xref: /openbmc/qemu/hw/nvme/ctrl.c (revision 548c96095dae2af37c4145ff11f0d010c43e2be2)
1 /*
2  * QEMU NVM Express Controller
3  *
4  * Copyright (c) 2012, Intel Corporation
5  *
6  * Written by Keith Busch <keith.busch@intel.com>
7  *
8  * This code is licensed under the GNU GPL v2 or later.
9  */
10 
11 /**
12  * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e
13  *
14  *  https://nvmexpress.org/developers/nvme-specification/
15  *
16  *
17  * Notes on coding style
18  * ---------------------
19  * While QEMU coding style prefers lowercase hexadecimals in constants, the
20  * NVMe subsystem use thes format from the NVMe specifications in the comments
21  * (i.e. 'h' suffix instead of '0x' prefix).
22  *
23  * Usage
24  * -----
25  * See docs/system/nvme.rst for extensive documentation.
26  *
27  * Add options:
28  *      -drive file=<file>,if=none,id=<drive_id>
29  *      -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id>
30  *      -device nvme,serial=<serial>,id=<bus_name>, \
31  *              cmb_size_mb=<cmb_size_mb[optional]>, \
32  *              [pmrdev=<mem_backend_file_id>,] \
33  *              max_ioqpairs=<N[optional]>, \
34  *              aerl=<N[optional]>,aer_max_queued=<N[optional]>, \
35  *              mdts=<N[optional]>,vsl=<N[optional]>, \
36  *              zoned.zasl=<N[optional]>, \
37  *              zoned.auto_transition=<on|off[optional]>, \
38  *              sriov_max_vfs=<N[optional]> \
39  *              sriov_vq_flexible=<N[optional]> \
40  *              sriov_vi_flexible=<N[optional]> \
41  *              sriov_max_vi_per_vf=<N[optional]> \
42  *              sriov_max_vq_per_vf=<N[optional]> \
43  *              subsys=<subsys_id>
44  *      -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\
45  *              zoned=<true|false[optional]>, \
46  *              subsys=<subsys_id>,detached=<true|false[optional]>
47  *
48  * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
49  * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the
50  * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to
51  * always enable the CMBLOC and CMBSZ registers (v1.3 behavior).
52  *
53  * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
54  * For example:
55  * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
56  *  size=<size> .... -device nvme,...,pmrdev=<mem_id>
57  *
58  * The PMR will use BAR 4/5 exclusively.
59  *
60  * To place controller(s) and namespace(s) to a subsystem, then provide
61  * nvme-subsys device as above.
62  *
63  * nvme subsystem device parameters
64  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
65  * - `nqn`
66  *   This parameter provides the `<nqn_id>` part of the string
67  *   `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field
68  *   of subsystem controllers. Note that `<nqn_id>` should be unique per
69  *   subsystem, but this is not enforced by QEMU. If not specified, it will
70  *   default to the value of the `id` parameter (`<subsys_id>`).
71  *
72  * nvme device parameters
73  * ~~~~~~~~~~~~~~~~~~~~~~
74  * - `subsys`
75  *   Specifying this parameter attaches the controller to the subsystem and
76  *   the SUBNQN field in the controller will report the NQN of the subsystem
77  *   device. This also enables multi controller capability represented in
78  *   Identify Controller data structure in CMIC (Controller Multi-path I/O and
79  *   Namespace Sharing Capabilities).
80  *
81  * - `aerl`
82  *   The Asynchronous Event Request Limit (AERL). Indicates the maximum number
83  *   of concurrently outstanding Asynchronous Event Request commands support
84  *   by the controller. This is a 0's based value.
85  *
86  * - `aer_max_queued`
87  *   This is the maximum number of events that the device will enqueue for
88  *   completion when there are no outstanding AERs. When the maximum number of
89  *   enqueued events are reached, subsequent events will be dropped.
90  *
91  * - `mdts`
92  *   Indicates the maximum data transfer size for a command that transfers data
93  *   between host-accessible memory and the controller. The value is specified
94  *   as a power of two (2^n) and is in units of the minimum memory page size
95  *   (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB).
96  *
97  * - `vsl`
98  *   Indicates the maximum data size limit for the Verify command. Like `mdts`,
99  *   this value is specified as a power of two (2^n) and is in units of the
100  *   minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512
101  *   KiB).
102  *
103  * - `zoned.zasl`
104  *   Indicates the maximum data transfer size for the Zone Append command. Like
105  *   `mdts`, the value is specified as a power of two (2^n) and is in units of
106  *   the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e.
107  *   defaulting to the value of `mdts`).
108  *
109  * - `zoned.auto_transition`
110  *   Indicates if zones in zone state implicitly opened can be automatically
111  *   transitioned to zone state closed for resource management purposes.
112  *   Defaults to 'on'.
113  *
114  * - `sriov_max_vfs`
115  *   Indicates the maximum number of PCIe virtual functions supported
116  *   by the controller. The default value is 0. Specifying a non-zero value
117  *   enables reporting of both SR-IOV and ARI capabilities by the NVMe device.
118  *   Virtual function controllers will not report SR-IOV capability.
119  *
120  *   NOTE: Single Root I/O Virtualization support is experimental.
121  *   All the related parameters may be subject to change.
122  *
123  * - `sriov_vq_flexible`
124  *   Indicates the total number of flexible queue resources assignable to all
125  *   the secondary controllers. Implicitly sets the number of primary
126  *   controller's private resources to `(max_ioqpairs - sriov_vq_flexible)`.
127  *
128  * - `sriov_vi_flexible`
129  *   Indicates the total number of flexible interrupt resources assignable to
130  *   all the secondary controllers. Implicitly sets the number of primary
131  *   controller's private resources to `(msix_qsize - sriov_vi_flexible)`.
132  *
133  * - `sriov_max_vi_per_vf`
134  *   Indicates the maximum number of virtual interrupt resources assignable
135  *   to a secondary controller. The default 0 resolves to
136  *   `(sriov_vi_flexible / sriov_max_vfs)`.
137  *
138  * - `sriov_max_vq_per_vf`
139  *   Indicates the maximum number of virtual queue resources assignable to
140  *   a secondary controller. The default 0 resolves to
141  *   `(sriov_vq_flexible / sriov_max_vfs)`.
142  *
143  * nvme namespace device parameters
144  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
145  * - `shared`
146  *   When the parent nvme device (as defined explicitly by the 'bus' parameter
147  *   or implicitly by the most recently defined NvmeBus) is linked to an
148  *   nvme-subsys device, the namespace will be attached to all controllers in
149  *   the subsystem. If set to 'off' (the default), the namespace will remain a
150  *   private namespace and may only be attached to a single controller at a
151  *   time.
152  *
153  * - `detached`
154  *   This parameter is only valid together with the `subsys` parameter. If left
155  *   at the default value (`false/off`), the namespace will be attached to all
156  *   controllers in the NVMe subsystem at boot-up. If set to `true/on`, the
157  *   namespace will be available in the subsystem but not attached to any
158  *   controllers.
159  *
160  * Setting `zoned` to true selects Zoned Command Set at the namespace.
161  * In this case, the following namespace properties are available to configure
162  * zoned operation:
163  *     zoned.zone_size=<zone size in bytes, default: 128MiB>
164  *         The number may be followed by K, M, G as in kilo-, mega- or giga-.
165  *
166  *     zoned.zone_capacity=<zone capacity in bytes, default: zone size>
167  *         The value 0 (default) forces zone capacity to be the same as zone
168  *         size. The value of this property may not exceed zone size.
169  *
170  *     zoned.descr_ext_size=<zone descriptor extension size, default 0>
171  *         This value needs to be specified in 64B units. If it is zero,
172  *         namespace(s) will not support zone descriptor extensions.
173  *
174  *     zoned.max_active=<Maximum Active Resources (zones), default: 0>
175  *         The default value means there is no limit to the number of
176  *         concurrently active zones.
177  *
178  *     zoned.max_open=<Maximum Open Resources (zones), default: 0>
179  *         The default value means there is no limit to the number of
180  *         concurrently open zones.
181  *
182  *     zoned.cross_read=<enable RAZB, default: false>
183  *         Setting this property to true enables Read Across Zone Boundaries.
184  */
185 
186 #include "qemu/osdep.h"
187 #include "qemu/cutils.h"
188 #include "qemu/error-report.h"
189 #include "qemu/log.h"
190 #include "qemu/units.h"
191 #include "qemu/range.h"
192 #include "qapi/error.h"
193 #include "qapi/visitor.h"
194 #include "sysemu/sysemu.h"
195 #include "sysemu/block-backend.h"
196 #include "sysemu/hostmem.h"
197 #include "hw/pci/msix.h"
198 #include "hw/pci/pcie_sriov.h"
199 #include "migration/vmstate.h"
200 
201 #include "nvme.h"
202 #include "dif.h"
203 #include "trace.h"
204 
205 #define NVME_MAX_IOQPAIRS 0xffff
206 #define NVME_DB_SIZE  4
207 #define NVME_SPEC_VER 0x00010400
208 #define NVME_CMB_BIR 2
209 #define NVME_PMR_BIR 4
210 #define NVME_TEMPERATURE 0x143
211 #define NVME_TEMPERATURE_WARNING 0x157
212 #define NVME_TEMPERATURE_CRITICAL 0x175
213 #define NVME_NUM_FW_SLOTS 1
214 #define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB)
215 #define NVME_MAX_VFS 127
216 #define NVME_VF_RES_GRANULARITY 1
217 #define NVME_VF_OFFSET 0x1
218 #define NVME_VF_STRIDE 1
219 
220 #define NVME_GUEST_ERR(trace, fmt, ...) \
221     do { \
222         (trace_##trace)(__VA_ARGS__); \
223         qemu_log_mask(LOG_GUEST_ERROR, #trace \
224             " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
225     } while (0)
226 
227 static const bool nvme_feature_support[NVME_FID_MAX] = {
228     [NVME_ARBITRATION]              = true,
229     [NVME_POWER_MANAGEMENT]         = true,
230     [NVME_TEMPERATURE_THRESHOLD]    = true,
231     [NVME_ERROR_RECOVERY]           = true,
232     [NVME_VOLATILE_WRITE_CACHE]     = true,
233     [NVME_NUMBER_OF_QUEUES]         = true,
234     [NVME_INTERRUPT_COALESCING]     = true,
235     [NVME_INTERRUPT_VECTOR_CONF]    = true,
236     [NVME_WRITE_ATOMICITY]          = true,
237     [NVME_ASYNCHRONOUS_EVENT_CONF]  = true,
238     [NVME_TIMESTAMP]                = true,
239     [NVME_HOST_BEHAVIOR_SUPPORT]    = true,
240     [NVME_COMMAND_SET_PROFILE]      = true,
241     [NVME_FDP_MODE]                 = true,
242     [NVME_FDP_EVENTS]               = true,
243 };
244 
245 static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
246     [NVME_TEMPERATURE_THRESHOLD]    = NVME_FEAT_CAP_CHANGE,
247     [NVME_ERROR_RECOVERY]           = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
248     [NVME_VOLATILE_WRITE_CACHE]     = NVME_FEAT_CAP_CHANGE,
249     [NVME_NUMBER_OF_QUEUES]         = NVME_FEAT_CAP_CHANGE,
250     [NVME_ASYNCHRONOUS_EVENT_CONF]  = NVME_FEAT_CAP_CHANGE,
251     [NVME_TIMESTAMP]                = NVME_FEAT_CAP_CHANGE,
252     [NVME_HOST_BEHAVIOR_SUPPORT]    = NVME_FEAT_CAP_CHANGE,
253     [NVME_COMMAND_SET_PROFILE]      = NVME_FEAT_CAP_CHANGE,
254     [NVME_FDP_MODE]                 = NVME_FEAT_CAP_CHANGE,
255     [NVME_FDP_EVENTS]               = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
256 };
257 
258 static const uint32_t nvme_cse_acs[256] = {
259     [NVME_ADM_CMD_DELETE_SQ]        = NVME_CMD_EFF_CSUPP,
260     [NVME_ADM_CMD_CREATE_SQ]        = NVME_CMD_EFF_CSUPP,
261     [NVME_ADM_CMD_GET_LOG_PAGE]     = NVME_CMD_EFF_CSUPP,
262     [NVME_ADM_CMD_DELETE_CQ]        = NVME_CMD_EFF_CSUPP,
263     [NVME_ADM_CMD_CREATE_CQ]        = NVME_CMD_EFF_CSUPP,
264     [NVME_ADM_CMD_IDENTIFY]         = NVME_CMD_EFF_CSUPP,
265     [NVME_ADM_CMD_ABORT]            = NVME_CMD_EFF_CSUPP,
266     [NVME_ADM_CMD_SET_FEATURES]     = NVME_CMD_EFF_CSUPP,
267     [NVME_ADM_CMD_GET_FEATURES]     = NVME_CMD_EFF_CSUPP,
268     [NVME_ADM_CMD_ASYNC_EV_REQ]     = NVME_CMD_EFF_CSUPP,
269     [NVME_ADM_CMD_NS_ATTACHMENT]    = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC,
270     [NVME_ADM_CMD_VIRT_MNGMT]       = NVME_CMD_EFF_CSUPP,
271     [NVME_ADM_CMD_DBBUF_CONFIG]     = NVME_CMD_EFF_CSUPP,
272     [NVME_ADM_CMD_FORMAT_NVM]       = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
273     [NVME_ADM_CMD_DIRECTIVE_RECV]   = NVME_CMD_EFF_CSUPP,
274     [NVME_ADM_CMD_DIRECTIVE_SEND]   = NVME_CMD_EFF_CSUPP,
275 };
276 
277 static const uint32_t nvme_cse_iocs_none[256];
278 
279 static const uint32_t nvme_cse_iocs_nvm[256] = {
280     [NVME_CMD_FLUSH]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
281     [NVME_CMD_WRITE_ZEROES]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
282     [NVME_CMD_WRITE]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
283     [NVME_CMD_READ]                 = NVME_CMD_EFF_CSUPP,
284     [NVME_CMD_DSM]                  = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
285     [NVME_CMD_VERIFY]               = NVME_CMD_EFF_CSUPP,
286     [NVME_CMD_COPY]                 = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
287     [NVME_CMD_COMPARE]              = NVME_CMD_EFF_CSUPP,
288     [NVME_CMD_IO_MGMT_RECV]         = NVME_CMD_EFF_CSUPP,
289     [NVME_CMD_IO_MGMT_SEND]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
290 };
291 
292 static const uint32_t nvme_cse_iocs_zoned[256] = {
293     [NVME_CMD_FLUSH]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
294     [NVME_CMD_WRITE_ZEROES]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
295     [NVME_CMD_WRITE]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
296     [NVME_CMD_READ]                 = NVME_CMD_EFF_CSUPP,
297     [NVME_CMD_DSM]                  = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
298     [NVME_CMD_VERIFY]               = NVME_CMD_EFF_CSUPP,
299     [NVME_CMD_COPY]                 = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
300     [NVME_CMD_COMPARE]              = NVME_CMD_EFF_CSUPP,
301     [NVME_CMD_ZONE_APPEND]          = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
302     [NVME_CMD_ZONE_MGMT_SEND]       = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
303     [NVME_CMD_ZONE_MGMT_RECV]       = NVME_CMD_EFF_CSUPP,
304 };
305 
306 static void nvme_process_sq(void *opaque);
307 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst);
308 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n);
309 
310 static uint16_t nvme_sqid(NvmeRequest *req)
311 {
312     return le16_to_cpu(req->sq->sqid);
313 }
314 
315 static inline uint16_t nvme_make_pid(NvmeNamespace *ns, uint16_t rg,
316                                      uint16_t ph)
317 {
318     uint16_t rgif = ns->endgrp->fdp.rgif;
319 
320     if (!rgif) {
321         return ph;
322     }
323 
324     return (rg << (16 - rgif)) | ph;
325 }
326 
327 static inline bool nvme_ph_valid(NvmeNamespace *ns, uint16_t ph)
328 {
329     return ph < ns->fdp.nphs;
330 }
331 
332 static inline bool nvme_rg_valid(NvmeEnduranceGroup *endgrp, uint16_t rg)
333 {
334     return rg < endgrp->fdp.nrg;
335 }
336 
337 static inline uint16_t nvme_pid2ph(NvmeNamespace *ns, uint16_t pid)
338 {
339     uint16_t rgif = ns->endgrp->fdp.rgif;
340 
341     if (!rgif) {
342         return pid;
343     }
344 
345     return pid & ((1 << (15 - rgif)) - 1);
346 }
347 
348 static inline uint16_t nvme_pid2rg(NvmeNamespace *ns, uint16_t pid)
349 {
350     uint16_t rgif = ns->endgrp->fdp.rgif;
351 
352     if (!rgif) {
353         return 0;
354     }
355 
356     return pid >> (16 - rgif);
357 }
358 
359 static inline bool nvme_parse_pid(NvmeNamespace *ns, uint16_t pid,
360                                   uint16_t *ph, uint16_t *rg)
361 {
362     *rg = nvme_pid2rg(ns, pid);
363     *ph = nvme_pid2ph(ns, pid);
364 
365     return nvme_ph_valid(ns, *ph) && nvme_rg_valid(ns->endgrp, *rg);
366 }
367 
368 static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone,
369                                    NvmeZoneState state)
370 {
371     if (QTAILQ_IN_USE(zone, entry)) {
372         switch (nvme_get_zone_state(zone)) {
373         case NVME_ZONE_STATE_EXPLICITLY_OPEN:
374             QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
375             break;
376         case NVME_ZONE_STATE_IMPLICITLY_OPEN:
377             QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
378             break;
379         case NVME_ZONE_STATE_CLOSED:
380             QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
381             break;
382         case NVME_ZONE_STATE_FULL:
383             QTAILQ_REMOVE(&ns->full_zones, zone, entry);
384         default:
385             ;
386         }
387     }
388 
389     nvme_set_zone_state(zone, state);
390 
391     switch (state) {
392     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
393         QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry);
394         break;
395     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
396         QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry);
397         break;
398     case NVME_ZONE_STATE_CLOSED:
399         QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry);
400         break;
401     case NVME_ZONE_STATE_FULL:
402         QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry);
403     case NVME_ZONE_STATE_READ_ONLY:
404         break;
405     default:
406         zone->d.za = 0;
407     }
408 }
409 
410 static uint16_t nvme_zns_check_resources(NvmeNamespace *ns, uint32_t act,
411                                          uint32_t opn, uint32_t zrwa)
412 {
413     if (ns->params.max_active_zones != 0 &&
414         ns->nr_active_zones + act > ns->params.max_active_zones) {
415         trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones);
416         return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR;
417     }
418 
419     if (ns->params.max_open_zones != 0 &&
420         ns->nr_open_zones + opn > ns->params.max_open_zones) {
421         trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones);
422         return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR;
423     }
424 
425     if (zrwa > ns->zns.numzrwa) {
426         return NVME_NOZRWA | NVME_DNR;
427     }
428 
429     return NVME_SUCCESS;
430 }
431 
432 /*
433  * Check if we can open a zone without exceeding open/active limits.
434  * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5).
435  */
436 static uint16_t nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn)
437 {
438     return nvme_zns_check_resources(ns, act, opn, 0);
439 }
440 
441 static NvmeFdpEvent *nvme_fdp_alloc_event(NvmeCtrl *n, NvmeFdpEventBuffer *ebuf)
442 {
443     NvmeFdpEvent *ret = NULL;
444     bool is_full = ebuf->next == ebuf->start && ebuf->nelems;
445 
446     ret = &ebuf->events[ebuf->next++];
447     if (unlikely(ebuf->next == NVME_FDP_MAX_EVENTS)) {
448         ebuf->next = 0;
449     }
450     if (is_full) {
451         ebuf->start = ebuf->next;
452     } else {
453         ebuf->nelems++;
454     }
455 
456     memset(ret, 0, sizeof(NvmeFdpEvent));
457     ret->timestamp = nvme_get_timestamp(n);
458 
459     return ret;
460 }
461 
462 static inline int log_event(NvmeRuHandle *ruh, uint8_t event_type)
463 {
464     return (ruh->event_filter >> nvme_fdp_evf_shifts[event_type]) & 0x1;
465 }
466 
467 static bool nvme_update_ruh(NvmeCtrl *n, NvmeNamespace *ns, uint16_t pid)
468 {
469     NvmeEnduranceGroup *endgrp = ns->endgrp;
470     NvmeRuHandle *ruh;
471     NvmeReclaimUnit *ru;
472     NvmeFdpEvent *e = NULL;
473     uint16_t ph, rg, ruhid;
474 
475     if (!nvme_parse_pid(ns, pid, &ph, &rg)) {
476         return false;
477     }
478 
479     ruhid = ns->fdp.phs[ph];
480 
481     ruh = &endgrp->fdp.ruhs[ruhid];
482     ru = &ruh->rus[rg];
483 
484     if (ru->ruamw) {
485         if (log_event(ruh, FDP_EVT_RU_NOT_FULLY_WRITTEN)) {
486             e = nvme_fdp_alloc_event(n, &endgrp->fdp.host_events);
487             e->type = FDP_EVT_RU_NOT_FULLY_WRITTEN;
488             e->flags = FDPEF_PIV | FDPEF_NSIDV | FDPEF_LV;
489             e->pid = cpu_to_le16(pid);
490             e->nsid = cpu_to_le32(ns->params.nsid);
491             e->rgid = cpu_to_le16(rg);
492             e->ruhid = cpu_to_le16(ruhid);
493         }
494 
495         /* log (eventual) GC overhead of prematurely swapping the RU */
496         nvme_fdp_stat_inc(&endgrp->fdp.mbmw, nvme_l2b(ns, ru->ruamw));
497     }
498 
499     ru->ruamw = ruh->ruamw;
500 
501     return true;
502 }
503 
504 static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
505 {
506     hwaddr hi, lo;
507 
508     if (!n->cmb.cmse) {
509         return false;
510     }
511 
512     lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
513     hi = lo + int128_get64(n->cmb.mem.size);
514 
515     return addr >= lo && addr < hi;
516 }
517 
518 static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
519 {
520     hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
521     return &n->cmb.buf[addr - base];
522 }
523 
524 static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr)
525 {
526     hwaddr hi;
527 
528     if (!n->pmr.cmse) {
529         return false;
530     }
531 
532     hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size);
533 
534     return addr >= n->pmr.cba && addr < hi;
535 }
536 
537 static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr)
538 {
539     return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba);
540 }
541 
542 static inline bool nvme_addr_is_iomem(NvmeCtrl *n, hwaddr addr)
543 {
544     hwaddr hi, lo;
545 
546     /*
547      * The purpose of this check is to guard against invalid "local" access to
548      * the iomem (i.e. controller registers). Thus, we check against the range
549      * covered by the 'bar0' MemoryRegion since that is currently composed of
550      * two subregions (the NVMe "MBAR" and the MSI-X table/pba). Note, however,
551      * that if the device model is ever changed to allow the CMB to be located
552      * in BAR0 as well, then this must be changed.
553      */
554     lo = n->bar0.addr;
555     hi = lo + int128_get64(n->bar0.size);
556 
557     return addr >= lo && addr < hi;
558 }
559 
560 static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
561 {
562     hwaddr hi = addr + size - 1;
563     if (hi < addr) {
564         return 1;
565     }
566 
567     if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
568         memcpy(buf, nvme_addr_to_cmb(n, addr), size);
569         return 0;
570     }
571 
572     if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
573         memcpy(buf, nvme_addr_to_pmr(n, addr), size);
574         return 0;
575     }
576 
577     return pci_dma_read(PCI_DEVICE(n), addr, buf, size);
578 }
579 
580 static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, const void *buf, int size)
581 {
582     hwaddr hi = addr + size - 1;
583     if (hi < addr) {
584         return 1;
585     }
586 
587     if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
588         memcpy(nvme_addr_to_cmb(n, addr), buf, size);
589         return 0;
590     }
591 
592     if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
593         memcpy(nvme_addr_to_pmr(n, addr), buf, size);
594         return 0;
595     }
596 
597     return pci_dma_write(PCI_DEVICE(n), addr, buf, size);
598 }
599 
600 static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
601 {
602     return nsid &&
603         (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES);
604 }
605 
606 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
607 {
608     return sqid < n->conf_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
609 }
610 
611 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
612 {
613     return cqid < n->conf_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
614 }
615 
616 static void nvme_inc_cq_tail(NvmeCQueue *cq)
617 {
618     cq->tail++;
619     if (cq->tail >= cq->size) {
620         cq->tail = 0;
621         cq->phase = !cq->phase;
622     }
623 }
624 
625 static void nvme_inc_sq_head(NvmeSQueue *sq)
626 {
627     sq->head = (sq->head + 1) % sq->size;
628 }
629 
630 static uint8_t nvme_cq_full(NvmeCQueue *cq)
631 {
632     return (cq->tail + 1) % cq->size == cq->head;
633 }
634 
635 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
636 {
637     return sq->head == sq->tail;
638 }
639 
640 static void nvme_irq_check(NvmeCtrl *n)
641 {
642     PCIDevice *pci = PCI_DEVICE(n);
643     uint32_t intms = ldl_le_p(&n->bar.intms);
644 
645     if (msix_enabled(pci)) {
646         return;
647     }
648     if (~intms & n->irq_status) {
649         pci_irq_assert(pci);
650     } else {
651         pci_irq_deassert(pci);
652     }
653 }
654 
655 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
656 {
657     PCIDevice *pci = PCI_DEVICE(n);
658 
659     if (cq->irq_enabled) {
660         if (msix_enabled(pci)) {
661             trace_pci_nvme_irq_msix(cq->vector);
662             msix_notify(pci, cq->vector);
663         } else {
664             trace_pci_nvme_irq_pin();
665             assert(cq->vector < 32);
666             n->irq_status |= 1 << cq->vector;
667             nvme_irq_check(n);
668         }
669     } else {
670         trace_pci_nvme_irq_masked();
671     }
672 }
673 
674 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
675 {
676     if (cq->irq_enabled) {
677         if (msix_enabled(PCI_DEVICE(n))) {
678             return;
679         } else {
680             assert(cq->vector < 32);
681             if (!n->cq_pending) {
682                 n->irq_status &= ~(1 << cq->vector);
683             }
684             nvme_irq_check(n);
685         }
686     }
687 }
688 
689 static void nvme_req_clear(NvmeRequest *req)
690 {
691     req->ns = NULL;
692     req->opaque = NULL;
693     req->aiocb = NULL;
694     memset(&req->cqe, 0x0, sizeof(req->cqe));
695     req->status = NVME_SUCCESS;
696 }
697 
698 static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma)
699 {
700     if (dma) {
701         pci_dma_sglist_init(&sg->qsg, PCI_DEVICE(n), 0);
702         sg->flags = NVME_SG_DMA;
703     } else {
704         qemu_iovec_init(&sg->iov, 0);
705     }
706 
707     sg->flags |= NVME_SG_ALLOC;
708 }
709 
710 static inline void nvme_sg_unmap(NvmeSg *sg)
711 {
712     if (!(sg->flags & NVME_SG_ALLOC)) {
713         return;
714     }
715 
716     if (sg->flags & NVME_SG_DMA) {
717         qemu_sglist_destroy(&sg->qsg);
718     } else {
719         qemu_iovec_destroy(&sg->iov);
720     }
721 
722     memset(sg, 0x0, sizeof(*sg));
723 }
724 
725 /*
726  * When metadata is transfered as extended LBAs, the DPTR mapped into `sg`
727  * holds both data and metadata. This function splits the data and metadata
728  * into two separate QSG/IOVs.
729  */
730 static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data,
731                           NvmeSg *mdata)
732 {
733     NvmeSg *dst = data;
734     uint32_t trans_len, count = ns->lbasz;
735     uint64_t offset = 0;
736     bool dma = sg->flags & NVME_SG_DMA;
737     size_t sge_len;
738     size_t sg_len = dma ? sg->qsg.size : sg->iov.size;
739     int sg_idx = 0;
740 
741     assert(sg->flags & NVME_SG_ALLOC);
742 
743     while (sg_len) {
744         sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
745 
746         trans_len = MIN(sg_len, count);
747         trans_len = MIN(trans_len, sge_len - offset);
748 
749         if (dst) {
750             if (dma) {
751                 qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset,
752                                 trans_len);
753             } else {
754                 qemu_iovec_add(&dst->iov,
755                                sg->iov.iov[sg_idx].iov_base + offset,
756                                trans_len);
757             }
758         }
759 
760         sg_len -= trans_len;
761         count -= trans_len;
762         offset += trans_len;
763 
764         if (count == 0) {
765             dst = (dst == data) ? mdata : data;
766             count = (dst == data) ? ns->lbasz : ns->lbaf.ms;
767         }
768 
769         if (sge_len == offset) {
770             offset = 0;
771             sg_idx++;
772         }
773     }
774 }
775 
776 static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
777                                   size_t len)
778 {
779     if (!len) {
780         return NVME_SUCCESS;
781     }
782 
783     trace_pci_nvme_map_addr_cmb(addr, len);
784 
785     if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
786         return NVME_DATA_TRAS_ERROR;
787     }
788 
789     qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
790 
791     return NVME_SUCCESS;
792 }
793 
794 static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
795                                   size_t len)
796 {
797     if (!len) {
798         return NVME_SUCCESS;
799     }
800 
801     if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) {
802         return NVME_DATA_TRAS_ERROR;
803     }
804 
805     qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len);
806 
807     return NVME_SUCCESS;
808 }
809 
810 static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len)
811 {
812     bool cmb = false, pmr = false;
813 
814     if (!len) {
815         return NVME_SUCCESS;
816     }
817 
818     trace_pci_nvme_map_addr(addr, len);
819 
820     if (nvme_addr_is_iomem(n, addr)) {
821         return NVME_DATA_TRAS_ERROR;
822     }
823 
824     if (nvme_addr_is_cmb(n, addr)) {
825         cmb = true;
826     } else if (nvme_addr_is_pmr(n, addr)) {
827         pmr = true;
828     }
829 
830     if (cmb || pmr) {
831         if (sg->flags & NVME_SG_DMA) {
832             return NVME_INVALID_USE_OF_CMB | NVME_DNR;
833         }
834 
835         if (sg->iov.niov + 1 > IOV_MAX) {
836             goto max_mappings_exceeded;
837         }
838 
839         if (cmb) {
840             return nvme_map_addr_cmb(n, &sg->iov, addr, len);
841         } else {
842             return nvme_map_addr_pmr(n, &sg->iov, addr, len);
843         }
844     }
845 
846     if (!(sg->flags & NVME_SG_DMA)) {
847         return NVME_INVALID_USE_OF_CMB | NVME_DNR;
848     }
849 
850     if (sg->qsg.nsg + 1 > IOV_MAX) {
851         goto max_mappings_exceeded;
852     }
853 
854     qemu_sglist_add(&sg->qsg, addr, len);
855 
856     return NVME_SUCCESS;
857 
858 max_mappings_exceeded:
859     NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings,
860                    "number of mappings exceed 1024");
861     return NVME_INTERNAL_DEV_ERROR | NVME_DNR;
862 }
863 
864 static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr)
865 {
866     return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr));
867 }
868 
869 static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1,
870                              uint64_t prp2, uint32_t len)
871 {
872     hwaddr trans_len = n->page_size - (prp1 % n->page_size);
873     trans_len = MIN(len, trans_len);
874     int num_prps = (len >> n->page_bits) + 1;
875     uint16_t status;
876     int ret;
877 
878     trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
879 
880     nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1));
881 
882     status = nvme_map_addr(n, sg, prp1, trans_len);
883     if (status) {
884         goto unmap;
885     }
886 
887     len -= trans_len;
888     if (len) {
889         if (len > n->page_size) {
890             uint64_t prp_list[n->max_prp_ents];
891             uint32_t nents, prp_trans;
892             int i = 0;
893 
894             /*
895              * The first PRP list entry, pointed to by PRP2 may contain offset.
896              * Hence, we need to calculate the number of entries in based on
897              * that offset.
898              */
899             nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3;
900             prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
901             ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
902             if (ret) {
903                 trace_pci_nvme_err_addr_read(prp2);
904                 status = NVME_DATA_TRAS_ERROR;
905                 goto unmap;
906             }
907             while (len != 0) {
908                 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
909 
910                 if (i == nents - 1 && len > n->page_size) {
911                     if (unlikely(prp_ent & (n->page_size - 1))) {
912                         trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
913                         status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
914                         goto unmap;
915                     }
916 
917                     i = 0;
918                     nents = (len + n->page_size - 1) >> n->page_bits;
919                     nents = MIN(nents, n->max_prp_ents);
920                     prp_trans = nents * sizeof(uint64_t);
921                     ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
922                                          prp_trans);
923                     if (ret) {
924                         trace_pci_nvme_err_addr_read(prp_ent);
925                         status = NVME_DATA_TRAS_ERROR;
926                         goto unmap;
927                     }
928                     prp_ent = le64_to_cpu(prp_list[i]);
929                 }
930 
931                 if (unlikely(prp_ent & (n->page_size - 1))) {
932                     trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
933                     status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
934                     goto unmap;
935                 }
936 
937                 trans_len = MIN(len, n->page_size);
938                 status = nvme_map_addr(n, sg, prp_ent, trans_len);
939                 if (status) {
940                     goto unmap;
941                 }
942 
943                 len -= trans_len;
944                 i++;
945             }
946         } else {
947             if (unlikely(prp2 & (n->page_size - 1))) {
948                 trace_pci_nvme_err_invalid_prp2_align(prp2);
949                 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
950                 goto unmap;
951             }
952             status = nvme_map_addr(n, sg, prp2, len);
953             if (status) {
954                 goto unmap;
955             }
956         }
957     }
958 
959     return NVME_SUCCESS;
960 
961 unmap:
962     nvme_sg_unmap(sg);
963     return status;
964 }
965 
966 /*
967  * Map 'nsgld' data descriptors from 'segment'. The function will subtract the
968  * number of bytes mapped in len.
969  */
970 static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg,
971                                   NvmeSglDescriptor *segment, uint64_t nsgld,
972                                   size_t *len, NvmeCmd *cmd)
973 {
974     dma_addr_t addr, trans_len;
975     uint32_t dlen;
976     uint16_t status;
977 
978     for (int i = 0; i < nsgld; i++) {
979         uint8_t type = NVME_SGL_TYPE(segment[i].type);
980 
981         switch (type) {
982         case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
983             break;
984         case NVME_SGL_DESCR_TYPE_SEGMENT:
985         case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
986             return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
987         default:
988             return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
989         }
990 
991         dlen = le32_to_cpu(segment[i].len);
992 
993         if (!dlen) {
994             continue;
995         }
996 
997         if (*len == 0) {
998             /*
999              * All data has been mapped, but the SGL contains additional
1000              * segments and/or descriptors. The controller might accept
1001              * ignoring the rest of the SGL.
1002              */
1003             uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
1004             if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
1005                 break;
1006             }
1007 
1008             trace_pci_nvme_err_invalid_sgl_excess_length(dlen);
1009             return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1010         }
1011 
1012         trans_len = MIN(*len, dlen);
1013 
1014         addr = le64_to_cpu(segment[i].addr);
1015 
1016         if (UINT64_MAX - addr < dlen) {
1017             return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1018         }
1019 
1020         status = nvme_map_addr(n, sg, addr, trans_len);
1021         if (status) {
1022             return status;
1023         }
1024 
1025         *len -= trans_len;
1026     }
1027 
1028     return NVME_SUCCESS;
1029 }
1030 
1031 static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl,
1032                              size_t len, NvmeCmd *cmd)
1033 {
1034     /*
1035      * Read the segment in chunks of 256 descriptors (one 4k page) to avoid
1036      * dynamically allocating a potentially huge SGL. The spec allows the SGL
1037      * to be larger (as in number of bytes required to describe the SGL
1038      * descriptors and segment chain) than the command transfer size, so it is
1039      * not bounded by MDTS.
1040      */
1041     const int SEG_CHUNK_SIZE = 256;
1042 
1043     NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
1044     uint64_t nsgld;
1045     uint32_t seg_len;
1046     uint16_t status;
1047     hwaddr addr;
1048     int ret;
1049 
1050     sgld = &sgl;
1051     addr = le64_to_cpu(sgl.addr);
1052 
1053     trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len);
1054 
1055     nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr));
1056 
1057     /*
1058      * If the entire transfer can be described with a single data block it can
1059      * be mapped directly.
1060      */
1061     if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
1062         status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd);
1063         if (status) {
1064             goto unmap;
1065         }
1066 
1067         goto out;
1068     }
1069 
1070     for (;;) {
1071         switch (NVME_SGL_TYPE(sgld->type)) {
1072         case NVME_SGL_DESCR_TYPE_SEGMENT:
1073         case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
1074             break;
1075         default:
1076             return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
1077         }
1078 
1079         seg_len = le32_to_cpu(sgld->len);
1080 
1081         /* check the length of the (Last) Segment descriptor */
1082         if (!seg_len || seg_len & 0xf) {
1083             return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
1084         }
1085 
1086         if (UINT64_MAX - addr < seg_len) {
1087             return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1088         }
1089 
1090         nsgld = seg_len / sizeof(NvmeSglDescriptor);
1091 
1092         while (nsgld > SEG_CHUNK_SIZE) {
1093             if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
1094                 trace_pci_nvme_err_addr_read(addr);
1095                 status = NVME_DATA_TRAS_ERROR;
1096                 goto unmap;
1097             }
1098 
1099             status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE,
1100                                        &len, cmd);
1101             if (status) {
1102                 goto unmap;
1103             }
1104 
1105             nsgld -= SEG_CHUNK_SIZE;
1106             addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
1107         }
1108 
1109         ret = nvme_addr_read(n, addr, segment, nsgld *
1110                              sizeof(NvmeSglDescriptor));
1111         if (ret) {
1112             trace_pci_nvme_err_addr_read(addr);
1113             status = NVME_DATA_TRAS_ERROR;
1114             goto unmap;
1115         }
1116 
1117         last_sgld = &segment[nsgld - 1];
1118 
1119         /*
1120          * If the segment ends with a Data Block, then we are done.
1121          */
1122         if (NVME_SGL_TYPE(last_sgld->type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
1123             status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd);
1124             if (status) {
1125                 goto unmap;
1126             }
1127 
1128             goto out;
1129         }
1130 
1131         /*
1132          * If the last descriptor was not a Data Block, then the current
1133          * segment must not be a Last Segment.
1134          */
1135         if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
1136             status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
1137             goto unmap;
1138         }
1139 
1140         sgld = last_sgld;
1141         addr = le64_to_cpu(sgld->addr);
1142 
1143         /*
1144          * Do not map the last descriptor; it will be a Segment or Last Segment
1145          * descriptor and is handled by the next iteration.
1146          */
1147         status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd);
1148         if (status) {
1149             goto unmap;
1150         }
1151     }
1152 
1153 out:
1154     /* if there is any residual left in len, the SGL was too short */
1155     if (len) {
1156         status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1157         goto unmap;
1158     }
1159 
1160     return NVME_SUCCESS;
1161 
1162 unmap:
1163     nvme_sg_unmap(sg);
1164     return status;
1165 }
1166 
1167 uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1168                        NvmeCmd *cmd)
1169 {
1170     uint64_t prp1, prp2;
1171 
1172     switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) {
1173     case NVME_PSDT_PRP:
1174         prp1 = le64_to_cpu(cmd->dptr.prp1);
1175         prp2 = le64_to_cpu(cmd->dptr.prp2);
1176 
1177         return nvme_map_prp(n, sg, prp1, prp2, len);
1178     case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
1179     case NVME_PSDT_SGL_MPTR_SGL:
1180         return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd);
1181     default:
1182         return NVME_INVALID_FIELD;
1183     }
1184 }
1185 
1186 static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1187                               NvmeCmd *cmd)
1188 {
1189     int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags);
1190     hwaddr mptr = le64_to_cpu(cmd->mptr);
1191     uint16_t status;
1192 
1193     if (psdt == NVME_PSDT_SGL_MPTR_SGL) {
1194         NvmeSglDescriptor sgl;
1195 
1196         if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) {
1197             return NVME_DATA_TRAS_ERROR;
1198         }
1199 
1200         status = nvme_map_sgl(n, sg, sgl, len, cmd);
1201         if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) {
1202             status = NVME_MD_SGL_LEN_INVALID | NVME_DNR;
1203         }
1204 
1205         return status;
1206     }
1207 
1208     nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr));
1209     status = nvme_map_addr(n, sg, mptr, len);
1210     if (status) {
1211         nvme_sg_unmap(sg);
1212     }
1213 
1214     return status;
1215 }
1216 
1217 static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1218 {
1219     NvmeNamespace *ns = req->ns;
1220     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1221     bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1222     bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1223     size_t len = nvme_l2b(ns, nlb);
1224     uint16_t status;
1225 
1226     if (nvme_ns_ext(ns) &&
1227         !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1228         NvmeSg sg;
1229 
1230         len += nvme_m2b(ns, nlb);
1231 
1232         status = nvme_map_dptr(n, &sg, len, &req->cmd);
1233         if (status) {
1234             return status;
1235         }
1236 
1237         nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1238         nvme_sg_split(&sg, ns, &req->sg, NULL);
1239         nvme_sg_unmap(&sg);
1240 
1241         return NVME_SUCCESS;
1242     }
1243 
1244     return nvme_map_dptr(n, &req->sg, len, &req->cmd);
1245 }
1246 
1247 static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1248 {
1249     NvmeNamespace *ns = req->ns;
1250     size_t len = nvme_m2b(ns, nlb);
1251     uint16_t status;
1252 
1253     if (nvme_ns_ext(ns)) {
1254         NvmeSg sg;
1255 
1256         len += nvme_l2b(ns, nlb);
1257 
1258         status = nvme_map_dptr(n, &sg, len, &req->cmd);
1259         if (status) {
1260             return status;
1261         }
1262 
1263         nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1264         nvme_sg_split(&sg, ns, NULL, &req->sg);
1265         nvme_sg_unmap(&sg);
1266 
1267         return NVME_SUCCESS;
1268     }
1269 
1270     return nvme_map_mptr(n, &req->sg, len, &req->cmd);
1271 }
1272 
1273 static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr,
1274                                     uint32_t len, uint32_t bytes,
1275                                     int32_t skip_bytes, int64_t offset,
1276                                     NvmeTxDirection dir)
1277 {
1278     hwaddr addr;
1279     uint32_t trans_len, count = bytes;
1280     bool dma = sg->flags & NVME_SG_DMA;
1281     int64_t sge_len;
1282     int sg_idx = 0;
1283     int ret;
1284 
1285     assert(sg->flags & NVME_SG_ALLOC);
1286 
1287     while (len) {
1288         sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
1289 
1290         if (sge_len - offset < 0) {
1291             offset -= sge_len;
1292             sg_idx++;
1293             continue;
1294         }
1295 
1296         if (sge_len == offset) {
1297             offset = 0;
1298             sg_idx++;
1299             continue;
1300         }
1301 
1302         trans_len = MIN(len, count);
1303         trans_len = MIN(trans_len, sge_len - offset);
1304 
1305         if (dma) {
1306             addr = sg->qsg.sg[sg_idx].base + offset;
1307         } else {
1308             addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset;
1309         }
1310 
1311         if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1312             ret = nvme_addr_read(n, addr, ptr, trans_len);
1313         } else {
1314             ret = nvme_addr_write(n, addr, ptr, trans_len);
1315         }
1316 
1317         if (ret) {
1318             return NVME_DATA_TRAS_ERROR;
1319         }
1320 
1321         ptr += trans_len;
1322         len -= trans_len;
1323         count -= trans_len;
1324         offset += trans_len;
1325 
1326         if (count == 0) {
1327             count = bytes;
1328             offset += skip_bytes;
1329         }
1330     }
1331 
1332     return NVME_SUCCESS;
1333 }
1334 
1335 static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, void *ptr, uint32_t len,
1336                         NvmeTxDirection dir)
1337 {
1338     assert(sg->flags & NVME_SG_ALLOC);
1339 
1340     if (sg->flags & NVME_SG_DMA) {
1341         const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
1342         dma_addr_t residual;
1343 
1344         if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1345             dma_buf_write(ptr, len, &residual, &sg->qsg, attrs);
1346         } else {
1347             dma_buf_read(ptr, len, &residual, &sg->qsg, attrs);
1348         }
1349 
1350         if (unlikely(residual)) {
1351             trace_pci_nvme_err_invalid_dma();
1352             return NVME_INVALID_FIELD | NVME_DNR;
1353         }
1354     } else {
1355         size_t bytes;
1356 
1357         if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1358             bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len);
1359         } else {
1360             bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len);
1361         }
1362 
1363         if (unlikely(bytes != len)) {
1364             trace_pci_nvme_err_invalid_dma();
1365             return NVME_INVALID_FIELD | NVME_DNR;
1366         }
1367     }
1368 
1369     return NVME_SUCCESS;
1370 }
1371 
1372 static inline uint16_t nvme_c2h(NvmeCtrl *n, void *ptr, uint32_t len,
1373                                 NvmeRequest *req)
1374 {
1375     uint16_t status;
1376 
1377     status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1378     if (status) {
1379         return status;
1380     }
1381 
1382     return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE);
1383 }
1384 
1385 static inline uint16_t nvme_h2c(NvmeCtrl *n, void *ptr, uint32_t len,
1386                                 NvmeRequest *req)
1387 {
1388     uint16_t status;
1389 
1390     status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1391     if (status) {
1392         return status;
1393     }
1394 
1395     return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE);
1396 }
1397 
1398 uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len,
1399                           NvmeTxDirection dir, NvmeRequest *req)
1400 {
1401     NvmeNamespace *ns = req->ns;
1402     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1403     bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1404     bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1405 
1406     if (nvme_ns_ext(ns) &&
1407         !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1408         return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz,
1409                                    ns->lbaf.ms, 0, dir);
1410     }
1411 
1412     return nvme_tx(n, &req->sg, ptr, len, dir);
1413 }
1414 
1415 uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len,
1416                            NvmeTxDirection dir, NvmeRequest *req)
1417 {
1418     NvmeNamespace *ns = req->ns;
1419     uint16_t status;
1420 
1421     if (nvme_ns_ext(ns)) {
1422         return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms,
1423                                    ns->lbasz, ns->lbasz, dir);
1424     }
1425 
1426     nvme_sg_unmap(&req->sg);
1427 
1428     status = nvme_map_mptr(n, &req->sg, len, &req->cmd);
1429     if (status) {
1430         return status;
1431     }
1432 
1433     return nvme_tx(n, &req->sg, ptr, len, dir);
1434 }
1435 
1436 static inline void nvme_blk_read(BlockBackend *blk, int64_t offset,
1437                                  BlockCompletionFunc *cb, NvmeRequest *req)
1438 {
1439     assert(req->sg.flags & NVME_SG_ALLOC);
1440 
1441     if (req->sg.flags & NVME_SG_DMA) {
1442         req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
1443                                   cb, req);
1444     } else {
1445         req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req);
1446     }
1447 }
1448 
1449 static inline void nvme_blk_write(BlockBackend *blk, int64_t offset,
1450                                   BlockCompletionFunc *cb, NvmeRequest *req)
1451 {
1452     assert(req->sg.flags & NVME_SG_ALLOC);
1453 
1454     if (req->sg.flags & NVME_SG_DMA) {
1455         req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
1456                                    cb, req);
1457     } else {
1458         req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req);
1459     }
1460 }
1461 
1462 static void nvme_update_cq_eventidx(const NvmeCQueue *cq)
1463 {
1464     uint32_t v = cpu_to_le32(cq->head);
1465 
1466     trace_pci_nvme_update_cq_eventidx(cq->cqid, cq->head);
1467 
1468     pci_dma_write(PCI_DEVICE(cq->ctrl), cq->ei_addr, &v, sizeof(v));
1469 }
1470 
1471 static void nvme_update_cq_head(NvmeCQueue *cq)
1472 {
1473     uint32_t v;
1474 
1475     pci_dma_read(PCI_DEVICE(cq->ctrl), cq->db_addr, &v, sizeof(v));
1476 
1477     cq->head = le32_to_cpu(v);
1478 
1479     trace_pci_nvme_update_cq_head(cq->cqid, cq->head);
1480 }
1481 
1482 static void nvme_post_cqes(void *opaque)
1483 {
1484     NvmeCQueue *cq = opaque;
1485     NvmeCtrl *n = cq->ctrl;
1486     NvmeRequest *req, *next;
1487     bool pending = cq->head != cq->tail;
1488     int ret;
1489 
1490     QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
1491         NvmeSQueue *sq;
1492         hwaddr addr;
1493 
1494         if (n->dbbuf_enabled) {
1495             nvme_update_cq_eventidx(cq);
1496             nvme_update_cq_head(cq);
1497         }
1498 
1499         if (nvme_cq_full(cq)) {
1500             break;
1501         }
1502 
1503         sq = req->sq;
1504         req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
1505         req->cqe.sq_id = cpu_to_le16(sq->sqid);
1506         req->cqe.sq_head = cpu_to_le16(sq->head);
1507         addr = cq->dma_addr + cq->tail * n->cqe_size;
1508         ret = pci_dma_write(PCI_DEVICE(n), addr, (void *)&req->cqe,
1509                             sizeof(req->cqe));
1510         if (ret) {
1511             trace_pci_nvme_err_addr_write(addr);
1512             trace_pci_nvme_err_cfs();
1513             stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
1514             break;
1515         }
1516         QTAILQ_REMOVE(&cq->req_list, req, entry);
1517         nvme_inc_cq_tail(cq);
1518         nvme_sg_unmap(&req->sg);
1519         QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
1520     }
1521     if (cq->tail != cq->head) {
1522         if (cq->irq_enabled && !pending) {
1523             n->cq_pending++;
1524         }
1525 
1526         nvme_irq_assert(n, cq);
1527     }
1528 }
1529 
1530 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
1531 {
1532     assert(cq->cqid == req->sq->cqid);
1533     trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
1534                                           le32_to_cpu(req->cqe.result),
1535                                           le32_to_cpu(req->cqe.dw1),
1536                                           req->status);
1537 
1538     if (req->status) {
1539         trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
1540                                       req->status, req->cmd.opcode);
1541     }
1542 
1543     QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
1544     QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
1545 
1546     qemu_bh_schedule(cq->bh);
1547 }
1548 
1549 static void nvme_process_aers(void *opaque)
1550 {
1551     NvmeCtrl *n = opaque;
1552     NvmeAsyncEvent *event, *next;
1553 
1554     trace_pci_nvme_process_aers(n->aer_queued);
1555 
1556     QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
1557         NvmeRequest *req;
1558         NvmeAerResult *result;
1559 
1560         /* can't post cqe if there is nothing to complete */
1561         if (!n->outstanding_aers) {
1562             trace_pci_nvme_no_outstanding_aers();
1563             break;
1564         }
1565 
1566         /* ignore if masked (cqe posted, but event not cleared) */
1567         if (n->aer_mask & (1 << event->result.event_type)) {
1568             trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
1569             continue;
1570         }
1571 
1572         QTAILQ_REMOVE(&n->aer_queue, event, entry);
1573         n->aer_queued--;
1574 
1575         n->aer_mask |= 1 << event->result.event_type;
1576         n->outstanding_aers--;
1577 
1578         req = n->aer_reqs[n->outstanding_aers];
1579 
1580         result = (NvmeAerResult *) &req->cqe.result;
1581         result->event_type = event->result.event_type;
1582         result->event_info = event->result.event_info;
1583         result->log_page = event->result.log_page;
1584         g_free(event);
1585 
1586         trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
1587                                     result->log_page);
1588 
1589         nvme_enqueue_req_completion(&n->admin_cq, req);
1590     }
1591 }
1592 
1593 static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
1594                                uint8_t event_info, uint8_t log_page)
1595 {
1596     NvmeAsyncEvent *event;
1597 
1598     trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
1599 
1600     if (n->aer_queued == n->params.aer_max_queued) {
1601         trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
1602         return;
1603     }
1604 
1605     event = g_new(NvmeAsyncEvent, 1);
1606     event->result = (NvmeAerResult) {
1607         .event_type = event_type,
1608         .event_info = event_info,
1609         .log_page   = log_page,
1610     };
1611 
1612     QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
1613     n->aer_queued++;
1614 
1615     nvme_process_aers(n);
1616 }
1617 
1618 static void nvme_smart_event(NvmeCtrl *n, uint8_t event)
1619 {
1620     uint8_t aer_info;
1621 
1622     /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */
1623     if (!(NVME_AEC_SMART(n->features.async_config) & event)) {
1624         return;
1625     }
1626 
1627     switch (event) {
1628     case NVME_SMART_SPARE:
1629         aer_info = NVME_AER_INFO_SMART_SPARE_THRESH;
1630         break;
1631     case NVME_SMART_TEMPERATURE:
1632         aer_info = NVME_AER_INFO_SMART_TEMP_THRESH;
1633         break;
1634     case NVME_SMART_RELIABILITY:
1635     case NVME_SMART_MEDIA_READ_ONLY:
1636     case NVME_SMART_FAILED_VOLATILE_MEDIA:
1637     case NVME_SMART_PMR_UNRELIABLE:
1638         aer_info = NVME_AER_INFO_SMART_RELIABILITY;
1639         break;
1640     default:
1641         return;
1642     }
1643 
1644     nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO);
1645 }
1646 
1647 static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
1648 {
1649     n->aer_mask &= ~(1 << event_type);
1650     if (!QTAILQ_EMPTY(&n->aer_queue)) {
1651         nvme_process_aers(n);
1652     }
1653 }
1654 
1655 static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
1656 {
1657     uint8_t mdts = n->params.mdts;
1658 
1659     if (mdts && len > n->page_size << mdts) {
1660         trace_pci_nvme_err_mdts(len);
1661         return NVME_INVALID_FIELD | NVME_DNR;
1662     }
1663 
1664     return NVME_SUCCESS;
1665 }
1666 
1667 static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba,
1668                                          uint32_t nlb)
1669 {
1670     uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
1671 
1672     if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
1673         trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze);
1674         return NVME_LBA_RANGE | NVME_DNR;
1675     }
1676 
1677     return NVME_SUCCESS;
1678 }
1679 
1680 static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba,
1681                                  uint32_t nlb, int flags)
1682 {
1683     BlockDriverState *bs = blk_bs(ns->blkconf.blk);
1684 
1685     int64_t pnum = 0, bytes = nvme_l2b(ns, nlb);
1686     int64_t offset = nvme_l2b(ns, slba);
1687     int ret;
1688 
1689     /*
1690      * `pnum` holds the number of bytes after offset that shares the same
1691      * allocation status as the byte at offset. If `pnum` is different from
1692      * `bytes`, we should check the allocation status of the next range and
1693      * continue this until all bytes have been checked.
1694      */
1695     do {
1696         bytes -= pnum;
1697 
1698         ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL);
1699         if (ret < 0) {
1700             return ret;
1701         }
1702 
1703 
1704         trace_pci_nvme_block_status(offset, bytes, pnum, ret,
1705                                     !!(ret & BDRV_BLOCK_ZERO));
1706 
1707         if (!(ret & flags)) {
1708             return 1;
1709         }
1710 
1711         offset += pnum;
1712     } while (pnum != bytes);
1713 
1714     return 0;
1715 }
1716 
1717 static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba,
1718                                  uint32_t nlb)
1719 {
1720     int ret;
1721     Error *err = NULL;
1722 
1723     ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA);
1724     if (ret) {
1725         if (ret < 0) {
1726             error_setg_errno(&err, -ret, "unable to get block status");
1727             error_report_err(err);
1728 
1729             return NVME_INTERNAL_DEV_ERROR;
1730         }
1731 
1732         return NVME_DULB;
1733     }
1734 
1735     return NVME_SUCCESS;
1736 }
1737 
1738 static void nvme_aio_err(NvmeRequest *req, int ret)
1739 {
1740     uint16_t status = NVME_SUCCESS;
1741     Error *local_err = NULL;
1742 
1743     switch (req->cmd.opcode) {
1744     case NVME_CMD_READ:
1745         status = NVME_UNRECOVERED_READ;
1746         break;
1747     case NVME_CMD_FLUSH:
1748     case NVME_CMD_WRITE:
1749     case NVME_CMD_WRITE_ZEROES:
1750     case NVME_CMD_ZONE_APPEND:
1751         status = NVME_WRITE_FAULT;
1752         break;
1753     default:
1754         status = NVME_INTERNAL_DEV_ERROR;
1755         break;
1756     }
1757 
1758     trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status);
1759 
1760     error_setg_errno(&local_err, -ret, "aio failed");
1761     error_report_err(local_err);
1762 
1763     /*
1764      * Set the command status code to the first encountered error but allow a
1765      * subsequent Internal Device Error to trump it.
1766      */
1767     if (req->status && status != NVME_INTERNAL_DEV_ERROR) {
1768         return;
1769     }
1770 
1771     req->status = status;
1772 }
1773 
1774 static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba)
1775 {
1776     return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 :
1777                                     slba / ns->zone_size;
1778 }
1779 
1780 static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba)
1781 {
1782     uint32_t zone_idx = nvme_zone_idx(ns, slba);
1783 
1784     if (zone_idx >= ns->num_zones) {
1785         return NULL;
1786     }
1787 
1788     return &ns->zone_array[zone_idx];
1789 }
1790 
1791 static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone)
1792 {
1793     uint64_t zslba = zone->d.zslba;
1794 
1795     switch (nvme_get_zone_state(zone)) {
1796     case NVME_ZONE_STATE_EMPTY:
1797     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1798     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1799     case NVME_ZONE_STATE_CLOSED:
1800         return NVME_SUCCESS;
1801     case NVME_ZONE_STATE_FULL:
1802         trace_pci_nvme_err_zone_is_full(zslba);
1803         return NVME_ZONE_FULL;
1804     case NVME_ZONE_STATE_OFFLINE:
1805         trace_pci_nvme_err_zone_is_offline(zslba);
1806         return NVME_ZONE_OFFLINE;
1807     case NVME_ZONE_STATE_READ_ONLY:
1808         trace_pci_nvme_err_zone_is_read_only(zslba);
1809         return NVME_ZONE_READ_ONLY;
1810     default:
1811         assert(false);
1812     }
1813 
1814     return NVME_INTERNAL_DEV_ERROR;
1815 }
1816 
1817 static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone,
1818                                       uint64_t slba, uint32_t nlb)
1819 {
1820     uint64_t zcap = nvme_zone_wr_boundary(zone);
1821     uint16_t status;
1822 
1823     status = nvme_check_zone_state_for_write(zone);
1824     if (status) {
1825         return status;
1826     }
1827 
1828     if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1829         uint64_t ezrwa = zone->w_ptr + 2 * ns->zns.zrwas;
1830 
1831         if (slba < zone->w_ptr || slba + nlb > ezrwa) {
1832             trace_pci_nvme_err_zone_invalid_write(slba, zone->w_ptr);
1833             return NVME_ZONE_INVALID_WRITE;
1834         }
1835     } else {
1836         if (unlikely(slba != zone->w_ptr)) {
1837             trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba,
1838                                                zone->w_ptr);
1839             return NVME_ZONE_INVALID_WRITE;
1840         }
1841     }
1842 
1843     if (unlikely((slba + nlb) > zcap)) {
1844         trace_pci_nvme_err_zone_boundary(slba, nlb, zcap);
1845         return NVME_ZONE_BOUNDARY_ERROR;
1846     }
1847 
1848     return NVME_SUCCESS;
1849 }
1850 
1851 static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone)
1852 {
1853     switch (nvme_get_zone_state(zone)) {
1854     case NVME_ZONE_STATE_EMPTY:
1855     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1856     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1857     case NVME_ZONE_STATE_FULL:
1858     case NVME_ZONE_STATE_CLOSED:
1859     case NVME_ZONE_STATE_READ_ONLY:
1860         return NVME_SUCCESS;
1861     case NVME_ZONE_STATE_OFFLINE:
1862         trace_pci_nvme_err_zone_is_offline(zone->d.zslba);
1863         return NVME_ZONE_OFFLINE;
1864     default:
1865         assert(false);
1866     }
1867 
1868     return NVME_INTERNAL_DEV_ERROR;
1869 }
1870 
1871 static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba,
1872                                      uint32_t nlb)
1873 {
1874     NvmeZone *zone;
1875     uint64_t bndry, end;
1876     uint16_t status;
1877 
1878     zone = nvme_get_zone_by_slba(ns, slba);
1879     assert(zone);
1880 
1881     bndry = nvme_zone_rd_boundary(ns, zone);
1882     end = slba + nlb;
1883 
1884     status = nvme_check_zone_state_for_read(zone);
1885     if (status) {
1886         ;
1887     } else if (unlikely(end > bndry)) {
1888         if (!ns->params.cross_zone_read) {
1889             status = NVME_ZONE_BOUNDARY_ERROR;
1890         } else {
1891             /*
1892              * Read across zone boundary - check that all subsequent
1893              * zones that are being read have an appropriate state.
1894              */
1895             do {
1896                 zone++;
1897                 status = nvme_check_zone_state_for_read(zone);
1898                 if (status) {
1899                     break;
1900                 }
1901             } while (end > nvme_zone_rd_boundary(ns, zone));
1902         }
1903     }
1904 
1905     return status;
1906 }
1907 
1908 static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone)
1909 {
1910     switch (nvme_get_zone_state(zone)) {
1911     case NVME_ZONE_STATE_FULL:
1912         return NVME_SUCCESS;
1913 
1914     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1915     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1916         nvme_aor_dec_open(ns);
1917         /* fallthrough */
1918     case NVME_ZONE_STATE_CLOSED:
1919         nvme_aor_dec_active(ns);
1920 
1921         if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1922             zone->d.za &= ~NVME_ZA_ZRWA_VALID;
1923             if (ns->params.numzrwa) {
1924                 ns->zns.numzrwa++;
1925             }
1926         }
1927 
1928         /* fallthrough */
1929     case NVME_ZONE_STATE_EMPTY:
1930         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL);
1931         return NVME_SUCCESS;
1932 
1933     default:
1934         return NVME_ZONE_INVAL_TRANSITION;
1935     }
1936 }
1937 
1938 static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone)
1939 {
1940     switch (nvme_get_zone_state(zone)) {
1941     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1942     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1943         nvme_aor_dec_open(ns);
1944         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
1945         /* fall through */
1946     case NVME_ZONE_STATE_CLOSED:
1947         return NVME_SUCCESS;
1948 
1949     default:
1950         return NVME_ZONE_INVAL_TRANSITION;
1951     }
1952 }
1953 
1954 static uint16_t nvme_zrm_reset(NvmeNamespace *ns, NvmeZone *zone)
1955 {
1956     switch (nvme_get_zone_state(zone)) {
1957     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1958     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1959         nvme_aor_dec_open(ns);
1960         /* fallthrough */
1961     case NVME_ZONE_STATE_CLOSED:
1962         nvme_aor_dec_active(ns);
1963 
1964         if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1965             if (ns->params.numzrwa) {
1966                 ns->zns.numzrwa++;
1967             }
1968         }
1969 
1970         /* fallthrough */
1971     case NVME_ZONE_STATE_FULL:
1972         zone->w_ptr = zone->d.zslba;
1973         zone->d.wp = zone->w_ptr;
1974         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY);
1975         /* fallthrough */
1976     case NVME_ZONE_STATE_EMPTY:
1977         return NVME_SUCCESS;
1978 
1979     default:
1980         return NVME_ZONE_INVAL_TRANSITION;
1981     }
1982 }
1983 
1984 static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns)
1985 {
1986     NvmeZone *zone;
1987 
1988     if (ns->params.max_open_zones &&
1989         ns->nr_open_zones == ns->params.max_open_zones) {
1990         zone = QTAILQ_FIRST(&ns->imp_open_zones);
1991         if (zone) {
1992             /*
1993              * Automatically close this implicitly open zone.
1994              */
1995             QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
1996             nvme_zrm_close(ns, zone);
1997         }
1998     }
1999 }
2000 
2001 enum {
2002     NVME_ZRM_AUTO = 1 << 0,
2003     NVME_ZRM_ZRWA = 1 << 1,
2004 };
2005 
2006 static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns,
2007                                     NvmeZone *zone, int flags)
2008 {
2009     int act = 0;
2010     uint16_t status;
2011 
2012     switch (nvme_get_zone_state(zone)) {
2013     case NVME_ZONE_STATE_EMPTY:
2014         act = 1;
2015 
2016         /* fallthrough */
2017 
2018     case NVME_ZONE_STATE_CLOSED:
2019         if (n->params.auto_transition_zones) {
2020             nvme_zrm_auto_transition_zone(ns);
2021         }
2022         status = nvme_zns_check_resources(ns, act, 1,
2023                                           (flags & NVME_ZRM_ZRWA) ? 1 : 0);
2024         if (status) {
2025             return status;
2026         }
2027 
2028         if (act) {
2029             nvme_aor_inc_active(ns);
2030         }
2031 
2032         nvme_aor_inc_open(ns);
2033 
2034         if (flags & NVME_ZRM_AUTO) {
2035             nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN);
2036             return NVME_SUCCESS;
2037         }
2038 
2039         /* fallthrough */
2040 
2041     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
2042         if (flags & NVME_ZRM_AUTO) {
2043             return NVME_SUCCESS;
2044         }
2045 
2046         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN);
2047 
2048         /* fallthrough */
2049 
2050     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
2051         if (flags & NVME_ZRM_ZRWA) {
2052             ns->zns.numzrwa--;
2053 
2054             zone->d.za |= NVME_ZA_ZRWA_VALID;
2055         }
2056 
2057         return NVME_SUCCESS;
2058 
2059     default:
2060         return NVME_ZONE_INVAL_TRANSITION;
2061     }
2062 }
2063 
2064 static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns,
2065                                      NvmeZone *zone)
2066 {
2067     return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO);
2068 }
2069 
2070 static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone,
2071                                  uint32_t nlb)
2072 {
2073     zone->d.wp += nlb;
2074 
2075     if (zone->d.wp == nvme_zone_wr_boundary(zone)) {
2076         nvme_zrm_finish(ns, zone);
2077     }
2078 }
2079 
2080 static void nvme_zoned_zrwa_implicit_flush(NvmeNamespace *ns, NvmeZone *zone,
2081                                            uint32_t nlbc)
2082 {
2083     uint16_t nzrwafgs = DIV_ROUND_UP(nlbc, ns->zns.zrwafg);
2084 
2085     nlbc = nzrwafgs * ns->zns.zrwafg;
2086 
2087     trace_pci_nvme_zoned_zrwa_implicit_flush(zone->d.zslba, nlbc);
2088 
2089     zone->w_ptr += nlbc;
2090 
2091     nvme_advance_zone_wp(ns, zone, nlbc);
2092 }
2093 
2094 static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req)
2095 {
2096     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2097     NvmeZone *zone;
2098     uint64_t slba;
2099     uint32_t nlb;
2100 
2101     slba = le64_to_cpu(rw->slba);
2102     nlb = le16_to_cpu(rw->nlb) + 1;
2103     zone = nvme_get_zone_by_slba(ns, slba);
2104     assert(zone);
2105 
2106     if (zone->d.za & NVME_ZA_ZRWA_VALID) {
2107         uint64_t ezrwa = zone->w_ptr + ns->zns.zrwas - 1;
2108         uint64_t elba = slba + nlb - 1;
2109 
2110         if (elba > ezrwa) {
2111             nvme_zoned_zrwa_implicit_flush(ns, zone, elba - ezrwa);
2112         }
2113 
2114         return;
2115     }
2116 
2117     nvme_advance_zone_wp(ns, zone, nlb);
2118 }
2119 
2120 static inline bool nvme_is_write(NvmeRequest *req)
2121 {
2122     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2123 
2124     return rw->opcode == NVME_CMD_WRITE ||
2125            rw->opcode == NVME_CMD_ZONE_APPEND ||
2126            rw->opcode == NVME_CMD_WRITE_ZEROES;
2127 }
2128 
2129 static AioContext *nvme_get_aio_context(BlockAIOCB *acb)
2130 {
2131     return qemu_get_aio_context();
2132 }
2133 
2134 static void nvme_misc_cb(void *opaque, int ret)
2135 {
2136     NvmeRequest *req = opaque;
2137 
2138     trace_pci_nvme_misc_cb(nvme_cid(req));
2139 
2140     if (ret) {
2141         nvme_aio_err(req, ret);
2142     }
2143 
2144     nvme_enqueue_req_completion(nvme_cq(req), req);
2145 }
2146 
2147 void nvme_rw_complete_cb(void *opaque, int ret)
2148 {
2149     NvmeRequest *req = opaque;
2150     NvmeNamespace *ns = req->ns;
2151     BlockBackend *blk = ns->blkconf.blk;
2152     BlockAcctCookie *acct = &req->acct;
2153     BlockAcctStats *stats = blk_get_stats(blk);
2154 
2155     trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk));
2156 
2157     if (ret) {
2158         block_acct_failed(stats, acct);
2159         nvme_aio_err(req, ret);
2160     } else {
2161         block_acct_done(stats, acct);
2162     }
2163 
2164     if (ns->params.zoned && nvme_is_write(req)) {
2165         nvme_finalize_zoned_write(ns, req);
2166     }
2167 
2168     nvme_enqueue_req_completion(nvme_cq(req), req);
2169 }
2170 
2171 static void nvme_rw_cb(void *opaque, int ret)
2172 {
2173     NvmeRequest *req = opaque;
2174     NvmeNamespace *ns = req->ns;
2175 
2176     BlockBackend *blk = ns->blkconf.blk;
2177 
2178     trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
2179 
2180     if (ret) {
2181         goto out;
2182     }
2183 
2184     if (ns->lbaf.ms) {
2185         NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2186         uint64_t slba = le64_to_cpu(rw->slba);
2187         uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
2188         uint64_t offset = nvme_moff(ns, slba);
2189 
2190         if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) {
2191             size_t mlen = nvme_m2b(ns, nlb);
2192 
2193             req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen,
2194                                                BDRV_REQ_MAY_UNMAP,
2195                                                nvme_rw_complete_cb, req);
2196             return;
2197         }
2198 
2199         if (nvme_ns_ext(ns) || req->cmd.mptr) {
2200             uint16_t status;
2201 
2202             nvme_sg_unmap(&req->sg);
2203             status = nvme_map_mdata(nvme_ctrl(req), nlb, req);
2204             if (status) {
2205                 ret = -EFAULT;
2206                 goto out;
2207             }
2208 
2209             if (req->cmd.opcode == NVME_CMD_READ) {
2210                 return nvme_blk_read(blk, offset, nvme_rw_complete_cb, req);
2211             }
2212 
2213             return nvme_blk_write(blk, offset, nvme_rw_complete_cb, req);
2214         }
2215     }
2216 
2217 out:
2218     nvme_rw_complete_cb(req, ret);
2219 }
2220 
2221 static void nvme_verify_cb(void *opaque, int ret)
2222 {
2223     NvmeBounceContext *ctx = opaque;
2224     NvmeRequest *req = ctx->req;
2225     NvmeNamespace *ns = req->ns;
2226     BlockBackend *blk = ns->blkconf.blk;
2227     BlockAcctCookie *acct = &req->acct;
2228     BlockAcctStats *stats = blk_get_stats(blk);
2229     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2230     uint64_t slba = le64_to_cpu(rw->slba);
2231     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2232     uint16_t apptag = le16_to_cpu(rw->apptag);
2233     uint16_t appmask = le16_to_cpu(rw->appmask);
2234     uint64_t reftag = le32_to_cpu(rw->reftag);
2235     uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2236     uint16_t status;
2237 
2238     reftag |= cdw3 << 32;
2239 
2240     trace_pci_nvme_verify_cb(nvme_cid(req), prinfo, apptag, appmask, reftag);
2241 
2242     if (ret) {
2243         block_acct_failed(stats, acct);
2244         nvme_aio_err(req, ret);
2245         goto out;
2246     }
2247 
2248     block_acct_done(stats, acct);
2249 
2250     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2251         status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce,
2252                                        ctx->mdata.iov.size, slba);
2253         if (status) {
2254             req->status = status;
2255             goto out;
2256         }
2257 
2258         req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2259                                      ctx->mdata.bounce, ctx->mdata.iov.size,
2260                                      prinfo, slba, apptag, appmask, &reftag);
2261     }
2262 
2263 out:
2264     qemu_iovec_destroy(&ctx->data.iov);
2265     g_free(ctx->data.bounce);
2266 
2267     qemu_iovec_destroy(&ctx->mdata.iov);
2268     g_free(ctx->mdata.bounce);
2269 
2270     g_free(ctx);
2271 
2272     nvme_enqueue_req_completion(nvme_cq(req), req);
2273 }
2274 
2275 
2276 static void nvme_verify_mdata_in_cb(void *opaque, int ret)
2277 {
2278     NvmeBounceContext *ctx = opaque;
2279     NvmeRequest *req = ctx->req;
2280     NvmeNamespace *ns = req->ns;
2281     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2282     uint64_t slba = le64_to_cpu(rw->slba);
2283     uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2284     size_t mlen = nvme_m2b(ns, nlb);
2285     uint64_t offset = nvme_moff(ns, slba);
2286     BlockBackend *blk = ns->blkconf.blk;
2287 
2288     trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk));
2289 
2290     if (ret) {
2291         goto out;
2292     }
2293 
2294     ctx->mdata.bounce = g_malloc(mlen);
2295 
2296     qemu_iovec_reset(&ctx->mdata.iov);
2297     qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2298 
2299     req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2300                                 nvme_verify_cb, ctx);
2301     return;
2302 
2303 out:
2304     nvme_verify_cb(ctx, ret);
2305 }
2306 
2307 struct nvme_compare_ctx {
2308     struct {
2309         QEMUIOVector iov;
2310         uint8_t *bounce;
2311     } data;
2312 
2313     struct {
2314         QEMUIOVector iov;
2315         uint8_t *bounce;
2316     } mdata;
2317 };
2318 
2319 static void nvme_compare_mdata_cb(void *opaque, int ret)
2320 {
2321     NvmeRequest *req = opaque;
2322     NvmeNamespace *ns = req->ns;
2323     NvmeCtrl *n = nvme_ctrl(req);
2324     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2325     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2326     uint16_t apptag = le16_to_cpu(rw->apptag);
2327     uint16_t appmask = le16_to_cpu(rw->appmask);
2328     uint64_t reftag = le32_to_cpu(rw->reftag);
2329     uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2330     struct nvme_compare_ctx *ctx = req->opaque;
2331     g_autofree uint8_t *buf = NULL;
2332     BlockBackend *blk = ns->blkconf.blk;
2333     BlockAcctCookie *acct = &req->acct;
2334     BlockAcctStats *stats = blk_get_stats(blk);
2335     uint16_t status = NVME_SUCCESS;
2336 
2337     reftag |= cdw3 << 32;
2338 
2339     trace_pci_nvme_compare_mdata_cb(nvme_cid(req));
2340 
2341     if (ret) {
2342         block_acct_failed(stats, acct);
2343         nvme_aio_err(req, ret);
2344         goto out;
2345     }
2346 
2347     buf = g_malloc(ctx->mdata.iov.size);
2348 
2349     status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size,
2350                                NVME_TX_DIRECTION_TO_DEVICE, req);
2351     if (status) {
2352         req->status = status;
2353         goto out;
2354     }
2355 
2356     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2357         uint64_t slba = le64_to_cpu(rw->slba);
2358         uint8_t *bufp;
2359         uint8_t *mbufp = ctx->mdata.bounce;
2360         uint8_t *end = mbufp + ctx->mdata.iov.size;
2361         int16_t pil = 0;
2362 
2363         status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2364                                 ctx->mdata.bounce, ctx->mdata.iov.size, prinfo,
2365                                 slba, apptag, appmask, &reftag);
2366         if (status) {
2367             req->status = status;
2368             goto out;
2369         }
2370 
2371         /*
2372          * When formatted with protection information, do not compare the DIF
2373          * tuple.
2374          */
2375         if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) {
2376             pil = ns->lbaf.ms - nvme_pi_tuple_size(ns);
2377         }
2378 
2379         for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) {
2380             if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) {
2381                 req->status = NVME_CMP_FAILURE;
2382                 goto out;
2383             }
2384         }
2385 
2386         goto out;
2387     }
2388 
2389     if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) {
2390         req->status = NVME_CMP_FAILURE;
2391         goto out;
2392     }
2393 
2394     block_acct_done(stats, acct);
2395 
2396 out:
2397     qemu_iovec_destroy(&ctx->data.iov);
2398     g_free(ctx->data.bounce);
2399 
2400     qemu_iovec_destroy(&ctx->mdata.iov);
2401     g_free(ctx->mdata.bounce);
2402 
2403     g_free(ctx);
2404 
2405     nvme_enqueue_req_completion(nvme_cq(req), req);
2406 }
2407 
2408 static void nvme_compare_data_cb(void *opaque, int ret)
2409 {
2410     NvmeRequest *req = opaque;
2411     NvmeCtrl *n = nvme_ctrl(req);
2412     NvmeNamespace *ns = req->ns;
2413     BlockBackend *blk = ns->blkconf.blk;
2414     BlockAcctCookie *acct = &req->acct;
2415     BlockAcctStats *stats = blk_get_stats(blk);
2416 
2417     struct nvme_compare_ctx *ctx = req->opaque;
2418     g_autofree uint8_t *buf = NULL;
2419     uint16_t status;
2420 
2421     trace_pci_nvme_compare_data_cb(nvme_cid(req));
2422 
2423     if (ret) {
2424         block_acct_failed(stats, acct);
2425         nvme_aio_err(req, ret);
2426         goto out;
2427     }
2428 
2429     buf = g_malloc(ctx->data.iov.size);
2430 
2431     status = nvme_bounce_data(n, buf, ctx->data.iov.size,
2432                               NVME_TX_DIRECTION_TO_DEVICE, req);
2433     if (status) {
2434         req->status = status;
2435         goto out;
2436     }
2437 
2438     if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) {
2439         req->status = NVME_CMP_FAILURE;
2440         goto out;
2441     }
2442 
2443     if (ns->lbaf.ms) {
2444         NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2445         uint64_t slba = le64_to_cpu(rw->slba);
2446         uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2447         size_t mlen = nvme_m2b(ns, nlb);
2448         uint64_t offset = nvme_moff(ns, slba);
2449 
2450         ctx->mdata.bounce = g_malloc(mlen);
2451 
2452         qemu_iovec_init(&ctx->mdata.iov, 1);
2453         qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2454 
2455         req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2456                                     nvme_compare_mdata_cb, req);
2457         return;
2458     }
2459 
2460     block_acct_done(stats, acct);
2461 
2462 out:
2463     qemu_iovec_destroy(&ctx->data.iov);
2464     g_free(ctx->data.bounce);
2465     g_free(ctx);
2466 
2467     nvme_enqueue_req_completion(nvme_cq(req), req);
2468 }
2469 
2470 typedef struct NvmeDSMAIOCB {
2471     BlockAIOCB common;
2472     BlockAIOCB *aiocb;
2473     NvmeRequest *req;
2474     int ret;
2475 
2476     NvmeDsmRange *range;
2477     unsigned int nr;
2478     unsigned int idx;
2479 } NvmeDSMAIOCB;
2480 
2481 static void nvme_dsm_cancel(BlockAIOCB *aiocb)
2482 {
2483     NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common);
2484 
2485     /* break nvme_dsm_cb loop */
2486     iocb->idx = iocb->nr;
2487     iocb->ret = -ECANCELED;
2488 
2489     if (iocb->aiocb) {
2490         blk_aio_cancel_async(iocb->aiocb);
2491         iocb->aiocb = NULL;
2492     } else {
2493         /*
2494          * We only reach this if nvme_dsm_cancel() has already been called or
2495          * the command ran to completion.
2496          */
2497         assert(iocb->idx == iocb->nr);
2498     }
2499 }
2500 
2501 static const AIOCBInfo nvme_dsm_aiocb_info = {
2502     .aiocb_size   = sizeof(NvmeDSMAIOCB),
2503     .cancel_async = nvme_dsm_cancel,
2504 };
2505 
2506 static void nvme_dsm_cb(void *opaque, int ret);
2507 
2508 static void nvme_dsm_md_cb(void *opaque, int ret)
2509 {
2510     NvmeDSMAIOCB *iocb = opaque;
2511     NvmeRequest *req = iocb->req;
2512     NvmeNamespace *ns = req->ns;
2513     NvmeDsmRange *range;
2514     uint64_t slba;
2515     uint32_t nlb;
2516 
2517     if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
2518         goto done;
2519     }
2520 
2521     range = &iocb->range[iocb->idx - 1];
2522     slba = le64_to_cpu(range->slba);
2523     nlb = le32_to_cpu(range->nlb);
2524 
2525     /*
2526      * Check that all block were discarded (zeroed); otherwise we do not zero
2527      * the metadata.
2528      */
2529 
2530     ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO);
2531     if (ret) {
2532         if (ret < 0) {
2533             goto done;
2534         }
2535 
2536         nvme_dsm_cb(iocb, 0);
2537         return;
2538     }
2539 
2540     iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba),
2541                                         nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP,
2542                                         nvme_dsm_cb, iocb);
2543     return;
2544 
2545 done:
2546     nvme_dsm_cb(iocb, ret);
2547 }
2548 
2549 static void nvme_dsm_cb(void *opaque, int ret)
2550 {
2551     NvmeDSMAIOCB *iocb = opaque;
2552     NvmeRequest *req = iocb->req;
2553     NvmeCtrl *n = nvme_ctrl(req);
2554     NvmeNamespace *ns = req->ns;
2555     NvmeDsmRange *range;
2556     uint64_t slba;
2557     uint32_t nlb;
2558 
2559     if (iocb->ret < 0) {
2560         goto done;
2561     } else if (ret < 0) {
2562         iocb->ret = ret;
2563         goto done;
2564     }
2565 
2566 next:
2567     if (iocb->idx == iocb->nr) {
2568         goto done;
2569     }
2570 
2571     range = &iocb->range[iocb->idx++];
2572     slba = le64_to_cpu(range->slba);
2573     nlb = le32_to_cpu(range->nlb);
2574 
2575     trace_pci_nvme_dsm_deallocate(slba, nlb);
2576 
2577     if (nlb > n->dmrsl) {
2578         trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl);
2579         goto next;
2580     }
2581 
2582     if (nvme_check_bounds(ns, slba, nlb)) {
2583         trace_pci_nvme_err_invalid_lba_range(slba, nlb,
2584                                              ns->id_ns.nsze);
2585         goto next;
2586     }
2587 
2588     iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba),
2589                                    nvme_l2b(ns, nlb),
2590                                    nvme_dsm_md_cb, iocb);
2591     return;
2592 
2593 done:
2594     iocb->aiocb = NULL;
2595     iocb->common.cb(iocb->common.opaque, iocb->ret);
2596     qemu_aio_unref(iocb);
2597 }
2598 
2599 static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req)
2600 {
2601     NvmeNamespace *ns = req->ns;
2602     NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd;
2603     uint32_t attr = le32_to_cpu(dsm->attributes);
2604     uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1;
2605     uint16_t status = NVME_SUCCESS;
2606 
2607     trace_pci_nvme_dsm(nr, attr);
2608 
2609     if (attr & NVME_DSMGMT_AD) {
2610         NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk,
2611                                          nvme_misc_cb, req);
2612 
2613         iocb->req = req;
2614         iocb->ret = 0;
2615         iocb->range = g_new(NvmeDsmRange, nr);
2616         iocb->nr = nr;
2617         iocb->idx = 0;
2618 
2619         status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr,
2620                           req);
2621         if (status) {
2622             return status;
2623         }
2624 
2625         req->aiocb = &iocb->common;
2626         nvme_dsm_cb(iocb, 0);
2627 
2628         return NVME_NO_COMPLETE;
2629     }
2630 
2631     return status;
2632 }
2633 
2634 static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req)
2635 {
2636     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2637     NvmeNamespace *ns = req->ns;
2638     BlockBackend *blk = ns->blkconf.blk;
2639     uint64_t slba = le64_to_cpu(rw->slba);
2640     uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2641     size_t len = nvme_l2b(ns, nlb);
2642     int64_t offset = nvme_l2b(ns, slba);
2643     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2644     uint32_t reftag = le32_to_cpu(rw->reftag);
2645     NvmeBounceContext *ctx = NULL;
2646     uint16_t status;
2647 
2648     trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb);
2649 
2650     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2651         status = nvme_check_prinfo(ns, prinfo, slba, reftag);
2652         if (status) {
2653             return status;
2654         }
2655 
2656         if (prinfo & NVME_PRINFO_PRACT) {
2657             return NVME_INVALID_PROT_INFO | NVME_DNR;
2658         }
2659     }
2660 
2661     if (len > n->page_size << n->params.vsl) {
2662         return NVME_INVALID_FIELD | NVME_DNR;
2663     }
2664 
2665     status = nvme_check_bounds(ns, slba, nlb);
2666     if (status) {
2667         return status;
2668     }
2669 
2670     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2671         status = nvme_check_dulbe(ns, slba, nlb);
2672         if (status) {
2673             return status;
2674         }
2675     }
2676 
2677     ctx = g_new0(NvmeBounceContext, 1);
2678     ctx->req = req;
2679 
2680     ctx->data.bounce = g_malloc(len);
2681 
2682     qemu_iovec_init(&ctx->data.iov, 1);
2683     qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len);
2684 
2685     block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size,
2686                      BLOCK_ACCT_READ);
2687 
2688     req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0,
2689                                 nvme_verify_mdata_in_cb, ctx);
2690     return NVME_NO_COMPLETE;
2691 }
2692 
2693 typedef struct NvmeCopyAIOCB {
2694     BlockAIOCB common;
2695     BlockAIOCB *aiocb;
2696     NvmeRequest *req;
2697     int ret;
2698 
2699     void *ranges;
2700     unsigned int format;
2701     int nr;
2702     int idx;
2703 
2704     uint8_t *bounce;
2705     QEMUIOVector iov;
2706     struct {
2707         BlockAcctCookie read;
2708         BlockAcctCookie write;
2709     } acct;
2710 
2711     uint64_t reftag;
2712     uint64_t slba;
2713 
2714     NvmeZone *zone;
2715 } NvmeCopyAIOCB;
2716 
2717 static void nvme_copy_cancel(BlockAIOCB *aiocb)
2718 {
2719     NvmeCopyAIOCB *iocb = container_of(aiocb, NvmeCopyAIOCB, common);
2720 
2721     iocb->ret = -ECANCELED;
2722 
2723     if (iocb->aiocb) {
2724         blk_aio_cancel_async(iocb->aiocb);
2725         iocb->aiocb = NULL;
2726     }
2727 }
2728 
2729 static const AIOCBInfo nvme_copy_aiocb_info = {
2730     .aiocb_size   = sizeof(NvmeCopyAIOCB),
2731     .cancel_async = nvme_copy_cancel,
2732 };
2733 
2734 static void nvme_copy_done(NvmeCopyAIOCB *iocb)
2735 {
2736     NvmeRequest *req = iocb->req;
2737     NvmeNamespace *ns = req->ns;
2738     BlockAcctStats *stats = blk_get_stats(ns->blkconf.blk);
2739 
2740     if (iocb->idx != iocb->nr) {
2741         req->cqe.result = cpu_to_le32(iocb->idx);
2742     }
2743 
2744     qemu_iovec_destroy(&iocb->iov);
2745     g_free(iocb->bounce);
2746 
2747     if (iocb->ret < 0) {
2748         block_acct_failed(stats, &iocb->acct.read);
2749         block_acct_failed(stats, &iocb->acct.write);
2750     } else {
2751         block_acct_done(stats, &iocb->acct.read);
2752         block_acct_done(stats, &iocb->acct.write);
2753     }
2754 
2755     iocb->common.cb(iocb->common.opaque, iocb->ret);
2756     qemu_aio_unref(iocb);
2757 }
2758 
2759 static void nvme_do_copy(NvmeCopyAIOCB *iocb);
2760 
2761 static void nvme_copy_source_range_parse_format0(void *ranges, int idx,
2762                                                  uint64_t *slba, uint32_t *nlb,
2763                                                  uint16_t *apptag,
2764                                                  uint16_t *appmask,
2765                                                  uint64_t *reftag)
2766 {
2767     NvmeCopySourceRangeFormat0 *_ranges = ranges;
2768 
2769     if (slba) {
2770         *slba = le64_to_cpu(_ranges[idx].slba);
2771     }
2772 
2773     if (nlb) {
2774         *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2775     }
2776 
2777     if (apptag) {
2778         *apptag = le16_to_cpu(_ranges[idx].apptag);
2779     }
2780 
2781     if (appmask) {
2782         *appmask = le16_to_cpu(_ranges[idx].appmask);
2783     }
2784 
2785     if (reftag) {
2786         *reftag = le32_to_cpu(_ranges[idx].reftag);
2787     }
2788 }
2789 
2790 static void nvme_copy_source_range_parse_format1(void *ranges, int idx,
2791                                                  uint64_t *slba, uint32_t *nlb,
2792                                                  uint16_t *apptag,
2793                                                  uint16_t *appmask,
2794                                                  uint64_t *reftag)
2795 {
2796     NvmeCopySourceRangeFormat1 *_ranges = ranges;
2797 
2798     if (slba) {
2799         *slba = le64_to_cpu(_ranges[idx].slba);
2800     }
2801 
2802     if (nlb) {
2803         *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2804     }
2805 
2806     if (apptag) {
2807         *apptag = le16_to_cpu(_ranges[idx].apptag);
2808     }
2809 
2810     if (appmask) {
2811         *appmask = le16_to_cpu(_ranges[idx].appmask);
2812     }
2813 
2814     if (reftag) {
2815         *reftag = 0;
2816 
2817         *reftag |= (uint64_t)_ranges[idx].sr[4] << 40;
2818         *reftag |= (uint64_t)_ranges[idx].sr[5] << 32;
2819         *reftag |= (uint64_t)_ranges[idx].sr[6] << 24;
2820         *reftag |= (uint64_t)_ranges[idx].sr[7] << 16;
2821         *reftag |= (uint64_t)_ranges[idx].sr[8] << 8;
2822         *reftag |= (uint64_t)_ranges[idx].sr[9];
2823     }
2824 }
2825 
2826 static void nvme_copy_source_range_parse(void *ranges, int idx, uint8_t format,
2827                                          uint64_t *slba, uint32_t *nlb,
2828                                          uint16_t *apptag, uint16_t *appmask,
2829                                          uint64_t *reftag)
2830 {
2831     switch (format) {
2832     case NVME_COPY_FORMAT_0:
2833         nvme_copy_source_range_parse_format0(ranges, idx, slba, nlb, apptag,
2834                                              appmask, reftag);
2835         break;
2836 
2837     case NVME_COPY_FORMAT_1:
2838         nvme_copy_source_range_parse_format1(ranges, idx, slba, nlb, apptag,
2839                                              appmask, reftag);
2840         break;
2841 
2842     default:
2843         abort();
2844     }
2845 }
2846 
2847 static void nvme_copy_out_completed_cb(void *opaque, int ret)
2848 {
2849     NvmeCopyAIOCB *iocb = opaque;
2850     NvmeRequest *req = iocb->req;
2851     NvmeNamespace *ns = req->ns;
2852     uint32_t nlb;
2853 
2854     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2855                                  &nlb, NULL, NULL, NULL);
2856 
2857     if (ret < 0) {
2858         iocb->ret = ret;
2859         goto out;
2860     } else if (iocb->ret < 0) {
2861         goto out;
2862     }
2863 
2864     if (ns->params.zoned) {
2865         nvme_advance_zone_wp(ns, iocb->zone, nlb);
2866     }
2867 
2868     iocb->idx++;
2869     iocb->slba += nlb;
2870 out:
2871     nvme_do_copy(iocb);
2872 }
2873 
2874 static void nvme_copy_out_cb(void *opaque, int ret)
2875 {
2876     NvmeCopyAIOCB *iocb = opaque;
2877     NvmeRequest *req = iocb->req;
2878     NvmeNamespace *ns = req->ns;
2879     uint32_t nlb;
2880     size_t mlen;
2881     uint8_t *mbounce;
2882 
2883     if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
2884         goto out;
2885     }
2886 
2887     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2888                                  &nlb, NULL, NULL, NULL);
2889 
2890     mlen = nvme_m2b(ns, nlb);
2891     mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2892 
2893     qemu_iovec_reset(&iocb->iov);
2894     qemu_iovec_add(&iocb->iov, mbounce, mlen);
2895 
2896     iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_moff(ns, iocb->slba),
2897                                   &iocb->iov, 0, nvme_copy_out_completed_cb,
2898                                   iocb);
2899 
2900     return;
2901 
2902 out:
2903     nvme_copy_out_completed_cb(iocb, ret);
2904 }
2905 
2906 static void nvme_copy_in_completed_cb(void *opaque, int ret)
2907 {
2908     NvmeCopyAIOCB *iocb = opaque;
2909     NvmeRequest *req = iocb->req;
2910     NvmeNamespace *ns = req->ns;
2911     uint32_t nlb;
2912     uint64_t slba;
2913     uint16_t apptag, appmask;
2914     uint64_t reftag;
2915     size_t len;
2916     uint16_t status;
2917 
2918     if (ret < 0) {
2919         iocb->ret = ret;
2920         goto out;
2921     } else if (iocb->ret < 0) {
2922         goto out;
2923     }
2924 
2925     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2926                                  &nlb, &apptag, &appmask, &reftag);
2927     len = nvme_l2b(ns, nlb);
2928 
2929     trace_pci_nvme_copy_out(iocb->slba, nlb);
2930 
2931     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2932         NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2933 
2934         uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
2935         uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
2936 
2937         size_t mlen = nvme_m2b(ns, nlb);
2938         uint8_t *mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2939 
2940         status = nvme_dif_mangle_mdata(ns, mbounce, mlen, slba);
2941         if (status) {
2942             goto invalid;
2943         }
2944         status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, prinfor,
2945                                 slba, apptag, appmask, &reftag);
2946         if (status) {
2947             goto invalid;
2948         }
2949 
2950         apptag = le16_to_cpu(copy->apptag);
2951         appmask = le16_to_cpu(copy->appmask);
2952 
2953         if (prinfow & NVME_PRINFO_PRACT) {
2954             status = nvme_check_prinfo(ns, prinfow, iocb->slba, iocb->reftag);
2955             if (status) {
2956                 goto invalid;
2957             }
2958 
2959             nvme_dif_pract_generate_dif(ns, iocb->bounce, len, mbounce, mlen,
2960                                         apptag, &iocb->reftag);
2961         } else {
2962             status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen,
2963                                     prinfow, iocb->slba, apptag, appmask,
2964                                     &iocb->reftag);
2965             if (status) {
2966                 goto invalid;
2967             }
2968         }
2969     }
2970 
2971     status = nvme_check_bounds(ns, iocb->slba, nlb);
2972     if (status) {
2973         goto invalid;
2974     }
2975 
2976     if (ns->params.zoned) {
2977         status = nvme_check_zone_write(ns, iocb->zone, iocb->slba, nlb);
2978         if (status) {
2979             goto invalid;
2980         }
2981 
2982         if (!(iocb->zone->d.za & NVME_ZA_ZRWA_VALID)) {
2983             iocb->zone->w_ptr += nlb;
2984         }
2985     }
2986 
2987     qemu_iovec_reset(&iocb->iov);
2988     qemu_iovec_add(&iocb->iov, iocb->bounce, len);
2989 
2990     iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, iocb->slba),
2991                                   &iocb->iov, 0, nvme_copy_out_cb, iocb);
2992 
2993     return;
2994 
2995 invalid:
2996     req->status = status;
2997     iocb->ret = -1;
2998 out:
2999     nvme_do_copy(iocb);
3000 }
3001 
3002 static void nvme_copy_in_cb(void *opaque, int ret)
3003 {
3004     NvmeCopyAIOCB *iocb = opaque;
3005     NvmeRequest *req = iocb->req;
3006     NvmeNamespace *ns = req->ns;
3007     uint64_t slba;
3008     uint32_t nlb;
3009 
3010     if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
3011         goto out;
3012     }
3013 
3014     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
3015                                  &nlb, NULL, NULL, NULL);
3016 
3017     qemu_iovec_reset(&iocb->iov);
3018     qemu_iovec_add(&iocb->iov, iocb->bounce + nvme_l2b(ns, nlb),
3019                    nvme_m2b(ns, nlb));
3020 
3021     iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_moff(ns, slba),
3022                                  &iocb->iov, 0, nvme_copy_in_completed_cb,
3023                                  iocb);
3024     return;
3025 
3026 out:
3027     nvme_copy_in_completed_cb(iocb, ret);
3028 }
3029 
3030 static void nvme_do_copy(NvmeCopyAIOCB *iocb)
3031 {
3032     NvmeRequest *req = iocb->req;
3033     NvmeNamespace *ns = req->ns;
3034     uint64_t slba;
3035     uint32_t nlb;
3036     size_t len;
3037     uint16_t status;
3038 
3039     if (iocb->ret < 0) {
3040         goto done;
3041     }
3042 
3043     if (iocb->idx == iocb->nr) {
3044         goto done;
3045     }
3046 
3047     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
3048                                  &nlb, NULL, NULL, NULL);
3049     len = nvme_l2b(ns, nlb);
3050 
3051     trace_pci_nvme_copy_source_range(slba, nlb);
3052 
3053     if (nlb > le16_to_cpu(ns->id_ns.mssrl)) {
3054         status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
3055         goto invalid;
3056     }
3057 
3058     status = nvme_check_bounds(ns, slba, nlb);
3059     if (status) {
3060         goto invalid;
3061     }
3062 
3063     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3064         status = nvme_check_dulbe(ns, slba, nlb);
3065         if (status) {
3066             goto invalid;
3067         }
3068     }
3069 
3070     if (ns->params.zoned) {
3071         status = nvme_check_zone_read(ns, slba, nlb);
3072         if (status) {
3073             goto invalid;
3074         }
3075     }
3076 
3077     qemu_iovec_reset(&iocb->iov);
3078     qemu_iovec_add(&iocb->iov, iocb->bounce, len);
3079 
3080     iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_l2b(ns, slba),
3081                                  &iocb->iov, 0, nvme_copy_in_cb, iocb);
3082     return;
3083 
3084 invalid:
3085     req->status = status;
3086     iocb->ret = -1;
3087 done:
3088     nvme_copy_done(iocb);
3089 }
3090 
3091 static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
3092 {
3093     NvmeNamespace *ns = req->ns;
3094     NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
3095     NvmeCopyAIOCB *iocb = blk_aio_get(&nvme_copy_aiocb_info, ns->blkconf.blk,
3096                                       nvme_misc_cb, req);
3097     uint16_t nr = copy->nr + 1;
3098     uint8_t format = copy->control[0] & 0xf;
3099     uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
3100     uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
3101     size_t len = sizeof(NvmeCopySourceRangeFormat0);
3102 
3103     uint16_t status;
3104 
3105     trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format);
3106 
3107     iocb->ranges = NULL;
3108     iocb->zone = NULL;
3109 
3110     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) &&
3111         ((prinfor & NVME_PRINFO_PRACT) != (prinfow & NVME_PRINFO_PRACT))) {
3112         status = NVME_INVALID_FIELD | NVME_DNR;
3113         goto invalid;
3114     }
3115 
3116     if (!(n->id_ctrl.ocfs & (1 << format))) {
3117         trace_pci_nvme_err_copy_invalid_format(format);
3118         status = NVME_INVALID_FIELD | NVME_DNR;
3119         goto invalid;
3120     }
3121 
3122     if (nr > ns->id_ns.msrc + 1) {
3123         status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
3124         goto invalid;
3125     }
3126 
3127     if ((ns->pif == 0x0 && format != 0x0) ||
3128         (ns->pif != 0x0 && format != 0x1)) {
3129         status = NVME_INVALID_FORMAT | NVME_DNR;
3130         goto invalid;
3131     }
3132 
3133     if (ns->pif) {
3134         len = sizeof(NvmeCopySourceRangeFormat1);
3135     }
3136 
3137     iocb->format = format;
3138     iocb->ranges = g_malloc_n(nr, len);
3139     status = nvme_h2c(n, (uint8_t *)iocb->ranges, len * nr, req);
3140     if (status) {
3141         goto invalid;
3142     }
3143 
3144     iocb->slba = le64_to_cpu(copy->sdlba);
3145 
3146     if (ns->params.zoned) {
3147         iocb->zone = nvme_get_zone_by_slba(ns, iocb->slba);
3148         if (!iocb->zone) {
3149             status = NVME_LBA_RANGE | NVME_DNR;
3150             goto invalid;
3151         }
3152 
3153         status = nvme_zrm_auto(n, ns, iocb->zone);
3154         if (status) {
3155             goto invalid;
3156         }
3157     }
3158 
3159     iocb->req = req;
3160     iocb->ret = 0;
3161     iocb->nr = nr;
3162     iocb->idx = 0;
3163     iocb->reftag = le32_to_cpu(copy->reftag);
3164     iocb->reftag |= (uint64_t)le32_to_cpu(copy->cdw3) << 32;
3165     iocb->bounce = g_malloc_n(le16_to_cpu(ns->id_ns.mssrl),
3166                               ns->lbasz + ns->lbaf.ms);
3167 
3168     qemu_iovec_init(&iocb->iov, 1);
3169 
3170     block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.read, 0,
3171                      BLOCK_ACCT_READ);
3172     block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.write, 0,
3173                      BLOCK_ACCT_WRITE);
3174 
3175     req->aiocb = &iocb->common;
3176     nvme_do_copy(iocb);
3177 
3178     return NVME_NO_COMPLETE;
3179 
3180 invalid:
3181     g_free(iocb->ranges);
3182     qemu_aio_unref(iocb);
3183     return status;
3184 }
3185 
3186 static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req)
3187 {
3188     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3189     NvmeNamespace *ns = req->ns;
3190     BlockBackend *blk = ns->blkconf.blk;
3191     uint64_t slba = le64_to_cpu(rw->slba);
3192     uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
3193     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3194     size_t data_len = nvme_l2b(ns, nlb);
3195     size_t len = data_len;
3196     int64_t offset = nvme_l2b(ns, slba);
3197     struct nvme_compare_ctx *ctx = NULL;
3198     uint16_t status;
3199 
3200     trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb);
3201 
3202     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (prinfo & NVME_PRINFO_PRACT)) {
3203         return NVME_INVALID_PROT_INFO | NVME_DNR;
3204     }
3205 
3206     if (nvme_ns_ext(ns)) {
3207         len += nvme_m2b(ns, nlb);
3208     }
3209 
3210     status = nvme_check_mdts(n, len);
3211     if (status) {
3212         return status;
3213     }
3214 
3215     status = nvme_check_bounds(ns, slba, nlb);
3216     if (status) {
3217         return status;
3218     }
3219 
3220     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3221         status = nvme_check_dulbe(ns, slba, nlb);
3222         if (status) {
3223             return status;
3224         }
3225     }
3226 
3227     status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
3228     if (status) {
3229         return status;
3230     }
3231 
3232     ctx = g_new(struct nvme_compare_ctx, 1);
3233     ctx->data.bounce = g_malloc(data_len);
3234 
3235     req->opaque = ctx;
3236 
3237     qemu_iovec_init(&ctx->data.iov, 1);
3238     qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len);
3239 
3240     block_acct_start(blk_get_stats(blk), &req->acct, data_len,
3241                      BLOCK_ACCT_READ);
3242     req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0,
3243                                 nvme_compare_data_cb, req);
3244 
3245     return NVME_NO_COMPLETE;
3246 }
3247 
3248 typedef struct NvmeFlushAIOCB {
3249     BlockAIOCB common;
3250     BlockAIOCB *aiocb;
3251     NvmeRequest *req;
3252     int ret;
3253 
3254     NvmeNamespace *ns;
3255     uint32_t nsid;
3256     bool broadcast;
3257 } NvmeFlushAIOCB;
3258 
3259 static void nvme_flush_cancel(BlockAIOCB *acb)
3260 {
3261     NvmeFlushAIOCB *iocb = container_of(acb, NvmeFlushAIOCB, common);
3262 
3263     iocb->ret = -ECANCELED;
3264 
3265     if (iocb->aiocb) {
3266         blk_aio_cancel_async(iocb->aiocb);
3267         iocb->aiocb = NULL;
3268     }
3269 }
3270 
3271 static const AIOCBInfo nvme_flush_aiocb_info = {
3272     .aiocb_size = sizeof(NvmeFlushAIOCB),
3273     .cancel_async = nvme_flush_cancel,
3274     .get_aio_context = nvme_get_aio_context,
3275 };
3276 
3277 static void nvme_do_flush(NvmeFlushAIOCB *iocb);
3278 
3279 static void nvme_flush_ns_cb(void *opaque, int ret)
3280 {
3281     NvmeFlushAIOCB *iocb = opaque;
3282     NvmeNamespace *ns = iocb->ns;
3283 
3284     if (ret < 0) {
3285         iocb->ret = ret;
3286         goto out;
3287     } else if (iocb->ret < 0) {
3288         goto out;
3289     }
3290 
3291     if (ns) {
3292         trace_pci_nvme_flush_ns(iocb->nsid);
3293 
3294         iocb->ns = NULL;
3295         iocb->aiocb = blk_aio_flush(ns->blkconf.blk, nvme_flush_ns_cb, iocb);
3296         return;
3297     }
3298 
3299 out:
3300     nvme_do_flush(iocb);
3301 }
3302 
3303 static void nvme_do_flush(NvmeFlushAIOCB *iocb)
3304 {
3305     NvmeRequest *req = iocb->req;
3306     NvmeCtrl *n = nvme_ctrl(req);
3307     int i;
3308 
3309     if (iocb->ret < 0) {
3310         goto done;
3311     }
3312 
3313     if (iocb->broadcast) {
3314         for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
3315             iocb->ns = nvme_ns(n, i);
3316             if (iocb->ns) {
3317                 iocb->nsid = i;
3318                 break;
3319             }
3320         }
3321     }
3322 
3323     if (!iocb->ns) {
3324         goto done;
3325     }
3326 
3327     nvme_flush_ns_cb(iocb, 0);
3328     return;
3329 
3330 done:
3331     iocb->common.cb(iocb->common.opaque, iocb->ret);
3332     qemu_aio_unref(iocb);
3333 }
3334 
3335 static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
3336 {
3337     NvmeFlushAIOCB *iocb;
3338     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
3339     uint16_t status;
3340 
3341     iocb = qemu_aio_get(&nvme_flush_aiocb_info, NULL, nvme_misc_cb, req);
3342 
3343     iocb->req = req;
3344     iocb->ret = 0;
3345     iocb->ns = NULL;
3346     iocb->nsid = 0;
3347     iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
3348 
3349     if (!iocb->broadcast) {
3350         if (!nvme_nsid_valid(n, nsid)) {
3351             status = NVME_INVALID_NSID | NVME_DNR;
3352             goto out;
3353         }
3354 
3355         iocb->ns = nvme_ns(n, nsid);
3356         if (!iocb->ns) {
3357             status = NVME_INVALID_FIELD | NVME_DNR;
3358             goto out;
3359         }
3360 
3361         iocb->nsid = nsid;
3362     }
3363 
3364     req->aiocb = &iocb->common;
3365     nvme_do_flush(iocb);
3366 
3367     return NVME_NO_COMPLETE;
3368 
3369 out:
3370     qemu_aio_unref(iocb);
3371 
3372     return status;
3373 }
3374 
3375 static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req)
3376 {
3377     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3378     NvmeNamespace *ns = req->ns;
3379     uint64_t slba = le64_to_cpu(rw->slba);
3380     uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3381     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3382     uint64_t data_size = nvme_l2b(ns, nlb);
3383     uint64_t mapped_size = data_size;
3384     uint64_t data_offset;
3385     BlockBackend *blk = ns->blkconf.blk;
3386     uint16_t status;
3387 
3388     if (nvme_ns_ext(ns)) {
3389         mapped_size += nvme_m2b(ns, nlb);
3390 
3391         if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3392             bool pract = prinfo & NVME_PRINFO_PRACT;
3393 
3394             if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3395                 mapped_size = data_size;
3396             }
3397         }
3398     }
3399 
3400     trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba);
3401 
3402     status = nvme_check_mdts(n, mapped_size);
3403     if (status) {
3404         goto invalid;
3405     }
3406 
3407     status = nvme_check_bounds(ns, slba, nlb);
3408     if (status) {
3409         goto invalid;
3410     }
3411 
3412     if (ns->params.zoned) {
3413         status = nvme_check_zone_read(ns, slba, nlb);
3414         if (status) {
3415             trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status);
3416             goto invalid;
3417         }
3418     }
3419 
3420     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3421         status = nvme_check_dulbe(ns, slba, nlb);
3422         if (status) {
3423             goto invalid;
3424         }
3425     }
3426 
3427     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3428         return nvme_dif_rw(n, req);
3429     }
3430 
3431     status = nvme_map_data(n, nlb, req);
3432     if (status) {
3433         goto invalid;
3434     }
3435 
3436     data_offset = nvme_l2b(ns, slba);
3437 
3438     block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3439                      BLOCK_ACCT_READ);
3440     nvme_blk_read(blk, data_offset, nvme_rw_cb, req);
3441     return NVME_NO_COMPLETE;
3442 
3443 invalid:
3444     block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ);
3445     return status | NVME_DNR;
3446 }
3447 
3448 static void nvme_do_write_fdp(NvmeCtrl *n, NvmeRequest *req, uint64_t slba,
3449                               uint32_t nlb)
3450 {
3451     NvmeNamespace *ns = req->ns;
3452     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3453     uint64_t data_size = nvme_l2b(ns, nlb);
3454     uint32_t dw12 = le32_to_cpu(req->cmd.cdw12);
3455     uint8_t dtype = (dw12 >> 20) & 0xf;
3456     uint16_t pid = le16_to_cpu(rw->dspec);
3457     uint16_t ph, rg, ruhid;
3458     NvmeReclaimUnit *ru;
3459 
3460     if (dtype != NVME_DIRECTIVE_DATA_PLACEMENT ||
3461         !nvme_parse_pid(ns, pid, &ph, &rg)) {
3462         ph = 0;
3463         rg = 0;
3464     }
3465 
3466     ruhid = ns->fdp.phs[ph];
3467     ru = &ns->endgrp->fdp.ruhs[ruhid].rus[rg];
3468 
3469     nvme_fdp_stat_inc(&ns->endgrp->fdp.hbmw, data_size);
3470     nvme_fdp_stat_inc(&ns->endgrp->fdp.mbmw, data_size);
3471 
3472     while (nlb) {
3473         if (nlb < ru->ruamw) {
3474             ru->ruamw -= nlb;
3475             break;
3476         }
3477 
3478         nlb -= ru->ruamw;
3479         nvme_update_ruh(n, ns, pid);
3480     }
3481 }
3482 
3483 static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
3484                               bool wrz)
3485 {
3486     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3487     NvmeNamespace *ns = req->ns;
3488     uint64_t slba = le64_to_cpu(rw->slba);
3489     uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3490     uint16_t ctrl = le16_to_cpu(rw->control);
3491     uint8_t prinfo = NVME_RW_PRINFO(ctrl);
3492     uint64_t data_size = nvme_l2b(ns, nlb);
3493     uint64_t mapped_size = data_size;
3494     uint64_t data_offset;
3495     NvmeZone *zone;
3496     NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe;
3497     BlockBackend *blk = ns->blkconf.blk;
3498     uint16_t status;
3499 
3500     if (nvme_ns_ext(ns)) {
3501         mapped_size += nvme_m2b(ns, nlb);
3502 
3503         if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3504             bool pract = prinfo & NVME_PRINFO_PRACT;
3505 
3506             if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3507                 mapped_size -= nvme_m2b(ns, nlb);
3508             }
3509         }
3510     }
3511 
3512     trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode),
3513                          nvme_nsid(ns), nlb, mapped_size, slba);
3514 
3515     if (!wrz) {
3516         status = nvme_check_mdts(n, mapped_size);
3517         if (status) {
3518             goto invalid;
3519         }
3520     }
3521 
3522     status = nvme_check_bounds(ns, slba, nlb);
3523     if (status) {
3524         goto invalid;
3525     }
3526 
3527     if (ns->params.zoned) {
3528         zone = nvme_get_zone_by_slba(ns, slba);
3529         assert(zone);
3530 
3531         if (append) {
3532             bool piremap = !!(ctrl & NVME_RW_PIREMAP);
3533 
3534             if (unlikely(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3535                 return NVME_INVALID_ZONE_OP | NVME_DNR;
3536             }
3537 
3538             if (unlikely(slba != zone->d.zslba)) {
3539                 trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba);
3540                 status = NVME_INVALID_FIELD;
3541                 goto invalid;
3542             }
3543 
3544             if (n->params.zasl &&
3545                 data_size > (uint64_t)n->page_size << n->params.zasl) {
3546                 trace_pci_nvme_err_zasl(data_size);
3547                 return NVME_INVALID_FIELD | NVME_DNR;
3548             }
3549 
3550             slba = zone->w_ptr;
3551             rw->slba = cpu_to_le64(slba);
3552             res->slba = cpu_to_le64(slba);
3553 
3554             switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3555             case NVME_ID_NS_DPS_TYPE_1:
3556                 if (!piremap) {
3557                     return NVME_INVALID_PROT_INFO | NVME_DNR;
3558                 }
3559 
3560                 /* fallthrough */
3561 
3562             case NVME_ID_NS_DPS_TYPE_2:
3563                 if (piremap) {
3564                     uint32_t reftag = le32_to_cpu(rw->reftag);
3565                     rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba));
3566                 }
3567 
3568                 break;
3569 
3570             case NVME_ID_NS_DPS_TYPE_3:
3571                 if (piremap) {
3572                     return NVME_INVALID_PROT_INFO | NVME_DNR;
3573                 }
3574 
3575                 break;
3576             }
3577         }
3578 
3579         status = nvme_check_zone_write(ns, zone, slba, nlb);
3580         if (status) {
3581             goto invalid;
3582         }
3583 
3584         status = nvme_zrm_auto(n, ns, zone);
3585         if (status) {
3586             goto invalid;
3587         }
3588 
3589         if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3590             zone->w_ptr += nlb;
3591         }
3592     } else if (ns->endgrp && ns->endgrp->fdp.enabled) {
3593         nvme_do_write_fdp(n, req, slba, nlb);
3594     }
3595 
3596     data_offset = nvme_l2b(ns, slba);
3597 
3598     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3599         return nvme_dif_rw(n, req);
3600     }
3601 
3602     if (!wrz) {
3603         status = nvme_map_data(n, nlb, req);
3604         if (status) {
3605             goto invalid;
3606         }
3607 
3608         block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3609                          BLOCK_ACCT_WRITE);
3610         nvme_blk_write(blk, data_offset, nvme_rw_cb, req);
3611     } else {
3612         req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size,
3613                                            BDRV_REQ_MAY_UNMAP, nvme_rw_cb,
3614                                            req);
3615     }
3616 
3617     return NVME_NO_COMPLETE;
3618 
3619 invalid:
3620     block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE);
3621     return status | NVME_DNR;
3622 }
3623 
3624 static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req)
3625 {
3626     return nvme_do_write(n, req, false, false);
3627 }
3628 
3629 static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
3630 {
3631     return nvme_do_write(n, req, false, true);
3632 }
3633 
3634 static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req)
3635 {
3636     return nvme_do_write(n, req, true, false);
3637 }
3638 
3639 static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c,
3640                                             uint64_t *slba, uint32_t *zone_idx)
3641 {
3642     uint32_t dw10 = le32_to_cpu(c->cdw10);
3643     uint32_t dw11 = le32_to_cpu(c->cdw11);
3644 
3645     if (!ns->params.zoned) {
3646         trace_pci_nvme_err_invalid_opc(c->opcode);
3647         return NVME_INVALID_OPCODE | NVME_DNR;
3648     }
3649 
3650     *slba = ((uint64_t)dw11) << 32 | dw10;
3651     if (unlikely(*slba >= ns->id_ns.nsze)) {
3652         trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze);
3653         *slba = 0;
3654         return NVME_LBA_RANGE | NVME_DNR;
3655     }
3656 
3657     *zone_idx = nvme_zone_idx(ns, *slba);
3658     assert(*zone_idx < ns->num_zones);
3659 
3660     return NVME_SUCCESS;
3661 }
3662 
3663 typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState,
3664                                  NvmeRequest *);
3665 
3666 enum NvmeZoneProcessingMask {
3667     NVME_PROC_CURRENT_ZONE    = 0,
3668     NVME_PROC_OPENED_ZONES    = 1 << 0,
3669     NVME_PROC_CLOSED_ZONES    = 1 << 1,
3670     NVME_PROC_READ_ONLY_ZONES = 1 << 2,
3671     NVME_PROC_FULL_ZONES      = 1 << 3,
3672 };
3673 
3674 static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone,
3675                                NvmeZoneState state, NvmeRequest *req)
3676 {
3677     NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
3678     int flags = 0;
3679 
3680     if (cmd->zsflags & NVME_ZSFLAG_ZRWA_ALLOC) {
3681         uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3682 
3683         if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3684             return NVME_INVALID_ZONE_OP | NVME_DNR;
3685         }
3686 
3687         if (zone->w_ptr % ns->zns.zrwafg) {
3688             return NVME_NOZRWA | NVME_DNR;
3689         }
3690 
3691         flags = NVME_ZRM_ZRWA;
3692     }
3693 
3694     return nvme_zrm_open_flags(nvme_ctrl(req), ns, zone, flags);
3695 }
3696 
3697 static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone,
3698                                 NvmeZoneState state, NvmeRequest *req)
3699 {
3700     return nvme_zrm_close(ns, zone);
3701 }
3702 
3703 static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone,
3704                                  NvmeZoneState state, NvmeRequest *req)
3705 {
3706     return nvme_zrm_finish(ns, zone);
3707 }
3708 
3709 static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone,
3710                                   NvmeZoneState state, NvmeRequest *req)
3711 {
3712     switch (state) {
3713     case NVME_ZONE_STATE_READ_ONLY:
3714         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE);
3715         /* fall through */
3716     case NVME_ZONE_STATE_OFFLINE:
3717         return NVME_SUCCESS;
3718     default:
3719         return NVME_ZONE_INVAL_TRANSITION;
3720     }
3721 }
3722 
3723 static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone)
3724 {
3725     uint16_t status;
3726     uint8_t state = nvme_get_zone_state(zone);
3727 
3728     if (state == NVME_ZONE_STATE_EMPTY) {
3729         status = nvme_aor_check(ns, 1, 0);
3730         if (status) {
3731             return status;
3732         }
3733         nvme_aor_inc_active(ns);
3734         zone->d.za |= NVME_ZA_ZD_EXT_VALID;
3735         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
3736         return NVME_SUCCESS;
3737     }
3738 
3739     return NVME_ZONE_INVAL_TRANSITION;
3740 }
3741 
3742 static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone,
3743                                     enum NvmeZoneProcessingMask proc_mask,
3744                                     op_handler_t op_hndlr, NvmeRequest *req)
3745 {
3746     uint16_t status = NVME_SUCCESS;
3747     NvmeZoneState zs = nvme_get_zone_state(zone);
3748     bool proc_zone;
3749 
3750     switch (zs) {
3751     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3752     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3753         proc_zone = proc_mask & NVME_PROC_OPENED_ZONES;
3754         break;
3755     case NVME_ZONE_STATE_CLOSED:
3756         proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES;
3757         break;
3758     case NVME_ZONE_STATE_READ_ONLY:
3759         proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES;
3760         break;
3761     case NVME_ZONE_STATE_FULL:
3762         proc_zone = proc_mask & NVME_PROC_FULL_ZONES;
3763         break;
3764     default:
3765         proc_zone = false;
3766     }
3767 
3768     if (proc_zone) {
3769         status = op_hndlr(ns, zone, zs, req);
3770     }
3771 
3772     return status;
3773 }
3774 
3775 static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone,
3776                                 enum NvmeZoneProcessingMask proc_mask,
3777                                 op_handler_t op_hndlr, NvmeRequest *req)
3778 {
3779     NvmeZone *next;
3780     uint16_t status = NVME_SUCCESS;
3781     int i;
3782 
3783     if (!proc_mask) {
3784         status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req);
3785     } else {
3786         if (proc_mask & NVME_PROC_CLOSED_ZONES) {
3787             QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
3788                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3789                                              req);
3790                 if (status && status != NVME_NO_COMPLETE) {
3791                     goto out;
3792                 }
3793             }
3794         }
3795         if (proc_mask & NVME_PROC_OPENED_ZONES) {
3796             QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
3797                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3798                                              req);
3799                 if (status && status != NVME_NO_COMPLETE) {
3800                     goto out;
3801                 }
3802             }
3803 
3804             QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
3805                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3806                                              req);
3807                 if (status && status != NVME_NO_COMPLETE) {
3808                     goto out;
3809                 }
3810             }
3811         }
3812         if (proc_mask & NVME_PROC_FULL_ZONES) {
3813             QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) {
3814                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3815                                              req);
3816                 if (status && status != NVME_NO_COMPLETE) {
3817                     goto out;
3818                 }
3819             }
3820         }
3821 
3822         if (proc_mask & NVME_PROC_READ_ONLY_ZONES) {
3823             for (i = 0; i < ns->num_zones; i++, zone++) {
3824                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3825                                              req);
3826                 if (status && status != NVME_NO_COMPLETE) {
3827                     goto out;
3828                 }
3829             }
3830         }
3831     }
3832 
3833 out:
3834     return status;
3835 }
3836 
3837 typedef struct NvmeZoneResetAIOCB {
3838     BlockAIOCB common;
3839     BlockAIOCB *aiocb;
3840     NvmeRequest *req;
3841     int ret;
3842 
3843     bool all;
3844     int idx;
3845     NvmeZone *zone;
3846 } NvmeZoneResetAIOCB;
3847 
3848 static void nvme_zone_reset_cancel(BlockAIOCB *aiocb)
3849 {
3850     NvmeZoneResetAIOCB *iocb = container_of(aiocb, NvmeZoneResetAIOCB, common);
3851     NvmeRequest *req = iocb->req;
3852     NvmeNamespace *ns = req->ns;
3853 
3854     iocb->idx = ns->num_zones;
3855 
3856     iocb->ret = -ECANCELED;
3857 
3858     if (iocb->aiocb) {
3859         blk_aio_cancel_async(iocb->aiocb);
3860         iocb->aiocb = NULL;
3861     }
3862 }
3863 
3864 static const AIOCBInfo nvme_zone_reset_aiocb_info = {
3865     .aiocb_size = sizeof(NvmeZoneResetAIOCB),
3866     .cancel_async = nvme_zone_reset_cancel,
3867 };
3868 
3869 static void nvme_zone_reset_cb(void *opaque, int ret);
3870 
3871 static void nvme_zone_reset_epilogue_cb(void *opaque, int ret)
3872 {
3873     NvmeZoneResetAIOCB *iocb = opaque;
3874     NvmeRequest *req = iocb->req;
3875     NvmeNamespace *ns = req->ns;
3876     int64_t moff;
3877     int count;
3878 
3879     if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
3880         goto out;
3881     }
3882 
3883     moff = nvme_moff(ns, iocb->zone->d.zslba);
3884     count = nvme_m2b(ns, ns->zone_size);
3885 
3886     iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, moff, count,
3887                                         BDRV_REQ_MAY_UNMAP,
3888                                         nvme_zone_reset_cb, iocb);
3889     return;
3890 
3891 out:
3892     nvme_zone_reset_cb(iocb, ret);
3893 }
3894 
3895 static void nvme_zone_reset_cb(void *opaque, int ret)
3896 {
3897     NvmeZoneResetAIOCB *iocb = opaque;
3898     NvmeRequest *req = iocb->req;
3899     NvmeNamespace *ns = req->ns;
3900 
3901     if (iocb->ret < 0) {
3902         goto done;
3903     } else if (ret < 0) {
3904         iocb->ret = ret;
3905         goto done;
3906     }
3907 
3908     if (iocb->zone) {
3909         nvme_zrm_reset(ns, iocb->zone);
3910 
3911         if (!iocb->all) {
3912             goto done;
3913         }
3914     }
3915 
3916     while (iocb->idx < ns->num_zones) {
3917         NvmeZone *zone = &ns->zone_array[iocb->idx++];
3918 
3919         switch (nvme_get_zone_state(zone)) {
3920         case NVME_ZONE_STATE_EMPTY:
3921             if (!iocb->all) {
3922                 goto done;
3923             }
3924 
3925             continue;
3926 
3927         case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3928         case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3929         case NVME_ZONE_STATE_CLOSED:
3930         case NVME_ZONE_STATE_FULL:
3931             iocb->zone = zone;
3932             break;
3933 
3934         default:
3935             continue;
3936         }
3937 
3938         trace_pci_nvme_zns_zone_reset(zone->d.zslba);
3939 
3940         iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk,
3941                                             nvme_l2b(ns, zone->d.zslba),
3942                                             nvme_l2b(ns, ns->zone_size),
3943                                             BDRV_REQ_MAY_UNMAP,
3944                                             nvme_zone_reset_epilogue_cb,
3945                                             iocb);
3946         return;
3947     }
3948 
3949 done:
3950     iocb->aiocb = NULL;
3951 
3952     iocb->common.cb(iocb->common.opaque, iocb->ret);
3953     qemu_aio_unref(iocb);
3954 }
3955 
3956 static uint16_t nvme_zone_mgmt_send_zrwa_flush(NvmeCtrl *n, NvmeZone *zone,
3957                                                uint64_t elba, NvmeRequest *req)
3958 {
3959     NvmeNamespace *ns = req->ns;
3960     uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3961     uint64_t wp = zone->d.wp;
3962     uint32_t nlb = elba - wp + 1;
3963     uint16_t status;
3964 
3965 
3966     if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3967         return NVME_INVALID_ZONE_OP | NVME_DNR;
3968     }
3969 
3970     if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3971         return NVME_INVALID_FIELD | NVME_DNR;
3972     }
3973 
3974     if (elba < wp || elba > wp + ns->zns.zrwas) {
3975         return NVME_ZONE_BOUNDARY_ERROR | NVME_DNR;
3976     }
3977 
3978     if (nlb % ns->zns.zrwafg) {
3979         return NVME_INVALID_FIELD | NVME_DNR;
3980     }
3981 
3982     status = nvme_zrm_auto(n, ns, zone);
3983     if (status) {
3984         return status;
3985     }
3986 
3987     zone->w_ptr += nlb;
3988 
3989     nvme_advance_zone_wp(ns, zone, nlb);
3990 
3991     return NVME_SUCCESS;
3992 }
3993 
3994 static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
3995 {
3996     NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
3997     NvmeNamespace *ns = req->ns;
3998     NvmeZone *zone;
3999     NvmeZoneResetAIOCB *iocb;
4000     uint8_t *zd_ext;
4001     uint64_t slba = 0;
4002     uint32_t zone_idx = 0;
4003     uint16_t status;
4004     uint8_t action = cmd->zsa;
4005     bool all;
4006     enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE;
4007 
4008     all = cmd->zsflags & NVME_ZSFLAG_SELECT_ALL;
4009 
4010     req->status = NVME_SUCCESS;
4011 
4012     if (!all) {
4013         status = nvme_get_mgmt_zone_slba_idx(ns, &req->cmd, &slba, &zone_idx);
4014         if (status) {
4015             return status;
4016         }
4017     }
4018 
4019     zone = &ns->zone_array[zone_idx];
4020     if (slba != zone->d.zslba && action != NVME_ZONE_ACTION_ZRWA_FLUSH) {
4021         trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba);
4022         return NVME_INVALID_FIELD | NVME_DNR;
4023     }
4024 
4025     switch (action) {
4026 
4027     case NVME_ZONE_ACTION_OPEN:
4028         if (all) {
4029             proc_mask = NVME_PROC_CLOSED_ZONES;
4030         }
4031         trace_pci_nvme_open_zone(slba, zone_idx, all);
4032         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req);
4033         break;
4034 
4035     case NVME_ZONE_ACTION_CLOSE:
4036         if (all) {
4037             proc_mask = NVME_PROC_OPENED_ZONES;
4038         }
4039         trace_pci_nvme_close_zone(slba, zone_idx, all);
4040         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req);
4041         break;
4042 
4043     case NVME_ZONE_ACTION_FINISH:
4044         if (all) {
4045             proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES;
4046         }
4047         trace_pci_nvme_finish_zone(slba, zone_idx, all);
4048         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req);
4049         break;
4050 
4051     case NVME_ZONE_ACTION_RESET:
4052         trace_pci_nvme_reset_zone(slba, zone_idx, all);
4053 
4054         iocb = blk_aio_get(&nvme_zone_reset_aiocb_info, ns->blkconf.blk,
4055                            nvme_misc_cb, req);
4056 
4057         iocb->req = req;
4058         iocb->ret = 0;
4059         iocb->all = all;
4060         iocb->idx = zone_idx;
4061         iocb->zone = NULL;
4062 
4063         req->aiocb = &iocb->common;
4064         nvme_zone_reset_cb(iocb, 0);
4065 
4066         return NVME_NO_COMPLETE;
4067 
4068     case NVME_ZONE_ACTION_OFFLINE:
4069         if (all) {
4070             proc_mask = NVME_PROC_READ_ONLY_ZONES;
4071         }
4072         trace_pci_nvme_offline_zone(slba, zone_idx, all);
4073         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req);
4074         break;
4075 
4076     case NVME_ZONE_ACTION_SET_ZD_EXT:
4077         trace_pci_nvme_set_descriptor_extension(slba, zone_idx);
4078         if (all || !ns->params.zd_extension_size) {
4079             return NVME_INVALID_FIELD | NVME_DNR;
4080         }
4081         zd_ext = nvme_get_zd_extension(ns, zone_idx);
4082         status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req);
4083         if (status) {
4084             trace_pci_nvme_err_zd_extension_map_error(zone_idx);
4085             return status;
4086         }
4087 
4088         status = nvme_set_zd_ext(ns, zone);
4089         if (status == NVME_SUCCESS) {
4090             trace_pci_nvme_zd_extension_set(zone_idx);
4091             return status;
4092         }
4093         break;
4094 
4095     case NVME_ZONE_ACTION_ZRWA_FLUSH:
4096         if (all) {
4097             return NVME_INVALID_FIELD | NVME_DNR;
4098         }
4099 
4100         return nvme_zone_mgmt_send_zrwa_flush(n, zone, slba, req);
4101 
4102     default:
4103         trace_pci_nvme_err_invalid_mgmt_action(action);
4104         status = NVME_INVALID_FIELD;
4105     }
4106 
4107     if (status == NVME_ZONE_INVAL_TRANSITION) {
4108         trace_pci_nvme_err_invalid_zone_state_transition(action, slba,
4109                                                          zone->d.za);
4110     }
4111     if (status) {
4112         status |= NVME_DNR;
4113     }
4114 
4115     return status;
4116 }
4117 
4118 static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl)
4119 {
4120     NvmeZoneState zs = nvme_get_zone_state(zl);
4121 
4122     switch (zafs) {
4123     case NVME_ZONE_REPORT_ALL:
4124         return true;
4125     case NVME_ZONE_REPORT_EMPTY:
4126         return zs == NVME_ZONE_STATE_EMPTY;
4127     case NVME_ZONE_REPORT_IMPLICITLY_OPEN:
4128         return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN;
4129     case NVME_ZONE_REPORT_EXPLICITLY_OPEN:
4130         return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN;
4131     case NVME_ZONE_REPORT_CLOSED:
4132         return zs == NVME_ZONE_STATE_CLOSED;
4133     case NVME_ZONE_REPORT_FULL:
4134         return zs == NVME_ZONE_STATE_FULL;
4135     case NVME_ZONE_REPORT_READ_ONLY:
4136         return zs == NVME_ZONE_STATE_READ_ONLY;
4137     case NVME_ZONE_REPORT_OFFLINE:
4138         return zs == NVME_ZONE_STATE_OFFLINE;
4139     default:
4140         return false;
4141     }
4142 }
4143 
4144 static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
4145 {
4146     NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
4147     NvmeNamespace *ns = req->ns;
4148     /* cdw12 is zero-based number of dwords to return. Convert to bytes */
4149     uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2;
4150     uint32_t dw13 = le32_to_cpu(cmd->cdw13);
4151     uint32_t zone_idx, zra, zrasf, partial;
4152     uint64_t max_zones, nr_zones = 0;
4153     uint16_t status;
4154     uint64_t slba;
4155     NvmeZoneDescr *z;
4156     NvmeZone *zone;
4157     NvmeZoneReportHeader *header;
4158     void *buf, *buf_p;
4159     size_t zone_entry_sz;
4160     int i;
4161 
4162     req->status = NVME_SUCCESS;
4163 
4164     status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
4165     if (status) {
4166         return status;
4167     }
4168 
4169     zra = dw13 & 0xff;
4170     if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) {
4171         return NVME_INVALID_FIELD | NVME_DNR;
4172     }
4173     if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) {
4174         return NVME_INVALID_FIELD | NVME_DNR;
4175     }
4176 
4177     zrasf = (dw13 >> 8) & 0xff;
4178     if (zrasf > NVME_ZONE_REPORT_OFFLINE) {
4179         return NVME_INVALID_FIELD | NVME_DNR;
4180     }
4181 
4182     if (data_size < sizeof(NvmeZoneReportHeader)) {
4183         return NVME_INVALID_FIELD | NVME_DNR;
4184     }
4185 
4186     status = nvme_check_mdts(n, data_size);
4187     if (status) {
4188         return status;
4189     }
4190 
4191     partial = (dw13 >> 16) & 0x01;
4192 
4193     zone_entry_sz = sizeof(NvmeZoneDescr);
4194     if (zra == NVME_ZONE_REPORT_EXTENDED) {
4195         zone_entry_sz += ns->params.zd_extension_size;
4196     }
4197 
4198     max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz;
4199     buf = g_malloc0(data_size);
4200 
4201     zone = &ns->zone_array[zone_idx];
4202     for (i = zone_idx; i < ns->num_zones; i++) {
4203         if (partial && nr_zones >= max_zones) {
4204             break;
4205         }
4206         if (nvme_zone_matches_filter(zrasf, zone++)) {
4207             nr_zones++;
4208         }
4209     }
4210     header = buf;
4211     header->nr_zones = cpu_to_le64(nr_zones);
4212 
4213     buf_p = buf + sizeof(NvmeZoneReportHeader);
4214     for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) {
4215         zone = &ns->zone_array[zone_idx];
4216         if (nvme_zone_matches_filter(zrasf, zone)) {
4217             z = buf_p;
4218             buf_p += sizeof(NvmeZoneDescr);
4219 
4220             z->zt = zone->d.zt;
4221             z->zs = zone->d.zs;
4222             z->zcap = cpu_to_le64(zone->d.zcap);
4223             z->zslba = cpu_to_le64(zone->d.zslba);
4224             z->za = zone->d.za;
4225 
4226             if (nvme_wp_is_valid(zone)) {
4227                 z->wp = cpu_to_le64(zone->d.wp);
4228             } else {
4229                 z->wp = cpu_to_le64(~0ULL);
4230             }
4231 
4232             if (zra == NVME_ZONE_REPORT_EXTENDED) {
4233                 if (zone->d.za & NVME_ZA_ZD_EXT_VALID) {
4234                     memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx),
4235                            ns->params.zd_extension_size);
4236                 }
4237                 buf_p += ns->params.zd_extension_size;
4238             }
4239 
4240             max_zones--;
4241         }
4242     }
4243 
4244     status = nvme_c2h(n, (uint8_t *)buf, data_size, req);
4245 
4246     g_free(buf);
4247 
4248     return status;
4249 }
4250 
4251 static uint16_t nvme_io_mgmt_recv_ruhs(NvmeCtrl *n, NvmeRequest *req,
4252                                        size_t len)
4253 {
4254     NvmeNamespace *ns = req->ns;
4255     NvmeEnduranceGroup *endgrp;
4256     NvmeRuhStatus *hdr;
4257     NvmeRuhStatusDescr *ruhsd;
4258     unsigned int nruhsd;
4259     uint16_t rg, ph, *ruhid;
4260     size_t trans_len;
4261     g_autofree uint8_t *buf = NULL;
4262 
4263     if (!n->subsys) {
4264         return NVME_INVALID_FIELD | NVME_DNR;
4265     }
4266 
4267     if (ns->params.nsid == 0 || ns->params.nsid == 0xffffffff) {
4268         return NVME_INVALID_NSID | NVME_DNR;
4269     }
4270 
4271     if (!n->subsys->endgrp.fdp.enabled) {
4272         return NVME_FDP_DISABLED | NVME_DNR;
4273     }
4274 
4275     endgrp = ns->endgrp;
4276 
4277     nruhsd = ns->fdp.nphs * endgrp->fdp.nrg;
4278     trans_len = sizeof(NvmeRuhStatus) + nruhsd * sizeof(NvmeRuhStatusDescr);
4279     buf = g_malloc(trans_len);
4280 
4281     trans_len = MIN(trans_len, len);
4282 
4283     hdr = (NvmeRuhStatus *)buf;
4284     ruhsd = (NvmeRuhStatusDescr *)(buf + sizeof(NvmeRuhStatus));
4285 
4286     hdr->nruhsd = cpu_to_le16(nruhsd);
4287 
4288     ruhid = ns->fdp.phs;
4289 
4290     for (ph = 0; ph < ns->fdp.nphs; ph++, ruhid++) {
4291         NvmeRuHandle *ruh = &endgrp->fdp.ruhs[*ruhid];
4292 
4293         for (rg = 0; rg < endgrp->fdp.nrg; rg++, ruhsd++) {
4294             uint16_t pid = nvme_make_pid(ns, rg, ph);
4295 
4296             ruhsd->pid = cpu_to_le16(pid);
4297             ruhsd->ruhid = *ruhid;
4298             ruhsd->earutr = 0;
4299             ruhsd->ruamw = cpu_to_le64(ruh->rus[rg].ruamw);
4300         }
4301     }
4302 
4303     return nvme_c2h(n, buf, trans_len, req);
4304 }
4305 
4306 static uint16_t nvme_io_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
4307 {
4308     NvmeCmd *cmd = &req->cmd;
4309     uint32_t cdw10 = le32_to_cpu(cmd->cdw10);
4310     uint32_t numd = le32_to_cpu(cmd->cdw11);
4311     uint8_t mo = (cdw10 & 0xff);
4312     size_t len = (numd + 1) << 2;
4313 
4314     switch (mo) {
4315     case NVME_IOMR_MO_NOP:
4316         return 0;
4317     case NVME_IOMR_MO_RUH_STATUS:
4318         return nvme_io_mgmt_recv_ruhs(n, req, len);
4319     default:
4320         return NVME_INVALID_FIELD | NVME_DNR;
4321     };
4322 }
4323 
4324 static uint16_t nvme_io_mgmt_send_ruh_update(NvmeCtrl *n, NvmeRequest *req)
4325 {
4326     NvmeCmd *cmd = &req->cmd;
4327     NvmeNamespace *ns = req->ns;
4328     uint32_t cdw10 = le32_to_cpu(cmd->cdw10);
4329     uint16_t ret = NVME_SUCCESS;
4330     uint32_t npid = (cdw10 >> 1) + 1;
4331     unsigned int i = 0;
4332     g_autofree uint16_t *pids = NULL;
4333     uint32_t maxnpid = n->subsys->endgrp.fdp.nrg * n->subsys->endgrp.fdp.nruh;
4334 
4335     if (unlikely(npid >= MIN(NVME_FDP_MAXPIDS, maxnpid))) {
4336         return NVME_INVALID_FIELD | NVME_DNR;
4337     }
4338 
4339     pids = g_new(uint16_t, npid);
4340 
4341     ret = nvme_h2c(n, pids, npid * sizeof(uint16_t), req);
4342     if (ret) {
4343         return ret;
4344     }
4345 
4346     for (; i < npid; i++) {
4347         if (!nvme_update_ruh(n, ns, pids[i])) {
4348             return NVME_INVALID_FIELD | NVME_DNR;
4349         }
4350     }
4351 
4352     return ret;
4353 }
4354 
4355 static uint16_t nvme_io_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
4356 {
4357     NvmeCmd *cmd = &req->cmd;
4358     uint32_t cdw10 = le32_to_cpu(cmd->cdw10);
4359     uint8_t mo = (cdw10 & 0xff);
4360 
4361     switch (mo) {
4362     case NVME_IOMS_MO_NOP:
4363         return 0;
4364     case NVME_IOMS_MO_RUH_UPDATE:
4365         return nvme_io_mgmt_send_ruh_update(n, req);
4366     default:
4367         return NVME_INVALID_FIELD | NVME_DNR;
4368     };
4369 }
4370 
4371 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
4372 {
4373     NvmeNamespace *ns;
4374     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4375 
4376     trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
4377                           req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
4378 
4379     if (!nvme_nsid_valid(n, nsid)) {
4380         return NVME_INVALID_NSID | NVME_DNR;
4381     }
4382 
4383     /*
4384      * In the base NVM command set, Flush may apply to all namespaces
4385      * (indicated by NSID being set to FFFFFFFFh). But if that feature is used
4386      * along with TP 4056 (Namespace Types), it may be pretty screwed up.
4387      *
4388      * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the
4389      * opcode with a specific command since we cannot determine a unique I/O
4390      * command set. Opcode 0h could have any other meaning than something
4391      * equivalent to flushing and say it DOES have completely different
4392      * semantics in some other command set - does an NSID of FFFFFFFFh then
4393      * mean "for all namespaces, apply whatever command set specific command
4394      * that uses the 0h opcode?" Or does it mean "for all namespaces, apply
4395      * whatever command that uses the 0h opcode if, and only if, it allows NSID
4396      * to be FFFFFFFFh"?
4397      *
4398      * Anyway (and luckily), for now, we do not care about this since the
4399      * device only supports namespace types that includes the NVM Flush command
4400      * (NVM and Zoned), so always do an NVM Flush.
4401      */
4402     if (req->cmd.opcode == NVME_CMD_FLUSH) {
4403         return nvme_flush(n, req);
4404     }
4405 
4406     ns = nvme_ns(n, nsid);
4407     if (unlikely(!ns)) {
4408         return NVME_INVALID_FIELD | NVME_DNR;
4409     }
4410 
4411     if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
4412         trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
4413         return NVME_INVALID_OPCODE | NVME_DNR;
4414     }
4415 
4416     if (ns->status) {
4417         return ns->status;
4418     }
4419 
4420     if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
4421         return NVME_INVALID_FIELD;
4422     }
4423 
4424     req->ns = ns;
4425 
4426     switch (req->cmd.opcode) {
4427     case NVME_CMD_WRITE_ZEROES:
4428         return nvme_write_zeroes(n, req);
4429     case NVME_CMD_ZONE_APPEND:
4430         return nvme_zone_append(n, req);
4431     case NVME_CMD_WRITE:
4432         return nvme_write(n, req);
4433     case NVME_CMD_READ:
4434         return nvme_read(n, req);
4435     case NVME_CMD_COMPARE:
4436         return nvme_compare(n, req);
4437     case NVME_CMD_DSM:
4438         return nvme_dsm(n, req);
4439     case NVME_CMD_VERIFY:
4440         return nvme_verify(n, req);
4441     case NVME_CMD_COPY:
4442         return nvme_copy(n, req);
4443     case NVME_CMD_ZONE_MGMT_SEND:
4444         return nvme_zone_mgmt_send(n, req);
4445     case NVME_CMD_ZONE_MGMT_RECV:
4446         return nvme_zone_mgmt_recv(n, req);
4447     case NVME_CMD_IO_MGMT_RECV:
4448         return nvme_io_mgmt_recv(n, req);
4449     case NVME_CMD_IO_MGMT_SEND:
4450         return nvme_io_mgmt_send(n, req);
4451     default:
4452         assert(false);
4453     }
4454 
4455     return NVME_INVALID_OPCODE | NVME_DNR;
4456 }
4457 
4458 static void nvme_cq_notifier(EventNotifier *e)
4459 {
4460     NvmeCQueue *cq = container_of(e, NvmeCQueue, notifier);
4461     NvmeCtrl *n = cq->ctrl;
4462 
4463     if (!event_notifier_test_and_clear(e)) {
4464         return;
4465     }
4466 
4467     nvme_update_cq_head(cq);
4468 
4469     if (cq->tail == cq->head) {
4470         if (cq->irq_enabled) {
4471             n->cq_pending--;
4472         }
4473 
4474         nvme_irq_deassert(n, cq);
4475     }
4476 
4477     qemu_bh_schedule(cq->bh);
4478 }
4479 
4480 static int nvme_init_cq_ioeventfd(NvmeCQueue *cq)
4481 {
4482     NvmeCtrl *n = cq->ctrl;
4483     uint16_t offset = (cq->cqid << 3) + (1 << 2);
4484     int ret;
4485 
4486     ret = event_notifier_init(&cq->notifier, 0);
4487     if (ret < 0) {
4488         return ret;
4489     }
4490 
4491     event_notifier_set_handler(&cq->notifier, nvme_cq_notifier);
4492     memory_region_add_eventfd(&n->iomem,
4493                               0x1000 + offset, 4, false, 0, &cq->notifier);
4494 
4495     return 0;
4496 }
4497 
4498 static void nvme_sq_notifier(EventNotifier *e)
4499 {
4500     NvmeSQueue *sq = container_of(e, NvmeSQueue, notifier);
4501 
4502     if (!event_notifier_test_and_clear(e)) {
4503         return;
4504     }
4505 
4506     nvme_process_sq(sq);
4507 }
4508 
4509 static int nvme_init_sq_ioeventfd(NvmeSQueue *sq)
4510 {
4511     NvmeCtrl *n = sq->ctrl;
4512     uint16_t offset = sq->sqid << 3;
4513     int ret;
4514 
4515     ret = event_notifier_init(&sq->notifier, 0);
4516     if (ret < 0) {
4517         return ret;
4518     }
4519 
4520     event_notifier_set_handler(&sq->notifier, nvme_sq_notifier);
4521     memory_region_add_eventfd(&n->iomem,
4522                               0x1000 + offset, 4, false, 0, &sq->notifier);
4523 
4524     return 0;
4525 }
4526 
4527 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
4528 {
4529     uint16_t offset = sq->sqid << 3;
4530 
4531     n->sq[sq->sqid] = NULL;
4532     qemu_bh_delete(sq->bh);
4533     if (sq->ioeventfd_enabled) {
4534         memory_region_del_eventfd(&n->iomem,
4535                                   0x1000 + offset, 4, false, 0, &sq->notifier);
4536         event_notifier_set_handler(&sq->notifier, NULL);
4537         event_notifier_cleanup(&sq->notifier);
4538     }
4539     g_free(sq->io_req);
4540     if (sq->sqid) {
4541         g_free(sq);
4542     }
4543 }
4544 
4545 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
4546 {
4547     NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
4548     NvmeRequest *r, *next;
4549     NvmeSQueue *sq;
4550     NvmeCQueue *cq;
4551     uint16_t qid = le16_to_cpu(c->qid);
4552 
4553     if (unlikely(!qid || nvme_check_sqid(n, qid))) {
4554         trace_pci_nvme_err_invalid_del_sq(qid);
4555         return NVME_INVALID_QID | NVME_DNR;
4556     }
4557 
4558     trace_pci_nvme_del_sq(qid);
4559 
4560     sq = n->sq[qid];
4561     while (!QTAILQ_EMPTY(&sq->out_req_list)) {
4562         r = QTAILQ_FIRST(&sq->out_req_list);
4563         assert(r->aiocb);
4564         blk_aio_cancel(r->aiocb);
4565     }
4566 
4567     assert(QTAILQ_EMPTY(&sq->out_req_list));
4568 
4569     if (!nvme_check_cqid(n, sq->cqid)) {
4570         cq = n->cq[sq->cqid];
4571         QTAILQ_REMOVE(&cq->sq_list, sq, entry);
4572 
4573         nvme_post_cqes(cq);
4574         QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
4575             if (r->sq == sq) {
4576                 QTAILQ_REMOVE(&cq->req_list, r, entry);
4577                 QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
4578             }
4579         }
4580     }
4581 
4582     nvme_free_sq(sq, n);
4583     return NVME_SUCCESS;
4584 }
4585 
4586 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
4587                          uint16_t sqid, uint16_t cqid, uint16_t size)
4588 {
4589     int i;
4590     NvmeCQueue *cq;
4591 
4592     sq->ctrl = n;
4593     sq->dma_addr = dma_addr;
4594     sq->sqid = sqid;
4595     sq->size = size;
4596     sq->cqid = cqid;
4597     sq->head = sq->tail = 0;
4598     sq->io_req = g_new0(NvmeRequest, sq->size);
4599 
4600     QTAILQ_INIT(&sq->req_list);
4601     QTAILQ_INIT(&sq->out_req_list);
4602     for (i = 0; i < sq->size; i++) {
4603         sq->io_req[i].sq = sq;
4604         QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
4605     }
4606 
4607     sq->bh = qemu_bh_new(nvme_process_sq, sq);
4608 
4609     if (n->dbbuf_enabled) {
4610         sq->db_addr = n->dbbuf_dbs + (sqid << 3);
4611         sq->ei_addr = n->dbbuf_eis + (sqid << 3);
4612 
4613         if (n->params.ioeventfd && sq->sqid != 0) {
4614             if (!nvme_init_sq_ioeventfd(sq)) {
4615                 sq->ioeventfd_enabled = true;
4616             }
4617         }
4618     }
4619 
4620     assert(n->cq[cqid]);
4621     cq = n->cq[cqid];
4622     QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
4623     n->sq[sqid] = sq;
4624 }
4625 
4626 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
4627 {
4628     NvmeSQueue *sq;
4629     NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
4630 
4631     uint16_t cqid = le16_to_cpu(c->cqid);
4632     uint16_t sqid = le16_to_cpu(c->sqid);
4633     uint16_t qsize = le16_to_cpu(c->qsize);
4634     uint16_t qflags = le16_to_cpu(c->sq_flags);
4635     uint64_t prp1 = le64_to_cpu(c->prp1);
4636 
4637     trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
4638 
4639     if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
4640         trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
4641         return NVME_INVALID_CQID | NVME_DNR;
4642     }
4643     if (unlikely(!sqid || sqid > n->conf_ioqpairs || n->sq[sqid] != NULL)) {
4644         trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
4645         return NVME_INVALID_QID | NVME_DNR;
4646     }
4647     if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
4648         trace_pci_nvme_err_invalid_create_sq_size(qsize);
4649         return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4650     }
4651     if (unlikely(prp1 & (n->page_size - 1))) {
4652         trace_pci_nvme_err_invalid_create_sq_addr(prp1);
4653         return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4654     }
4655     if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
4656         trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
4657         return NVME_INVALID_FIELD | NVME_DNR;
4658     }
4659     sq = g_malloc0(sizeof(*sq));
4660     nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
4661     return NVME_SUCCESS;
4662 }
4663 
4664 struct nvme_stats {
4665     uint64_t units_read;
4666     uint64_t units_written;
4667     uint64_t read_commands;
4668     uint64_t write_commands;
4669 };
4670 
4671 static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats)
4672 {
4673     BlockAcctStats *s = blk_get_stats(ns->blkconf.blk);
4674 
4675     stats->units_read += s->nr_bytes[BLOCK_ACCT_READ];
4676     stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE];
4677     stats->read_commands += s->nr_ops[BLOCK_ACCT_READ];
4678     stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE];
4679 }
4680 
4681 static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4682                                 uint64_t off, NvmeRequest *req)
4683 {
4684     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4685     struct nvme_stats stats = { 0 };
4686     NvmeSmartLog smart = { 0 };
4687     uint32_t trans_len;
4688     NvmeNamespace *ns;
4689     time_t current_ms;
4690     uint64_t u_read, u_written;
4691 
4692     if (off >= sizeof(smart)) {
4693         return NVME_INVALID_FIELD | NVME_DNR;
4694     }
4695 
4696     if (nsid != 0xffffffff) {
4697         ns = nvme_ns(n, nsid);
4698         if (!ns) {
4699             return NVME_INVALID_NSID | NVME_DNR;
4700         }
4701         nvme_set_blk_stats(ns, &stats);
4702     } else {
4703         int i;
4704 
4705         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4706             ns = nvme_ns(n, i);
4707             if (!ns) {
4708                 continue;
4709             }
4710             nvme_set_blk_stats(ns, &stats);
4711         }
4712     }
4713 
4714     trans_len = MIN(sizeof(smart) - off, buf_len);
4715     smart.critical_warning = n->smart_critical_warning;
4716 
4717     u_read = DIV_ROUND_UP(stats.units_read >> BDRV_SECTOR_BITS, 1000);
4718     u_written = DIV_ROUND_UP(stats.units_written >> BDRV_SECTOR_BITS, 1000);
4719 
4720     smart.data_units_read[0] = cpu_to_le64(u_read);
4721     smart.data_units_written[0] = cpu_to_le64(u_written);
4722     smart.host_read_commands[0] = cpu_to_le64(stats.read_commands);
4723     smart.host_write_commands[0] = cpu_to_le64(stats.write_commands);
4724 
4725     smart.temperature = cpu_to_le16(n->temperature);
4726 
4727     if ((n->temperature >= n->features.temp_thresh_hi) ||
4728         (n->temperature <= n->features.temp_thresh_low)) {
4729         smart.critical_warning |= NVME_SMART_TEMPERATURE;
4730     }
4731 
4732     current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
4733     smart.power_on_hours[0] =
4734         cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
4735 
4736     if (!rae) {
4737         nvme_clear_events(n, NVME_AER_TYPE_SMART);
4738     }
4739 
4740     return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req);
4741 }
4742 
4743 static uint16_t nvme_endgrp_info(NvmeCtrl *n,  uint8_t rae, uint32_t buf_len,
4744                                  uint64_t off, NvmeRequest *req)
4745 {
4746     uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
4747     uint16_t endgrpid = (dw11 >> 16) & 0xffff;
4748     struct nvme_stats stats = {};
4749     NvmeEndGrpLog info = {};
4750     int i;
4751 
4752     if (!n->subsys || endgrpid != 0x1) {
4753         return NVME_INVALID_FIELD | NVME_DNR;
4754     }
4755 
4756     if (off >= sizeof(info)) {
4757         return NVME_INVALID_FIELD | NVME_DNR;
4758     }
4759 
4760     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4761         NvmeNamespace *ns = nvme_subsys_ns(n->subsys, i);
4762         if (!ns) {
4763             continue;
4764         }
4765 
4766         nvme_set_blk_stats(ns, &stats);
4767     }
4768 
4769     info.data_units_read[0] =
4770         cpu_to_le64(DIV_ROUND_UP(stats.units_read / 1000000000, 1000000000));
4771     info.data_units_written[0] =
4772         cpu_to_le64(DIV_ROUND_UP(stats.units_written / 1000000000, 1000000000));
4773     info.media_units_written[0] =
4774         cpu_to_le64(DIV_ROUND_UP(stats.units_written / 1000000000, 1000000000));
4775 
4776     info.host_read_commands[0] = cpu_to_le64(stats.read_commands);
4777     info.host_write_commands[0] = cpu_to_le64(stats.write_commands);
4778 
4779     buf_len = MIN(sizeof(info) - off, buf_len);
4780 
4781     return nvme_c2h(n, (uint8_t *)&info + off, buf_len, req);
4782 }
4783 
4784 
4785 static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
4786                                  NvmeRequest *req)
4787 {
4788     uint32_t trans_len;
4789     NvmeFwSlotInfoLog fw_log = {
4790         .afi = 0x1,
4791     };
4792 
4793     if (off >= sizeof(fw_log)) {
4794         return NVME_INVALID_FIELD | NVME_DNR;
4795     }
4796 
4797     strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
4798     trans_len = MIN(sizeof(fw_log) - off, buf_len);
4799 
4800     return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req);
4801 }
4802 
4803 static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4804                                 uint64_t off, NvmeRequest *req)
4805 {
4806     uint32_t trans_len;
4807     NvmeErrorLog errlog;
4808 
4809     if (off >= sizeof(errlog)) {
4810         return NVME_INVALID_FIELD | NVME_DNR;
4811     }
4812 
4813     if (!rae) {
4814         nvme_clear_events(n, NVME_AER_TYPE_ERROR);
4815     }
4816 
4817     memset(&errlog, 0x0, sizeof(errlog));
4818     trans_len = MIN(sizeof(errlog) - off, buf_len);
4819 
4820     return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req);
4821 }
4822 
4823 static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4824                                     uint64_t off, NvmeRequest *req)
4825 {
4826     uint32_t nslist[1024];
4827     uint32_t trans_len;
4828     int i = 0;
4829     uint32_t nsid;
4830 
4831     if (off >= sizeof(nslist)) {
4832         trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(nslist));
4833         return NVME_INVALID_FIELD | NVME_DNR;
4834     }
4835 
4836     memset(nslist, 0x0, sizeof(nslist));
4837     trans_len = MIN(sizeof(nslist) - off, buf_len);
4838 
4839     while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) !=
4840             NVME_CHANGED_NSID_SIZE) {
4841         /*
4842          * If more than 1024 namespaces, the first entry in the log page should
4843          * be set to FFFFFFFFh and the others to 0 as spec.
4844          */
4845         if (i == ARRAY_SIZE(nslist)) {
4846             memset(nslist, 0x0, sizeof(nslist));
4847             nslist[0] = 0xffffffff;
4848             break;
4849         }
4850 
4851         nslist[i++] = nsid;
4852         clear_bit(nsid, n->changed_nsids);
4853     }
4854 
4855     /*
4856      * Remove all the remaining list entries in case returns directly due to
4857      * more than 1024 namespaces.
4858      */
4859     if (nslist[0] == 0xffffffff) {
4860         bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE);
4861     }
4862 
4863     if (!rae) {
4864         nvme_clear_events(n, NVME_AER_TYPE_NOTICE);
4865     }
4866 
4867     return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req);
4868 }
4869 
4870 static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len,
4871                                  uint64_t off, NvmeRequest *req)
4872 {
4873     NvmeEffectsLog log = {};
4874     const uint32_t *src_iocs = NULL;
4875     uint32_t trans_len;
4876 
4877     if (off >= sizeof(log)) {
4878         trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log));
4879         return NVME_INVALID_FIELD | NVME_DNR;
4880     }
4881 
4882     switch (NVME_CC_CSS(ldl_le_p(&n->bar.cc))) {
4883     case NVME_CC_CSS_NVM:
4884         src_iocs = nvme_cse_iocs_nvm;
4885         /* fall through */
4886     case NVME_CC_CSS_ADMIN_ONLY:
4887         break;
4888     case NVME_CC_CSS_CSI:
4889         switch (csi) {
4890         case NVME_CSI_NVM:
4891             src_iocs = nvme_cse_iocs_nvm;
4892             break;
4893         case NVME_CSI_ZONED:
4894             src_iocs = nvme_cse_iocs_zoned;
4895             break;
4896         }
4897     }
4898 
4899     memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs));
4900 
4901     if (src_iocs) {
4902         memcpy(log.iocs, src_iocs, sizeof(log.iocs));
4903     }
4904 
4905     trans_len = MIN(sizeof(log) - off, buf_len);
4906 
4907     return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req);
4908 }
4909 
4910 static size_t sizeof_fdp_conf_descr(size_t nruh, size_t vss)
4911 {
4912     size_t entry_siz = sizeof(NvmeFdpDescrHdr) + nruh * sizeof(NvmeRuhDescr)
4913                        + vss;
4914     return ROUND_UP(entry_siz, 8);
4915 }
4916 
4917 static uint16_t nvme_fdp_confs(NvmeCtrl *n, uint32_t endgrpid, uint32_t buf_len,
4918                                uint64_t off, NvmeRequest *req)
4919 {
4920     uint32_t log_size, trans_len;
4921     g_autofree uint8_t *buf = NULL;
4922     NvmeFdpDescrHdr *hdr;
4923     NvmeRuhDescr *ruhd;
4924     NvmeEnduranceGroup *endgrp;
4925     NvmeFdpConfsHdr *log;
4926     size_t nruh, fdp_descr_size;
4927     int i;
4928 
4929     if (endgrpid != 1 || !n->subsys) {
4930         return NVME_INVALID_FIELD | NVME_DNR;
4931     }
4932 
4933     endgrp = &n->subsys->endgrp;
4934 
4935     if (endgrp->fdp.enabled) {
4936         nruh = endgrp->fdp.nruh;
4937     } else {
4938         nruh = 1;
4939     }
4940 
4941     fdp_descr_size = sizeof_fdp_conf_descr(nruh, FDPVSS);
4942     log_size = sizeof(NvmeFdpConfsHdr) + fdp_descr_size;
4943 
4944     if (off >= log_size) {
4945         return NVME_INVALID_FIELD | NVME_DNR;
4946     }
4947 
4948     trans_len = MIN(log_size - off, buf_len);
4949 
4950     buf = g_malloc0(log_size);
4951     log = (NvmeFdpConfsHdr *)buf;
4952     hdr = (NvmeFdpDescrHdr *)(log + 1);
4953     ruhd = (NvmeRuhDescr *)(buf + sizeof(*log) + sizeof(*hdr));
4954 
4955     log->num_confs = cpu_to_le16(0);
4956     log->size = cpu_to_le32(log_size);
4957 
4958     hdr->descr_size = cpu_to_le16(fdp_descr_size);
4959     if (endgrp->fdp.enabled) {
4960         hdr->fdpa = FIELD_DP8(hdr->fdpa, FDPA, VALID, 1);
4961         hdr->fdpa = FIELD_DP8(hdr->fdpa, FDPA, RGIF, endgrp->fdp.rgif);
4962         hdr->nrg = cpu_to_le16(endgrp->fdp.nrg);
4963         hdr->nruh = cpu_to_le16(endgrp->fdp.nruh);
4964         hdr->maxpids = cpu_to_le16(NVME_FDP_MAXPIDS - 1);
4965         hdr->nnss = cpu_to_le32(NVME_MAX_NAMESPACES);
4966         hdr->runs = cpu_to_le64(endgrp->fdp.runs);
4967 
4968         for (i = 0; i < nruh; i++) {
4969             ruhd->ruht = NVME_RUHT_INITIALLY_ISOLATED;
4970             ruhd++;
4971         }
4972     } else {
4973         /* 1 bit for RUH in PIF -> 2 RUHs max. */
4974         hdr->nrg = cpu_to_le16(1);
4975         hdr->nruh = cpu_to_le16(1);
4976         hdr->maxpids = cpu_to_le16(NVME_FDP_MAXPIDS - 1);
4977         hdr->nnss = cpu_to_le32(1);
4978         hdr->runs = cpu_to_le64(96 * MiB);
4979 
4980         ruhd->ruht = NVME_RUHT_INITIALLY_ISOLATED;
4981     }
4982 
4983     return nvme_c2h(n, (uint8_t *)buf + off, trans_len, req);
4984 }
4985 
4986 static uint16_t nvme_fdp_ruh_usage(NvmeCtrl *n, uint32_t endgrpid,
4987                                    uint32_t dw10, uint32_t dw12,
4988                                    uint32_t buf_len, uint64_t off,
4989                                    NvmeRequest *req)
4990 {
4991     NvmeRuHandle *ruh;
4992     NvmeRuhuLog *hdr;
4993     NvmeRuhuDescr *ruhud;
4994     NvmeEnduranceGroup *endgrp;
4995     g_autofree uint8_t *buf = NULL;
4996     uint32_t log_size, trans_len;
4997     uint16_t i;
4998 
4999     if (endgrpid != 1 || !n->subsys) {
5000         return NVME_INVALID_FIELD | NVME_DNR;
5001     }
5002 
5003     endgrp = &n->subsys->endgrp;
5004 
5005     if (!endgrp->fdp.enabled) {
5006         return NVME_FDP_DISABLED | NVME_DNR;
5007     }
5008 
5009     log_size = sizeof(NvmeRuhuLog) + endgrp->fdp.nruh * sizeof(NvmeRuhuDescr);
5010 
5011     if (off >= log_size) {
5012         return NVME_INVALID_FIELD | NVME_DNR;
5013     }
5014 
5015     trans_len = MIN(log_size - off, buf_len);
5016 
5017     buf = g_malloc0(log_size);
5018     hdr = (NvmeRuhuLog *)buf;
5019     ruhud = (NvmeRuhuDescr *)(hdr + 1);
5020 
5021     ruh = endgrp->fdp.ruhs;
5022     hdr->nruh = cpu_to_le16(endgrp->fdp.nruh);
5023 
5024     for (i = 0; i < endgrp->fdp.nruh; i++, ruhud++, ruh++) {
5025         ruhud->ruha = ruh->ruha;
5026     }
5027 
5028     return nvme_c2h(n, (uint8_t *)buf + off, trans_len, req);
5029 }
5030 
5031 static uint16_t nvme_fdp_stats(NvmeCtrl *n, uint32_t endgrpid, uint32_t buf_len,
5032                                uint64_t off, NvmeRequest *req)
5033 {
5034     NvmeEnduranceGroup *endgrp;
5035     NvmeFdpStatsLog log = {};
5036     uint32_t trans_len;
5037 
5038     if (off >= sizeof(NvmeFdpStatsLog)) {
5039         return NVME_INVALID_FIELD | NVME_DNR;
5040     }
5041 
5042     if (endgrpid != 1 || !n->subsys) {
5043         return NVME_INVALID_FIELD | NVME_DNR;
5044     }
5045 
5046     if (!n->subsys->endgrp.fdp.enabled) {
5047         return NVME_FDP_DISABLED | NVME_DNR;
5048     }
5049 
5050     endgrp = &n->subsys->endgrp;
5051 
5052     trans_len = MIN(sizeof(log) - off, buf_len);
5053 
5054     /* spec value is 128 bit, we only use 64 bit */
5055     log.hbmw[0] = cpu_to_le64(endgrp->fdp.hbmw);
5056     log.mbmw[0] = cpu_to_le64(endgrp->fdp.mbmw);
5057     log.mbe[0] = cpu_to_le64(endgrp->fdp.mbe);
5058 
5059     return nvme_c2h(n, (uint8_t *)&log + off, trans_len, req);
5060 }
5061 
5062 static uint16_t nvme_fdp_events(NvmeCtrl *n, uint32_t endgrpid,
5063                                 uint32_t buf_len, uint64_t off,
5064                                 NvmeRequest *req)
5065 {
5066     NvmeEnduranceGroup *endgrp;
5067     NvmeCmd *cmd = &req->cmd;
5068     bool host_events = (cmd->cdw10 >> 8) & 0x1;
5069     uint32_t log_size, trans_len;
5070     NvmeFdpEventBuffer *ebuf;
5071     g_autofree NvmeFdpEventsLog *elog = NULL;
5072     NvmeFdpEvent *event;
5073 
5074     if (endgrpid != 1 || !n->subsys) {
5075         return NVME_INVALID_FIELD | NVME_DNR;
5076     }
5077 
5078     endgrp = &n->subsys->endgrp;
5079 
5080     if (!endgrp->fdp.enabled) {
5081         return NVME_FDP_DISABLED | NVME_DNR;
5082     }
5083 
5084     if (host_events) {
5085         ebuf = &endgrp->fdp.host_events;
5086     } else {
5087         ebuf = &endgrp->fdp.ctrl_events;
5088     }
5089 
5090     log_size = sizeof(NvmeFdpEventsLog) + ebuf->nelems * sizeof(NvmeFdpEvent);
5091     trans_len = MIN(log_size - off, buf_len);
5092     elog = g_malloc0(log_size);
5093     elog->num_events = cpu_to_le32(ebuf->nelems);
5094     event = (NvmeFdpEvent *)(elog + 1);
5095 
5096     if (ebuf->nelems && ebuf->start == ebuf->next) {
5097         unsigned int nelems = (NVME_FDP_MAX_EVENTS - ebuf->start);
5098         /* wrap over, copy [start;NVME_FDP_MAX_EVENTS[ and [0; next[ */
5099         memcpy(event, &ebuf->events[ebuf->start],
5100                sizeof(NvmeFdpEvent) * nelems);
5101         memcpy(event + nelems, ebuf->events,
5102                sizeof(NvmeFdpEvent) * ebuf->next);
5103     } else if (ebuf->start < ebuf->next) {
5104         memcpy(event, &ebuf->events[ebuf->start],
5105                sizeof(NvmeFdpEvent) * (ebuf->next - ebuf->start));
5106     }
5107 
5108     return nvme_c2h(n, (uint8_t *)elog + off, trans_len, req);
5109 }
5110 
5111 static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
5112 {
5113     NvmeCmd *cmd = &req->cmd;
5114 
5115     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5116     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5117     uint32_t dw12 = le32_to_cpu(cmd->cdw12);
5118     uint32_t dw13 = le32_to_cpu(cmd->cdw13);
5119     uint8_t  lid = dw10 & 0xff;
5120     uint8_t  lsp = (dw10 >> 8) & 0xf;
5121     uint8_t  rae = (dw10 >> 15) & 0x1;
5122     uint8_t  csi = le32_to_cpu(cmd->cdw14) >> 24;
5123     uint32_t numdl, numdu, lspi;
5124     uint64_t off, lpol, lpou;
5125     size_t   len;
5126     uint16_t status;
5127 
5128     numdl = (dw10 >> 16);
5129     numdu = (dw11 & 0xffff);
5130     lspi = (dw11 >> 16);
5131     lpol = dw12;
5132     lpou = dw13;
5133 
5134     len = (((numdu << 16) | numdl) + 1) << 2;
5135     off = (lpou << 32ULL) | lpol;
5136 
5137     if (off & 0x3) {
5138         return NVME_INVALID_FIELD | NVME_DNR;
5139     }
5140 
5141     trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
5142 
5143     status = nvme_check_mdts(n, len);
5144     if (status) {
5145         return status;
5146     }
5147 
5148     switch (lid) {
5149     case NVME_LOG_ERROR_INFO:
5150         return nvme_error_info(n, rae, len, off, req);
5151     case NVME_LOG_SMART_INFO:
5152         return nvme_smart_info(n, rae, len, off, req);
5153     case NVME_LOG_FW_SLOT_INFO:
5154         return nvme_fw_log_info(n, len, off, req);
5155     case NVME_LOG_CHANGED_NSLIST:
5156         return nvme_changed_nslist(n, rae, len, off, req);
5157     case NVME_LOG_CMD_EFFECTS:
5158         return nvme_cmd_effects(n, csi, len, off, req);
5159     case NVME_LOG_ENDGRP:
5160         return nvme_endgrp_info(n, rae, len, off, req);
5161     case NVME_LOG_FDP_CONFS:
5162         return nvme_fdp_confs(n, lspi, len, off, req);
5163     case NVME_LOG_FDP_RUH_USAGE:
5164         return nvme_fdp_ruh_usage(n, lspi, dw10, dw12, len, off, req);
5165     case NVME_LOG_FDP_STATS:
5166         return nvme_fdp_stats(n, lspi, len, off, req);
5167     case NVME_LOG_FDP_EVENTS:
5168         return nvme_fdp_events(n, lspi, len, off, req);
5169     default:
5170         trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
5171         return NVME_INVALID_FIELD | NVME_DNR;
5172     }
5173 }
5174 
5175 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
5176 {
5177     PCIDevice *pci = PCI_DEVICE(n);
5178     uint16_t offset = (cq->cqid << 3) + (1 << 2);
5179 
5180     n->cq[cq->cqid] = NULL;
5181     qemu_bh_delete(cq->bh);
5182     if (cq->ioeventfd_enabled) {
5183         memory_region_del_eventfd(&n->iomem,
5184                                   0x1000 + offset, 4, false, 0, &cq->notifier);
5185         event_notifier_set_handler(&cq->notifier, NULL);
5186         event_notifier_cleanup(&cq->notifier);
5187     }
5188     if (msix_enabled(pci)) {
5189         msix_vector_unuse(pci, cq->vector);
5190     }
5191     if (cq->cqid) {
5192         g_free(cq);
5193     }
5194 }
5195 
5196 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
5197 {
5198     NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
5199     NvmeCQueue *cq;
5200     uint16_t qid = le16_to_cpu(c->qid);
5201 
5202     if (unlikely(!qid || nvme_check_cqid(n, qid))) {
5203         trace_pci_nvme_err_invalid_del_cq_cqid(qid);
5204         return NVME_INVALID_CQID | NVME_DNR;
5205     }
5206 
5207     cq = n->cq[qid];
5208     if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
5209         trace_pci_nvme_err_invalid_del_cq_notempty(qid);
5210         return NVME_INVALID_QUEUE_DEL;
5211     }
5212 
5213     if (cq->irq_enabled && cq->tail != cq->head) {
5214         n->cq_pending--;
5215     }
5216 
5217     nvme_irq_deassert(n, cq);
5218     trace_pci_nvme_del_cq(qid);
5219     nvme_free_cq(cq, n);
5220     return NVME_SUCCESS;
5221 }
5222 
5223 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
5224                          uint16_t cqid, uint16_t vector, uint16_t size,
5225                          uint16_t irq_enabled)
5226 {
5227     PCIDevice *pci = PCI_DEVICE(n);
5228 
5229     if (msix_enabled(pci)) {
5230         msix_vector_use(pci, vector);
5231     }
5232     cq->ctrl = n;
5233     cq->cqid = cqid;
5234     cq->size = size;
5235     cq->dma_addr = dma_addr;
5236     cq->phase = 1;
5237     cq->irq_enabled = irq_enabled;
5238     cq->vector = vector;
5239     cq->head = cq->tail = 0;
5240     QTAILQ_INIT(&cq->req_list);
5241     QTAILQ_INIT(&cq->sq_list);
5242     if (n->dbbuf_enabled) {
5243         cq->db_addr = n->dbbuf_dbs + (cqid << 3) + (1 << 2);
5244         cq->ei_addr = n->dbbuf_eis + (cqid << 3) + (1 << 2);
5245 
5246         if (n->params.ioeventfd && cqid != 0) {
5247             if (!nvme_init_cq_ioeventfd(cq)) {
5248                 cq->ioeventfd_enabled = true;
5249             }
5250         }
5251     }
5252     n->cq[cqid] = cq;
5253     cq->bh = qemu_bh_new(nvme_post_cqes, cq);
5254 }
5255 
5256 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
5257 {
5258     NvmeCQueue *cq;
5259     NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
5260     uint16_t cqid = le16_to_cpu(c->cqid);
5261     uint16_t vector = le16_to_cpu(c->irq_vector);
5262     uint16_t qsize = le16_to_cpu(c->qsize);
5263     uint16_t qflags = le16_to_cpu(c->cq_flags);
5264     uint64_t prp1 = le64_to_cpu(c->prp1);
5265 
5266     trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
5267                              NVME_CQ_FLAGS_IEN(qflags) != 0);
5268 
5269     if (unlikely(!cqid || cqid > n->conf_ioqpairs || n->cq[cqid] != NULL)) {
5270         trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
5271         return NVME_INVALID_QID | NVME_DNR;
5272     }
5273     if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
5274         trace_pci_nvme_err_invalid_create_cq_size(qsize);
5275         return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
5276     }
5277     if (unlikely(prp1 & (n->page_size - 1))) {
5278         trace_pci_nvme_err_invalid_create_cq_addr(prp1);
5279         return NVME_INVALID_PRP_OFFSET | NVME_DNR;
5280     }
5281     if (unlikely(!msix_enabled(PCI_DEVICE(n)) && vector)) {
5282         trace_pci_nvme_err_invalid_create_cq_vector(vector);
5283         return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
5284     }
5285     if (unlikely(vector >= n->conf_msix_qsize)) {
5286         trace_pci_nvme_err_invalid_create_cq_vector(vector);
5287         return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
5288     }
5289     if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
5290         trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
5291         return NVME_INVALID_FIELD | NVME_DNR;
5292     }
5293 
5294     cq = g_malloc0(sizeof(*cq));
5295     nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
5296                  NVME_CQ_FLAGS_IEN(qflags));
5297 
5298     /*
5299      * It is only required to set qs_created when creating a completion queue;
5300      * creating a submission queue without a matching completion queue will
5301      * fail.
5302      */
5303     n->qs_created = true;
5304     return NVME_SUCCESS;
5305 }
5306 
5307 static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req)
5308 {
5309     uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
5310 
5311     return nvme_c2h(n, id, sizeof(id), req);
5312 }
5313 
5314 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
5315 {
5316     trace_pci_nvme_identify_ctrl();
5317 
5318     return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req);
5319 }
5320 
5321 static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req)
5322 {
5323     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5324     uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
5325     NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id;
5326 
5327     trace_pci_nvme_identify_ctrl_csi(c->csi);
5328 
5329     switch (c->csi) {
5330     case NVME_CSI_NVM:
5331         id_nvm->vsl = n->params.vsl;
5332         id_nvm->dmrsl = cpu_to_le32(n->dmrsl);
5333         break;
5334 
5335     case NVME_CSI_ZONED:
5336         ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl;
5337         break;
5338 
5339     default:
5340         return NVME_INVALID_FIELD | NVME_DNR;
5341     }
5342 
5343     return nvme_c2h(n, id, sizeof(id), req);
5344 }
5345 
5346 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active)
5347 {
5348     NvmeNamespace *ns;
5349     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5350     uint32_t nsid = le32_to_cpu(c->nsid);
5351 
5352     trace_pci_nvme_identify_ns(nsid);
5353 
5354     if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5355         return NVME_INVALID_NSID | NVME_DNR;
5356     }
5357 
5358     ns = nvme_ns(n, nsid);
5359     if (unlikely(!ns)) {
5360         if (!active) {
5361             ns = nvme_subsys_ns(n->subsys, nsid);
5362             if (!ns) {
5363                 return nvme_rpt_empty_id_struct(n, req);
5364             }
5365         } else {
5366             return nvme_rpt_empty_id_struct(n, req);
5367         }
5368     }
5369 
5370     if (active || ns->csi == NVME_CSI_NVM) {
5371         return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req);
5372     }
5373 
5374     return NVME_INVALID_CMD_SET | NVME_DNR;
5375 }
5376 
5377 static uint16_t nvme_identify_ctrl_list(NvmeCtrl *n, NvmeRequest *req,
5378                                         bool attached)
5379 {
5380     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5381     uint32_t nsid = le32_to_cpu(c->nsid);
5382     uint16_t min_id = le16_to_cpu(c->ctrlid);
5383     uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
5384     uint16_t *ids = &list[1];
5385     NvmeNamespace *ns;
5386     NvmeCtrl *ctrl;
5387     int cntlid, nr_ids = 0;
5388 
5389     trace_pci_nvme_identify_ctrl_list(c->cns, min_id);
5390 
5391     if (!n->subsys) {
5392         return NVME_INVALID_FIELD | NVME_DNR;
5393     }
5394 
5395     if (attached) {
5396         if (nsid == NVME_NSID_BROADCAST) {
5397             return NVME_INVALID_FIELD | NVME_DNR;
5398         }
5399 
5400         ns = nvme_subsys_ns(n->subsys, nsid);
5401         if (!ns) {
5402             return NVME_INVALID_FIELD | NVME_DNR;
5403         }
5404     }
5405 
5406     for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) {
5407         ctrl = nvme_subsys_ctrl(n->subsys, cntlid);
5408         if (!ctrl) {
5409             continue;
5410         }
5411 
5412         if (attached && !nvme_ns(ctrl, nsid)) {
5413             continue;
5414         }
5415 
5416         ids[nr_ids++] = cntlid;
5417     }
5418 
5419     list[0] = nr_ids;
5420 
5421     return nvme_c2h(n, (uint8_t *)list, sizeof(list), req);
5422 }
5423 
5424 static uint16_t nvme_identify_pri_ctrl_cap(NvmeCtrl *n, NvmeRequest *req)
5425 {
5426     trace_pci_nvme_identify_pri_ctrl_cap(le16_to_cpu(n->pri_ctrl_cap.cntlid));
5427 
5428     return nvme_c2h(n, (uint8_t *)&n->pri_ctrl_cap,
5429                     sizeof(NvmePriCtrlCap), req);
5430 }
5431 
5432 static uint16_t nvme_identify_sec_ctrl_list(NvmeCtrl *n, NvmeRequest *req)
5433 {
5434     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5435     uint16_t pri_ctrl_id = le16_to_cpu(n->pri_ctrl_cap.cntlid);
5436     uint16_t min_id = le16_to_cpu(c->ctrlid);
5437     uint8_t num_sec_ctrl = n->sec_ctrl_list.numcntl;
5438     NvmeSecCtrlList list = {0};
5439     uint8_t i;
5440 
5441     for (i = 0; i < num_sec_ctrl; i++) {
5442         if (n->sec_ctrl_list.sec[i].scid >= min_id) {
5443             list.numcntl = num_sec_ctrl - i;
5444             memcpy(&list.sec, n->sec_ctrl_list.sec + i,
5445                    list.numcntl * sizeof(NvmeSecCtrlEntry));
5446             break;
5447         }
5448     }
5449 
5450     trace_pci_nvme_identify_sec_ctrl_list(pri_ctrl_id, list.numcntl);
5451 
5452     return nvme_c2h(n, (uint8_t *)&list, sizeof(list), req);
5453 }
5454 
5455 static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req,
5456                                      bool active)
5457 {
5458     NvmeNamespace *ns;
5459     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5460     uint32_t nsid = le32_to_cpu(c->nsid);
5461 
5462     trace_pci_nvme_identify_ns_csi(nsid, c->csi);
5463 
5464     if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5465         return NVME_INVALID_NSID | NVME_DNR;
5466     }
5467 
5468     ns = nvme_ns(n, nsid);
5469     if (unlikely(!ns)) {
5470         if (!active) {
5471             ns = nvme_subsys_ns(n->subsys, nsid);
5472             if (!ns) {
5473                 return nvme_rpt_empty_id_struct(n, req);
5474             }
5475         } else {
5476             return nvme_rpt_empty_id_struct(n, req);
5477         }
5478     }
5479 
5480     if (c->csi == NVME_CSI_NVM) {
5481         return nvme_c2h(n, (uint8_t *)&ns->id_ns_nvm, sizeof(NvmeIdNsNvm),
5482                         req);
5483     } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) {
5484         return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned),
5485                         req);
5486     }
5487 
5488     return NVME_INVALID_FIELD | NVME_DNR;
5489 }
5490 
5491 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req,
5492                                      bool active)
5493 {
5494     NvmeNamespace *ns;
5495     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5496     uint32_t min_nsid = le32_to_cpu(c->nsid);
5497     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5498     static const int data_len = sizeof(list);
5499     uint32_t *list_ptr = (uint32_t *)list;
5500     int i, j = 0;
5501 
5502     trace_pci_nvme_identify_nslist(min_nsid);
5503 
5504     /*
5505      * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values
5506      * since the Active Namespace ID List should return namespaces with ids
5507      * *higher* than the NSID specified in the command. This is also specified
5508      * in the spec (NVM Express v1.3d, Section 5.15.4).
5509      */
5510     if (min_nsid >= NVME_NSID_BROADCAST - 1) {
5511         return NVME_INVALID_NSID | NVME_DNR;
5512     }
5513 
5514     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5515         ns = nvme_ns(n, i);
5516         if (!ns) {
5517             if (!active) {
5518                 ns = nvme_subsys_ns(n->subsys, i);
5519                 if (!ns) {
5520                     continue;
5521                 }
5522             } else {
5523                 continue;
5524             }
5525         }
5526         if (ns->params.nsid <= min_nsid) {
5527             continue;
5528         }
5529         list_ptr[j++] = cpu_to_le32(ns->params.nsid);
5530         if (j == data_len / sizeof(uint32_t)) {
5531             break;
5532         }
5533     }
5534 
5535     return nvme_c2h(n, list, data_len, req);
5536 }
5537 
5538 static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req,
5539                                          bool active)
5540 {
5541     NvmeNamespace *ns;
5542     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5543     uint32_t min_nsid = le32_to_cpu(c->nsid);
5544     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5545     static const int data_len = sizeof(list);
5546     uint32_t *list_ptr = (uint32_t *)list;
5547     int i, j = 0;
5548 
5549     trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi);
5550 
5551     /*
5552      * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid.
5553      */
5554     if (min_nsid >= NVME_NSID_BROADCAST - 1) {
5555         return NVME_INVALID_NSID | NVME_DNR;
5556     }
5557 
5558     if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) {
5559         return NVME_INVALID_FIELD | NVME_DNR;
5560     }
5561 
5562     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5563         ns = nvme_ns(n, i);
5564         if (!ns) {
5565             if (!active) {
5566                 ns = nvme_subsys_ns(n->subsys, i);
5567                 if (!ns) {
5568                     continue;
5569                 }
5570             } else {
5571                 continue;
5572             }
5573         }
5574         if (ns->params.nsid <= min_nsid || c->csi != ns->csi) {
5575             continue;
5576         }
5577         list_ptr[j++] = cpu_to_le32(ns->params.nsid);
5578         if (j == data_len / sizeof(uint32_t)) {
5579             break;
5580         }
5581     }
5582 
5583     return nvme_c2h(n, list, data_len, req);
5584 }
5585 
5586 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
5587 {
5588     NvmeNamespace *ns;
5589     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5590     uint32_t nsid = le32_to_cpu(c->nsid);
5591     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5592     uint8_t *pos = list;
5593     struct {
5594         NvmeIdNsDescr hdr;
5595         uint8_t v[NVME_NIDL_UUID];
5596     } QEMU_PACKED uuid = {};
5597     struct {
5598         NvmeIdNsDescr hdr;
5599         uint64_t v;
5600     } QEMU_PACKED eui64 = {};
5601     struct {
5602         NvmeIdNsDescr hdr;
5603         uint8_t v;
5604     } QEMU_PACKED csi = {};
5605 
5606     trace_pci_nvme_identify_ns_descr_list(nsid);
5607 
5608     if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5609         return NVME_INVALID_NSID | NVME_DNR;
5610     }
5611 
5612     ns = nvme_ns(n, nsid);
5613     if (unlikely(!ns)) {
5614         return NVME_INVALID_FIELD | NVME_DNR;
5615     }
5616 
5617     if (!qemu_uuid_is_null(&ns->params.uuid)) {
5618         uuid.hdr.nidt = NVME_NIDT_UUID;
5619         uuid.hdr.nidl = NVME_NIDL_UUID;
5620         memcpy(uuid.v, ns->params.uuid.data, NVME_NIDL_UUID);
5621         memcpy(pos, &uuid, sizeof(uuid));
5622         pos += sizeof(uuid);
5623     }
5624 
5625     if (ns->params.eui64) {
5626         eui64.hdr.nidt = NVME_NIDT_EUI64;
5627         eui64.hdr.nidl = NVME_NIDL_EUI64;
5628         eui64.v = cpu_to_be64(ns->params.eui64);
5629         memcpy(pos, &eui64, sizeof(eui64));
5630         pos += sizeof(eui64);
5631     }
5632 
5633     csi.hdr.nidt = NVME_NIDT_CSI;
5634     csi.hdr.nidl = NVME_NIDL_CSI;
5635     csi.v = ns->csi;
5636     memcpy(pos, &csi, sizeof(csi));
5637     pos += sizeof(csi);
5638 
5639     return nvme_c2h(n, list, sizeof(list), req);
5640 }
5641 
5642 static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req)
5643 {
5644     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5645     static const int data_len = sizeof(list);
5646 
5647     trace_pci_nvme_identify_cmd_set();
5648 
5649     NVME_SET_CSI(*list, NVME_CSI_NVM);
5650     NVME_SET_CSI(*list, NVME_CSI_ZONED);
5651 
5652     return nvme_c2h(n, list, data_len, req);
5653 }
5654 
5655 static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
5656 {
5657     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5658 
5659     trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid),
5660                             c->csi);
5661 
5662     switch (c->cns) {
5663     case NVME_ID_CNS_NS:
5664         return nvme_identify_ns(n, req, true);
5665     case NVME_ID_CNS_NS_PRESENT:
5666         return nvme_identify_ns(n, req, false);
5667     case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST:
5668         return nvme_identify_ctrl_list(n, req, true);
5669     case NVME_ID_CNS_CTRL_LIST:
5670         return nvme_identify_ctrl_list(n, req, false);
5671     case NVME_ID_CNS_PRIMARY_CTRL_CAP:
5672         return nvme_identify_pri_ctrl_cap(n, req);
5673     case NVME_ID_CNS_SECONDARY_CTRL_LIST:
5674         return nvme_identify_sec_ctrl_list(n, req);
5675     case NVME_ID_CNS_CS_NS:
5676         return nvme_identify_ns_csi(n, req, true);
5677     case NVME_ID_CNS_CS_NS_PRESENT:
5678         return nvme_identify_ns_csi(n, req, false);
5679     case NVME_ID_CNS_CTRL:
5680         return nvme_identify_ctrl(n, req);
5681     case NVME_ID_CNS_CS_CTRL:
5682         return nvme_identify_ctrl_csi(n, req);
5683     case NVME_ID_CNS_NS_ACTIVE_LIST:
5684         return nvme_identify_nslist(n, req, true);
5685     case NVME_ID_CNS_NS_PRESENT_LIST:
5686         return nvme_identify_nslist(n, req, false);
5687     case NVME_ID_CNS_CS_NS_ACTIVE_LIST:
5688         return nvme_identify_nslist_csi(n, req, true);
5689     case NVME_ID_CNS_CS_NS_PRESENT_LIST:
5690         return nvme_identify_nslist_csi(n, req, false);
5691     case NVME_ID_CNS_NS_DESCR_LIST:
5692         return nvme_identify_ns_descr_list(n, req);
5693     case NVME_ID_CNS_IO_COMMAND_SET:
5694         return nvme_identify_cmd_set(n, req);
5695     default:
5696         trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
5697         return NVME_INVALID_FIELD | NVME_DNR;
5698     }
5699 }
5700 
5701 static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
5702 {
5703     uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
5704 
5705     req->cqe.result = 1;
5706     if (nvme_check_sqid(n, sqid)) {
5707         return NVME_INVALID_FIELD | NVME_DNR;
5708     }
5709 
5710     return NVME_SUCCESS;
5711 }
5712 
5713 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
5714 {
5715     trace_pci_nvme_setfeat_timestamp(ts);
5716 
5717     n->host_timestamp = le64_to_cpu(ts);
5718     n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5719 }
5720 
5721 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
5722 {
5723     uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5724     uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
5725 
5726     union nvme_timestamp {
5727         struct {
5728             uint64_t timestamp:48;
5729             uint64_t sync:1;
5730             uint64_t origin:3;
5731             uint64_t rsvd1:12;
5732         };
5733         uint64_t all;
5734     };
5735 
5736     union nvme_timestamp ts;
5737     ts.all = 0;
5738     ts.timestamp = n->host_timestamp + elapsed_time;
5739 
5740     /* If the host timestamp is non-zero, set the timestamp origin */
5741     ts.origin = n->host_timestamp ? 0x01 : 0x00;
5742 
5743     trace_pci_nvme_getfeat_timestamp(ts.all);
5744 
5745     return cpu_to_le64(ts.all);
5746 }
5747 
5748 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
5749 {
5750     uint64_t timestamp = nvme_get_timestamp(n);
5751 
5752     return nvme_c2h(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
5753 }
5754 
5755 static int nvme_get_feature_fdp(NvmeCtrl *n, uint32_t endgrpid,
5756                                 uint32_t *result)
5757 {
5758     *result = 0;
5759 
5760     if (!n->subsys || !n->subsys->endgrp.fdp.enabled) {
5761         return NVME_INVALID_FIELD | NVME_DNR;
5762     }
5763 
5764     *result = FIELD_DP16(0, FEAT_FDP, FDPE, 1);
5765     *result = FIELD_DP16(*result, FEAT_FDP, CONF_NDX, 0);
5766 
5767     return NVME_SUCCESS;
5768 }
5769 
5770 static uint16_t nvme_get_feature_fdp_events(NvmeCtrl *n, NvmeNamespace *ns,
5771                                             NvmeRequest *req, uint32_t *result)
5772 {
5773     NvmeCmd *cmd = &req->cmd;
5774     uint32_t cdw11 = le32_to_cpu(cmd->cdw11);
5775     uint16_t ph = cdw11 & 0xffff;
5776     uint8_t noet = (cdw11 >> 16) & 0xff;
5777     uint16_t ruhid, ret;
5778     uint32_t nentries = 0;
5779     uint8_t s_events_ndx = 0;
5780     size_t s_events_siz = sizeof(NvmeFdpEventDescr) * noet;
5781     g_autofree NvmeFdpEventDescr *s_events = g_malloc0(s_events_siz);
5782     NvmeRuHandle *ruh;
5783     NvmeFdpEventDescr *s_event;
5784 
5785     if (!n->subsys || !n->subsys->endgrp.fdp.enabled) {
5786         return NVME_FDP_DISABLED | NVME_DNR;
5787     }
5788 
5789     if (!nvme_ph_valid(ns, ph)) {
5790         return NVME_INVALID_FIELD | NVME_DNR;
5791     }
5792 
5793     ruhid = ns->fdp.phs[ph];
5794     ruh = &n->subsys->endgrp.fdp.ruhs[ruhid];
5795 
5796     assert(ruh);
5797 
5798     if (unlikely(noet == 0)) {
5799         return NVME_INVALID_FIELD | NVME_DNR;
5800     }
5801 
5802     for (uint8_t event_type = 0; event_type < FDP_EVT_MAX; event_type++) {
5803         uint8_t shift = nvme_fdp_evf_shifts[event_type];
5804         if (!shift && event_type) {
5805             /*
5806              * only first entry (event_type == 0) has a shift value of 0
5807              * other entries are simply unpopulated.
5808              */
5809             continue;
5810         }
5811 
5812         nentries++;
5813 
5814         s_event = &s_events[s_events_ndx];
5815         s_event->evt = event_type;
5816         s_event->evta = (ruh->event_filter >> shift) & 0x1;
5817 
5818         /* break if all `noet` entries are filled */
5819         if ((++s_events_ndx) == noet) {
5820             break;
5821         }
5822     }
5823 
5824     ret = nvme_c2h(n, s_events, s_events_siz, req);
5825     if (ret) {
5826         return ret;
5827     }
5828 
5829     *result = nentries;
5830     return NVME_SUCCESS;
5831 }
5832 
5833 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
5834 {
5835     NvmeCmd *cmd = &req->cmd;
5836     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5837     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5838     uint32_t nsid = le32_to_cpu(cmd->nsid);
5839     uint32_t result;
5840     uint8_t fid = NVME_GETSETFEAT_FID(dw10);
5841     NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
5842     uint16_t iv;
5843     NvmeNamespace *ns;
5844     int i;
5845     uint16_t endgrpid = 0, ret = NVME_SUCCESS;
5846 
5847     static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
5848         [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
5849     };
5850 
5851     trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11);
5852 
5853     if (!nvme_feature_support[fid]) {
5854         return NVME_INVALID_FIELD | NVME_DNR;
5855     }
5856 
5857     if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
5858         if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5859             /*
5860              * The Reservation Notification Mask and Reservation Persistence
5861              * features require a status code of Invalid Field in Command when
5862              * NSID is FFFFFFFFh. Since the device does not support those
5863              * features we can always return Invalid Namespace or Format as we
5864              * should do for all other features.
5865              */
5866             return NVME_INVALID_NSID | NVME_DNR;
5867         }
5868 
5869         if (!nvme_ns(n, nsid)) {
5870             return NVME_INVALID_FIELD | NVME_DNR;
5871         }
5872     }
5873 
5874     switch (sel) {
5875     case NVME_GETFEAT_SELECT_CURRENT:
5876         break;
5877     case NVME_GETFEAT_SELECT_SAVED:
5878         /* no features are saveable by the controller; fallthrough */
5879     case NVME_GETFEAT_SELECT_DEFAULT:
5880         goto defaults;
5881     case NVME_GETFEAT_SELECT_CAP:
5882         result = nvme_feature_cap[fid];
5883         goto out;
5884     }
5885 
5886     switch (fid) {
5887     case NVME_TEMPERATURE_THRESHOLD:
5888         result = 0;
5889 
5890         /*
5891          * The controller only implements the Composite Temperature sensor, so
5892          * return 0 for all other sensors.
5893          */
5894         if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5895             goto out;
5896         }
5897 
5898         switch (NVME_TEMP_THSEL(dw11)) {
5899         case NVME_TEMP_THSEL_OVER:
5900             result = n->features.temp_thresh_hi;
5901             goto out;
5902         case NVME_TEMP_THSEL_UNDER:
5903             result = n->features.temp_thresh_low;
5904             goto out;
5905         }
5906 
5907         return NVME_INVALID_FIELD | NVME_DNR;
5908     case NVME_ERROR_RECOVERY:
5909         if (!nvme_nsid_valid(n, nsid)) {
5910             return NVME_INVALID_NSID | NVME_DNR;
5911         }
5912 
5913         ns = nvme_ns(n, nsid);
5914         if (unlikely(!ns)) {
5915             return NVME_INVALID_FIELD | NVME_DNR;
5916         }
5917 
5918         result = ns->features.err_rec;
5919         goto out;
5920     case NVME_VOLATILE_WRITE_CACHE:
5921         result = 0;
5922         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5923             ns = nvme_ns(n, i);
5924             if (!ns) {
5925                 continue;
5926             }
5927 
5928             result = blk_enable_write_cache(ns->blkconf.blk);
5929             if (result) {
5930                 break;
5931             }
5932         }
5933         trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
5934         goto out;
5935     case NVME_ASYNCHRONOUS_EVENT_CONF:
5936         result = n->features.async_config;
5937         goto out;
5938     case NVME_TIMESTAMP:
5939         return nvme_get_feature_timestamp(n, req);
5940     case NVME_HOST_BEHAVIOR_SUPPORT:
5941         return nvme_c2h(n, (uint8_t *)&n->features.hbs,
5942                         sizeof(n->features.hbs), req);
5943     case NVME_FDP_MODE:
5944         endgrpid = dw11 & 0xff;
5945 
5946         if (endgrpid != 0x1) {
5947             return NVME_INVALID_FIELD | NVME_DNR;
5948         }
5949 
5950         ret = nvme_get_feature_fdp(n, endgrpid, &result);
5951         if (ret) {
5952             return ret;
5953         }
5954         goto out;
5955     case NVME_FDP_EVENTS:
5956         if (!nvme_nsid_valid(n, nsid)) {
5957             return NVME_INVALID_NSID | NVME_DNR;
5958         }
5959 
5960         ns = nvme_ns(n, nsid);
5961         if (unlikely(!ns)) {
5962             return NVME_INVALID_FIELD | NVME_DNR;
5963         }
5964 
5965         ret = nvme_get_feature_fdp_events(n, ns, req, &result);
5966         if (ret) {
5967             return ret;
5968         }
5969         goto out;
5970     default:
5971         break;
5972     }
5973 
5974 defaults:
5975     switch (fid) {
5976     case NVME_TEMPERATURE_THRESHOLD:
5977         result = 0;
5978 
5979         if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5980             break;
5981         }
5982 
5983         if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
5984             result = NVME_TEMPERATURE_WARNING;
5985         }
5986 
5987         break;
5988     case NVME_NUMBER_OF_QUEUES:
5989         result = (n->conf_ioqpairs - 1) | ((n->conf_ioqpairs - 1) << 16);
5990         trace_pci_nvme_getfeat_numq(result);
5991         break;
5992     case NVME_INTERRUPT_VECTOR_CONF:
5993         iv = dw11 & 0xffff;
5994         if (iv >= n->conf_ioqpairs + 1) {
5995             return NVME_INVALID_FIELD | NVME_DNR;
5996         }
5997 
5998         result = iv;
5999         if (iv == n->admin_cq.vector) {
6000             result |= NVME_INTVC_NOCOALESCING;
6001         }
6002         break;
6003     case NVME_FDP_MODE:
6004         endgrpid = dw11 & 0xff;
6005 
6006         if (endgrpid != 0x1) {
6007             return NVME_INVALID_FIELD | NVME_DNR;
6008         }
6009 
6010         ret = nvme_get_feature_fdp(n, endgrpid, &result);
6011         if (ret) {
6012             return ret;
6013         }
6014         goto out;
6015 
6016         break;
6017     default:
6018         result = nvme_feature_default[fid];
6019         break;
6020     }
6021 
6022 out:
6023     req->cqe.result = cpu_to_le32(result);
6024     return ret;
6025 }
6026 
6027 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
6028 {
6029     uint16_t ret;
6030     uint64_t timestamp;
6031 
6032     ret = nvme_h2c(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
6033     if (ret) {
6034         return ret;
6035     }
6036 
6037     nvme_set_timestamp(n, timestamp);
6038 
6039     return NVME_SUCCESS;
6040 }
6041 
6042 static uint16_t nvme_set_feature_fdp_events(NvmeCtrl *n, NvmeNamespace *ns,
6043                                             NvmeRequest *req)
6044 {
6045     NvmeCmd *cmd = &req->cmd;
6046     uint32_t cdw11 = le32_to_cpu(cmd->cdw11);
6047     uint16_t ph = cdw11 & 0xffff;
6048     uint8_t noet = (cdw11 >> 16) & 0xff;
6049     uint16_t ret, ruhid;
6050     uint8_t enable = le32_to_cpu(cmd->cdw12) & 0x1;
6051     uint8_t event_mask = 0;
6052     unsigned int i;
6053     g_autofree uint8_t *events = g_malloc0(noet);
6054     NvmeRuHandle *ruh = NULL;
6055 
6056     assert(ns);
6057 
6058     if (!n->subsys || !n->subsys->endgrp.fdp.enabled) {
6059         return NVME_FDP_DISABLED | NVME_DNR;
6060     }
6061 
6062     if (!nvme_ph_valid(ns, ph)) {
6063         return NVME_INVALID_FIELD | NVME_DNR;
6064     }
6065 
6066     ruhid = ns->fdp.phs[ph];
6067     ruh = &n->subsys->endgrp.fdp.ruhs[ruhid];
6068 
6069     ret = nvme_h2c(n, events, noet, req);
6070     if (ret) {
6071         return ret;
6072     }
6073 
6074     for (i = 0; i < noet; i++) {
6075         event_mask |= (1 << nvme_fdp_evf_shifts[events[i]]);
6076     }
6077 
6078     if (enable) {
6079         ruh->event_filter |= event_mask;
6080     } else {
6081         ruh->event_filter = ruh->event_filter & ~event_mask;
6082     }
6083 
6084     return NVME_SUCCESS;
6085 }
6086 
6087 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
6088 {
6089     NvmeNamespace *ns = NULL;
6090 
6091     NvmeCmd *cmd = &req->cmd;
6092     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
6093     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
6094     uint32_t nsid = le32_to_cpu(cmd->nsid);
6095     uint8_t fid = NVME_GETSETFEAT_FID(dw10);
6096     uint8_t save = NVME_SETFEAT_SAVE(dw10);
6097     uint16_t status;
6098     int i;
6099 
6100     trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11);
6101 
6102     if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) {
6103         return NVME_FID_NOT_SAVEABLE | NVME_DNR;
6104     }
6105 
6106     if (!nvme_feature_support[fid]) {
6107         return NVME_INVALID_FIELD | NVME_DNR;
6108     }
6109 
6110     if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
6111         if (nsid != NVME_NSID_BROADCAST) {
6112             if (!nvme_nsid_valid(n, nsid)) {
6113                 return NVME_INVALID_NSID | NVME_DNR;
6114             }
6115 
6116             ns = nvme_ns(n, nsid);
6117             if (unlikely(!ns)) {
6118                 return NVME_INVALID_FIELD | NVME_DNR;
6119             }
6120         }
6121     } else if (nsid && nsid != NVME_NSID_BROADCAST) {
6122         if (!nvme_nsid_valid(n, nsid)) {
6123             return NVME_INVALID_NSID | NVME_DNR;
6124         }
6125 
6126         return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
6127     }
6128 
6129     if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
6130         return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
6131     }
6132 
6133     switch (fid) {
6134     case NVME_TEMPERATURE_THRESHOLD:
6135         if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
6136             break;
6137         }
6138 
6139         switch (NVME_TEMP_THSEL(dw11)) {
6140         case NVME_TEMP_THSEL_OVER:
6141             n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
6142             break;
6143         case NVME_TEMP_THSEL_UNDER:
6144             n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
6145             break;
6146         default:
6147             return NVME_INVALID_FIELD | NVME_DNR;
6148         }
6149 
6150         if ((n->temperature >= n->features.temp_thresh_hi) ||
6151             (n->temperature <= n->features.temp_thresh_low)) {
6152             nvme_smart_event(n, NVME_SMART_TEMPERATURE);
6153         }
6154 
6155         break;
6156     case NVME_ERROR_RECOVERY:
6157         if (nsid == NVME_NSID_BROADCAST) {
6158             for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6159                 ns = nvme_ns(n, i);
6160 
6161                 if (!ns) {
6162                     continue;
6163                 }
6164 
6165                 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
6166                     ns->features.err_rec = dw11;
6167                 }
6168             }
6169 
6170             break;
6171         }
6172 
6173         assert(ns);
6174         if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat))  {
6175             ns->features.err_rec = dw11;
6176         }
6177         break;
6178     case NVME_VOLATILE_WRITE_CACHE:
6179         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6180             ns = nvme_ns(n, i);
6181             if (!ns) {
6182                 continue;
6183             }
6184 
6185             if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) {
6186                 blk_flush(ns->blkconf.blk);
6187             }
6188 
6189             blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1);
6190         }
6191 
6192         break;
6193 
6194     case NVME_NUMBER_OF_QUEUES:
6195         if (n->qs_created) {
6196             return NVME_CMD_SEQ_ERROR | NVME_DNR;
6197         }
6198 
6199         /*
6200          * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR
6201          * and NSQR.
6202          */
6203         if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
6204             return NVME_INVALID_FIELD | NVME_DNR;
6205         }
6206 
6207         trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1,
6208                                     ((dw11 >> 16) & 0xffff) + 1,
6209                                     n->conf_ioqpairs,
6210                                     n->conf_ioqpairs);
6211         req->cqe.result = cpu_to_le32((n->conf_ioqpairs - 1) |
6212                                       ((n->conf_ioqpairs - 1) << 16));
6213         break;
6214     case NVME_ASYNCHRONOUS_EVENT_CONF:
6215         n->features.async_config = dw11;
6216         break;
6217     case NVME_TIMESTAMP:
6218         return nvme_set_feature_timestamp(n, req);
6219     case NVME_HOST_BEHAVIOR_SUPPORT:
6220         status = nvme_h2c(n, (uint8_t *)&n->features.hbs,
6221                           sizeof(n->features.hbs), req);
6222         if (status) {
6223             return status;
6224         }
6225 
6226         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6227             ns = nvme_ns(n, i);
6228 
6229             if (!ns) {
6230                 continue;
6231             }
6232 
6233             ns->id_ns.nlbaf = ns->nlbaf - 1;
6234             if (!n->features.hbs.lbafee) {
6235                 ns->id_ns.nlbaf = MIN(ns->id_ns.nlbaf, 15);
6236             }
6237         }
6238 
6239         return status;
6240     case NVME_COMMAND_SET_PROFILE:
6241         if (dw11 & 0x1ff) {
6242             trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff);
6243             return NVME_CMD_SET_CMB_REJECTED | NVME_DNR;
6244         }
6245         break;
6246     case NVME_FDP_MODE:
6247         /* spec: abort with cmd seq err if there's one or more NS' in endgrp */
6248         return NVME_CMD_SEQ_ERROR | NVME_DNR;
6249     case NVME_FDP_EVENTS:
6250         return nvme_set_feature_fdp_events(n, ns, req);
6251     default:
6252         return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
6253     }
6254     return NVME_SUCCESS;
6255 }
6256 
6257 static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
6258 {
6259     trace_pci_nvme_aer(nvme_cid(req));
6260 
6261     if (n->outstanding_aers > n->params.aerl) {
6262         trace_pci_nvme_aer_aerl_exceeded();
6263         return NVME_AER_LIMIT_EXCEEDED;
6264     }
6265 
6266     n->aer_reqs[n->outstanding_aers] = req;
6267     n->outstanding_aers++;
6268 
6269     if (!QTAILQ_EMPTY(&n->aer_queue)) {
6270         nvme_process_aers(n);
6271     }
6272 
6273     return NVME_NO_COMPLETE;
6274 }
6275 
6276 static void nvme_update_dmrsl(NvmeCtrl *n)
6277 {
6278     int nsid;
6279 
6280     for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) {
6281         NvmeNamespace *ns = nvme_ns(n, nsid);
6282         if (!ns) {
6283             continue;
6284         }
6285 
6286         n->dmrsl = MIN_NON_ZERO(n->dmrsl,
6287                                 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
6288     }
6289 }
6290 
6291 static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns)
6292 {
6293     uint32_t cc = ldl_le_p(&n->bar.cc);
6294 
6295     ns->iocs = nvme_cse_iocs_none;
6296     switch (ns->csi) {
6297     case NVME_CSI_NVM:
6298         if (NVME_CC_CSS(cc) != NVME_CC_CSS_ADMIN_ONLY) {
6299             ns->iocs = nvme_cse_iocs_nvm;
6300         }
6301         break;
6302     case NVME_CSI_ZONED:
6303         if (NVME_CC_CSS(cc) == NVME_CC_CSS_CSI) {
6304             ns->iocs = nvme_cse_iocs_zoned;
6305         } else if (NVME_CC_CSS(cc) == NVME_CC_CSS_NVM) {
6306             ns->iocs = nvme_cse_iocs_nvm;
6307         }
6308         break;
6309     }
6310 }
6311 
6312 static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req)
6313 {
6314     NvmeNamespace *ns;
6315     NvmeCtrl *ctrl;
6316     uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
6317     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
6318     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6319     uint8_t sel = dw10 & 0xf;
6320     uint16_t *nr_ids = &list[0];
6321     uint16_t *ids = &list[1];
6322     uint16_t ret;
6323     int i;
6324 
6325     trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf);
6326 
6327     if (!nvme_nsid_valid(n, nsid)) {
6328         return NVME_INVALID_NSID | NVME_DNR;
6329     }
6330 
6331     ns = nvme_subsys_ns(n->subsys, nsid);
6332     if (!ns) {
6333         return NVME_INVALID_FIELD | NVME_DNR;
6334     }
6335 
6336     ret = nvme_h2c(n, (uint8_t *)list, 4096, req);
6337     if (ret) {
6338         return ret;
6339     }
6340 
6341     if (!*nr_ids) {
6342         return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
6343     }
6344 
6345     *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1);
6346     for (i = 0; i < *nr_ids; i++) {
6347         ctrl = nvme_subsys_ctrl(n->subsys, ids[i]);
6348         if (!ctrl) {
6349             return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
6350         }
6351 
6352         switch (sel) {
6353         case NVME_NS_ATTACHMENT_ATTACH:
6354             if (nvme_ns(ctrl, nsid)) {
6355                 return NVME_NS_ALREADY_ATTACHED | NVME_DNR;
6356             }
6357 
6358             if (ns->attached && !ns->params.shared) {
6359                 return NVME_NS_PRIVATE | NVME_DNR;
6360             }
6361 
6362             nvme_attach_ns(ctrl, ns);
6363             nvme_select_iocs_ns(ctrl, ns);
6364 
6365             break;
6366 
6367         case NVME_NS_ATTACHMENT_DETACH:
6368             if (!nvme_ns(ctrl, nsid)) {
6369                 return NVME_NS_NOT_ATTACHED | NVME_DNR;
6370             }
6371 
6372             ctrl->namespaces[nsid] = NULL;
6373             ns->attached--;
6374 
6375             nvme_update_dmrsl(ctrl);
6376 
6377             break;
6378 
6379         default:
6380             return NVME_INVALID_FIELD | NVME_DNR;
6381         }
6382 
6383         /*
6384          * Add namespace id to the changed namespace id list for event clearing
6385          * via Get Log Page command.
6386          */
6387         if (!test_and_set_bit(nsid, ctrl->changed_nsids)) {
6388             nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE,
6389                                NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED,
6390                                NVME_LOG_CHANGED_NSLIST);
6391         }
6392     }
6393 
6394     return NVME_SUCCESS;
6395 }
6396 
6397 typedef struct NvmeFormatAIOCB {
6398     BlockAIOCB common;
6399     BlockAIOCB *aiocb;
6400     NvmeRequest *req;
6401     int ret;
6402 
6403     NvmeNamespace *ns;
6404     uint32_t nsid;
6405     bool broadcast;
6406     int64_t offset;
6407 
6408     uint8_t lbaf;
6409     uint8_t mset;
6410     uint8_t pi;
6411     uint8_t pil;
6412 } NvmeFormatAIOCB;
6413 
6414 static void nvme_format_cancel(BlockAIOCB *aiocb)
6415 {
6416     NvmeFormatAIOCB *iocb = container_of(aiocb, NvmeFormatAIOCB, common);
6417 
6418     iocb->ret = -ECANCELED;
6419 
6420     if (iocb->aiocb) {
6421         blk_aio_cancel_async(iocb->aiocb);
6422         iocb->aiocb = NULL;
6423     }
6424 }
6425 
6426 static const AIOCBInfo nvme_format_aiocb_info = {
6427     .aiocb_size = sizeof(NvmeFormatAIOCB),
6428     .cancel_async = nvme_format_cancel,
6429     .get_aio_context = nvme_get_aio_context,
6430 };
6431 
6432 static void nvme_format_set(NvmeNamespace *ns, uint8_t lbaf, uint8_t mset,
6433                             uint8_t pi, uint8_t pil)
6434 {
6435     uint8_t lbafl = lbaf & 0xf;
6436     uint8_t lbafu = lbaf >> 4;
6437 
6438     trace_pci_nvme_format_set(ns->params.nsid, lbaf, mset, pi, pil);
6439 
6440     ns->id_ns.dps = (pil << 3) | pi;
6441     ns->id_ns.flbas = (lbafu << 5) | (mset << 4) | lbafl;
6442 
6443     nvme_ns_init_format(ns);
6444 }
6445 
6446 static void nvme_do_format(NvmeFormatAIOCB *iocb);
6447 
6448 static void nvme_format_ns_cb(void *opaque, int ret)
6449 {
6450     NvmeFormatAIOCB *iocb = opaque;
6451     NvmeNamespace *ns = iocb->ns;
6452     int bytes;
6453 
6454     if (iocb->ret < 0) {
6455         goto done;
6456     } else if (ret < 0) {
6457         iocb->ret = ret;
6458         goto done;
6459     }
6460 
6461     assert(ns);
6462 
6463     if (iocb->offset < ns->size) {
6464         bytes = MIN(BDRV_REQUEST_MAX_BYTES, ns->size - iocb->offset);
6465 
6466         iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, iocb->offset,
6467                                             bytes, BDRV_REQ_MAY_UNMAP,
6468                                             nvme_format_ns_cb, iocb);
6469 
6470         iocb->offset += bytes;
6471         return;
6472     }
6473 
6474     nvme_format_set(ns, iocb->lbaf, iocb->mset, iocb->pi, iocb->pil);
6475     ns->status = 0x0;
6476     iocb->ns = NULL;
6477     iocb->offset = 0;
6478 
6479 done:
6480     nvme_do_format(iocb);
6481 }
6482 
6483 static uint16_t nvme_format_check(NvmeNamespace *ns, uint8_t lbaf, uint8_t pi)
6484 {
6485     if (ns->params.zoned) {
6486         return NVME_INVALID_FORMAT | NVME_DNR;
6487     }
6488 
6489     if (lbaf > ns->id_ns.nlbaf) {
6490         return NVME_INVALID_FORMAT | NVME_DNR;
6491     }
6492 
6493     if (pi && (ns->id_ns.lbaf[lbaf].ms < nvme_pi_tuple_size(ns))) {
6494         return NVME_INVALID_FORMAT | NVME_DNR;
6495     }
6496 
6497     if (pi && pi > NVME_ID_NS_DPS_TYPE_3) {
6498         return NVME_INVALID_FIELD | NVME_DNR;
6499     }
6500 
6501     return NVME_SUCCESS;
6502 }
6503 
6504 static void nvme_do_format(NvmeFormatAIOCB *iocb)
6505 {
6506     NvmeRequest *req = iocb->req;
6507     NvmeCtrl *n = nvme_ctrl(req);
6508     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6509     uint8_t lbaf = dw10 & 0xf;
6510     uint8_t pi = (dw10 >> 5) & 0x7;
6511     uint16_t status;
6512     int i;
6513 
6514     if (iocb->ret < 0) {
6515         goto done;
6516     }
6517 
6518     if (iocb->broadcast) {
6519         for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
6520             iocb->ns = nvme_ns(n, i);
6521             if (iocb->ns) {
6522                 iocb->nsid = i;
6523                 break;
6524             }
6525         }
6526     }
6527 
6528     if (!iocb->ns) {
6529         goto done;
6530     }
6531 
6532     status = nvme_format_check(iocb->ns, lbaf, pi);
6533     if (status) {
6534         req->status = status;
6535         goto done;
6536     }
6537 
6538     iocb->ns->status = NVME_FORMAT_IN_PROGRESS;
6539     nvme_format_ns_cb(iocb, 0);
6540     return;
6541 
6542 done:
6543     iocb->common.cb(iocb->common.opaque, iocb->ret);
6544     qemu_aio_unref(iocb);
6545 }
6546 
6547 static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req)
6548 {
6549     NvmeFormatAIOCB *iocb;
6550     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
6551     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6552     uint8_t lbaf = dw10 & 0xf;
6553     uint8_t mset = (dw10 >> 4) & 0x1;
6554     uint8_t pi = (dw10 >> 5) & 0x7;
6555     uint8_t pil = (dw10 >> 8) & 0x1;
6556     uint8_t lbafu = (dw10 >> 12) & 0x3;
6557     uint16_t status;
6558 
6559     iocb = qemu_aio_get(&nvme_format_aiocb_info, NULL, nvme_misc_cb, req);
6560 
6561     iocb->req = req;
6562     iocb->ret = 0;
6563     iocb->ns = NULL;
6564     iocb->nsid = 0;
6565     iocb->lbaf = lbaf;
6566     iocb->mset = mset;
6567     iocb->pi = pi;
6568     iocb->pil = pil;
6569     iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
6570     iocb->offset = 0;
6571 
6572     if (n->features.hbs.lbafee) {
6573         iocb->lbaf |= lbafu << 4;
6574     }
6575 
6576     if (!iocb->broadcast) {
6577         if (!nvme_nsid_valid(n, nsid)) {
6578             status = NVME_INVALID_NSID | NVME_DNR;
6579             goto out;
6580         }
6581 
6582         iocb->ns = nvme_ns(n, nsid);
6583         if (!iocb->ns) {
6584             status = NVME_INVALID_FIELD | NVME_DNR;
6585             goto out;
6586         }
6587     }
6588 
6589     req->aiocb = &iocb->common;
6590     nvme_do_format(iocb);
6591 
6592     return NVME_NO_COMPLETE;
6593 
6594 out:
6595     qemu_aio_unref(iocb);
6596 
6597     return status;
6598 }
6599 
6600 static void nvme_get_virt_res_num(NvmeCtrl *n, uint8_t rt, int *num_total,
6601                                   int *num_prim, int *num_sec)
6602 {
6603     *num_total = le32_to_cpu(rt ?
6604                              n->pri_ctrl_cap.vifrt : n->pri_ctrl_cap.vqfrt);
6605     *num_prim = le16_to_cpu(rt ?
6606                             n->pri_ctrl_cap.virfap : n->pri_ctrl_cap.vqrfap);
6607     *num_sec = le16_to_cpu(rt ? n->pri_ctrl_cap.virfa : n->pri_ctrl_cap.vqrfa);
6608 }
6609 
6610 static uint16_t nvme_assign_virt_res_to_prim(NvmeCtrl *n, NvmeRequest *req,
6611                                              uint16_t cntlid, uint8_t rt,
6612                                              int nr)
6613 {
6614     int num_total, num_prim, num_sec;
6615 
6616     if (cntlid != n->cntlid) {
6617         return NVME_INVALID_CTRL_ID | NVME_DNR;
6618     }
6619 
6620     nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
6621 
6622     if (nr > num_total) {
6623         return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
6624     }
6625 
6626     if (nr > num_total - num_sec) {
6627         return NVME_INVALID_RESOURCE_ID | NVME_DNR;
6628     }
6629 
6630     if (rt) {
6631         n->next_pri_ctrl_cap.virfap = cpu_to_le16(nr);
6632     } else {
6633         n->next_pri_ctrl_cap.vqrfap = cpu_to_le16(nr);
6634     }
6635 
6636     req->cqe.result = cpu_to_le32(nr);
6637     return req->status;
6638 }
6639 
6640 static void nvme_update_virt_res(NvmeCtrl *n, NvmeSecCtrlEntry *sctrl,
6641                                  uint8_t rt, int nr)
6642 {
6643     int prev_nr, prev_total;
6644 
6645     if (rt) {
6646         prev_nr = le16_to_cpu(sctrl->nvi);
6647         prev_total = le32_to_cpu(n->pri_ctrl_cap.virfa);
6648         sctrl->nvi = cpu_to_le16(nr);
6649         n->pri_ctrl_cap.virfa = cpu_to_le32(prev_total + nr - prev_nr);
6650     } else {
6651         prev_nr = le16_to_cpu(sctrl->nvq);
6652         prev_total = le32_to_cpu(n->pri_ctrl_cap.vqrfa);
6653         sctrl->nvq = cpu_to_le16(nr);
6654         n->pri_ctrl_cap.vqrfa = cpu_to_le32(prev_total + nr - prev_nr);
6655     }
6656 }
6657 
6658 static uint16_t nvme_assign_virt_res_to_sec(NvmeCtrl *n, NvmeRequest *req,
6659                                             uint16_t cntlid, uint8_t rt, int nr)
6660 {
6661     int num_total, num_prim, num_sec, num_free, diff, limit;
6662     NvmeSecCtrlEntry *sctrl;
6663 
6664     sctrl = nvme_sctrl_for_cntlid(n, cntlid);
6665     if (!sctrl) {
6666         return NVME_INVALID_CTRL_ID | NVME_DNR;
6667     }
6668 
6669     if (sctrl->scs) {
6670         return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
6671     }
6672 
6673     limit = le16_to_cpu(rt ? n->pri_ctrl_cap.vifrsm : n->pri_ctrl_cap.vqfrsm);
6674     if (nr > limit) {
6675         return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
6676     }
6677 
6678     nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
6679     num_free = num_total - num_prim - num_sec;
6680     diff = nr - le16_to_cpu(rt ? sctrl->nvi : sctrl->nvq);
6681 
6682     if (diff > num_free) {
6683         return NVME_INVALID_RESOURCE_ID | NVME_DNR;
6684     }
6685 
6686     nvme_update_virt_res(n, sctrl, rt, nr);
6687     req->cqe.result = cpu_to_le32(nr);
6688 
6689     return req->status;
6690 }
6691 
6692 static uint16_t nvme_virt_set_state(NvmeCtrl *n, uint16_t cntlid, bool online)
6693 {
6694     PCIDevice *pci = PCI_DEVICE(n);
6695     NvmeCtrl *sn = NULL;
6696     NvmeSecCtrlEntry *sctrl;
6697     int vf_index;
6698 
6699     sctrl = nvme_sctrl_for_cntlid(n, cntlid);
6700     if (!sctrl) {
6701         return NVME_INVALID_CTRL_ID | NVME_DNR;
6702     }
6703 
6704     if (!pci_is_vf(pci)) {
6705         vf_index = le16_to_cpu(sctrl->vfn) - 1;
6706         sn = NVME(pcie_sriov_get_vf_at_index(pci, vf_index));
6707     }
6708 
6709     if (online) {
6710         if (!sctrl->nvi || (le16_to_cpu(sctrl->nvq) < 2) || !sn) {
6711             return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
6712         }
6713 
6714         if (!sctrl->scs) {
6715             sctrl->scs = 0x1;
6716             nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
6717         }
6718     } else {
6719         nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_INTERRUPT, 0);
6720         nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_QUEUE, 0);
6721 
6722         if (sctrl->scs) {
6723             sctrl->scs = 0x0;
6724             if (sn) {
6725                 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
6726             }
6727         }
6728     }
6729 
6730     return NVME_SUCCESS;
6731 }
6732 
6733 static uint16_t nvme_virt_mngmt(NvmeCtrl *n, NvmeRequest *req)
6734 {
6735     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6736     uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
6737     uint8_t act = dw10 & 0xf;
6738     uint8_t rt = (dw10 >> 8) & 0x7;
6739     uint16_t cntlid = (dw10 >> 16) & 0xffff;
6740     int nr = dw11 & 0xffff;
6741 
6742     trace_pci_nvme_virt_mngmt(nvme_cid(req), act, cntlid, rt ? "VI" : "VQ", nr);
6743 
6744     if (rt != NVME_VIRT_RES_QUEUE && rt != NVME_VIRT_RES_INTERRUPT) {
6745         return NVME_INVALID_RESOURCE_ID | NVME_DNR;
6746     }
6747 
6748     switch (act) {
6749     case NVME_VIRT_MNGMT_ACTION_SEC_ASSIGN:
6750         return nvme_assign_virt_res_to_sec(n, req, cntlid, rt, nr);
6751     case NVME_VIRT_MNGMT_ACTION_PRM_ALLOC:
6752         return nvme_assign_virt_res_to_prim(n, req, cntlid, rt, nr);
6753     case NVME_VIRT_MNGMT_ACTION_SEC_ONLINE:
6754         return nvme_virt_set_state(n, cntlid, true);
6755     case NVME_VIRT_MNGMT_ACTION_SEC_OFFLINE:
6756         return nvme_virt_set_state(n, cntlid, false);
6757     default:
6758         return NVME_INVALID_FIELD | NVME_DNR;
6759     }
6760 }
6761 
6762 static uint16_t nvme_dbbuf_config(NvmeCtrl *n, const NvmeRequest *req)
6763 {
6764     PCIDevice *pci = PCI_DEVICE(n);
6765     uint64_t dbs_addr = le64_to_cpu(req->cmd.dptr.prp1);
6766     uint64_t eis_addr = le64_to_cpu(req->cmd.dptr.prp2);
6767     int i;
6768 
6769     /* Address should be page aligned */
6770     if (dbs_addr & (n->page_size - 1) || eis_addr & (n->page_size - 1)) {
6771         return NVME_INVALID_FIELD | NVME_DNR;
6772     }
6773 
6774     /* Save shadow buffer base addr for use during queue creation */
6775     n->dbbuf_dbs = dbs_addr;
6776     n->dbbuf_eis = eis_addr;
6777     n->dbbuf_enabled = true;
6778 
6779     for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
6780         NvmeSQueue *sq = n->sq[i];
6781         NvmeCQueue *cq = n->cq[i];
6782 
6783         if (sq) {
6784             /*
6785              * CAP.DSTRD is 0, so offset of ith sq db_addr is (i<<3)
6786              * nvme_process_db() uses this hard-coded way to calculate
6787              * doorbell offsets. Be consistent with that here.
6788              */
6789             sq->db_addr = dbs_addr + (i << 3);
6790             sq->ei_addr = eis_addr + (i << 3);
6791             pci_dma_write(pci, sq->db_addr, &sq->tail, sizeof(sq->tail));
6792 
6793             if (n->params.ioeventfd && sq->sqid != 0) {
6794                 if (!nvme_init_sq_ioeventfd(sq)) {
6795                     sq->ioeventfd_enabled = true;
6796                 }
6797             }
6798         }
6799 
6800         if (cq) {
6801             /* CAP.DSTRD is 0, so offset of ith cq db_addr is (i<<3)+(1<<2) */
6802             cq->db_addr = dbs_addr + (i << 3) + (1 << 2);
6803             cq->ei_addr = eis_addr + (i << 3) + (1 << 2);
6804             pci_dma_write(pci, cq->db_addr, &cq->head, sizeof(cq->head));
6805 
6806             if (n->params.ioeventfd && cq->cqid != 0) {
6807                 if (!nvme_init_cq_ioeventfd(cq)) {
6808                     cq->ioeventfd_enabled = true;
6809                 }
6810             }
6811         }
6812     }
6813 
6814     trace_pci_nvme_dbbuf_config(dbs_addr, eis_addr);
6815 
6816     return NVME_SUCCESS;
6817 }
6818 
6819 static uint16_t nvme_directive_send(NvmeCtrl *n, NvmeRequest *req)
6820 {
6821     return NVME_INVALID_FIELD | NVME_DNR;
6822 }
6823 
6824 static uint16_t nvme_directive_receive(NvmeCtrl *n, NvmeRequest *req)
6825 {
6826     NvmeNamespace *ns;
6827     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6828     uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
6829     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
6830     uint8_t doper, dtype;
6831     uint32_t numd, trans_len;
6832     NvmeDirectiveIdentify id = {
6833         .supported = 1 << NVME_DIRECTIVE_IDENTIFY,
6834         .enabled = 1 << NVME_DIRECTIVE_IDENTIFY,
6835     };
6836 
6837     numd = dw10 + 1;
6838     doper = dw11 & 0xff;
6839     dtype = (dw11 >> 8) & 0xff;
6840 
6841     trans_len = MIN(sizeof(NvmeDirectiveIdentify), numd << 2);
6842 
6843     if (nsid == NVME_NSID_BROADCAST || dtype != NVME_DIRECTIVE_IDENTIFY ||
6844         doper != NVME_DIRECTIVE_RETURN_PARAMS) {
6845         return NVME_INVALID_FIELD | NVME_DNR;
6846     }
6847 
6848     ns = nvme_ns(n, nsid);
6849     if (!ns) {
6850         return NVME_INVALID_FIELD | NVME_DNR;
6851     }
6852 
6853     switch (dtype) {
6854     case NVME_DIRECTIVE_IDENTIFY:
6855         switch (doper) {
6856         case NVME_DIRECTIVE_RETURN_PARAMS:
6857             if (ns->endgrp->fdp.enabled) {
6858                 id.supported |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT;
6859                 id.enabled |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT;
6860                 id.persistent |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT;
6861             }
6862 
6863             return nvme_c2h(n, (uint8_t *)&id, trans_len, req);
6864 
6865         default:
6866             return NVME_INVALID_FIELD | NVME_DNR;
6867         }
6868 
6869     default:
6870         return NVME_INVALID_FIELD;
6871     }
6872 }
6873 
6874 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
6875 {
6876     trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
6877                              nvme_adm_opc_str(req->cmd.opcode));
6878 
6879     if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
6880         trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
6881         return NVME_INVALID_OPCODE | NVME_DNR;
6882     }
6883 
6884     /* SGLs shall not be used for Admin commands in NVMe over PCIe */
6885     if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) {
6886         return NVME_INVALID_FIELD | NVME_DNR;
6887     }
6888 
6889     if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
6890         return NVME_INVALID_FIELD;
6891     }
6892 
6893     switch (req->cmd.opcode) {
6894     case NVME_ADM_CMD_DELETE_SQ:
6895         return nvme_del_sq(n, req);
6896     case NVME_ADM_CMD_CREATE_SQ:
6897         return nvme_create_sq(n, req);
6898     case NVME_ADM_CMD_GET_LOG_PAGE:
6899         return nvme_get_log(n, req);
6900     case NVME_ADM_CMD_DELETE_CQ:
6901         return nvme_del_cq(n, req);
6902     case NVME_ADM_CMD_CREATE_CQ:
6903         return nvme_create_cq(n, req);
6904     case NVME_ADM_CMD_IDENTIFY:
6905         return nvme_identify(n, req);
6906     case NVME_ADM_CMD_ABORT:
6907         return nvme_abort(n, req);
6908     case NVME_ADM_CMD_SET_FEATURES:
6909         return nvme_set_feature(n, req);
6910     case NVME_ADM_CMD_GET_FEATURES:
6911         return nvme_get_feature(n, req);
6912     case NVME_ADM_CMD_ASYNC_EV_REQ:
6913         return nvme_aer(n, req);
6914     case NVME_ADM_CMD_NS_ATTACHMENT:
6915         return nvme_ns_attachment(n, req);
6916     case NVME_ADM_CMD_VIRT_MNGMT:
6917         return nvme_virt_mngmt(n, req);
6918     case NVME_ADM_CMD_DBBUF_CONFIG:
6919         return nvme_dbbuf_config(n, req);
6920     case NVME_ADM_CMD_FORMAT_NVM:
6921         return nvme_format(n, req);
6922     case NVME_ADM_CMD_DIRECTIVE_SEND:
6923         return nvme_directive_send(n, req);
6924     case NVME_ADM_CMD_DIRECTIVE_RECV:
6925         return nvme_directive_receive(n, req);
6926     default:
6927         assert(false);
6928     }
6929 
6930     return NVME_INVALID_OPCODE | NVME_DNR;
6931 }
6932 
6933 static void nvme_update_sq_eventidx(const NvmeSQueue *sq)
6934 {
6935     uint32_t v = cpu_to_le32(sq->tail);
6936 
6937     trace_pci_nvme_update_sq_eventidx(sq->sqid, sq->tail);
6938 
6939     pci_dma_write(PCI_DEVICE(sq->ctrl), sq->ei_addr, &v, sizeof(v));
6940 }
6941 
6942 static void nvme_update_sq_tail(NvmeSQueue *sq)
6943 {
6944     uint32_t v;
6945 
6946     pci_dma_read(PCI_DEVICE(sq->ctrl), sq->db_addr, &v, sizeof(v));
6947 
6948     sq->tail = le32_to_cpu(v);
6949 
6950     trace_pci_nvme_update_sq_tail(sq->sqid, sq->tail);
6951 }
6952 
6953 static void nvme_process_sq(void *opaque)
6954 {
6955     NvmeSQueue *sq = opaque;
6956     NvmeCtrl *n = sq->ctrl;
6957     NvmeCQueue *cq = n->cq[sq->cqid];
6958 
6959     uint16_t status;
6960     hwaddr addr;
6961     NvmeCmd cmd;
6962     NvmeRequest *req;
6963 
6964     if (n->dbbuf_enabled) {
6965         nvme_update_sq_tail(sq);
6966     }
6967 
6968     while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
6969         addr = sq->dma_addr + sq->head * n->sqe_size;
6970         if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
6971             trace_pci_nvme_err_addr_read(addr);
6972             trace_pci_nvme_err_cfs();
6973             stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
6974             break;
6975         }
6976         nvme_inc_sq_head(sq);
6977 
6978         req = QTAILQ_FIRST(&sq->req_list);
6979         QTAILQ_REMOVE(&sq->req_list, req, entry);
6980         QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
6981         nvme_req_clear(req);
6982         req->cqe.cid = cmd.cid;
6983         memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
6984 
6985         status = sq->sqid ? nvme_io_cmd(n, req) :
6986             nvme_admin_cmd(n, req);
6987         if (status != NVME_NO_COMPLETE) {
6988             req->status = status;
6989             nvme_enqueue_req_completion(cq, req);
6990         }
6991 
6992         if (n->dbbuf_enabled) {
6993             nvme_update_sq_eventidx(sq);
6994             nvme_update_sq_tail(sq);
6995         }
6996     }
6997 }
6998 
6999 static void nvme_update_msixcap_ts(PCIDevice *pci_dev, uint32_t table_size)
7000 {
7001     uint8_t *config;
7002 
7003     if (!msix_present(pci_dev)) {
7004         return;
7005     }
7006 
7007     assert(table_size > 0 && table_size <= pci_dev->msix_entries_nr);
7008 
7009     config = pci_dev->config + pci_dev->msix_cap;
7010     pci_set_word_by_mask(config + PCI_MSIX_FLAGS, PCI_MSIX_FLAGS_QSIZE,
7011                          table_size - 1);
7012 }
7013 
7014 static void nvme_activate_virt_res(NvmeCtrl *n)
7015 {
7016     PCIDevice *pci_dev = PCI_DEVICE(n);
7017     NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
7018     NvmeSecCtrlEntry *sctrl;
7019 
7020     /* -1 to account for the admin queue */
7021     if (pci_is_vf(pci_dev)) {
7022         sctrl = nvme_sctrl(n);
7023         cap->vqprt = sctrl->nvq;
7024         cap->viprt = sctrl->nvi;
7025         n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
7026         n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
7027     } else {
7028         cap->vqrfap = n->next_pri_ctrl_cap.vqrfap;
7029         cap->virfap = n->next_pri_ctrl_cap.virfap;
7030         n->conf_ioqpairs = le16_to_cpu(cap->vqprt) +
7031                            le16_to_cpu(cap->vqrfap) - 1;
7032         n->conf_msix_qsize = le16_to_cpu(cap->viprt) +
7033                              le16_to_cpu(cap->virfap);
7034     }
7035 }
7036 
7037 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst)
7038 {
7039     PCIDevice *pci_dev = PCI_DEVICE(n);
7040     NvmeSecCtrlEntry *sctrl;
7041     NvmeNamespace *ns;
7042     int i;
7043 
7044     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
7045         ns = nvme_ns(n, i);
7046         if (!ns) {
7047             continue;
7048         }
7049 
7050         nvme_ns_drain(ns);
7051     }
7052 
7053     for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
7054         if (n->sq[i] != NULL) {
7055             nvme_free_sq(n->sq[i], n);
7056         }
7057     }
7058     for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
7059         if (n->cq[i] != NULL) {
7060             nvme_free_cq(n->cq[i], n);
7061         }
7062     }
7063 
7064     while (!QTAILQ_EMPTY(&n->aer_queue)) {
7065         NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
7066         QTAILQ_REMOVE(&n->aer_queue, event, entry);
7067         g_free(event);
7068     }
7069 
7070     if (n->params.sriov_max_vfs) {
7071         if (!pci_is_vf(pci_dev)) {
7072             for (i = 0; i < n->sec_ctrl_list.numcntl; i++) {
7073                 sctrl = &n->sec_ctrl_list.sec[i];
7074                 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
7075             }
7076 
7077             if (rst != NVME_RESET_CONTROLLER) {
7078                 pcie_sriov_pf_disable_vfs(pci_dev);
7079             }
7080         }
7081 
7082         if (rst != NVME_RESET_CONTROLLER) {
7083             nvme_activate_virt_res(n);
7084         }
7085     }
7086 
7087     n->aer_queued = 0;
7088     n->aer_mask = 0;
7089     n->outstanding_aers = 0;
7090     n->qs_created = false;
7091 
7092     nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
7093 
7094     if (pci_is_vf(pci_dev)) {
7095         sctrl = nvme_sctrl(n);
7096 
7097         stl_le_p(&n->bar.csts, sctrl->scs ? 0 : NVME_CSTS_FAILED);
7098     } else {
7099         stl_le_p(&n->bar.csts, 0);
7100     }
7101 
7102     stl_le_p(&n->bar.intms, 0);
7103     stl_le_p(&n->bar.intmc, 0);
7104     stl_le_p(&n->bar.cc, 0);
7105 
7106     n->dbbuf_dbs = 0;
7107     n->dbbuf_eis = 0;
7108     n->dbbuf_enabled = false;
7109 }
7110 
7111 static void nvme_ctrl_shutdown(NvmeCtrl *n)
7112 {
7113     NvmeNamespace *ns;
7114     int i;
7115 
7116     if (n->pmr.dev) {
7117         memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
7118     }
7119 
7120     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
7121         ns = nvme_ns(n, i);
7122         if (!ns) {
7123             continue;
7124         }
7125 
7126         nvme_ns_shutdown(ns);
7127     }
7128 }
7129 
7130 static void nvme_select_iocs(NvmeCtrl *n)
7131 {
7132     NvmeNamespace *ns;
7133     int i;
7134 
7135     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
7136         ns = nvme_ns(n, i);
7137         if (!ns) {
7138             continue;
7139         }
7140 
7141         nvme_select_iocs_ns(n, ns);
7142     }
7143 }
7144 
7145 static int nvme_start_ctrl(NvmeCtrl *n)
7146 {
7147     uint64_t cap = ldq_le_p(&n->bar.cap);
7148     uint32_t cc = ldl_le_p(&n->bar.cc);
7149     uint32_t aqa = ldl_le_p(&n->bar.aqa);
7150     uint64_t asq = ldq_le_p(&n->bar.asq);
7151     uint64_t acq = ldq_le_p(&n->bar.acq);
7152     uint32_t page_bits = NVME_CC_MPS(cc) + 12;
7153     uint32_t page_size = 1 << page_bits;
7154     NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
7155 
7156     if (pci_is_vf(PCI_DEVICE(n)) && !sctrl->scs) {
7157         trace_pci_nvme_err_startfail_virt_state(le16_to_cpu(sctrl->nvi),
7158                                                 le16_to_cpu(sctrl->nvq),
7159                                                 sctrl->scs ? "ONLINE" :
7160                                                              "OFFLINE");
7161         return -1;
7162     }
7163     if (unlikely(n->cq[0])) {
7164         trace_pci_nvme_err_startfail_cq();
7165         return -1;
7166     }
7167     if (unlikely(n->sq[0])) {
7168         trace_pci_nvme_err_startfail_sq();
7169         return -1;
7170     }
7171     if (unlikely(asq & (page_size - 1))) {
7172         trace_pci_nvme_err_startfail_asq_misaligned(asq);
7173         return -1;
7174     }
7175     if (unlikely(acq & (page_size - 1))) {
7176         trace_pci_nvme_err_startfail_acq_misaligned(acq);
7177         return -1;
7178     }
7179     if (unlikely(!(NVME_CAP_CSS(cap) & (1 << NVME_CC_CSS(cc))))) {
7180         trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc));
7181         return -1;
7182     }
7183     if (unlikely(NVME_CC_MPS(cc) < NVME_CAP_MPSMIN(cap))) {
7184         trace_pci_nvme_err_startfail_page_too_small(
7185                     NVME_CC_MPS(cc),
7186                     NVME_CAP_MPSMIN(cap));
7187         return -1;
7188     }
7189     if (unlikely(NVME_CC_MPS(cc) >
7190                  NVME_CAP_MPSMAX(cap))) {
7191         trace_pci_nvme_err_startfail_page_too_large(
7192                     NVME_CC_MPS(cc),
7193                     NVME_CAP_MPSMAX(cap));
7194         return -1;
7195     }
7196     if (unlikely(NVME_CC_IOCQES(cc) <
7197                  NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
7198         trace_pci_nvme_err_startfail_cqent_too_small(
7199                     NVME_CC_IOCQES(cc),
7200                     NVME_CTRL_CQES_MIN(cap));
7201         return -1;
7202     }
7203     if (unlikely(NVME_CC_IOCQES(cc) >
7204                  NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
7205         trace_pci_nvme_err_startfail_cqent_too_large(
7206                     NVME_CC_IOCQES(cc),
7207                     NVME_CTRL_CQES_MAX(cap));
7208         return -1;
7209     }
7210     if (unlikely(NVME_CC_IOSQES(cc) <
7211                  NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
7212         trace_pci_nvme_err_startfail_sqent_too_small(
7213                     NVME_CC_IOSQES(cc),
7214                     NVME_CTRL_SQES_MIN(cap));
7215         return -1;
7216     }
7217     if (unlikely(NVME_CC_IOSQES(cc) >
7218                  NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
7219         trace_pci_nvme_err_startfail_sqent_too_large(
7220                     NVME_CC_IOSQES(cc),
7221                     NVME_CTRL_SQES_MAX(cap));
7222         return -1;
7223     }
7224     if (unlikely(!NVME_AQA_ASQS(aqa))) {
7225         trace_pci_nvme_err_startfail_asqent_sz_zero();
7226         return -1;
7227     }
7228     if (unlikely(!NVME_AQA_ACQS(aqa))) {
7229         trace_pci_nvme_err_startfail_acqent_sz_zero();
7230         return -1;
7231     }
7232 
7233     n->page_bits = page_bits;
7234     n->page_size = page_size;
7235     n->max_prp_ents = n->page_size / sizeof(uint64_t);
7236     n->cqe_size = 1 << NVME_CC_IOCQES(cc);
7237     n->sqe_size = 1 << NVME_CC_IOSQES(cc);
7238     nvme_init_cq(&n->admin_cq, n, acq, 0, 0, NVME_AQA_ACQS(aqa) + 1, 1);
7239     nvme_init_sq(&n->admin_sq, n, asq, 0, 0, NVME_AQA_ASQS(aqa) + 1);
7240 
7241     nvme_set_timestamp(n, 0ULL);
7242 
7243     nvme_select_iocs(n);
7244 
7245     return 0;
7246 }
7247 
7248 static void nvme_cmb_enable_regs(NvmeCtrl *n)
7249 {
7250     uint32_t cmbloc = ldl_le_p(&n->bar.cmbloc);
7251     uint32_t cmbsz = ldl_le_p(&n->bar.cmbsz);
7252 
7253     NVME_CMBLOC_SET_CDPCILS(cmbloc, 1);
7254     NVME_CMBLOC_SET_CDPMLS(cmbloc, 1);
7255     NVME_CMBLOC_SET_BIR(cmbloc, NVME_CMB_BIR);
7256     stl_le_p(&n->bar.cmbloc, cmbloc);
7257 
7258     NVME_CMBSZ_SET_SQS(cmbsz, 1);
7259     NVME_CMBSZ_SET_CQS(cmbsz, 0);
7260     NVME_CMBSZ_SET_LISTS(cmbsz, 1);
7261     NVME_CMBSZ_SET_RDS(cmbsz, 1);
7262     NVME_CMBSZ_SET_WDS(cmbsz, 1);
7263     NVME_CMBSZ_SET_SZU(cmbsz, 2); /* MBs */
7264     NVME_CMBSZ_SET_SZ(cmbsz, n->params.cmb_size_mb);
7265     stl_le_p(&n->bar.cmbsz, cmbsz);
7266 }
7267 
7268 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
7269                            unsigned size)
7270 {
7271     PCIDevice *pci = PCI_DEVICE(n);
7272     uint64_t cap = ldq_le_p(&n->bar.cap);
7273     uint32_t cc = ldl_le_p(&n->bar.cc);
7274     uint32_t intms = ldl_le_p(&n->bar.intms);
7275     uint32_t csts = ldl_le_p(&n->bar.csts);
7276     uint32_t pmrsts = ldl_le_p(&n->bar.pmrsts);
7277 
7278     if (unlikely(offset & (sizeof(uint32_t) - 1))) {
7279         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
7280                        "MMIO write not 32-bit aligned,"
7281                        " offset=0x%"PRIx64"", offset);
7282         /* should be ignored, fall through for now */
7283     }
7284 
7285     if (unlikely(size < sizeof(uint32_t))) {
7286         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
7287                        "MMIO write smaller than 32-bits,"
7288                        " offset=0x%"PRIx64", size=%u",
7289                        offset, size);
7290         /* should be ignored, fall through for now */
7291     }
7292 
7293     switch (offset) {
7294     case NVME_REG_INTMS:
7295         if (unlikely(msix_enabled(pci))) {
7296             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
7297                            "undefined access to interrupt mask set"
7298                            " when MSI-X is enabled");
7299             /* should be ignored, fall through for now */
7300         }
7301         intms |= data;
7302         stl_le_p(&n->bar.intms, intms);
7303         n->bar.intmc = n->bar.intms;
7304         trace_pci_nvme_mmio_intm_set(data & 0xffffffff, intms);
7305         nvme_irq_check(n);
7306         break;
7307     case NVME_REG_INTMC:
7308         if (unlikely(msix_enabled(pci))) {
7309             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
7310                            "undefined access to interrupt mask clr"
7311                            " when MSI-X is enabled");
7312             /* should be ignored, fall through for now */
7313         }
7314         intms &= ~data;
7315         stl_le_p(&n->bar.intms, intms);
7316         n->bar.intmc = n->bar.intms;
7317         trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, intms);
7318         nvme_irq_check(n);
7319         break;
7320     case NVME_REG_CC:
7321         stl_le_p(&n->bar.cc, data);
7322 
7323         trace_pci_nvme_mmio_cfg(data & 0xffffffff);
7324 
7325         if (NVME_CC_SHN(data) && !(NVME_CC_SHN(cc))) {
7326             trace_pci_nvme_mmio_shutdown_set();
7327             nvme_ctrl_shutdown(n);
7328             csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
7329             csts |= NVME_CSTS_SHST_COMPLETE;
7330         } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(cc)) {
7331             trace_pci_nvme_mmio_shutdown_cleared();
7332             csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
7333         }
7334 
7335         if (NVME_CC_EN(data) && !NVME_CC_EN(cc)) {
7336             if (unlikely(nvme_start_ctrl(n))) {
7337                 trace_pci_nvme_err_startfail();
7338                 csts = NVME_CSTS_FAILED;
7339             } else {
7340                 trace_pci_nvme_mmio_start_success();
7341                 csts = NVME_CSTS_READY;
7342             }
7343         } else if (!NVME_CC_EN(data) && NVME_CC_EN(cc)) {
7344             trace_pci_nvme_mmio_stopped();
7345             nvme_ctrl_reset(n, NVME_RESET_CONTROLLER);
7346 
7347             break;
7348         }
7349 
7350         stl_le_p(&n->bar.csts, csts);
7351 
7352         break;
7353     case NVME_REG_CSTS:
7354         if (data & (1 << 4)) {
7355             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
7356                            "attempted to W1C CSTS.NSSRO"
7357                            " but CAP.NSSRS is zero (not supported)");
7358         } else if (data != 0) {
7359             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
7360                            "attempted to set a read only bit"
7361                            " of controller status");
7362         }
7363         break;
7364     case NVME_REG_NSSR:
7365         if (data == 0x4e564d65) {
7366             trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
7367         } else {
7368             /* The spec says that writes of other values have no effect */
7369             return;
7370         }
7371         break;
7372     case NVME_REG_AQA:
7373         stl_le_p(&n->bar.aqa, data);
7374         trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
7375         break;
7376     case NVME_REG_ASQ:
7377         stn_le_p(&n->bar.asq, size, data);
7378         trace_pci_nvme_mmio_asqaddr(data);
7379         break;
7380     case NVME_REG_ASQ + 4:
7381         stl_le_p((uint8_t *)&n->bar.asq + 4, data);
7382         trace_pci_nvme_mmio_asqaddr_hi(data, ldq_le_p(&n->bar.asq));
7383         break;
7384     case NVME_REG_ACQ:
7385         trace_pci_nvme_mmio_acqaddr(data);
7386         stn_le_p(&n->bar.acq, size, data);
7387         break;
7388     case NVME_REG_ACQ + 4:
7389         stl_le_p((uint8_t *)&n->bar.acq + 4, data);
7390         trace_pci_nvme_mmio_acqaddr_hi(data, ldq_le_p(&n->bar.acq));
7391         break;
7392     case NVME_REG_CMBLOC:
7393         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
7394                        "invalid write to reserved CMBLOC"
7395                        " when CMBSZ is zero, ignored");
7396         return;
7397     case NVME_REG_CMBSZ:
7398         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
7399                        "invalid write to read only CMBSZ, ignored");
7400         return;
7401     case NVME_REG_CMBMSC:
7402         if (!NVME_CAP_CMBS(cap)) {
7403             return;
7404         }
7405 
7406         stn_le_p(&n->bar.cmbmsc, size, data);
7407         n->cmb.cmse = false;
7408 
7409         if (NVME_CMBMSC_CRE(data)) {
7410             nvme_cmb_enable_regs(n);
7411 
7412             if (NVME_CMBMSC_CMSE(data)) {
7413                 uint64_t cmbmsc = ldq_le_p(&n->bar.cmbmsc);
7414                 hwaddr cba = NVME_CMBMSC_CBA(cmbmsc) << CMBMSC_CBA_SHIFT;
7415                 if (cba + int128_get64(n->cmb.mem.size) < cba) {
7416                     uint32_t cmbsts = ldl_le_p(&n->bar.cmbsts);
7417                     NVME_CMBSTS_SET_CBAI(cmbsts, 1);
7418                     stl_le_p(&n->bar.cmbsts, cmbsts);
7419                     return;
7420                 }
7421 
7422                 n->cmb.cba = cba;
7423                 n->cmb.cmse = true;
7424             }
7425         } else {
7426             n->bar.cmbsz = 0;
7427             n->bar.cmbloc = 0;
7428         }
7429 
7430         return;
7431     case NVME_REG_CMBMSC + 4:
7432         stl_le_p((uint8_t *)&n->bar.cmbmsc + 4, data);
7433         return;
7434 
7435     case NVME_REG_PMRCAP:
7436         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
7437                        "invalid write to PMRCAP register, ignored");
7438         return;
7439     case NVME_REG_PMRCTL:
7440         if (!NVME_CAP_PMRS(cap)) {
7441             return;
7442         }
7443 
7444         stl_le_p(&n->bar.pmrctl, data);
7445         if (NVME_PMRCTL_EN(data)) {
7446             memory_region_set_enabled(&n->pmr.dev->mr, true);
7447             pmrsts = 0;
7448         } else {
7449             memory_region_set_enabled(&n->pmr.dev->mr, false);
7450             NVME_PMRSTS_SET_NRDY(pmrsts, 1);
7451             n->pmr.cmse = false;
7452         }
7453         stl_le_p(&n->bar.pmrsts, pmrsts);
7454         return;
7455     case NVME_REG_PMRSTS:
7456         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
7457                        "invalid write to PMRSTS register, ignored");
7458         return;
7459     case NVME_REG_PMREBS:
7460         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
7461                        "invalid write to PMREBS register, ignored");
7462         return;
7463     case NVME_REG_PMRSWTP:
7464         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
7465                        "invalid write to PMRSWTP register, ignored");
7466         return;
7467     case NVME_REG_PMRMSCL:
7468         if (!NVME_CAP_PMRS(cap)) {
7469             return;
7470         }
7471 
7472         stl_le_p(&n->bar.pmrmscl, data);
7473         n->pmr.cmse = false;
7474 
7475         if (NVME_PMRMSCL_CMSE(data)) {
7476             uint64_t pmrmscu = ldl_le_p(&n->bar.pmrmscu);
7477             hwaddr cba = pmrmscu << 32 |
7478                 (NVME_PMRMSCL_CBA(data) << PMRMSCL_CBA_SHIFT);
7479             if (cba + int128_get64(n->pmr.dev->mr.size) < cba) {
7480                 NVME_PMRSTS_SET_CBAI(pmrsts, 1);
7481                 stl_le_p(&n->bar.pmrsts, pmrsts);
7482                 return;
7483             }
7484 
7485             n->pmr.cmse = true;
7486             n->pmr.cba = cba;
7487         }
7488 
7489         return;
7490     case NVME_REG_PMRMSCU:
7491         if (!NVME_CAP_PMRS(cap)) {
7492             return;
7493         }
7494 
7495         stl_le_p(&n->bar.pmrmscu, data);
7496         return;
7497     default:
7498         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
7499                        "invalid MMIO write,"
7500                        " offset=0x%"PRIx64", data=%"PRIx64"",
7501                        offset, data);
7502         break;
7503     }
7504 }
7505 
7506 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
7507 {
7508     NvmeCtrl *n = (NvmeCtrl *)opaque;
7509     uint8_t *ptr = (uint8_t *)&n->bar;
7510 
7511     trace_pci_nvme_mmio_read(addr, size);
7512 
7513     if (unlikely(addr & (sizeof(uint32_t) - 1))) {
7514         NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
7515                        "MMIO read not 32-bit aligned,"
7516                        " offset=0x%"PRIx64"", addr);
7517         /* should RAZ, fall through for now */
7518     } else if (unlikely(size < sizeof(uint32_t))) {
7519         NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
7520                        "MMIO read smaller than 32-bits,"
7521                        " offset=0x%"PRIx64"", addr);
7522         /* should RAZ, fall through for now */
7523     }
7524 
7525     if (addr > sizeof(n->bar) - size) {
7526         NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
7527                        "MMIO read beyond last register,"
7528                        " offset=0x%"PRIx64", returning 0", addr);
7529 
7530         return 0;
7531     }
7532 
7533     if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs &&
7534         addr != NVME_REG_CSTS) {
7535         trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
7536         return 0;
7537     }
7538 
7539     /*
7540      * When PMRWBM bit 1 is set then read from
7541      * from PMRSTS should ensure prior writes
7542      * made it to persistent media
7543      */
7544     if (addr == NVME_REG_PMRSTS &&
7545         (NVME_PMRCAP_PMRWBM(ldl_le_p(&n->bar.pmrcap)) & 0x02)) {
7546         memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
7547     }
7548 
7549     return ldn_le_p(ptr + addr, size);
7550 }
7551 
7552 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
7553 {
7554     PCIDevice *pci = PCI_DEVICE(n);
7555     uint32_t qid;
7556 
7557     if (unlikely(addr & ((1 << 2) - 1))) {
7558         NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
7559                        "doorbell write not 32-bit aligned,"
7560                        " offset=0x%"PRIx64", ignoring", addr);
7561         return;
7562     }
7563 
7564     if (((addr - 0x1000) >> 2) & 1) {
7565         /* Completion queue doorbell write */
7566 
7567         uint16_t new_head = val & 0xffff;
7568         int start_sqs;
7569         NvmeCQueue *cq;
7570 
7571         qid = (addr - (0x1000 + (1 << 2))) >> 3;
7572         if (unlikely(nvme_check_cqid(n, qid))) {
7573             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
7574                            "completion queue doorbell write"
7575                            " for nonexistent queue,"
7576                            " sqid=%"PRIu32", ignoring", qid);
7577 
7578             /*
7579              * NVM Express v1.3d, Section 4.1 state: "If host software writes
7580              * an invalid value to the Submission Queue Tail Doorbell or
7581              * Completion Queue Head Doorbell regiter and an Asynchronous Event
7582              * Request command is outstanding, then an asynchronous event is
7583              * posted to the Admin Completion Queue with a status code of
7584              * Invalid Doorbell Write Value."
7585              *
7586              * Also note that the spec includes the "Invalid Doorbell Register"
7587              * status code, but nowhere does it specify when to use it.
7588              * However, it seems reasonable to use it here in a similar
7589              * fashion.
7590              */
7591             if (n->outstanding_aers) {
7592                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
7593                                    NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
7594                                    NVME_LOG_ERROR_INFO);
7595             }
7596 
7597             return;
7598         }
7599 
7600         cq = n->cq[qid];
7601         if (unlikely(new_head >= cq->size)) {
7602             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
7603                            "completion queue doorbell write value"
7604                            " beyond queue size, sqid=%"PRIu32","
7605                            " new_head=%"PRIu16", ignoring",
7606                            qid, new_head);
7607 
7608             if (n->outstanding_aers) {
7609                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
7610                                    NVME_AER_INFO_ERR_INVALID_DB_VALUE,
7611                                    NVME_LOG_ERROR_INFO);
7612             }
7613 
7614             return;
7615         }
7616 
7617         trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
7618 
7619         start_sqs = nvme_cq_full(cq) ? 1 : 0;
7620         cq->head = new_head;
7621         if (!qid && n->dbbuf_enabled) {
7622             pci_dma_write(pci, cq->db_addr, &cq->head, sizeof(cq->head));
7623         }
7624         if (start_sqs) {
7625             NvmeSQueue *sq;
7626             QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
7627                 qemu_bh_schedule(sq->bh);
7628             }
7629             qemu_bh_schedule(cq->bh);
7630         }
7631 
7632         if (cq->tail == cq->head) {
7633             if (cq->irq_enabled) {
7634                 n->cq_pending--;
7635             }
7636 
7637             nvme_irq_deassert(n, cq);
7638         }
7639     } else {
7640         /* Submission queue doorbell write */
7641 
7642         uint16_t new_tail = val & 0xffff;
7643         NvmeSQueue *sq;
7644 
7645         qid = (addr - 0x1000) >> 3;
7646         if (unlikely(nvme_check_sqid(n, qid))) {
7647             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
7648                            "submission queue doorbell write"
7649                            " for nonexistent queue,"
7650                            " sqid=%"PRIu32", ignoring", qid);
7651 
7652             if (n->outstanding_aers) {
7653                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
7654                                    NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
7655                                    NVME_LOG_ERROR_INFO);
7656             }
7657 
7658             return;
7659         }
7660 
7661         sq = n->sq[qid];
7662         if (unlikely(new_tail >= sq->size)) {
7663             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
7664                            "submission queue doorbell write value"
7665                            " beyond queue size, sqid=%"PRIu32","
7666                            " new_tail=%"PRIu16", ignoring",
7667                            qid, new_tail);
7668 
7669             if (n->outstanding_aers) {
7670                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
7671                                    NVME_AER_INFO_ERR_INVALID_DB_VALUE,
7672                                    NVME_LOG_ERROR_INFO);
7673             }
7674 
7675             return;
7676         }
7677 
7678         trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
7679 
7680         sq->tail = new_tail;
7681         if (!qid && n->dbbuf_enabled) {
7682             /*
7683              * The spec states "the host shall also update the controller's
7684              * corresponding doorbell property to match the value of that entry
7685              * in the Shadow Doorbell buffer."
7686              *
7687              * Since this context is currently a VM trap, we can safely enforce
7688              * the requirement from the device side in case the host is
7689              * misbehaving.
7690              *
7691              * Note, we shouldn't have to do this, but various drivers
7692              * including ones that run on Linux, are not updating Admin Queues,
7693              * so we can't trust reading it for an appropriate sq tail.
7694              */
7695             pci_dma_write(pci, sq->db_addr, &sq->tail, sizeof(sq->tail));
7696         }
7697 
7698         qemu_bh_schedule(sq->bh);
7699     }
7700 }
7701 
7702 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
7703                             unsigned size)
7704 {
7705     NvmeCtrl *n = (NvmeCtrl *)opaque;
7706 
7707     trace_pci_nvme_mmio_write(addr, data, size);
7708 
7709     if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs &&
7710         addr != NVME_REG_CSTS) {
7711         trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
7712         return;
7713     }
7714 
7715     if (addr < sizeof(n->bar)) {
7716         nvme_write_bar(n, addr, data, size);
7717     } else {
7718         nvme_process_db(n, addr, data);
7719     }
7720 }
7721 
7722 static const MemoryRegionOps nvme_mmio_ops = {
7723     .read = nvme_mmio_read,
7724     .write = nvme_mmio_write,
7725     .endianness = DEVICE_LITTLE_ENDIAN,
7726     .impl = {
7727         .min_access_size = 2,
7728         .max_access_size = 8,
7729     },
7730 };
7731 
7732 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
7733                            unsigned size)
7734 {
7735     NvmeCtrl *n = (NvmeCtrl *)opaque;
7736     stn_le_p(&n->cmb.buf[addr], size, data);
7737 }
7738 
7739 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
7740 {
7741     NvmeCtrl *n = (NvmeCtrl *)opaque;
7742     return ldn_le_p(&n->cmb.buf[addr], size);
7743 }
7744 
7745 static const MemoryRegionOps nvme_cmb_ops = {
7746     .read = nvme_cmb_read,
7747     .write = nvme_cmb_write,
7748     .endianness = DEVICE_LITTLE_ENDIAN,
7749     .impl = {
7750         .min_access_size = 1,
7751         .max_access_size = 8,
7752     },
7753 };
7754 
7755 static bool nvme_check_params(NvmeCtrl *n, Error **errp)
7756 {
7757     NvmeParams *params = &n->params;
7758 
7759     if (params->num_queues) {
7760         warn_report("num_queues is deprecated; please use max_ioqpairs "
7761                     "instead");
7762 
7763         params->max_ioqpairs = params->num_queues - 1;
7764     }
7765 
7766     if (n->namespace.blkconf.blk && n->subsys) {
7767         error_setg(errp, "subsystem support is unavailable with legacy "
7768                    "namespace ('drive' property)");
7769         return false;
7770     }
7771 
7772     if (params->max_ioqpairs < 1 ||
7773         params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
7774         error_setg(errp, "max_ioqpairs must be between 1 and %d",
7775                    NVME_MAX_IOQPAIRS);
7776         return false;
7777     }
7778 
7779     if (params->msix_qsize < 1 ||
7780         params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
7781         error_setg(errp, "msix_qsize must be between 1 and %d",
7782                    PCI_MSIX_FLAGS_QSIZE + 1);
7783         return false;
7784     }
7785 
7786     if (!params->serial) {
7787         error_setg(errp, "serial property not set");
7788         return false;
7789     }
7790 
7791     if (n->pmr.dev) {
7792         if (host_memory_backend_is_mapped(n->pmr.dev)) {
7793             error_setg(errp, "can't use already busy memdev: %s",
7794                        object_get_canonical_path_component(OBJECT(n->pmr.dev)));
7795             return false;
7796         }
7797 
7798         if (!is_power_of_2(n->pmr.dev->size)) {
7799             error_setg(errp, "pmr backend size needs to be power of 2 in size");
7800             return false;
7801         }
7802 
7803         host_memory_backend_set_mapped(n->pmr.dev, true);
7804     }
7805 
7806     if (n->params.zasl > n->params.mdts) {
7807         error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less "
7808                    "than or equal to mdts (Maximum Data Transfer Size)");
7809         return false;
7810     }
7811 
7812     if (!n->params.vsl) {
7813         error_setg(errp, "vsl must be non-zero");
7814         return false;
7815     }
7816 
7817     if (params->sriov_max_vfs) {
7818         if (!n->subsys) {
7819             error_setg(errp, "subsystem is required for the use of SR-IOV");
7820             return false;
7821         }
7822 
7823         if (params->sriov_max_vfs > NVME_MAX_VFS) {
7824             error_setg(errp, "sriov_max_vfs must be between 0 and %d",
7825                        NVME_MAX_VFS);
7826             return false;
7827         }
7828 
7829         if (params->cmb_size_mb) {
7830             error_setg(errp, "CMB is not supported with SR-IOV");
7831             return false;
7832         }
7833 
7834         if (n->pmr.dev) {
7835             error_setg(errp, "PMR is not supported with SR-IOV");
7836             return false;
7837         }
7838 
7839         if (!params->sriov_vq_flexible || !params->sriov_vi_flexible) {
7840             error_setg(errp, "both sriov_vq_flexible and sriov_vi_flexible"
7841                        " must be set for the use of SR-IOV");
7842             return false;
7843         }
7844 
7845         if (params->sriov_vq_flexible < params->sriov_max_vfs * 2) {
7846             error_setg(errp, "sriov_vq_flexible must be greater than or equal"
7847                        " to %d (sriov_max_vfs * 2)", params->sriov_max_vfs * 2);
7848             return false;
7849         }
7850 
7851         if (params->max_ioqpairs < params->sriov_vq_flexible + 2) {
7852             error_setg(errp, "(max_ioqpairs - sriov_vq_flexible) must be"
7853                        " greater than or equal to 2");
7854             return false;
7855         }
7856 
7857         if (params->sriov_vi_flexible < params->sriov_max_vfs) {
7858             error_setg(errp, "sriov_vi_flexible must be greater than or equal"
7859                        " to %d (sriov_max_vfs)", params->sriov_max_vfs);
7860             return false;
7861         }
7862 
7863         if (params->msix_qsize < params->sriov_vi_flexible + 1) {
7864             error_setg(errp, "(msix_qsize - sriov_vi_flexible) must be"
7865                        " greater than or equal to 1");
7866             return false;
7867         }
7868 
7869         if (params->sriov_max_vi_per_vf &&
7870             (params->sriov_max_vi_per_vf - 1) % NVME_VF_RES_GRANULARITY) {
7871             error_setg(errp, "sriov_max_vi_per_vf must meet:"
7872                        " (sriov_max_vi_per_vf - 1) %% %d == 0 and"
7873                        " sriov_max_vi_per_vf >= 1", NVME_VF_RES_GRANULARITY);
7874             return false;
7875         }
7876 
7877         if (params->sriov_max_vq_per_vf &&
7878             (params->sriov_max_vq_per_vf < 2 ||
7879              (params->sriov_max_vq_per_vf - 1) % NVME_VF_RES_GRANULARITY)) {
7880             error_setg(errp, "sriov_max_vq_per_vf must meet:"
7881                        " (sriov_max_vq_per_vf - 1) %% %d == 0 and"
7882                        " sriov_max_vq_per_vf >= 2", NVME_VF_RES_GRANULARITY);
7883             return false;
7884         }
7885     }
7886 
7887     return true;
7888 }
7889 
7890 static void nvme_init_state(NvmeCtrl *n)
7891 {
7892     NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
7893     NvmeSecCtrlList *list = &n->sec_ctrl_list;
7894     NvmeSecCtrlEntry *sctrl;
7895     PCIDevice *pci = PCI_DEVICE(n);
7896     uint8_t max_vfs;
7897     int i;
7898 
7899     if (pci_is_vf(pci)) {
7900         sctrl = nvme_sctrl(n);
7901         max_vfs = 0;
7902         n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
7903         n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
7904     } else {
7905         max_vfs = n->params.sriov_max_vfs;
7906         n->conf_ioqpairs = n->params.max_ioqpairs;
7907         n->conf_msix_qsize = n->params.msix_qsize;
7908     }
7909 
7910     n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
7911     n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
7912     n->temperature = NVME_TEMPERATURE;
7913     n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
7914     n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
7915     n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
7916     QTAILQ_INIT(&n->aer_queue);
7917 
7918     list->numcntl = cpu_to_le16(max_vfs);
7919     for (i = 0; i < max_vfs; i++) {
7920         sctrl = &list->sec[i];
7921         sctrl->pcid = cpu_to_le16(n->cntlid);
7922         sctrl->vfn = cpu_to_le16(i + 1);
7923     }
7924 
7925     cap->cntlid = cpu_to_le16(n->cntlid);
7926     cap->crt = NVME_CRT_VQ | NVME_CRT_VI;
7927 
7928     if (pci_is_vf(pci)) {
7929         cap->vqprt = cpu_to_le16(1 + n->conf_ioqpairs);
7930     } else {
7931         cap->vqprt = cpu_to_le16(1 + n->params.max_ioqpairs -
7932                                  n->params.sriov_vq_flexible);
7933         cap->vqfrt = cpu_to_le32(n->params.sriov_vq_flexible);
7934         cap->vqrfap = cap->vqfrt;
7935         cap->vqgran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
7936         cap->vqfrsm = n->params.sriov_max_vq_per_vf ?
7937                         cpu_to_le16(n->params.sriov_max_vq_per_vf) :
7938                         cap->vqfrt / MAX(max_vfs, 1);
7939     }
7940 
7941     if (pci_is_vf(pci)) {
7942         cap->viprt = cpu_to_le16(n->conf_msix_qsize);
7943     } else {
7944         cap->viprt = cpu_to_le16(n->params.msix_qsize -
7945                                  n->params.sriov_vi_flexible);
7946         cap->vifrt = cpu_to_le32(n->params.sriov_vi_flexible);
7947         cap->virfap = cap->vifrt;
7948         cap->vigran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
7949         cap->vifrsm = n->params.sriov_max_vi_per_vf ?
7950                         cpu_to_le16(n->params.sriov_max_vi_per_vf) :
7951                         cap->vifrt / MAX(max_vfs, 1);
7952     }
7953 }
7954 
7955 static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
7956 {
7957     uint64_t cmb_size = n->params.cmb_size_mb * MiB;
7958     uint64_t cap = ldq_le_p(&n->bar.cap);
7959 
7960     n->cmb.buf = g_malloc0(cmb_size);
7961     memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n,
7962                           "nvme-cmb", cmb_size);
7963     pci_register_bar(pci_dev, NVME_CMB_BIR,
7964                      PCI_BASE_ADDRESS_SPACE_MEMORY |
7965                      PCI_BASE_ADDRESS_MEM_TYPE_64 |
7966                      PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem);
7967 
7968     NVME_CAP_SET_CMBS(cap, 1);
7969     stq_le_p(&n->bar.cap, cap);
7970 
7971     if (n->params.legacy_cmb) {
7972         nvme_cmb_enable_regs(n);
7973         n->cmb.cmse = true;
7974     }
7975 }
7976 
7977 static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
7978 {
7979     uint32_t pmrcap = ldl_le_p(&n->bar.pmrcap);
7980 
7981     NVME_PMRCAP_SET_RDS(pmrcap, 1);
7982     NVME_PMRCAP_SET_WDS(pmrcap, 1);
7983     NVME_PMRCAP_SET_BIR(pmrcap, NVME_PMR_BIR);
7984     /* Turn on bit 1 support */
7985     NVME_PMRCAP_SET_PMRWBM(pmrcap, 0x02);
7986     NVME_PMRCAP_SET_CMSS(pmrcap, 1);
7987     stl_le_p(&n->bar.pmrcap, pmrcap);
7988 
7989     pci_register_bar(pci_dev, NVME_PMR_BIR,
7990                      PCI_BASE_ADDRESS_SPACE_MEMORY |
7991                      PCI_BASE_ADDRESS_MEM_TYPE_64 |
7992                      PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr);
7993 
7994     memory_region_set_enabled(&n->pmr.dev->mr, false);
7995 }
7996 
7997 static uint64_t nvme_bar_size(unsigned total_queues, unsigned total_irqs,
7998                               unsigned *msix_table_offset,
7999                               unsigned *msix_pba_offset)
8000 {
8001     uint64_t bar_size, msix_table_size, msix_pba_size;
8002 
8003     bar_size = sizeof(NvmeBar) + 2 * total_queues * NVME_DB_SIZE;
8004     bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
8005 
8006     if (msix_table_offset) {
8007         *msix_table_offset = bar_size;
8008     }
8009 
8010     msix_table_size = PCI_MSIX_ENTRY_SIZE * total_irqs;
8011     bar_size += msix_table_size;
8012     bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
8013 
8014     if (msix_pba_offset) {
8015         *msix_pba_offset = bar_size;
8016     }
8017 
8018     msix_pba_size = QEMU_ALIGN_UP(total_irqs, 64) / 8;
8019     bar_size += msix_pba_size;
8020 
8021     bar_size = pow2ceil(bar_size);
8022     return bar_size;
8023 }
8024 
8025 static void nvme_init_sriov(NvmeCtrl *n, PCIDevice *pci_dev, uint16_t offset)
8026 {
8027     uint16_t vf_dev_id = n->params.use_intel_id ?
8028                          PCI_DEVICE_ID_INTEL_NVME : PCI_DEVICE_ID_REDHAT_NVME;
8029     NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
8030     uint64_t bar_size = nvme_bar_size(le16_to_cpu(cap->vqfrsm),
8031                                       le16_to_cpu(cap->vifrsm),
8032                                       NULL, NULL);
8033 
8034     pcie_sriov_pf_init(pci_dev, offset, "nvme", vf_dev_id,
8035                        n->params.sriov_max_vfs, n->params.sriov_max_vfs,
8036                        NVME_VF_OFFSET, NVME_VF_STRIDE);
8037 
8038     pcie_sriov_pf_init_vf_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
8039                               PCI_BASE_ADDRESS_MEM_TYPE_64, bar_size);
8040 }
8041 
8042 static int nvme_add_pm_capability(PCIDevice *pci_dev, uint8_t offset)
8043 {
8044     Error *err = NULL;
8045     int ret;
8046 
8047     ret = pci_add_capability(pci_dev, PCI_CAP_ID_PM, offset,
8048                              PCI_PM_SIZEOF, &err);
8049     if (err) {
8050         error_report_err(err);
8051         return ret;
8052     }
8053 
8054     pci_set_word(pci_dev->config + offset + PCI_PM_PMC,
8055                  PCI_PM_CAP_VER_1_2);
8056     pci_set_word(pci_dev->config + offset + PCI_PM_CTRL,
8057                  PCI_PM_CTRL_NO_SOFT_RESET);
8058     pci_set_word(pci_dev->wmask + offset + PCI_PM_CTRL,
8059                  PCI_PM_CTRL_STATE_MASK);
8060 
8061     return 0;
8062 }
8063 
8064 static bool nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
8065 {
8066     ERRP_GUARD();
8067     uint8_t *pci_conf = pci_dev->config;
8068     uint64_t bar_size;
8069     unsigned msix_table_offset, msix_pba_offset;
8070     int ret;
8071 
8072     pci_conf[PCI_INTERRUPT_PIN] = 1;
8073     pci_config_set_prog_interface(pci_conf, 0x2);
8074 
8075     if (n->params.use_intel_id) {
8076         pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
8077         pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_NVME);
8078     } else {
8079         pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT);
8080         pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME);
8081     }
8082 
8083     pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
8084     nvme_add_pm_capability(pci_dev, 0x60);
8085     pcie_endpoint_cap_init(pci_dev, 0x80);
8086     pcie_cap_flr_init(pci_dev);
8087     if (n->params.sriov_max_vfs) {
8088         pcie_ari_init(pci_dev, 0x100, 1);
8089     }
8090 
8091     /* add one to max_ioqpairs to account for the admin queue pair */
8092     bar_size = nvme_bar_size(n->params.max_ioqpairs + 1, n->params.msix_qsize,
8093                              &msix_table_offset, &msix_pba_offset);
8094 
8095     memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size);
8096     memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
8097                           msix_table_offset);
8098     memory_region_add_subregion(&n->bar0, 0, &n->iomem);
8099 
8100     if (pci_is_vf(pci_dev)) {
8101         pcie_sriov_vf_register_bar(pci_dev, 0, &n->bar0);
8102     } else {
8103         pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
8104                          PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0);
8105     }
8106     ret = msix_init(pci_dev, n->params.msix_qsize,
8107                     &n->bar0, 0, msix_table_offset,
8108                     &n->bar0, 0, msix_pba_offset, 0, errp);
8109     if (ret == -ENOTSUP) {
8110         /* report that msix is not supported, but do not error out */
8111         warn_report_err(*errp);
8112         *errp = NULL;
8113     } else if (ret < 0) {
8114         /* propagate error to caller */
8115         return false;
8116     }
8117 
8118     nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
8119 
8120     if (n->params.cmb_size_mb) {
8121         nvme_init_cmb(n, pci_dev);
8122     }
8123 
8124     if (n->pmr.dev) {
8125         nvme_init_pmr(n, pci_dev);
8126     }
8127 
8128     if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
8129         nvme_init_sriov(n, pci_dev, 0x120);
8130     }
8131 
8132     return true;
8133 }
8134 
8135 static void nvme_init_subnqn(NvmeCtrl *n)
8136 {
8137     NvmeSubsystem *subsys = n->subsys;
8138     NvmeIdCtrl *id = &n->id_ctrl;
8139 
8140     if (!subsys) {
8141         snprintf((char *)id->subnqn, sizeof(id->subnqn),
8142                  "nqn.2019-08.org.qemu:%s", n->params.serial);
8143     } else {
8144         pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn);
8145     }
8146 }
8147 
8148 static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
8149 {
8150     NvmeIdCtrl *id = &n->id_ctrl;
8151     uint8_t *pci_conf = pci_dev->config;
8152     uint64_t cap = ldq_le_p(&n->bar.cap);
8153     NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
8154     uint32_t ctratt;
8155 
8156     id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
8157     id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
8158     strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
8159     strpadcpy((char *)id->fr, sizeof(id->fr), QEMU_VERSION, ' ');
8160     strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
8161 
8162     id->cntlid = cpu_to_le16(n->cntlid);
8163 
8164     id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR);
8165     ctratt = NVME_CTRATT_ELBAS;
8166 
8167     id->rab = 6;
8168 
8169     if (n->params.use_intel_id) {
8170         id->ieee[0] = 0xb3;
8171         id->ieee[1] = 0x02;
8172         id->ieee[2] = 0x00;
8173     } else {
8174         id->ieee[0] = 0x00;
8175         id->ieee[1] = 0x54;
8176         id->ieee[2] = 0x52;
8177     }
8178 
8179     id->mdts = n->params.mdts;
8180     id->ver = cpu_to_le32(NVME_SPEC_VER);
8181     id->oacs =
8182         cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT | NVME_OACS_DBBUF |
8183                     NVME_OACS_DIRECTIVES);
8184     id->cntrltype = 0x1;
8185 
8186     /*
8187      * Because the controller always completes the Abort command immediately,
8188      * there can never be more than one concurrently executing Abort command,
8189      * so this value is never used for anything. Note that there can easily be
8190      * many Abort commands in the queues, but they are not considered
8191      * "executing" until processed by nvme_abort.
8192      *
8193      * The specification recommends a value of 3 for Abort Command Limit (four
8194      * concurrently outstanding Abort commands), so lets use that though it is
8195      * inconsequential.
8196      */
8197     id->acl = 3;
8198     id->aerl = n->params.aerl;
8199     id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
8200     id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED;
8201 
8202     /* recommended default value (~70 C) */
8203     id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
8204     id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
8205 
8206     id->sqes = (0x6 << 4) | 0x6;
8207     id->cqes = (0x4 << 4) | 0x4;
8208     id->nn = cpu_to_le32(NVME_MAX_NAMESPACES);
8209     id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
8210                            NVME_ONCS_FEATURES | NVME_ONCS_DSM |
8211                            NVME_ONCS_COMPARE | NVME_ONCS_COPY);
8212 
8213     /*
8214      * NOTE: If this device ever supports a command set that does NOT use 0x0
8215      * as a Flush-equivalent operation, support for the broadcast NSID in Flush
8216      * should probably be removed.
8217      *
8218      * See comment in nvme_io_cmd.
8219      */
8220     id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT;
8221 
8222     id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0 | NVME_OCFS_COPY_FORMAT_1);
8223     id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN);
8224 
8225     nvme_init_subnqn(n);
8226 
8227     id->psd[0].mp = cpu_to_le16(0x9c4);
8228     id->psd[0].enlat = cpu_to_le32(0x10);
8229     id->psd[0].exlat = cpu_to_le32(0x4);
8230 
8231     if (n->subsys) {
8232         id->cmic |= NVME_CMIC_MULTI_CTRL;
8233         ctratt |= NVME_CTRATT_ENDGRPS;
8234 
8235         id->endgidmax = cpu_to_le16(0x1);
8236 
8237         if (n->subsys->endgrp.fdp.enabled) {
8238             ctratt |= NVME_CTRATT_FDPS;
8239         }
8240     }
8241 
8242     id->ctratt = cpu_to_le32(ctratt);
8243 
8244     NVME_CAP_SET_MQES(cap, 0x7ff);
8245     NVME_CAP_SET_CQR(cap, 1);
8246     NVME_CAP_SET_TO(cap, 0xf);
8247     NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_NVM);
8248     NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_CSI_SUPP);
8249     NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_ADMIN_ONLY);
8250     NVME_CAP_SET_MPSMAX(cap, 4);
8251     NVME_CAP_SET_CMBS(cap, n->params.cmb_size_mb ? 1 : 0);
8252     NVME_CAP_SET_PMRS(cap, n->pmr.dev ? 1 : 0);
8253     stq_le_p(&n->bar.cap, cap);
8254 
8255     stl_le_p(&n->bar.vs, NVME_SPEC_VER);
8256     n->bar.intmc = n->bar.intms = 0;
8257 
8258     if (pci_is_vf(pci_dev) && !sctrl->scs) {
8259         stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
8260     }
8261 }
8262 
8263 static int nvme_init_subsys(NvmeCtrl *n, Error **errp)
8264 {
8265     int cntlid;
8266 
8267     if (!n->subsys) {
8268         return 0;
8269     }
8270 
8271     cntlid = nvme_subsys_register_ctrl(n, errp);
8272     if (cntlid < 0) {
8273         return -1;
8274     }
8275 
8276     n->cntlid = cntlid;
8277 
8278     return 0;
8279 }
8280 
8281 void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns)
8282 {
8283     uint32_t nsid = ns->params.nsid;
8284     assert(nsid && nsid <= NVME_MAX_NAMESPACES);
8285 
8286     n->namespaces[nsid] = ns;
8287     ns->attached++;
8288 
8289     n->dmrsl = MIN_NON_ZERO(n->dmrsl,
8290                             BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
8291 }
8292 
8293 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
8294 {
8295     NvmeCtrl *n = NVME(pci_dev);
8296     DeviceState *dev = DEVICE(pci_dev);
8297     NvmeNamespace *ns;
8298     NvmeCtrl *pn = NVME(pcie_sriov_get_pf(pci_dev));
8299 
8300     if (pci_is_vf(pci_dev)) {
8301         /*
8302          * VFs derive settings from the parent. PF's lifespan exceeds
8303          * that of VF's, so it's safe to share params.serial.
8304          */
8305         memcpy(&n->params, &pn->params, sizeof(NvmeParams));
8306         n->subsys = pn->subsys;
8307     }
8308 
8309     if (!nvme_check_params(n, errp)) {
8310         return;
8311     }
8312 
8313     qbus_init(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS, dev, dev->id);
8314 
8315     if (nvme_init_subsys(n, errp)) {
8316         return;
8317     }
8318     nvme_init_state(n);
8319     if (!nvme_init_pci(n, pci_dev, errp)) {
8320         return;
8321     }
8322     nvme_init_ctrl(n, pci_dev);
8323 
8324     /* setup a namespace if the controller drive property was given */
8325     if (n->namespace.blkconf.blk) {
8326         ns = &n->namespace;
8327         ns->params.nsid = 1;
8328 
8329         if (nvme_ns_setup(ns, errp)) {
8330             return;
8331         }
8332 
8333         nvme_attach_ns(n, ns);
8334     }
8335 }
8336 
8337 static void nvme_exit(PCIDevice *pci_dev)
8338 {
8339     NvmeCtrl *n = NVME(pci_dev);
8340     NvmeNamespace *ns;
8341     int i;
8342 
8343     nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
8344 
8345     if (n->subsys) {
8346         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
8347             ns = nvme_ns(n, i);
8348             if (ns) {
8349                 ns->attached--;
8350             }
8351         }
8352 
8353         nvme_subsys_unregister_ctrl(n->subsys, n);
8354     }
8355 
8356     g_free(n->cq);
8357     g_free(n->sq);
8358     g_free(n->aer_reqs);
8359 
8360     if (n->params.cmb_size_mb) {
8361         g_free(n->cmb.buf);
8362     }
8363 
8364     if (n->pmr.dev) {
8365         host_memory_backend_set_mapped(n->pmr.dev, false);
8366     }
8367 
8368     if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
8369         pcie_sriov_pf_exit(pci_dev);
8370     }
8371 
8372     msix_uninit(pci_dev, &n->bar0, &n->bar0);
8373     memory_region_del_subregion(&n->bar0, &n->iomem);
8374 }
8375 
8376 static Property nvme_props[] = {
8377     DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf),
8378     DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND,
8379                      HostMemoryBackend *),
8380     DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS,
8381                      NvmeSubsystem *),
8382     DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
8383     DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
8384     DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
8385     DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
8386     DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
8387     DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
8388     DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
8389     DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
8390     DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7),
8391     DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false),
8392     DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false),
8393     DEFINE_PROP_BOOL("ioeventfd", NvmeCtrl, params.ioeventfd, false),
8394     DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0),
8395     DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl,
8396                      params.auto_transition_zones, true),
8397     DEFINE_PROP_UINT8("sriov_max_vfs", NvmeCtrl, params.sriov_max_vfs, 0),
8398     DEFINE_PROP_UINT16("sriov_vq_flexible", NvmeCtrl,
8399                        params.sriov_vq_flexible, 0),
8400     DEFINE_PROP_UINT16("sriov_vi_flexible", NvmeCtrl,
8401                        params.sriov_vi_flexible, 0),
8402     DEFINE_PROP_UINT8("sriov_max_vi_per_vf", NvmeCtrl,
8403                       params.sriov_max_vi_per_vf, 0),
8404     DEFINE_PROP_UINT8("sriov_max_vq_per_vf", NvmeCtrl,
8405                       params.sriov_max_vq_per_vf, 0),
8406     DEFINE_PROP_END_OF_LIST(),
8407 };
8408 
8409 static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name,
8410                                    void *opaque, Error **errp)
8411 {
8412     NvmeCtrl *n = NVME(obj);
8413     uint8_t value = n->smart_critical_warning;
8414 
8415     visit_type_uint8(v, name, &value, errp);
8416 }
8417 
8418 static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name,
8419                                    void *opaque, Error **errp)
8420 {
8421     NvmeCtrl *n = NVME(obj);
8422     uint8_t value, old_value, cap = 0, index, event;
8423 
8424     if (!visit_type_uint8(v, name, &value, errp)) {
8425         return;
8426     }
8427 
8428     cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY
8429           | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA;
8430     if (NVME_CAP_PMRS(ldq_le_p(&n->bar.cap))) {
8431         cap |= NVME_SMART_PMR_UNRELIABLE;
8432     }
8433 
8434     if ((value & cap) != value) {
8435         error_setg(errp, "unsupported smart critical warning bits: 0x%x",
8436                    value & ~cap);
8437         return;
8438     }
8439 
8440     old_value = n->smart_critical_warning;
8441     n->smart_critical_warning = value;
8442 
8443     /* only inject new bits of smart critical warning */
8444     for (index = 0; index < NVME_SMART_WARN_MAX; index++) {
8445         event = 1 << index;
8446         if (value & ~old_value & event)
8447             nvme_smart_event(n, event);
8448     }
8449 }
8450 
8451 static void nvme_pci_reset(DeviceState *qdev)
8452 {
8453     PCIDevice *pci_dev = PCI_DEVICE(qdev);
8454     NvmeCtrl *n = NVME(pci_dev);
8455 
8456     trace_pci_nvme_pci_reset();
8457     nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
8458 }
8459 
8460 static void nvme_sriov_pre_write_ctrl(PCIDevice *dev, uint32_t address,
8461                                       uint32_t val, int len)
8462 {
8463     NvmeCtrl *n = NVME(dev);
8464     NvmeSecCtrlEntry *sctrl;
8465     uint16_t sriov_cap = dev->exp.sriov_cap;
8466     uint32_t off = address - sriov_cap;
8467     int i, num_vfs;
8468 
8469     if (!sriov_cap) {
8470         return;
8471     }
8472 
8473     if (range_covers_byte(off, len, PCI_SRIOV_CTRL)) {
8474         if (!(val & PCI_SRIOV_CTRL_VFE)) {
8475             num_vfs = pci_get_word(dev->config + sriov_cap + PCI_SRIOV_NUM_VF);
8476             for (i = 0; i < num_vfs; i++) {
8477                 sctrl = &n->sec_ctrl_list.sec[i];
8478                 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
8479             }
8480         }
8481     }
8482 }
8483 
8484 static void nvme_pci_write_config(PCIDevice *dev, uint32_t address,
8485                                   uint32_t val, int len)
8486 {
8487     nvme_sriov_pre_write_ctrl(dev, address, val, len);
8488     pci_default_write_config(dev, address, val, len);
8489     pcie_cap_flr_write_config(dev, address, val, len);
8490 }
8491 
8492 static const VMStateDescription nvme_vmstate = {
8493     .name = "nvme",
8494     .unmigratable = 1,
8495 };
8496 
8497 static void nvme_class_init(ObjectClass *oc, void *data)
8498 {
8499     DeviceClass *dc = DEVICE_CLASS(oc);
8500     PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
8501 
8502     pc->realize = nvme_realize;
8503     pc->config_write = nvme_pci_write_config;
8504     pc->exit = nvme_exit;
8505     pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
8506     pc->revision = 2;
8507 
8508     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
8509     dc->desc = "Non-Volatile Memory Express";
8510     device_class_set_props(dc, nvme_props);
8511     dc->vmsd = &nvme_vmstate;
8512     dc->reset = nvme_pci_reset;
8513 }
8514 
8515 static void nvme_instance_init(Object *obj)
8516 {
8517     NvmeCtrl *n = NVME(obj);
8518 
8519     device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex,
8520                                   "bootindex", "/namespace@1,0",
8521                                   DEVICE(obj));
8522 
8523     object_property_add(obj, "smart_critical_warning", "uint8",
8524                         nvme_get_smart_warning,
8525                         nvme_set_smart_warning, NULL, NULL);
8526 }
8527 
8528 static const TypeInfo nvme_info = {
8529     .name          = TYPE_NVME,
8530     .parent        = TYPE_PCI_DEVICE,
8531     .instance_size = sizeof(NvmeCtrl),
8532     .instance_init = nvme_instance_init,
8533     .class_init    = nvme_class_init,
8534     .interfaces = (InterfaceInfo[]) {
8535         { INTERFACE_PCIE_DEVICE },
8536         { }
8537     },
8538 };
8539 
8540 static const TypeInfo nvme_bus_info = {
8541     .name = TYPE_NVME_BUS,
8542     .parent = TYPE_BUS,
8543     .instance_size = sizeof(NvmeBus),
8544 };
8545 
8546 static void nvme_register_types(void)
8547 {
8548     type_register_static(&nvme_info);
8549     type_register_static(&nvme_bus_info);
8550 }
8551 
8552 type_init(nvme_register_types)
8553