (index = 0; index < NVME_SMART_WARN_MAX; index++) { 8488 event = 1 << index; 8489 if (value & ~old_value & event) 8490 nvme_smart_event(n, event); 8491 } 8492 } 8493 8494 static void nvme_pci_reset(DeviceState *qdev) 8495 { 8496 PCIDevice *pci_dev = PCI_DEVICE(qdev); 8497 NvmeCtrl *n = NVME(pci_dev); 8498 8499 trace_pci_nvme_pci_reset(); 8500 nvme_ctrl_reset(n, NVME_RESET_FUNCTION); 8501 } 8502 8503 static void nvme_sriov_pre_write_ctrl(PCIDevice *dev, uint32_t address, 8504 uint32_t val, int len) 8505 { 8506 NvmeCtrl *n = NVME(dev); 8507 NvmeSecCtrlEntry *sctrl; 8508 uint16_t sriov_cap = dev->exp.sriov_cap; 8509 uint32_t off = address - sriov_cap; 8510 int i, num_vfs; 8511 8512 if (!sriov_cap) { 8513 return; 8514 } 8515 8516 if (range_covers_byte(off, len, PCI_SRIOV_CTRL)) { 8517 if (!(val & PCI_SRIOV_CTRL_VFE)) { 8518 num_vfs = pci_get_word(dev->config + sriov_cap + PCI_SRIOV_NUM_VF); 8519 for (i = 0; i < num_vfs; i++) { 8520 sctrl = &n->sec_ctrl_list.sec[i]; 8521 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false); 8522 } 8523 } 8524 } 8525 } 8526 8527 static void nvme_pci_write_config(PCIDevice *dev, uint32_t address, 8528 uint32_t val, int len) 8529 { 8530 nvme_sriov_pre_write_ctrl(dev, address, val, len); 8531 pci_default_write_config(dev, address, val, len); 8532 pcie_cap_flr_write_config(dev, address, val, len); 8533 } 8534 8535 static const VMStateDescription nvme_vmstate = { 8536 .name = "nvme", 8537 .unmigratable = 1, 8538 }; 8539 8540 static void nvme_class_init(ObjectClass *oc, void *data) 8541 { 8542 DeviceClass *dc = DEVICE_CLASS(oc); 8543 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc); 8544 8545 pc->realize = nvme_realize; 8546 pc->config_write = nvme_pci_write_config; 8547 pc->exit = nvme_exit; 8548 pc->class_id = PCI_CLASS_STORAGE_EXPRESS; 8549 pc->revision = 2; 8550 8551 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); 8552 dc->desc = "Non-Volatile Memory Express"; 8553 device_class_set_props(dc, nvme_props); 8554 dc->vmsd = &nvme_vmstate; 8555 dc->reset = nvme_pci_reset; 8556 } 8557 8558 static void nvme_instance_init(Object *obj) 8559 { 8560 NvmeCtrl *n = NVME(obj); 8561 8562 device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex, 8563 "bootindex", "/namespace@1,0", 8564 DEVICE(obj)); 8565 8566 object_property_add(obj, "smart_critical_warning", "uint8", 8567 nvme_get_smart_warning, 8568 nvme_set_smart_warning, NULL, NULL); 8569 } 8570 8571 static const TypeInfo nvme_info = { 8572 .name = TYPE_NVME, 8573 .parent = TYPE_PCI_DEVICE, 8574 .instance_size = sizeof(NvmeCtrl), 8575 .instance_init = nvme_instance_init, 8576 .class_init = nvme_class_init, 8577 .interfaces = (InterfaceInfo[]) { 8578 { INTERFACE_PCIE_DEVICE }, 8579 { } 8580 }, 8581 }; 8582 8583 static const TypeInfo nvme_bus_info = { 8584 .name = TYPE_NVME_BUS, 8585 .parent = TYPE_BUS, 8586 .instance_size = sizeof(NvmeBus), 8587 }; 8588 8589 static void nvme_register_types(void) 8590 { 8591 type_register_static(&nvme_info); 8592 type_register_static(&nvme_bus_info); 8593 } 8594 8595 type_init(nvme_register_types) 8596