xref: /openbmc/qemu/hw/net/rtl8139.c (revision 0b8f74488e50f98b04e63157f85fde8a13f8d6aa)
1 /**
2  * QEMU RTL8139 emulation
3  *
4  * Copyright (c) 2006 Igor Kovalenko
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23 
24  * Modifications:
25  *  2006-Jan-28  Mark Malakanov :   TSAD and CSCR implementation (for Windows driver)
26  *
27  *  2006-Apr-28  Juergen Lock   :   EEPROM emulation changes for FreeBSD driver
28  *                                  HW revision ID changes for FreeBSD driver
29  *
30  *  2006-Jul-01  Igor Kovalenko :   Implemented loopback mode for FreeBSD driver
31  *                                  Corrected packet transfer reassembly routine for 8139C+ mode
32  *                                  Rearranged debugging print statements
33  *                                  Implemented PCI timer interrupt (disabled by default)
34  *                                  Implemented Tally Counters, increased VM load/save version
35  *                                  Implemented IP/TCP/UDP checksum task offloading
36  *
37  *  2006-Jul-04  Igor Kovalenko :   Implemented TCP segmentation offloading
38  *                                  Fixed MTU=1500 for produced ethernet frames
39  *
40  *  2006-Jul-09  Igor Kovalenko :   Fixed TCP header length calculation while processing
41  *                                  segmentation offloading
42  *                                  Removed slirp.h dependency
43  *                                  Added rx/tx buffer reset when enabling rx/tx operation
44  *
45  *  2010-Feb-04  Frediano Ziglio:   Rewrote timer support using QEMU timer only
46  *                                  when strictly needed (required for
47  *                                  Darwin)
48  *  2011-Mar-22  Benjamin Poirier:  Implemented VLAN offloading
49  */
50 
51 /* For crc32 */
52 #include "qemu/osdep.h"
53 #include <zlib.h>
54 
55 #include "hw/hw.h"
56 #include "hw/pci/pci.h"
57 #include "sysemu/dma.h"
58 #include "qemu/timer.h"
59 #include "net/net.h"
60 #include "net/eth.h"
61 #include "sysemu/sysemu.h"
62 
63 /* debug RTL8139 card */
64 //#define DEBUG_RTL8139 1
65 
66 #define PCI_PERIOD 30    /* 30 ns period = 33.333333 Mhz frequency */
67 
68 #define SET_MASKED(input, mask, curr) \
69     ( ( (input) & ~(mask) ) | ( (curr) & (mask) ) )
70 
71 /* arg % size for size which is a power of 2 */
72 #define MOD2(input, size) \
73     ( ( input ) & ( size - 1 )  )
74 
75 #define ETHER_TYPE_LEN 2
76 #define ETH_MTU     1500
77 
78 #define VLAN_TCI_LEN 2
79 #define VLAN_HLEN (ETHER_TYPE_LEN + VLAN_TCI_LEN)
80 
81 #if defined (DEBUG_RTL8139)
82 #  define DPRINTF(fmt, ...) \
83     do { fprintf(stderr, "RTL8139: " fmt, ## __VA_ARGS__); } while (0)
84 #else
85 static inline GCC_FMT_ATTR(1, 2) int DPRINTF(const char *fmt, ...)
86 {
87     return 0;
88 }
89 #endif
90 
91 #define TYPE_RTL8139 "rtl8139"
92 
93 #define RTL8139(obj) \
94      OBJECT_CHECK(RTL8139State, (obj), TYPE_RTL8139)
95 
96 /* Symbolic offsets to registers. */
97 enum RTL8139_registers {
98     MAC0 = 0,        /* Ethernet hardware address. */
99     MAR0 = 8,        /* Multicast filter. */
100     TxStatus0 = 0x10,/* Transmit status (Four 32bit registers). C mode only */
101                      /* Dump Tally Conter control register(64bit). C+ mode only */
102     TxAddr0 = 0x20,  /* Tx descriptors (also four 32bit). */
103     RxBuf = 0x30,
104     ChipCmd = 0x37,
105     RxBufPtr = 0x38,
106     RxBufAddr = 0x3A,
107     IntrMask = 0x3C,
108     IntrStatus = 0x3E,
109     TxConfig = 0x40,
110     RxConfig = 0x44,
111     Timer = 0x48,        /* A general-purpose counter. */
112     RxMissed = 0x4C,    /* 24 bits valid, write clears. */
113     Cfg9346 = 0x50,
114     Config0 = 0x51,
115     Config1 = 0x52,
116     FlashReg = 0x54,
117     MediaStatus = 0x58,
118     Config3 = 0x59,
119     Config4 = 0x5A,        /* absent on RTL-8139A */
120     HltClk = 0x5B,
121     MultiIntr = 0x5C,
122     PCIRevisionID = 0x5E,
123     TxSummary = 0x60, /* TSAD register. Transmit Status of All Descriptors*/
124     BasicModeCtrl = 0x62,
125     BasicModeStatus = 0x64,
126     NWayAdvert = 0x66,
127     NWayLPAR = 0x68,
128     NWayExpansion = 0x6A,
129     /* Undocumented registers, but required for proper operation. */
130     FIFOTMS = 0x70,        /* FIFO Control and test. */
131     CSCR = 0x74,        /* Chip Status and Configuration Register. */
132     PARA78 = 0x78,
133     PARA7c = 0x7c,        /* Magic transceiver parameter register. */
134     Config5 = 0xD8,        /* absent on RTL-8139A */
135     /* C+ mode */
136     TxPoll        = 0xD9,    /* Tell chip to check Tx descriptors for work */
137     RxMaxSize    = 0xDA, /* Max size of an Rx packet (8169 only) */
138     CpCmd        = 0xE0, /* C+ Command register (C+ mode only) */
139     IntrMitigate    = 0xE2,    /* rx/tx interrupt mitigation control */
140     RxRingAddrLO    = 0xE4, /* 64-bit start addr of Rx ring */
141     RxRingAddrHI    = 0xE8, /* 64-bit start addr of Rx ring */
142     TxThresh    = 0xEC, /* Early Tx threshold */
143 };
144 
145 enum ClearBitMasks {
146     MultiIntrClear = 0xF000,
147     ChipCmdClear = 0xE2,
148     Config1Clear = (1<<7)|(1<<6)|(1<<3)|(1<<2)|(1<<1),
149 };
150 
151 enum ChipCmdBits {
152     CmdReset = 0x10,
153     CmdRxEnb = 0x08,
154     CmdTxEnb = 0x04,
155     RxBufEmpty = 0x01,
156 };
157 
158 /* C+ mode */
159 enum CplusCmdBits {
160     CPlusRxVLAN   = 0x0040, /* enable receive VLAN detagging */
161     CPlusRxChkSum = 0x0020, /* enable receive checksum offloading */
162     CPlusRxEnb    = 0x0002,
163     CPlusTxEnb    = 0x0001,
164 };
165 
166 /* Interrupt register bits, using my own meaningful names. */
167 enum IntrStatusBits {
168     PCIErr = 0x8000,
169     PCSTimeout = 0x4000,
170     RxFIFOOver = 0x40,
171     RxUnderrun = 0x20, /* Packet Underrun / Link Change */
172     RxOverflow = 0x10,
173     TxErr = 0x08,
174     TxOK = 0x04,
175     RxErr = 0x02,
176     RxOK = 0x01,
177 
178     RxAckBits = RxFIFOOver | RxOverflow | RxOK,
179 };
180 
181 enum TxStatusBits {
182     TxHostOwns = 0x2000,
183     TxUnderrun = 0x4000,
184     TxStatOK = 0x8000,
185     TxOutOfWindow = 0x20000000,
186     TxAborted = 0x40000000,
187     TxCarrierLost = 0x80000000,
188 };
189 enum RxStatusBits {
190     RxMulticast = 0x8000,
191     RxPhysical = 0x4000,
192     RxBroadcast = 0x2000,
193     RxBadSymbol = 0x0020,
194     RxRunt = 0x0010,
195     RxTooLong = 0x0008,
196     RxCRCErr = 0x0004,
197     RxBadAlign = 0x0002,
198     RxStatusOK = 0x0001,
199 };
200 
201 /* Bits in RxConfig. */
202 enum rx_mode_bits {
203     AcceptErr = 0x20,
204     AcceptRunt = 0x10,
205     AcceptBroadcast = 0x08,
206     AcceptMulticast = 0x04,
207     AcceptMyPhys = 0x02,
208     AcceptAllPhys = 0x01,
209 };
210 
211 /* Bits in TxConfig. */
212 enum tx_config_bits {
213 
214         /* Interframe Gap Time. Only TxIFG96 doesn't violate IEEE 802.3 */
215         TxIFGShift = 24,
216         TxIFG84 = (0 << TxIFGShift),    /* 8.4us / 840ns (10 / 100Mbps) */
217         TxIFG88 = (1 << TxIFGShift),    /* 8.8us / 880ns (10 / 100Mbps) */
218         TxIFG92 = (2 << TxIFGShift),    /* 9.2us / 920ns (10 / 100Mbps) */
219         TxIFG96 = (3 << TxIFGShift),    /* 9.6us / 960ns (10 / 100Mbps) */
220 
221     TxLoopBack = (1 << 18) | (1 << 17), /* enable loopback test mode */
222     TxCRC = (1 << 16),    /* DISABLE appending CRC to end of Tx packets */
223     TxClearAbt = (1 << 0),    /* Clear abort (WO) */
224     TxDMAShift = 8,        /* DMA burst value (0-7) is shifted this many bits */
225     TxRetryShift = 4,    /* TXRR value (0-15) is shifted this many bits */
226 
227     TxVersionMask = 0x7C800000, /* mask out version bits 30-26, 23 */
228 };
229 
230 
231 /* Transmit Status of All Descriptors (TSAD) Register */
232 enum TSAD_bits {
233  TSAD_TOK3 = 1<<15, // TOK bit of Descriptor 3
234  TSAD_TOK2 = 1<<14, // TOK bit of Descriptor 2
235  TSAD_TOK1 = 1<<13, // TOK bit of Descriptor 1
236  TSAD_TOK0 = 1<<12, // TOK bit of Descriptor 0
237  TSAD_TUN3 = 1<<11, // TUN bit of Descriptor 3
238  TSAD_TUN2 = 1<<10, // TUN bit of Descriptor 2
239  TSAD_TUN1 = 1<<9, // TUN bit of Descriptor 1
240  TSAD_TUN0 = 1<<8, // TUN bit of Descriptor 0
241  TSAD_TABT3 = 1<<07, // TABT bit of Descriptor 3
242  TSAD_TABT2 = 1<<06, // TABT bit of Descriptor 2
243  TSAD_TABT1 = 1<<05, // TABT bit of Descriptor 1
244  TSAD_TABT0 = 1<<04, // TABT bit of Descriptor 0
245  TSAD_OWN3 = 1<<03, // OWN bit of Descriptor 3
246  TSAD_OWN2 = 1<<02, // OWN bit of Descriptor 2
247  TSAD_OWN1 = 1<<01, // OWN bit of Descriptor 1
248  TSAD_OWN0 = 1<<00, // OWN bit of Descriptor 0
249 };
250 
251 
252 /* Bits in Config1 */
253 enum Config1Bits {
254     Cfg1_PM_Enable = 0x01,
255     Cfg1_VPD_Enable = 0x02,
256     Cfg1_PIO = 0x04,
257     Cfg1_MMIO = 0x08,
258     LWAKE = 0x10,        /* not on 8139, 8139A */
259     Cfg1_Driver_Load = 0x20,
260     Cfg1_LED0 = 0x40,
261     Cfg1_LED1 = 0x80,
262     SLEEP = (1 << 1),    /* only on 8139, 8139A */
263     PWRDN = (1 << 0),    /* only on 8139, 8139A */
264 };
265 
266 /* Bits in Config3 */
267 enum Config3Bits {
268     Cfg3_FBtBEn    = (1 << 0), /* 1 = Fast Back to Back */
269     Cfg3_FuncRegEn = (1 << 1), /* 1 = enable CardBus Function registers */
270     Cfg3_CLKRUN_En = (1 << 2), /* 1 = enable CLKRUN */
271     Cfg3_CardB_En  = (1 << 3), /* 1 = enable CardBus registers */
272     Cfg3_LinkUp    = (1 << 4), /* 1 = wake up on link up */
273     Cfg3_Magic     = (1 << 5), /* 1 = wake up on Magic Packet (tm) */
274     Cfg3_PARM_En   = (1 << 6), /* 0 = software can set twister parameters */
275     Cfg3_GNTSel    = (1 << 7), /* 1 = delay 1 clock from PCI GNT signal */
276 };
277 
278 /* Bits in Config4 */
279 enum Config4Bits {
280     LWPTN = (1 << 2),    /* not on 8139, 8139A */
281 };
282 
283 /* Bits in Config5 */
284 enum Config5Bits {
285     Cfg5_PME_STS     = (1 << 0), /* 1 = PCI reset resets PME_Status */
286     Cfg5_LANWake     = (1 << 1), /* 1 = enable LANWake signal */
287     Cfg5_LDPS        = (1 << 2), /* 0 = save power when link is down */
288     Cfg5_FIFOAddrPtr = (1 << 3), /* Realtek internal SRAM testing */
289     Cfg5_UWF         = (1 << 4), /* 1 = accept unicast wakeup frame */
290     Cfg5_MWF         = (1 << 5), /* 1 = accept multicast wakeup frame */
291     Cfg5_BWF         = (1 << 6), /* 1 = accept broadcast wakeup frame */
292 };
293 
294 enum RxConfigBits {
295     /* rx fifo threshold */
296     RxCfgFIFOShift = 13,
297     RxCfgFIFONone = (7 << RxCfgFIFOShift),
298 
299     /* Max DMA burst */
300     RxCfgDMAShift = 8,
301     RxCfgDMAUnlimited = (7 << RxCfgDMAShift),
302 
303     /* rx ring buffer length */
304     RxCfgRcv8K = 0,
305     RxCfgRcv16K = (1 << 11),
306     RxCfgRcv32K = (1 << 12),
307     RxCfgRcv64K = (1 << 11) | (1 << 12),
308 
309     /* Disable packet wrap at end of Rx buffer. (not possible with 64k) */
310     RxNoWrap = (1 << 7),
311 };
312 
313 /* Twister tuning parameters from RealTek.
314    Completely undocumented, but required to tune bad links on some boards. */
315 /*
316 enum CSCRBits {
317     CSCR_LinkOKBit = 0x0400,
318     CSCR_LinkChangeBit = 0x0800,
319     CSCR_LinkStatusBits = 0x0f000,
320     CSCR_LinkDownOffCmd = 0x003c0,
321     CSCR_LinkDownCmd = 0x0f3c0,
322 */
323 enum CSCRBits {
324     CSCR_Testfun = 1<<15, /* 1 = Auto-neg speeds up internal timer, WO, def 0 */
325     CSCR_LD  = 1<<9,  /* Active low TPI link disable signal. When low, TPI still transmits link pulses and TPI stays in good link state. def 1*/
326     CSCR_HEART_BIT = 1<<8,  /* 1 = HEART BEAT enable, 0 = HEART BEAT disable. HEART BEAT function is only valid in 10Mbps mode. def 1*/
327     CSCR_JBEN = 1<<7,  /* 1 = enable jabber function. 0 = disable jabber function, def 1*/
328     CSCR_F_LINK_100 = 1<<6, /* Used to login force good link in 100Mbps for diagnostic purposes. 1 = DISABLE, 0 = ENABLE. def 1*/
329     CSCR_F_Connect  = 1<<5,  /* Assertion of this bit forces the disconnect function to be bypassed. def 0*/
330     CSCR_Con_status = 1<<3, /* This bit indicates the status of the connection. 1 = valid connected link detected; 0 = disconnected link detected. RO def 0*/
331     CSCR_Con_status_En = 1<<2, /* Assertion of this bit configures LED1 pin to indicate connection status. def 0*/
332     CSCR_PASS_SCR = 1<<0, /* Bypass Scramble, def 0*/
333 };
334 
335 enum Cfg9346Bits {
336     Cfg9346_Normal = 0x00,
337     Cfg9346_Autoload = 0x40,
338     Cfg9346_Programming = 0x80,
339     Cfg9346_ConfigWrite = 0xC0,
340 };
341 
342 typedef enum {
343     CH_8139 = 0,
344     CH_8139_K,
345     CH_8139A,
346     CH_8139A_G,
347     CH_8139B,
348     CH_8130,
349     CH_8139C,
350     CH_8100,
351     CH_8100B_8139D,
352     CH_8101,
353 } chip_t;
354 
355 enum chip_flags {
356     HasHltClk = (1 << 0),
357     HasLWake = (1 << 1),
358 };
359 
360 #define HW_REVID(b30, b29, b28, b27, b26, b23, b22) \
361     (b30<<30 | b29<<29 | b28<<28 | b27<<27 | b26<<26 | b23<<23 | b22<<22)
362 #define HW_REVID_MASK    HW_REVID(1, 1, 1, 1, 1, 1, 1)
363 
364 #define RTL8139_PCI_REVID_8139      0x10
365 #define RTL8139_PCI_REVID_8139CPLUS 0x20
366 
367 #define RTL8139_PCI_REVID           RTL8139_PCI_REVID_8139CPLUS
368 
369 /* Size is 64 * 16bit words */
370 #define EEPROM_9346_ADDR_BITS 6
371 #define EEPROM_9346_SIZE  (1 << EEPROM_9346_ADDR_BITS)
372 #define EEPROM_9346_ADDR_MASK (EEPROM_9346_SIZE - 1)
373 
374 enum Chip9346Operation
375 {
376     Chip9346_op_mask = 0xc0,          /* 10 zzzzzz */
377     Chip9346_op_read = 0x80,          /* 10 AAAAAA */
378     Chip9346_op_write = 0x40,         /* 01 AAAAAA D(15)..D(0) */
379     Chip9346_op_ext_mask = 0xf0,      /* 11 zzzzzz */
380     Chip9346_op_write_enable = 0x30,  /* 00 11zzzz */
381     Chip9346_op_write_all = 0x10,     /* 00 01zzzz */
382     Chip9346_op_write_disable = 0x00, /* 00 00zzzz */
383 };
384 
385 enum Chip9346Mode
386 {
387     Chip9346_none = 0,
388     Chip9346_enter_command_mode,
389     Chip9346_read_command,
390     Chip9346_data_read,      /* from output register */
391     Chip9346_data_write,     /* to input register, then to contents at specified address */
392     Chip9346_data_write_all, /* to input register, then filling contents */
393 };
394 
395 typedef struct EEprom9346
396 {
397     uint16_t contents[EEPROM_9346_SIZE];
398     int      mode;
399     uint32_t tick;
400     uint8_t  address;
401     uint16_t input;
402     uint16_t output;
403 
404     uint8_t eecs;
405     uint8_t eesk;
406     uint8_t eedi;
407     uint8_t eedo;
408 } EEprom9346;
409 
410 typedef struct RTL8139TallyCounters
411 {
412     /* Tally counters */
413     uint64_t   TxOk;
414     uint64_t   RxOk;
415     uint64_t   TxERR;
416     uint32_t   RxERR;
417     uint16_t   MissPkt;
418     uint16_t   FAE;
419     uint32_t   Tx1Col;
420     uint32_t   TxMCol;
421     uint64_t   RxOkPhy;
422     uint64_t   RxOkBrd;
423     uint32_t   RxOkMul;
424     uint16_t   TxAbt;
425     uint16_t   TxUndrn;
426 } RTL8139TallyCounters;
427 
428 /* Clears all tally counters */
429 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters);
430 
431 typedef struct RTL8139State {
432     /*< private >*/
433     PCIDevice parent_obj;
434     /*< public >*/
435 
436     uint8_t phys[8]; /* mac address */
437     uint8_t mult[8]; /* multicast mask array */
438 
439     uint32_t TxStatus[4]; /* TxStatus0 in C mode*/ /* also DTCCR[0] and DTCCR[1] in C+ mode */
440     uint32_t TxAddr[4];   /* TxAddr0 */
441     uint32_t RxBuf;       /* Receive buffer */
442     uint32_t RxBufferSize;/* internal variable, receive ring buffer size in C mode */
443     uint32_t RxBufPtr;
444     uint32_t RxBufAddr;
445 
446     uint16_t IntrStatus;
447     uint16_t IntrMask;
448 
449     uint32_t TxConfig;
450     uint32_t RxConfig;
451     uint32_t RxMissed;
452 
453     uint16_t CSCR;
454 
455     uint8_t  Cfg9346;
456     uint8_t  Config0;
457     uint8_t  Config1;
458     uint8_t  Config3;
459     uint8_t  Config4;
460     uint8_t  Config5;
461 
462     uint8_t  clock_enabled;
463     uint8_t  bChipCmdState;
464 
465     uint16_t MultiIntr;
466 
467     uint16_t BasicModeCtrl;
468     uint16_t BasicModeStatus;
469     uint16_t NWayAdvert;
470     uint16_t NWayLPAR;
471     uint16_t NWayExpansion;
472 
473     uint16_t CpCmd;
474     uint8_t  TxThresh;
475 
476     NICState *nic;
477     NICConf conf;
478 
479     /* C ring mode */
480     uint32_t   currTxDesc;
481 
482     /* C+ mode */
483     uint32_t   cplus_enabled;
484 
485     uint32_t   currCPlusRxDesc;
486     uint32_t   currCPlusTxDesc;
487 
488     uint32_t   RxRingAddrLO;
489     uint32_t   RxRingAddrHI;
490 
491     EEprom9346 eeprom;
492 
493     uint32_t   TCTR;
494     uint32_t   TimerInt;
495     int64_t    TCTR_base;
496 
497     /* Tally counters */
498     RTL8139TallyCounters tally_counters;
499 
500     /* Non-persistent data */
501     uint8_t   *cplus_txbuffer;
502     int        cplus_txbuffer_len;
503     int        cplus_txbuffer_offset;
504 
505     /* PCI interrupt timer */
506     QEMUTimer *timer;
507 
508     MemoryRegion bar_io;
509     MemoryRegion bar_mem;
510 
511     /* Support migration to/from old versions */
512     int rtl8139_mmio_io_addr_dummy;
513 } RTL8139State;
514 
515 /* Writes tally counters to memory via DMA */
516 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr);
517 
518 static void rtl8139_set_next_tctr_time(RTL8139State *s);
519 
520 static void prom9346_decode_command(EEprom9346 *eeprom, uint8_t command)
521 {
522     DPRINTF("eeprom command 0x%02x\n", command);
523 
524     switch (command & Chip9346_op_mask)
525     {
526         case Chip9346_op_read:
527         {
528             eeprom->address = command & EEPROM_9346_ADDR_MASK;
529             eeprom->output = eeprom->contents[eeprom->address];
530             eeprom->eedo = 0;
531             eeprom->tick = 0;
532             eeprom->mode = Chip9346_data_read;
533             DPRINTF("eeprom read from address 0x%02x data=0x%04x\n",
534                 eeprom->address, eeprom->output);
535         }
536         break;
537 
538         case Chip9346_op_write:
539         {
540             eeprom->address = command & EEPROM_9346_ADDR_MASK;
541             eeprom->input = 0;
542             eeprom->tick = 0;
543             eeprom->mode = Chip9346_none; /* Chip9346_data_write */
544             DPRINTF("eeprom begin write to address 0x%02x\n",
545                 eeprom->address);
546         }
547         break;
548         default:
549             eeprom->mode = Chip9346_none;
550             switch (command & Chip9346_op_ext_mask)
551             {
552                 case Chip9346_op_write_enable:
553                     DPRINTF("eeprom write enabled\n");
554                     break;
555                 case Chip9346_op_write_all:
556                     DPRINTF("eeprom begin write all\n");
557                     break;
558                 case Chip9346_op_write_disable:
559                     DPRINTF("eeprom write disabled\n");
560                     break;
561             }
562             break;
563     }
564 }
565 
566 static void prom9346_shift_clock(EEprom9346 *eeprom)
567 {
568     int bit = eeprom->eedi?1:0;
569 
570     ++ eeprom->tick;
571 
572     DPRINTF("eeprom: tick %d eedi=%d eedo=%d\n", eeprom->tick, eeprom->eedi,
573         eeprom->eedo);
574 
575     switch (eeprom->mode)
576     {
577         case Chip9346_enter_command_mode:
578             if (bit)
579             {
580                 eeprom->mode = Chip9346_read_command;
581                 eeprom->tick = 0;
582                 eeprom->input = 0;
583                 DPRINTF("eeprom: +++ synchronized, begin command read\n");
584             }
585             break;
586 
587         case Chip9346_read_command:
588             eeprom->input = (eeprom->input << 1) | (bit & 1);
589             if (eeprom->tick == 8)
590             {
591                 prom9346_decode_command(eeprom, eeprom->input & 0xff);
592             }
593             break;
594 
595         case Chip9346_data_read:
596             eeprom->eedo = (eeprom->output & 0x8000)?1:0;
597             eeprom->output <<= 1;
598             if (eeprom->tick == 16)
599             {
600 #if 1
601         // the FreeBSD drivers (rl and re) don't explicitly toggle
602         // CS between reads (or does setting Cfg9346 to 0 count too?),
603         // so we need to enter wait-for-command state here
604                 eeprom->mode = Chip9346_enter_command_mode;
605                 eeprom->input = 0;
606                 eeprom->tick = 0;
607 
608                 DPRINTF("eeprom: +++ end of read, awaiting next command\n");
609 #else
610         // original behaviour
611                 ++eeprom->address;
612                 eeprom->address &= EEPROM_9346_ADDR_MASK;
613                 eeprom->output = eeprom->contents[eeprom->address];
614                 eeprom->tick = 0;
615 
616                 DPRINTF("eeprom: +++ read next address 0x%02x data=0x%04x\n",
617                     eeprom->address, eeprom->output);
618 #endif
619             }
620             break;
621 
622         case Chip9346_data_write:
623             eeprom->input = (eeprom->input << 1) | (bit & 1);
624             if (eeprom->tick == 16)
625             {
626                 DPRINTF("eeprom write to address 0x%02x data=0x%04x\n",
627                     eeprom->address, eeprom->input);
628 
629                 eeprom->contents[eeprom->address] = eeprom->input;
630                 eeprom->mode = Chip9346_none; /* waiting for next command after CS cycle */
631                 eeprom->tick = 0;
632                 eeprom->input = 0;
633             }
634             break;
635 
636         case Chip9346_data_write_all:
637             eeprom->input = (eeprom->input << 1) | (bit & 1);
638             if (eeprom->tick == 16)
639             {
640                 int i;
641                 for (i = 0; i < EEPROM_9346_SIZE; i++)
642                 {
643                     eeprom->contents[i] = eeprom->input;
644                 }
645                 DPRINTF("eeprom filled with data=0x%04x\n", eeprom->input);
646 
647                 eeprom->mode = Chip9346_enter_command_mode;
648                 eeprom->tick = 0;
649                 eeprom->input = 0;
650             }
651             break;
652 
653         default:
654             break;
655     }
656 }
657 
658 static int prom9346_get_wire(RTL8139State *s)
659 {
660     EEprom9346 *eeprom = &s->eeprom;
661     if (!eeprom->eecs)
662         return 0;
663 
664     return eeprom->eedo;
665 }
666 
667 /* FIXME: This should be merged into/replaced by eeprom93xx.c.  */
668 static void prom9346_set_wire(RTL8139State *s, int eecs, int eesk, int eedi)
669 {
670     EEprom9346 *eeprom = &s->eeprom;
671     uint8_t old_eecs = eeprom->eecs;
672     uint8_t old_eesk = eeprom->eesk;
673 
674     eeprom->eecs = eecs;
675     eeprom->eesk = eesk;
676     eeprom->eedi = eedi;
677 
678     DPRINTF("eeprom: +++ wires CS=%d SK=%d DI=%d DO=%d\n", eeprom->eecs,
679         eeprom->eesk, eeprom->eedi, eeprom->eedo);
680 
681     if (!old_eecs && eecs)
682     {
683         /* Synchronize start */
684         eeprom->tick = 0;
685         eeprom->input = 0;
686         eeprom->output = 0;
687         eeprom->mode = Chip9346_enter_command_mode;
688 
689         DPRINTF("=== eeprom: begin access, enter command mode\n");
690     }
691 
692     if (!eecs)
693     {
694         DPRINTF("=== eeprom: end access\n");
695         return;
696     }
697 
698     if (!old_eesk && eesk)
699     {
700         /* SK front rules */
701         prom9346_shift_clock(eeprom);
702     }
703 }
704 
705 static void rtl8139_update_irq(RTL8139State *s)
706 {
707     PCIDevice *d = PCI_DEVICE(s);
708     int isr;
709     isr = (s->IntrStatus & s->IntrMask) & 0xffff;
710 
711     DPRINTF("Set IRQ to %d (%04x %04x)\n", isr ? 1 : 0, s->IntrStatus,
712         s->IntrMask);
713 
714     pci_set_irq(d, (isr != 0));
715 }
716 
717 static int rtl8139_RxWrap(RTL8139State *s)
718 {
719     /* wrapping enabled; assume 1.5k more buffer space if size < 65536 */
720     return (s->RxConfig & (1 << 7));
721 }
722 
723 static int rtl8139_receiver_enabled(RTL8139State *s)
724 {
725     return s->bChipCmdState & CmdRxEnb;
726 }
727 
728 static int rtl8139_transmitter_enabled(RTL8139State *s)
729 {
730     return s->bChipCmdState & CmdTxEnb;
731 }
732 
733 static int rtl8139_cp_receiver_enabled(RTL8139State *s)
734 {
735     return s->CpCmd & CPlusRxEnb;
736 }
737 
738 static int rtl8139_cp_transmitter_enabled(RTL8139State *s)
739 {
740     return s->CpCmd & CPlusTxEnb;
741 }
742 
743 static void rtl8139_write_buffer(RTL8139State *s, const void *buf, int size)
744 {
745     PCIDevice *d = PCI_DEVICE(s);
746 
747     if (s->RxBufAddr + size > s->RxBufferSize)
748     {
749         int wrapped = MOD2(s->RxBufAddr + size, s->RxBufferSize);
750 
751         /* write packet data */
752         if (wrapped && !(s->RxBufferSize < 65536 && rtl8139_RxWrap(s)))
753         {
754             DPRINTF(">>> rx packet wrapped in buffer at %d\n", size - wrapped);
755 
756             if (size > wrapped)
757             {
758                 pci_dma_write(d, s->RxBuf + s->RxBufAddr,
759                               buf, size-wrapped);
760             }
761 
762             /* reset buffer pointer */
763             s->RxBufAddr = 0;
764 
765             pci_dma_write(d, s->RxBuf + s->RxBufAddr,
766                           buf + (size-wrapped), wrapped);
767 
768             s->RxBufAddr = wrapped;
769 
770             return;
771         }
772     }
773 
774     /* non-wrapping path or overwrapping enabled */
775     pci_dma_write(d, s->RxBuf + s->RxBufAddr, buf, size);
776 
777     s->RxBufAddr += size;
778 }
779 
780 #define MIN_BUF_SIZE 60
781 static inline dma_addr_t rtl8139_addr64(uint32_t low, uint32_t high)
782 {
783     return low | ((uint64_t)high << 32);
784 }
785 
786 /* Workaround for buggy guest driver such as linux who allocates rx
787  * rings after the receiver were enabled. */
788 static bool rtl8139_cp_rx_valid(RTL8139State *s)
789 {
790     return !(s->RxRingAddrLO == 0 && s->RxRingAddrHI == 0);
791 }
792 
793 static int rtl8139_can_receive(NetClientState *nc)
794 {
795     RTL8139State *s = qemu_get_nic_opaque(nc);
796     int avail;
797 
798     /* Receive (drop) packets if card is disabled.  */
799     if (!s->clock_enabled)
800       return 1;
801     if (!rtl8139_receiver_enabled(s))
802       return 1;
803 
804     if (rtl8139_cp_receiver_enabled(s) && rtl8139_cp_rx_valid(s)) {
805         /* ??? Flow control not implemented in c+ mode.
806            This is a hack to work around slirp deficiencies anyway.  */
807         return 1;
808     } else {
809         avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr,
810                      s->RxBufferSize);
811         return (avail == 0 || avail >= 1514 || (s->IntrMask & RxOverflow));
812     }
813 }
814 
815 static ssize_t rtl8139_do_receive(NetClientState *nc, const uint8_t *buf, size_t size_, int do_interrupt)
816 {
817     RTL8139State *s = qemu_get_nic_opaque(nc);
818     PCIDevice *d = PCI_DEVICE(s);
819     /* size is the length of the buffer passed to the driver */
820     size_t size = size_;
821     const uint8_t *dot1q_buf = NULL;
822 
823     uint32_t packet_header = 0;
824 
825     uint8_t buf1[MIN_BUF_SIZE + VLAN_HLEN];
826     static const uint8_t broadcast_macaddr[6] =
827         { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
828 
829     DPRINTF(">>> received len=%zu\n", size);
830 
831     /* test if board clock is stopped */
832     if (!s->clock_enabled)
833     {
834         DPRINTF("stopped ==========================\n");
835         return -1;
836     }
837 
838     /* first check if receiver is enabled */
839 
840     if (!rtl8139_receiver_enabled(s))
841     {
842         DPRINTF("receiver disabled ================\n");
843         return -1;
844     }
845 
846     /* XXX: check this */
847     if (s->RxConfig & AcceptAllPhys) {
848         /* promiscuous: receive all */
849         DPRINTF(">>> packet received in promiscuous mode\n");
850 
851     } else {
852         if (!memcmp(buf,  broadcast_macaddr, 6)) {
853             /* broadcast address */
854             if (!(s->RxConfig & AcceptBroadcast))
855             {
856                 DPRINTF(">>> broadcast packet rejected\n");
857 
858                 /* update tally counter */
859                 ++s->tally_counters.RxERR;
860 
861                 return size;
862             }
863 
864             packet_header |= RxBroadcast;
865 
866             DPRINTF(">>> broadcast packet received\n");
867 
868             /* update tally counter */
869             ++s->tally_counters.RxOkBrd;
870 
871         } else if (buf[0] & 0x01) {
872             /* multicast */
873             if (!(s->RxConfig & AcceptMulticast))
874             {
875                 DPRINTF(">>> multicast packet rejected\n");
876 
877                 /* update tally counter */
878                 ++s->tally_counters.RxERR;
879 
880                 return size;
881             }
882 
883             int mcast_idx = net_crc32(buf, ETH_ALEN) >> 26;
884 
885             if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
886             {
887                 DPRINTF(">>> multicast address mismatch\n");
888 
889                 /* update tally counter */
890                 ++s->tally_counters.RxERR;
891 
892                 return size;
893             }
894 
895             packet_header |= RxMulticast;
896 
897             DPRINTF(">>> multicast packet received\n");
898 
899             /* update tally counter */
900             ++s->tally_counters.RxOkMul;
901 
902         } else if (s->phys[0] == buf[0] &&
903                    s->phys[1] == buf[1] &&
904                    s->phys[2] == buf[2] &&
905                    s->phys[3] == buf[3] &&
906                    s->phys[4] == buf[4] &&
907                    s->phys[5] == buf[5]) {
908             /* match */
909             if (!(s->RxConfig & AcceptMyPhys))
910             {
911                 DPRINTF(">>> rejecting physical address matching packet\n");
912 
913                 /* update tally counter */
914                 ++s->tally_counters.RxERR;
915 
916                 return size;
917             }
918 
919             packet_header |= RxPhysical;
920 
921             DPRINTF(">>> physical address matching packet received\n");
922 
923             /* update tally counter */
924             ++s->tally_counters.RxOkPhy;
925 
926         } else {
927 
928             DPRINTF(">>> unknown packet\n");
929 
930             /* update tally counter */
931             ++s->tally_counters.RxERR;
932 
933             return size;
934         }
935     }
936 
937     /* if too small buffer, then expand it
938      * Include some tailroom in case a vlan tag is later removed. */
939     if (size < MIN_BUF_SIZE + VLAN_HLEN) {
940         memcpy(buf1, buf, size);
941         memset(buf1 + size, 0, MIN_BUF_SIZE + VLAN_HLEN - size);
942         buf = buf1;
943         if (size < MIN_BUF_SIZE) {
944             size = MIN_BUF_SIZE;
945         }
946     }
947 
948     if (rtl8139_cp_receiver_enabled(s))
949     {
950         if (!rtl8139_cp_rx_valid(s)) {
951             return size;
952         }
953 
954         DPRINTF("in C+ Rx mode ================\n");
955 
956         /* begin C+ receiver mode */
957 
958 /* w0 ownership flag */
959 #define CP_RX_OWN (1<<31)
960 /* w0 end of ring flag */
961 #define CP_RX_EOR (1<<30)
962 /* w0 bits 0...12 : buffer size */
963 #define CP_RX_BUFFER_SIZE_MASK ((1<<13) - 1)
964 /* w1 tag available flag */
965 #define CP_RX_TAVA (1<<16)
966 /* w1 bits 0...15 : VLAN tag */
967 #define CP_RX_VLAN_TAG_MASK ((1<<16) - 1)
968 /* w2 low  32bit of Rx buffer ptr */
969 /* w3 high 32bit of Rx buffer ptr */
970 
971         int descriptor = s->currCPlusRxDesc;
972         dma_addr_t cplus_rx_ring_desc;
973 
974         cplus_rx_ring_desc = rtl8139_addr64(s->RxRingAddrLO, s->RxRingAddrHI);
975         cplus_rx_ring_desc += 16 * descriptor;
976 
977         DPRINTF("+++ C+ mode reading RX descriptor %d from host memory at "
978             "%08x %08x = "DMA_ADDR_FMT"\n", descriptor, s->RxRingAddrHI,
979             s->RxRingAddrLO, cplus_rx_ring_desc);
980 
981         uint32_t val, rxdw0,rxdw1,rxbufLO,rxbufHI;
982 
983         pci_dma_read(d, cplus_rx_ring_desc, &val, 4);
984         rxdw0 = le32_to_cpu(val);
985         pci_dma_read(d, cplus_rx_ring_desc+4, &val, 4);
986         rxdw1 = le32_to_cpu(val);
987         pci_dma_read(d, cplus_rx_ring_desc+8, &val, 4);
988         rxbufLO = le32_to_cpu(val);
989         pci_dma_read(d, cplus_rx_ring_desc+12, &val, 4);
990         rxbufHI = le32_to_cpu(val);
991 
992         DPRINTF("+++ C+ mode RX descriptor %d %08x %08x %08x %08x\n",
993             descriptor, rxdw0, rxdw1, rxbufLO, rxbufHI);
994 
995         if (!(rxdw0 & CP_RX_OWN))
996         {
997             DPRINTF("C+ Rx mode : descriptor %d is owned by host\n",
998                 descriptor);
999 
1000             s->IntrStatus |= RxOverflow;
1001             ++s->RxMissed;
1002 
1003             /* update tally counter */
1004             ++s->tally_counters.RxERR;
1005             ++s->tally_counters.MissPkt;
1006 
1007             rtl8139_update_irq(s);
1008             return size_;
1009         }
1010 
1011         uint32_t rx_space = rxdw0 & CP_RX_BUFFER_SIZE_MASK;
1012 
1013         /* write VLAN info to descriptor variables. */
1014         if (s->CpCmd & CPlusRxVLAN &&
1015             lduw_be_p(&buf[ETH_ALEN * 2]) == ETH_P_VLAN) {
1016             dot1q_buf = &buf[ETH_ALEN * 2];
1017             size -= VLAN_HLEN;
1018             /* if too small buffer, use the tailroom added duing expansion */
1019             if (size < MIN_BUF_SIZE) {
1020                 size = MIN_BUF_SIZE;
1021             }
1022 
1023             rxdw1 &= ~CP_RX_VLAN_TAG_MASK;
1024             /* BE + ~le_to_cpu()~ + cpu_to_le() = BE */
1025             rxdw1 |= CP_RX_TAVA | lduw_le_p(&dot1q_buf[ETHER_TYPE_LEN]);
1026 
1027             DPRINTF("C+ Rx mode : extracted vlan tag with tci: ""%u\n",
1028                 lduw_be_p(&dot1q_buf[ETHER_TYPE_LEN]));
1029         } else {
1030             /* reset VLAN tag flag */
1031             rxdw1 &= ~CP_RX_TAVA;
1032         }
1033 
1034         /* TODO: scatter the packet over available receive ring descriptors space */
1035 
1036         if (size+4 > rx_space)
1037         {
1038             DPRINTF("C+ Rx mode : descriptor %d size %d received %zu + 4\n",
1039                 descriptor, rx_space, size);
1040 
1041             s->IntrStatus |= RxOverflow;
1042             ++s->RxMissed;
1043 
1044             /* update tally counter */
1045             ++s->tally_counters.RxERR;
1046             ++s->tally_counters.MissPkt;
1047 
1048             rtl8139_update_irq(s);
1049             return size_;
1050         }
1051 
1052         dma_addr_t rx_addr = rtl8139_addr64(rxbufLO, rxbufHI);
1053 
1054         /* receive/copy to target memory */
1055         if (dot1q_buf) {
1056             pci_dma_write(d, rx_addr, buf, 2 * ETH_ALEN);
1057             pci_dma_write(d, rx_addr + 2 * ETH_ALEN,
1058                           buf + 2 * ETH_ALEN + VLAN_HLEN,
1059                           size - 2 * ETH_ALEN);
1060         } else {
1061             pci_dma_write(d, rx_addr, buf, size);
1062         }
1063 
1064         if (s->CpCmd & CPlusRxChkSum)
1065         {
1066             /* do some packet checksumming */
1067         }
1068 
1069         /* write checksum */
1070         val = cpu_to_le32(crc32(0, buf, size_));
1071         pci_dma_write(d, rx_addr+size, (uint8_t *)&val, 4);
1072 
1073 /* first segment of received packet flag */
1074 #define CP_RX_STATUS_FS (1<<29)
1075 /* last segment of received packet flag */
1076 #define CP_RX_STATUS_LS (1<<28)
1077 /* multicast packet flag */
1078 #define CP_RX_STATUS_MAR (1<<26)
1079 /* physical-matching packet flag */
1080 #define CP_RX_STATUS_PAM (1<<25)
1081 /* broadcast packet flag */
1082 #define CP_RX_STATUS_BAR (1<<24)
1083 /* runt packet flag */
1084 #define CP_RX_STATUS_RUNT (1<<19)
1085 /* crc error flag */
1086 #define CP_RX_STATUS_CRC (1<<18)
1087 /* IP checksum error flag */
1088 #define CP_RX_STATUS_IPF (1<<15)
1089 /* UDP checksum error flag */
1090 #define CP_RX_STATUS_UDPF (1<<14)
1091 /* TCP checksum error flag */
1092 #define CP_RX_STATUS_TCPF (1<<13)
1093 
1094         /* transfer ownership to target */
1095         rxdw0 &= ~CP_RX_OWN;
1096 
1097         /* set first segment bit */
1098         rxdw0 |= CP_RX_STATUS_FS;
1099 
1100         /* set last segment bit */
1101         rxdw0 |= CP_RX_STATUS_LS;
1102 
1103         /* set received packet type flags */
1104         if (packet_header & RxBroadcast)
1105             rxdw0 |= CP_RX_STATUS_BAR;
1106         if (packet_header & RxMulticast)
1107             rxdw0 |= CP_RX_STATUS_MAR;
1108         if (packet_header & RxPhysical)
1109             rxdw0 |= CP_RX_STATUS_PAM;
1110 
1111         /* set received size */
1112         rxdw0 &= ~CP_RX_BUFFER_SIZE_MASK;
1113         rxdw0 |= (size+4);
1114 
1115         /* update ring data */
1116         val = cpu_to_le32(rxdw0);
1117         pci_dma_write(d, cplus_rx_ring_desc, (uint8_t *)&val, 4);
1118         val = cpu_to_le32(rxdw1);
1119         pci_dma_write(d, cplus_rx_ring_desc+4, (uint8_t *)&val, 4);
1120 
1121         /* update tally counter */
1122         ++s->tally_counters.RxOk;
1123 
1124         /* seek to next Rx descriptor */
1125         if (rxdw0 & CP_RX_EOR)
1126         {
1127             s->currCPlusRxDesc = 0;
1128         }
1129         else
1130         {
1131             ++s->currCPlusRxDesc;
1132         }
1133 
1134         DPRINTF("done C+ Rx mode ----------------\n");
1135 
1136     }
1137     else
1138     {
1139         DPRINTF("in ring Rx mode ================\n");
1140 
1141         /* begin ring receiver mode */
1142         int avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr, s->RxBufferSize);
1143 
1144         /* if receiver buffer is empty then avail == 0 */
1145 
1146 #define RX_ALIGN(x) (((x) + 3) & ~0x3)
1147 
1148         if (avail != 0 && RX_ALIGN(size + 8) >= avail)
1149         {
1150             DPRINTF("rx overflow: rx buffer length %d head 0x%04x "
1151                 "read 0x%04x === available 0x%04x need 0x%04zx\n",
1152                 s->RxBufferSize, s->RxBufAddr, s->RxBufPtr, avail, size + 8);
1153 
1154             s->IntrStatus |= RxOverflow;
1155             ++s->RxMissed;
1156             rtl8139_update_irq(s);
1157             return 0;
1158         }
1159 
1160         packet_header |= RxStatusOK;
1161 
1162         packet_header |= (((size+4) << 16) & 0xffff0000);
1163 
1164         /* write header */
1165         uint32_t val = cpu_to_le32(packet_header);
1166 
1167         rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1168 
1169         rtl8139_write_buffer(s, buf, size);
1170 
1171         /* write checksum */
1172         val = cpu_to_le32(crc32(0, buf, size));
1173         rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1174 
1175         /* correct buffer write pointer */
1176         s->RxBufAddr = MOD2(RX_ALIGN(s->RxBufAddr), s->RxBufferSize);
1177 
1178         /* now we can signal we have received something */
1179 
1180         DPRINTF("received: rx buffer length %d head 0x%04x read 0x%04x\n",
1181             s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
1182     }
1183 
1184     s->IntrStatus |= RxOK;
1185 
1186     if (do_interrupt)
1187     {
1188         rtl8139_update_irq(s);
1189     }
1190 
1191     return size_;
1192 }
1193 
1194 static ssize_t rtl8139_receive(NetClientState *nc, const uint8_t *buf, size_t size)
1195 {
1196     return rtl8139_do_receive(nc, buf, size, 1);
1197 }
1198 
1199 static void rtl8139_reset_rxring(RTL8139State *s, uint32_t bufferSize)
1200 {
1201     s->RxBufferSize = bufferSize;
1202     s->RxBufPtr  = 0;
1203     s->RxBufAddr = 0;
1204 }
1205 
1206 static void rtl8139_reset_phy(RTL8139State *s)
1207 {
1208     s->BasicModeStatus  = 0x7809;
1209     s->BasicModeStatus |= 0x0020; /* autonegotiation completed */
1210     /* preserve link state */
1211     s->BasicModeStatus |= qemu_get_queue(s->nic)->link_down ? 0 : 0x04;
1212 
1213     s->NWayAdvert    = 0x05e1; /* all modes, full duplex */
1214     s->NWayLPAR      = 0x05e1; /* all modes, full duplex */
1215     s->NWayExpansion = 0x0001; /* autonegotiation supported */
1216 
1217     s->CSCR = CSCR_F_LINK_100 | CSCR_HEART_BIT | CSCR_LD;
1218 }
1219 
1220 static void rtl8139_reset(DeviceState *d)
1221 {
1222     RTL8139State *s = RTL8139(d);
1223     int i;
1224 
1225     /* restore MAC address */
1226     memcpy(s->phys, s->conf.macaddr.a, 6);
1227     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
1228 
1229     /* reset interrupt mask */
1230     s->IntrStatus = 0;
1231     s->IntrMask = 0;
1232 
1233     rtl8139_update_irq(s);
1234 
1235     /* mark all status registers as owned by host */
1236     for (i = 0; i < 4; ++i)
1237     {
1238         s->TxStatus[i] = TxHostOwns;
1239     }
1240 
1241     s->currTxDesc = 0;
1242     s->currCPlusRxDesc = 0;
1243     s->currCPlusTxDesc = 0;
1244 
1245     s->RxRingAddrLO = 0;
1246     s->RxRingAddrHI = 0;
1247 
1248     s->RxBuf = 0;
1249 
1250     rtl8139_reset_rxring(s, 8192);
1251 
1252     /* ACK the reset */
1253     s->TxConfig = 0;
1254 
1255 #if 0
1256 //    s->TxConfig |= HW_REVID(1, 0, 0, 0, 0, 0, 0); // RTL-8139  HasHltClk
1257     s->clock_enabled = 0;
1258 #else
1259     s->TxConfig |= HW_REVID(1, 1, 1, 0, 1, 1, 0); // RTL-8139C+ HasLWake
1260     s->clock_enabled = 1;
1261 #endif
1262 
1263     s->bChipCmdState = CmdReset; /* RxBufEmpty bit is calculated on read from ChipCmd */;
1264 
1265     /* set initial state data */
1266     s->Config0 = 0x0; /* No boot ROM */
1267     s->Config1 = 0xC; /* IO mapped and MEM mapped registers available */
1268     s->Config3 = 0x1; /* fast back-to-back compatible */
1269     s->Config5 = 0x0;
1270 
1271     s->CpCmd   = 0x0; /* reset C+ mode */
1272     s->cplus_enabled = 0;
1273 
1274 //    s->BasicModeCtrl = 0x3100; // 100Mbps, full duplex, autonegotiation
1275 //    s->BasicModeCtrl = 0x2100; // 100Mbps, full duplex
1276     s->BasicModeCtrl = 0x1000; // autonegotiation
1277 
1278     rtl8139_reset_phy(s);
1279 
1280     /* also reset timer and disable timer interrupt */
1281     s->TCTR = 0;
1282     s->TimerInt = 0;
1283     s->TCTR_base = 0;
1284     rtl8139_set_next_tctr_time(s);
1285 
1286     /* reset tally counters */
1287     RTL8139TallyCounters_clear(&s->tally_counters);
1288 }
1289 
1290 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters)
1291 {
1292     counters->TxOk = 0;
1293     counters->RxOk = 0;
1294     counters->TxERR = 0;
1295     counters->RxERR = 0;
1296     counters->MissPkt = 0;
1297     counters->FAE = 0;
1298     counters->Tx1Col = 0;
1299     counters->TxMCol = 0;
1300     counters->RxOkPhy = 0;
1301     counters->RxOkBrd = 0;
1302     counters->RxOkMul = 0;
1303     counters->TxAbt = 0;
1304     counters->TxUndrn = 0;
1305 }
1306 
1307 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr)
1308 {
1309     PCIDevice *d = PCI_DEVICE(s);
1310     RTL8139TallyCounters *tally_counters = &s->tally_counters;
1311     uint16_t val16;
1312     uint32_t val32;
1313     uint64_t val64;
1314 
1315     val64 = cpu_to_le64(tally_counters->TxOk);
1316     pci_dma_write(d, tc_addr + 0,     (uint8_t *)&val64, 8);
1317 
1318     val64 = cpu_to_le64(tally_counters->RxOk);
1319     pci_dma_write(d, tc_addr + 8,     (uint8_t *)&val64, 8);
1320 
1321     val64 = cpu_to_le64(tally_counters->TxERR);
1322     pci_dma_write(d, tc_addr + 16,    (uint8_t *)&val64, 8);
1323 
1324     val32 = cpu_to_le32(tally_counters->RxERR);
1325     pci_dma_write(d, tc_addr + 24,    (uint8_t *)&val32, 4);
1326 
1327     val16 = cpu_to_le16(tally_counters->MissPkt);
1328     pci_dma_write(d, tc_addr + 28,    (uint8_t *)&val16, 2);
1329 
1330     val16 = cpu_to_le16(tally_counters->FAE);
1331     pci_dma_write(d, tc_addr + 30,    (uint8_t *)&val16, 2);
1332 
1333     val32 = cpu_to_le32(tally_counters->Tx1Col);
1334     pci_dma_write(d, tc_addr + 32,    (uint8_t *)&val32, 4);
1335 
1336     val32 = cpu_to_le32(tally_counters->TxMCol);
1337     pci_dma_write(d, tc_addr + 36,    (uint8_t *)&val32, 4);
1338 
1339     val64 = cpu_to_le64(tally_counters->RxOkPhy);
1340     pci_dma_write(d, tc_addr + 40,    (uint8_t *)&val64, 8);
1341 
1342     val64 = cpu_to_le64(tally_counters->RxOkBrd);
1343     pci_dma_write(d, tc_addr + 48,    (uint8_t *)&val64, 8);
1344 
1345     val32 = cpu_to_le32(tally_counters->RxOkMul);
1346     pci_dma_write(d, tc_addr + 56,    (uint8_t *)&val32, 4);
1347 
1348     val16 = cpu_to_le16(tally_counters->TxAbt);
1349     pci_dma_write(d, tc_addr + 60,    (uint8_t *)&val16, 2);
1350 
1351     val16 = cpu_to_le16(tally_counters->TxUndrn);
1352     pci_dma_write(d, tc_addr + 62,    (uint8_t *)&val16, 2);
1353 }
1354 
1355 static void rtl8139_ChipCmd_write(RTL8139State *s, uint32_t val)
1356 {
1357     DeviceState *d = DEVICE(s);
1358 
1359     val &= 0xff;
1360 
1361     DPRINTF("ChipCmd write val=0x%08x\n", val);
1362 
1363     if (val & CmdReset)
1364     {
1365         DPRINTF("ChipCmd reset\n");
1366         rtl8139_reset(d);
1367     }
1368     if (val & CmdRxEnb)
1369     {
1370         DPRINTF("ChipCmd enable receiver\n");
1371 
1372         s->currCPlusRxDesc = 0;
1373     }
1374     if (val & CmdTxEnb)
1375     {
1376         DPRINTF("ChipCmd enable transmitter\n");
1377 
1378         s->currCPlusTxDesc = 0;
1379     }
1380 
1381     /* mask unwritable bits */
1382     val = SET_MASKED(val, 0xe3, s->bChipCmdState);
1383 
1384     /* Deassert reset pin before next read */
1385     val &= ~CmdReset;
1386 
1387     s->bChipCmdState = val;
1388 }
1389 
1390 static int rtl8139_RxBufferEmpty(RTL8139State *s)
1391 {
1392     int unread = MOD2(s->RxBufferSize + s->RxBufAddr - s->RxBufPtr, s->RxBufferSize);
1393 
1394     if (unread != 0)
1395     {
1396         DPRINTF("receiver buffer data available 0x%04x\n", unread);
1397         return 0;
1398     }
1399 
1400     DPRINTF("receiver buffer is empty\n");
1401 
1402     return 1;
1403 }
1404 
1405 static uint32_t rtl8139_ChipCmd_read(RTL8139State *s)
1406 {
1407     uint32_t ret = s->bChipCmdState;
1408 
1409     if (rtl8139_RxBufferEmpty(s))
1410         ret |= RxBufEmpty;
1411 
1412     DPRINTF("ChipCmd read val=0x%04x\n", ret);
1413 
1414     return ret;
1415 }
1416 
1417 static void rtl8139_CpCmd_write(RTL8139State *s, uint32_t val)
1418 {
1419     val &= 0xffff;
1420 
1421     DPRINTF("C+ command register write(w) val=0x%04x\n", val);
1422 
1423     s->cplus_enabled = 1;
1424 
1425     /* mask unwritable bits */
1426     val = SET_MASKED(val, 0xff84, s->CpCmd);
1427 
1428     s->CpCmd = val;
1429 }
1430 
1431 static uint32_t rtl8139_CpCmd_read(RTL8139State *s)
1432 {
1433     uint32_t ret = s->CpCmd;
1434 
1435     DPRINTF("C+ command register read(w) val=0x%04x\n", ret);
1436 
1437     return ret;
1438 }
1439 
1440 static void rtl8139_IntrMitigate_write(RTL8139State *s, uint32_t val)
1441 {
1442     DPRINTF("C+ IntrMitigate register write(w) val=0x%04x\n", val);
1443 }
1444 
1445 static uint32_t rtl8139_IntrMitigate_read(RTL8139State *s)
1446 {
1447     uint32_t ret = 0;
1448 
1449     DPRINTF("C+ IntrMitigate register read(w) val=0x%04x\n", ret);
1450 
1451     return ret;
1452 }
1453 
1454 static int rtl8139_config_writable(RTL8139State *s)
1455 {
1456     if ((s->Cfg9346 & Chip9346_op_mask) == Cfg9346_ConfigWrite)
1457     {
1458         return 1;
1459     }
1460 
1461     DPRINTF("Configuration registers are write-protected\n");
1462 
1463     return 0;
1464 }
1465 
1466 static void rtl8139_BasicModeCtrl_write(RTL8139State *s, uint32_t val)
1467 {
1468     val &= 0xffff;
1469 
1470     DPRINTF("BasicModeCtrl register write(w) val=0x%04x\n", val);
1471 
1472     /* mask unwritable bits */
1473     uint32_t mask = 0xccff;
1474 
1475     if (1 || !rtl8139_config_writable(s))
1476     {
1477         /* Speed setting and autonegotiation enable bits are read-only */
1478         mask |= 0x3000;
1479         /* Duplex mode setting is read-only */
1480         mask |= 0x0100;
1481     }
1482 
1483     if (val & 0x8000) {
1484         /* Reset PHY */
1485         rtl8139_reset_phy(s);
1486     }
1487 
1488     val = SET_MASKED(val, mask, s->BasicModeCtrl);
1489 
1490     s->BasicModeCtrl = val;
1491 }
1492 
1493 static uint32_t rtl8139_BasicModeCtrl_read(RTL8139State *s)
1494 {
1495     uint32_t ret = s->BasicModeCtrl;
1496 
1497     DPRINTF("BasicModeCtrl register read(w) val=0x%04x\n", ret);
1498 
1499     return ret;
1500 }
1501 
1502 static void rtl8139_BasicModeStatus_write(RTL8139State *s, uint32_t val)
1503 {
1504     val &= 0xffff;
1505 
1506     DPRINTF("BasicModeStatus register write(w) val=0x%04x\n", val);
1507 
1508     /* mask unwritable bits */
1509     val = SET_MASKED(val, 0xff3f, s->BasicModeStatus);
1510 
1511     s->BasicModeStatus = val;
1512 }
1513 
1514 static uint32_t rtl8139_BasicModeStatus_read(RTL8139State *s)
1515 {
1516     uint32_t ret = s->BasicModeStatus;
1517 
1518     DPRINTF("BasicModeStatus register read(w) val=0x%04x\n", ret);
1519 
1520     return ret;
1521 }
1522 
1523 static void rtl8139_Cfg9346_write(RTL8139State *s, uint32_t val)
1524 {
1525     DeviceState *d = DEVICE(s);
1526 
1527     val &= 0xff;
1528 
1529     DPRINTF("Cfg9346 write val=0x%02x\n", val);
1530 
1531     /* mask unwritable bits */
1532     val = SET_MASKED(val, 0x31, s->Cfg9346);
1533 
1534     uint32_t opmode = val & 0xc0;
1535     uint32_t eeprom_val = val & 0xf;
1536 
1537     if (opmode == 0x80) {
1538         /* eeprom access */
1539         int eecs = (eeprom_val & 0x08)?1:0;
1540         int eesk = (eeprom_val & 0x04)?1:0;
1541         int eedi = (eeprom_val & 0x02)?1:0;
1542         prom9346_set_wire(s, eecs, eesk, eedi);
1543     } else if (opmode == 0x40) {
1544         /* Reset.  */
1545         val = 0;
1546         rtl8139_reset(d);
1547     }
1548 
1549     s->Cfg9346 = val;
1550 }
1551 
1552 static uint32_t rtl8139_Cfg9346_read(RTL8139State *s)
1553 {
1554     uint32_t ret = s->Cfg9346;
1555 
1556     uint32_t opmode = ret & 0xc0;
1557 
1558     if (opmode == 0x80)
1559     {
1560         /* eeprom access */
1561         int eedo = prom9346_get_wire(s);
1562         if (eedo)
1563         {
1564             ret |=  0x01;
1565         }
1566         else
1567         {
1568             ret &= ~0x01;
1569         }
1570     }
1571 
1572     DPRINTF("Cfg9346 read val=0x%02x\n", ret);
1573 
1574     return ret;
1575 }
1576 
1577 static void rtl8139_Config0_write(RTL8139State *s, uint32_t val)
1578 {
1579     val &= 0xff;
1580 
1581     DPRINTF("Config0 write val=0x%02x\n", val);
1582 
1583     if (!rtl8139_config_writable(s)) {
1584         return;
1585     }
1586 
1587     /* mask unwritable bits */
1588     val = SET_MASKED(val, 0xf8, s->Config0);
1589 
1590     s->Config0 = val;
1591 }
1592 
1593 static uint32_t rtl8139_Config0_read(RTL8139State *s)
1594 {
1595     uint32_t ret = s->Config0;
1596 
1597     DPRINTF("Config0 read val=0x%02x\n", ret);
1598 
1599     return ret;
1600 }
1601 
1602 static void rtl8139_Config1_write(RTL8139State *s, uint32_t val)
1603 {
1604     val &= 0xff;
1605 
1606     DPRINTF("Config1 write val=0x%02x\n", val);
1607 
1608     if (!rtl8139_config_writable(s)) {
1609         return;
1610     }
1611 
1612     /* mask unwritable bits */
1613     val = SET_MASKED(val, 0xC, s->Config1);
1614 
1615     s->Config1 = val;
1616 }
1617 
1618 static uint32_t rtl8139_Config1_read(RTL8139State *s)
1619 {
1620     uint32_t ret = s->Config1;
1621 
1622     DPRINTF("Config1 read val=0x%02x\n", ret);
1623 
1624     return ret;
1625 }
1626 
1627 static void rtl8139_Config3_write(RTL8139State *s, uint32_t val)
1628 {
1629     val &= 0xff;
1630 
1631     DPRINTF("Config3 write val=0x%02x\n", val);
1632 
1633     if (!rtl8139_config_writable(s)) {
1634         return;
1635     }
1636 
1637     /* mask unwritable bits */
1638     val = SET_MASKED(val, 0x8F, s->Config3);
1639 
1640     s->Config3 = val;
1641 }
1642 
1643 static uint32_t rtl8139_Config3_read(RTL8139State *s)
1644 {
1645     uint32_t ret = s->Config3;
1646 
1647     DPRINTF("Config3 read val=0x%02x\n", ret);
1648 
1649     return ret;
1650 }
1651 
1652 static void rtl8139_Config4_write(RTL8139State *s, uint32_t val)
1653 {
1654     val &= 0xff;
1655 
1656     DPRINTF("Config4 write val=0x%02x\n", val);
1657 
1658     if (!rtl8139_config_writable(s)) {
1659         return;
1660     }
1661 
1662     /* mask unwritable bits */
1663     val = SET_MASKED(val, 0x0a, s->Config4);
1664 
1665     s->Config4 = val;
1666 }
1667 
1668 static uint32_t rtl8139_Config4_read(RTL8139State *s)
1669 {
1670     uint32_t ret = s->Config4;
1671 
1672     DPRINTF("Config4 read val=0x%02x\n", ret);
1673 
1674     return ret;
1675 }
1676 
1677 static void rtl8139_Config5_write(RTL8139State *s, uint32_t val)
1678 {
1679     val &= 0xff;
1680 
1681     DPRINTF("Config5 write val=0x%02x\n", val);
1682 
1683     /* mask unwritable bits */
1684     val = SET_MASKED(val, 0x80, s->Config5);
1685 
1686     s->Config5 = val;
1687 }
1688 
1689 static uint32_t rtl8139_Config5_read(RTL8139State *s)
1690 {
1691     uint32_t ret = s->Config5;
1692 
1693     DPRINTF("Config5 read val=0x%02x\n", ret);
1694 
1695     return ret;
1696 }
1697 
1698 static void rtl8139_TxConfig_write(RTL8139State *s, uint32_t val)
1699 {
1700     if (!rtl8139_transmitter_enabled(s))
1701     {
1702         DPRINTF("transmitter disabled; no TxConfig write val=0x%08x\n", val);
1703         return;
1704     }
1705 
1706     DPRINTF("TxConfig write val=0x%08x\n", val);
1707 
1708     val = SET_MASKED(val, TxVersionMask | 0x8070f80f, s->TxConfig);
1709 
1710     s->TxConfig = val;
1711 }
1712 
1713 static void rtl8139_TxConfig_writeb(RTL8139State *s, uint32_t val)
1714 {
1715     DPRINTF("RTL8139C TxConfig via write(b) val=0x%02x\n", val);
1716 
1717     uint32_t tc = s->TxConfig;
1718     tc &= 0xFFFFFF00;
1719     tc |= (val & 0x000000FF);
1720     rtl8139_TxConfig_write(s, tc);
1721 }
1722 
1723 static uint32_t rtl8139_TxConfig_read(RTL8139State *s)
1724 {
1725     uint32_t ret = s->TxConfig;
1726 
1727     DPRINTF("TxConfig read val=0x%04x\n", ret);
1728 
1729     return ret;
1730 }
1731 
1732 static void rtl8139_RxConfig_write(RTL8139State *s, uint32_t val)
1733 {
1734     DPRINTF("RxConfig write val=0x%08x\n", val);
1735 
1736     /* mask unwritable bits */
1737     val = SET_MASKED(val, 0xf0fc0040, s->RxConfig);
1738 
1739     s->RxConfig = val;
1740 
1741     /* reset buffer size and read/write pointers */
1742     rtl8139_reset_rxring(s, 8192 << ((s->RxConfig >> 11) & 0x3));
1743 
1744     DPRINTF("RxConfig write reset buffer size to %d\n", s->RxBufferSize);
1745 }
1746 
1747 static uint32_t rtl8139_RxConfig_read(RTL8139State *s)
1748 {
1749     uint32_t ret = s->RxConfig;
1750 
1751     DPRINTF("RxConfig read val=0x%08x\n", ret);
1752 
1753     return ret;
1754 }
1755 
1756 static void rtl8139_transfer_frame(RTL8139State *s, uint8_t *buf, int size,
1757     int do_interrupt, const uint8_t *dot1q_buf)
1758 {
1759     struct iovec *iov = NULL;
1760     struct iovec vlan_iov[3];
1761 
1762     if (!size)
1763     {
1764         DPRINTF("+++ empty ethernet frame\n");
1765         return;
1766     }
1767 
1768     if (dot1q_buf && size >= ETH_ALEN * 2) {
1769         iov = (struct iovec[3]) {
1770             { .iov_base = buf, .iov_len = ETH_ALEN * 2 },
1771             { .iov_base = (void *) dot1q_buf, .iov_len = VLAN_HLEN },
1772             { .iov_base = buf + ETH_ALEN * 2,
1773                 .iov_len = size - ETH_ALEN * 2 },
1774         };
1775 
1776         memcpy(vlan_iov, iov, sizeof(vlan_iov));
1777         iov = vlan_iov;
1778     }
1779 
1780     if (TxLoopBack == (s->TxConfig & TxLoopBack))
1781     {
1782         size_t buf2_size;
1783         uint8_t *buf2;
1784 
1785         if (iov) {
1786             buf2_size = iov_size(iov, 3);
1787             buf2 = g_malloc(buf2_size);
1788             iov_to_buf(iov, 3, 0, buf2, buf2_size);
1789             buf = buf2;
1790         }
1791 
1792         DPRINTF("+++ transmit loopback mode\n");
1793         rtl8139_do_receive(qemu_get_queue(s->nic), buf, size, do_interrupt);
1794 
1795         if (iov) {
1796             g_free(buf2);
1797         }
1798     }
1799     else
1800     {
1801         if (iov) {
1802             qemu_sendv_packet(qemu_get_queue(s->nic), iov, 3);
1803         } else {
1804             qemu_send_packet(qemu_get_queue(s->nic), buf, size);
1805         }
1806     }
1807 }
1808 
1809 static int rtl8139_transmit_one(RTL8139State *s, int descriptor)
1810 {
1811     if (!rtl8139_transmitter_enabled(s))
1812     {
1813         DPRINTF("+++ cannot transmit from descriptor %d: transmitter "
1814             "disabled\n", descriptor);
1815         return 0;
1816     }
1817 
1818     if (s->TxStatus[descriptor] & TxHostOwns)
1819     {
1820         DPRINTF("+++ cannot transmit from descriptor %d: owned by host "
1821             "(%08x)\n", descriptor, s->TxStatus[descriptor]);
1822         return 0;
1823     }
1824 
1825     DPRINTF("+++ transmitting from descriptor %d\n", descriptor);
1826 
1827     PCIDevice *d = PCI_DEVICE(s);
1828     int txsize = s->TxStatus[descriptor] & 0x1fff;
1829     uint8_t txbuffer[0x2000];
1830 
1831     DPRINTF("+++ transmit reading %d bytes from host memory at 0x%08x\n",
1832         txsize, s->TxAddr[descriptor]);
1833 
1834     pci_dma_read(d, s->TxAddr[descriptor], txbuffer, txsize);
1835 
1836     /* Mark descriptor as transferred */
1837     s->TxStatus[descriptor] |= TxHostOwns;
1838     s->TxStatus[descriptor] |= TxStatOK;
1839 
1840     rtl8139_transfer_frame(s, txbuffer, txsize, 0, NULL);
1841 
1842     DPRINTF("+++ transmitted %d bytes from descriptor %d\n", txsize,
1843         descriptor);
1844 
1845     /* update interrupt */
1846     s->IntrStatus |= TxOK;
1847     rtl8139_update_irq(s);
1848 
1849     return 1;
1850 }
1851 
1852 #define TCP_HEADER_CLEAR_FLAGS(tcp, off) ((tcp)->th_offset_flags &= cpu_to_be16(~TCP_FLAGS_ONLY(off)))
1853 
1854 /* produces ones' complement sum of data */
1855 static uint16_t ones_complement_sum(uint8_t *data, size_t len)
1856 {
1857     uint32_t result = 0;
1858 
1859     for (; len > 1; data+=2, len-=2)
1860     {
1861         result += *(uint16_t*)data;
1862     }
1863 
1864     /* add the remainder byte */
1865     if (len)
1866     {
1867         uint8_t odd[2] = {*data, 0};
1868         result += *(uint16_t*)odd;
1869     }
1870 
1871     while (result>>16)
1872         result = (result & 0xffff) + (result >> 16);
1873 
1874     return result;
1875 }
1876 
1877 static uint16_t ip_checksum(void *data, size_t len)
1878 {
1879     return ~ones_complement_sum((uint8_t*)data, len);
1880 }
1881 
1882 static int rtl8139_cplus_transmit_one(RTL8139State *s)
1883 {
1884     if (!rtl8139_transmitter_enabled(s))
1885     {
1886         DPRINTF("+++ C+ mode: transmitter disabled\n");
1887         return 0;
1888     }
1889 
1890     if (!rtl8139_cp_transmitter_enabled(s))
1891     {
1892         DPRINTF("+++ C+ mode: C+ transmitter disabled\n");
1893         return 0 ;
1894     }
1895 
1896     PCIDevice *d = PCI_DEVICE(s);
1897     int descriptor = s->currCPlusTxDesc;
1898 
1899     dma_addr_t cplus_tx_ring_desc = rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]);
1900 
1901     /* Normal priority ring */
1902     cplus_tx_ring_desc += 16 * descriptor;
1903 
1904     DPRINTF("+++ C+ mode reading TX descriptor %d from host memory at "
1905         "%08x %08x = 0x"DMA_ADDR_FMT"\n", descriptor, s->TxAddr[1],
1906         s->TxAddr[0], cplus_tx_ring_desc);
1907 
1908     uint32_t val, txdw0,txdw1,txbufLO,txbufHI;
1909 
1910     pci_dma_read(d, cplus_tx_ring_desc,    (uint8_t *)&val, 4);
1911     txdw0 = le32_to_cpu(val);
1912     pci_dma_read(d, cplus_tx_ring_desc+4,  (uint8_t *)&val, 4);
1913     txdw1 = le32_to_cpu(val);
1914     pci_dma_read(d, cplus_tx_ring_desc+8,  (uint8_t *)&val, 4);
1915     txbufLO = le32_to_cpu(val);
1916     pci_dma_read(d, cplus_tx_ring_desc+12, (uint8_t *)&val, 4);
1917     txbufHI = le32_to_cpu(val);
1918 
1919     DPRINTF("+++ C+ mode TX descriptor %d %08x %08x %08x %08x\n", descriptor,
1920         txdw0, txdw1, txbufLO, txbufHI);
1921 
1922 /* w0 ownership flag */
1923 #define CP_TX_OWN (1<<31)
1924 /* w0 end of ring flag */
1925 #define CP_TX_EOR (1<<30)
1926 /* first segment of received packet flag */
1927 #define CP_TX_FS (1<<29)
1928 /* last segment of received packet flag */
1929 #define CP_TX_LS (1<<28)
1930 /* large send packet flag */
1931 #define CP_TX_LGSEN (1<<27)
1932 /* large send MSS mask, bits 16...25 */
1933 #define CP_TC_LGSEN_MSS_MASK ((1 << 12) - 1)
1934 
1935 /* IP checksum offload flag */
1936 #define CP_TX_IPCS (1<<18)
1937 /* UDP checksum offload flag */
1938 #define CP_TX_UDPCS (1<<17)
1939 /* TCP checksum offload flag */
1940 #define CP_TX_TCPCS (1<<16)
1941 
1942 /* w0 bits 0...15 : buffer size */
1943 #define CP_TX_BUFFER_SIZE (1<<16)
1944 #define CP_TX_BUFFER_SIZE_MASK (CP_TX_BUFFER_SIZE - 1)
1945 /* w1 add tag flag */
1946 #define CP_TX_TAGC (1<<17)
1947 /* w1 bits 0...15 : VLAN tag (big endian) */
1948 #define CP_TX_VLAN_TAG_MASK ((1<<16) - 1)
1949 /* w2 low  32bit of Rx buffer ptr */
1950 /* w3 high 32bit of Rx buffer ptr */
1951 
1952 /* set after transmission */
1953 /* FIFO underrun flag */
1954 #define CP_TX_STATUS_UNF (1<<25)
1955 /* transmit error summary flag, valid if set any of three below */
1956 #define CP_TX_STATUS_TES (1<<23)
1957 /* out-of-window collision flag */
1958 #define CP_TX_STATUS_OWC (1<<22)
1959 /* link failure flag */
1960 #define CP_TX_STATUS_LNKF (1<<21)
1961 /* excessive collisions flag */
1962 #define CP_TX_STATUS_EXC (1<<20)
1963 
1964     if (!(txdw0 & CP_TX_OWN))
1965     {
1966         DPRINTF("C+ Tx mode : descriptor %d is owned by host\n", descriptor);
1967         return 0 ;
1968     }
1969 
1970     DPRINTF("+++ C+ Tx mode : transmitting from descriptor %d\n", descriptor);
1971 
1972     if (txdw0 & CP_TX_FS)
1973     {
1974         DPRINTF("+++ C+ Tx mode : descriptor %d is first segment "
1975             "descriptor\n", descriptor);
1976 
1977         /* reset internal buffer offset */
1978         s->cplus_txbuffer_offset = 0;
1979     }
1980 
1981     int txsize = txdw0 & CP_TX_BUFFER_SIZE_MASK;
1982     dma_addr_t tx_addr = rtl8139_addr64(txbufLO, txbufHI);
1983 
1984     /* make sure we have enough space to assemble the packet */
1985     if (!s->cplus_txbuffer)
1986     {
1987         s->cplus_txbuffer_len = CP_TX_BUFFER_SIZE;
1988         s->cplus_txbuffer = g_malloc(s->cplus_txbuffer_len);
1989         s->cplus_txbuffer_offset = 0;
1990 
1991         DPRINTF("+++ C+ mode transmission buffer allocated space %d\n",
1992             s->cplus_txbuffer_len);
1993     }
1994 
1995     if (s->cplus_txbuffer_offset + txsize >= s->cplus_txbuffer_len)
1996     {
1997         /* The spec didn't tell the maximum size, stick to CP_TX_BUFFER_SIZE */
1998         txsize = s->cplus_txbuffer_len - s->cplus_txbuffer_offset;
1999         DPRINTF("+++ C+ mode transmission buffer overrun, truncated descriptor"
2000                 "length to %d\n", txsize);
2001     }
2002 
2003     /* append more data to the packet */
2004 
2005     DPRINTF("+++ C+ mode transmit reading %d bytes from host memory at "
2006             DMA_ADDR_FMT" to offset %d\n", txsize, tx_addr,
2007             s->cplus_txbuffer_offset);
2008 
2009     pci_dma_read(d, tx_addr,
2010                  s->cplus_txbuffer + s->cplus_txbuffer_offset, txsize);
2011     s->cplus_txbuffer_offset += txsize;
2012 
2013     /* seek to next Rx descriptor */
2014     if (txdw0 & CP_TX_EOR)
2015     {
2016         s->currCPlusTxDesc = 0;
2017     }
2018     else
2019     {
2020         ++s->currCPlusTxDesc;
2021         if (s->currCPlusTxDesc >= 64)
2022             s->currCPlusTxDesc = 0;
2023     }
2024 
2025     /* transfer ownership to target */
2026     txdw0 &= ~CP_TX_OWN;
2027 
2028     /* reset error indicator bits */
2029     txdw0 &= ~CP_TX_STATUS_UNF;
2030     txdw0 &= ~CP_TX_STATUS_TES;
2031     txdw0 &= ~CP_TX_STATUS_OWC;
2032     txdw0 &= ~CP_TX_STATUS_LNKF;
2033     txdw0 &= ~CP_TX_STATUS_EXC;
2034 
2035     /* update ring data */
2036     val = cpu_to_le32(txdw0);
2037     pci_dma_write(d, cplus_tx_ring_desc, (uint8_t *)&val, 4);
2038 
2039     /* Now decide if descriptor being processed is holding the last segment of packet */
2040     if (txdw0 & CP_TX_LS)
2041     {
2042         uint8_t dot1q_buffer_space[VLAN_HLEN];
2043         uint16_t *dot1q_buffer;
2044 
2045         DPRINTF("+++ C+ Tx mode : descriptor %d is last segment descriptor\n",
2046             descriptor);
2047 
2048         /* can transfer fully assembled packet */
2049 
2050         uint8_t *saved_buffer  = s->cplus_txbuffer;
2051         int      saved_size    = s->cplus_txbuffer_offset;
2052         int      saved_buffer_len = s->cplus_txbuffer_len;
2053 
2054         /* create vlan tag */
2055         if (txdw1 & CP_TX_TAGC) {
2056             /* the vlan tag is in BE byte order in the descriptor
2057              * BE + le_to_cpu() + ~swap()~ = cpu */
2058             DPRINTF("+++ C+ Tx mode : inserting vlan tag with ""tci: %u\n",
2059                 bswap16(txdw1 & CP_TX_VLAN_TAG_MASK));
2060 
2061             dot1q_buffer = (uint16_t *) dot1q_buffer_space;
2062             dot1q_buffer[0] = cpu_to_be16(ETH_P_VLAN);
2063             /* BE + le_to_cpu() + ~cpu_to_le()~ = BE */
2064             dot1q_buffer[1] = cpu_to_le16(txdw1 & CP_TX_VLAN_TAG_MASK);
2065         } else {
2066             dot1q_buffer = NULL;
2067         }
2068 
2069         /* reset the card space to protect from recursive call */
2070         s->cplus_txbuffer = NULL;
2071         s->cplus_txbuffer_offset = 0;
2072         s->cplus_txbuffer_len = 0;
2073 
2074         if (txdw0 & (CP_TX_IPCS | CP_TX_UDPCS | CP_TX_TCPCS | CP_TX_LGSEN))
2075         {
2076             DPRINTF("+++ C+ mode offloaded task checksum\n");
2077 
2078             /* Large enough for Ethernet and IP headers? */
2079             if (saved_size < ETH_HLEN + sizeof(struct ip_header)) {
2080                 goto skip_offload;
2081             }
2082 
2083             /* ip packet header */
2084             struct ip_header *ip = NULL;
2085             int hlen = 0;
2086             uint8_t  ip_protocol = 0;
2087             uint16_t ip_data_len = 0;
2088 
2089             uint8_t *eth_payload_data = NULL;
2090             size_t   eth_payload_len  = 0;
2091 
2092             int proto = be16_to_cpu(*(uint16_t *)(saved_buffer + 12));
2093             if (proto != ETH_P_IP)
2094             {
2095                 goto skip_offload;
2096             }
2097 
2098             DPRINTF("+++ C+ mode has IP packet\n");
2099 
2100             /* Note on memory alignment: eth_payload_data is 16-bit aligned
2101              * since saved_buffer is allocated with g_malloc() and ETH_HLEN is
2102              * even.  32-bit accesses must use ldl/stl wrappers to avoid
2103              * unaligned accesses.
2104              */
2105             eth_payload_data = saved_buffer + ETH_HLEN;
2106             eth_payload_len  = saved_size   - ETH_HLEN;
2107 
2108             ip = (struct ip_header*)eth_payload_data;
2109 
2110             if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) {
2111                 DPRINTF("+++ C+ mode packet has bad IP version %d "
2112                     "expected %d\n", IP_HEADER_VERSION(ip),
2113                     IP_HEADER_VERSION_4);
2114                 goto skip_offload;
2115             }
2116 
2117             hlen = IP_HDR_GET_LEN(ip);
2118             if (hlen < sizeof(struct ip_header) || hlen > eth_payload_len) {
2119                 goto skip_offload;
2120             }
2121 
2122             ip_protocol = ip->ip_p;
2123 
2124             ip_data_len = be16_to_cpu(ip->ip_len);
2125             if (ip_data_len < hlen || ip_data_len > eth_payload_len) {
2126                 goto skip_offload;
2127             }
2128             ip_data_len -= hlen;
2129 
2130             if (txdw0 & CP_TX_IPCS)
2131             {
2132                 DPRINTF("+++ C+ mode need IP checksum\n");
2133 
2134                 ip->ip_sum = 0;
2135                 ip->ip_sum = ip_checksum(ip, hlen);
2136                 DPRINTF("+++ C+ mode IP header len=%d checksum=%04x\n",
2137                     hlen, ip->ip_sum);
2138             }
2139 
2140             if ((txdw0 & CP_TX_LGSEN) && ip_protocol == IP_PROTO_TCP)
2141             {
2142                 /* Large enough for the TCP header? */
2143                 if (ip_data_len < sizeof(tcp_header)) {
2144                     goto skip_offload;
2145                 }
2146 
2147                 int large_send_mss = (txdw0 >> 16) & CP_TC_LGSEN_MSS_MASK;
2148 
2149                 DPRINTF("+++ C+ mode offloaded task TSO MTU=%d IP data %d "
2150                     "frame data %d specified MSS=%d\n", ETH_MTU,
2151                     ip_data_len, saved_size - ETH_HLEN, large_send_mss);
2152 
2153                 int tcp_send_offset = 0;
2154                 int send_count = 0;
2155 
2156                 /* maximum IP header length is 60 bytes */
2157                 uint8_t saved_ip_header[60];
2158 
2159                 /* save IP header template; data area is used in tcp checksum calculation */
2160                 memcpy(saved_ip_header, eth_payload_data, hlen);
2161 
2162                 /* a placeholder for checksum calculation routine in tcp case */
2163                 uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2164                 //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2165 
2166                 /* pointer to TCP header */
2167                 tcp_header *p_tcp_hdr = (tcp_header*)(eth_payload_data + hlen);
2168 
2169                 int tcp_hlen = TCP_HEADER_DATA_OFFSET(p_tcp_hdr);
2170 
2171                 /* Invalid TCP data offset? */
2172                 if (tcp_hlen < sizeof(tcp_header) || tcp_hlen > ip_data_len) {
2173                     goto skip_offload;
2174                 }
2175 
2176                 /* ETH_MTU = ip header len + tcp header len + payload */
2177                 int tcp_data_len = ip_data_len - tcp_hlen;
2178                 int tcp_chunk_size = ETH_MTU - hlen - tcp_hlen;
2179 
2180                 DPRINTF("+++ C+ mode TSO IP data len %d TCP hlen %d TCP "
2181                     "data len %d TCP chunk size %d\n", ip_data_len,
2182                     tcp_hlen, tcp_data_len, tcp_chunk_size);
2183 
2184                 /* note the cycle below overwrites IP header data,
2185                    but restores it from saved_ip_header before sending packet */
2186 
2187                 int is_last_frame = 0;
2188 
2189                 for (tcp_send_offset = 0; tcp_send_offset < tcp_data_len; tcp_send_offset += tcp_chunk_size)
2190                 {
2191                     uint16_t chunk_size = tcp_chunk_size;
2192 
2193                     /* check if this is the last frame */
2194                     if (tcp_send_offset + tcp_chunk_size >= tcp_data_len)
2195                     {
2196                         is_last_frame = 1;
2197                         chunk_size = tcp_data_len - tcp_send_offset;
2198                     }
2199 
2200                     DPRINTF("+++ C+ mode TSO TCP seqno %08x\n",
2201                             ldl_be_p(&p_tcp_hdr->th_seq));
2202 
2203                     /* add 4 TCP pseudoheader fields */
2204                     /* copy IP source and destination fields */
2205                     memcpy(data_to_checksum, saved_ip_header + 12, 8);
2206 
2207                     DPRINTF("+++ C+ mode TSO calculating TCP checksum for "
2208                         "packet with %d bytes data\n", tcp_hlen +
2209                         chunk_size);
2210 
2211                     if (tcp_send_offset)
2212                     {
2213                         memcpy((uint8_t*)p_tcp_hdr + tcp_hlen, (uint8_t*)p_tcp_hdr + tcp_hlen + tcp_send_offset, chunk_size);
2214                     }
2215 
2216                     /* keep PUSH and FIN flags only for the last frame */
2217                     if (!is_last_frame)
2218                     {
2219                         TCP_HEADER_CLEAR_FLAGS(p_tcp_hdr, TH_PUSH | TH_FIN);
2220                     }
2221 
2222                     /* recalculate TCP checksum */
2223                     ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2224                     p_tcpip_hdr->zeros      = 0;
2225                     p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2226                     p_tcpip_hdr->ip_payload = cpu_to_be16(tcp_hlen + chunk_size);
2227 
2228                     p_tcp_hdr->th_sum = 0;
2229 
2230                     int tcp_checksum = ip_checksum(data_to_checksum, tcp_hlen + chunk_size + 12);
2231                     DPRINTF("+++ C+ mode TSO TCP checksum %04x\n",
2232                         tcp_checksum);
2233 
2234                     p_tcp_hdr->th_sum = tcp_checksum;
2235 
2236                     /* restore IP header */
2237                     memcpy(eth_payload_data, saved_ip_header, hlen);
2238 
2239                     /* set IP data length and recalculate IP checksum */
2240                     ip->ip_len = cpu_to_be16(hlen + tcp_hlen + chunk_size);
2241 
2242                     /* increment IP id for subsequent frames */
2243                     ip->ip_id = cpu_to_be16(tcp_send_offset/tcp_chunk_size + be16_to_cpu(ip->ip_id));
2244 
2245                     ip->ip_sum = 0;
2246                     ip->ip_sum = ip_checksum(eth_payload_data, hlen);
2247                     DPRINTF("+++ C+ mode TSO IP header len=%d "
2248                         "checksum=%04x\n", hlen, ip->ip_sum);
2249 
2250                     int tso_send_size = ETH_HLEN + hlen + tcp_hlen + chunk_size;
2251                     DPRINTF("+++ C+ mode TSO transferring packet size "
2252                         "%d\n", tso_send_size);
2253                     rtl8139_transfer_frame(s, saved_buffer, tso_send_size,
2254                         0, (uint8_t *) dot1q_buffer);
2255 
2256                     /* add transferred count to TCP sequence number */
2257                     stl_be_p(&p_tcp_hdr->th_seq,
2258                              chunk_size + ldl_be_p(&p_tcp_hdr->th_seq));
2259                     ++send_count;
2260                 }
2261 
2262                 /* Stop sending this frame */
2263                 saved_size = 0;
2264             }
2265             else if (txdw0 & (CP_TX_TCPCS|CP_TX_UDPCS))
2266             {
2267                 DPRINTF("+++ C+ mode need TCP or UDP checksum\n");
2268 
2269                 /* maximum IP header length is 60 bytes */
2270                 uint8_t saved_ip_header[60];
2271                 memcpy(saved_ip_header, eth_payload_data, hlen);
2272 
2273                 uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2274                 //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2275 
2276                 /* add 4 TCP pseudoheader fields */
2277                 /* copy IP source and destination fields */
2278                 memcpy(data_to_checksum, saved_ip_header + 12, 8);
2279 
2280                 if ((txdw0 & CP_TX_TCPCS) && ip_protocol == IP_PROTO_TCP)
2281                 {
2282                     DPRINTF("+++ C+ mode calculating TCP checksum for "
2283                         "packet with %d bytes data\n", ip_data_len);
2284 
2285                     ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2286                     p_tcpip_hdr->zeros      = 0;
2287                     p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2288                     p_tcpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2289 
2290                     tcp_header* p_tcp_hdr = (tcp_header *) (data_to_checksum+12);
2291 
2292                     p_tcp_hdr->th_sum = 0;
2293 
2294                     int tcp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2295                     DPRINTF("+++ C+ mode TCP checksum %04x\n",
2296                         tcp_checksum);
2297 
2298                     p_tcp_hdr->th_sum = tcp_checksum;
2299                 }
2300                 else if ((txdw0 & CP_TX_UDPCS) && ip_protocol == IP_PROTO_UDP)
2301                 {
2302                     DPRINTF("+++ C+ mode calculating UDP checksum for "
2303                         "packet with %d bytes data\n", ip_data_len);
2304 
2305                     ip_pseudo_header *p_udpip_hdr = (ip_pseudo_header *)data_to_checksum;
2306                     p_udpip_hdr->zeros      = 0;
2307                     p_udpip_hdr->ip_proto   = IP_PROTO_UDP;
2308                     p_udpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2309 
2310                     udp_header *p_udp_hdr = (udp_header *) (data_to_checksum+12);
2311 
2312                     p_udp_hdr->uh_sum = 0;
2313 
2314                     int udp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2315                     DPRINTF("+++ C+ mode UDP checksum %04x\n",
2316                         udp_checksum);
2317 
2318                     p_udp_hdr->uh_sum = udp_checksum;
2319                 }
2320 
2321                 /* restore IP header */
2322                 memcpy(eth_payload_data, saved_ip_header, hlen);
2323             }
2324         }
2325 
2326 skip_offload:
2327         /* update tally counter */
2328         ++s->tally_counters.TxOk;
2329 
2330         DPRINTF("+++ C+ mode transmitting %d bytes packet\n", saved_size);
2331 
2332         rtl8139_transfer_frame(s, saved_buffer, saved_size, 1,
2333             (uint8_t *) dot1q_buffer);
2334 
2335         /* restore card space if there was no recursion and reset offset */
2336         if (!s->cplus_txbuffer)
2337         {
2338             s->cplus_txbuffer        = saved_buffer;
2339             s->cplus_txbuffer_len    = saved_buffer_len;
2340             s->cplus_txbuffer_offset = 0;
2341         }
2342         else
2343         {
2344             g_free(saved_buffer);
2345         }
2346     }
2347     else
2348     {
2349         DPRINTF("+++ C+ mode transmission continue to next descriptor\n");
2350     }
2351 
2352     return 1;
2353 }
2354 
2355 static void rtl8139_cplus_transmit(RTL8139State *s)
2356 {
2357     int txcount = 0;
2358 
2359     while (txcount < 64 && rtl8139_cplus_transmit_one(s))
2360     {
2361         ++txcount;
2362     }
2363 
2364     /* Mark transfer completed */
2365     if (!txcount)
2366     {
2367         DPRINTF("C+ mode : transmitter queue stalled, current TxDesc = %d\n",
2368             s->currCPlusTxDesc);
2369     }
2370     else
2371     {
2372         /* update interrupt status */
2373         s->IntrStatus |= TxOK;
2374         rtl8139_update_irq(s);
2375     }
2376 }
2377 
2378 static void rtl8139_transmit(RTL8139State *s)
2379 {
2380     int descriptor = s->currTxDesc, txcount = 0;
2381 
2382     /*while*/
2383     if (rtl8139_transmit_one(s, descriptor))
2384     {
2385         ++s->currTxDesc;
2386         s->currTxDesc %= 4;
2387         ++txcount;
2388     }
2389 
2390     /* Mark transfer completed */
2391     if (!txcount)
2392     {
2393         DPRINTF("transmitter queue stalled, current TxDesc = %d\n",
2394             s->currTxDesc);
2395     }
2396 }
2397 
2398 static void rtl8139_TxStatus_write(RTL8139State *s, uint32_t txRegOffset, uint32_t val)
2399 {
2400 
2401     int descriptor = txRegOffset/4;
2402 
2403     /* handle C+ transmit mode register configuration */
2404 
2405     if (s->cplus_enabled)
2406     {
2407         DPRINTF("RTL8139C+ DTCCR write offset=0x%x val=0x%08x "
2408             "descriptor=%d\n", txRegOffset, val, descriptor);
2409 
2410         /* handle Dump Tally Counters command */
2411         s->TxStatus[descriptor] = val;
2412 
2413         if (descriptor == 0 && (val & 0x8))
2414         {
2415             hwaddr tc_addr = rtl8139_addr64(s->TxStatus[0] & ~0x3f, s->TxStatus[1]);
2416 
2417             /* dump tally counters to specified memory location */
2418             RTL8139TallyCounters_dma_write(s, tc_addr);
2419 
2420             /* mark dump completed */
2421             s->TxStatus[0] &= ~0x8;
2422         }
2423 
2424         return;
2425     }
2426 
2427     DPRINTF("TxStatus write offset=0x%x val=0x%08x descriptor=%d\n",
2428         txRegOffset, val, descriptor);
2429 
2430     /* mask only reserved bits */
2431     val &= ~0xff00c000; /* these bits are reset on write */
2432     val = SET_MASKED(val, 0x00c00000, s->TxStatus[descriptor]);
2433 
2434     s->TxStatus[descriptor] = val;
2435 
2436     /* attempt to start transmission */
2437     rtl8139_transmit(s);
2438 }
2439 
2440 static uint32_t rtl8139_TxStatus_TxAddr_read(RTL8139State *s, uint32_t regs[],
2441                                              uint32_t base, uint8_t addr,
2442                                              int size)
2443 {
2444     uint32_t reg = (addr - base) / 4;
2445     uint32_t offset = addr & 0x3;
2446     uint32_t ret = 0;
2447 
2448     if (addr & (size - 1)) {
2449         DPRINTF("not implemented read for TxStatus/TxAddr "
2450                 "addr=0x%x size=0x%x\n", addr, size);
2451         return ret;
2452     }
2453 
2454     switch (size) {
2455     case 1: /* fall through */
2456     case 2: /* fall through */
2457     case 4:
2458         ret = (regs[reg] >> offset * 8) & (((uint64_t)1 << (size * 8)) - 1);
2459         DPRINTF("TxStatus/TxAddr[%d] read addr=0x%x size=0x%x val=0x%08x\n",
2460                 reg, addr, size, ret);
2461         break;
2462     default:
2463         DPRINTF("unsupported size 0x%x of TxStatus/TxAddr reading\n", size);
2464         break;
2465     }
2466 
2467     return ret;
2468 }
2469 
2470 static uint16_t rtl8139_TSAD_read(RTL8139State *s)
2471 {
2472     uint16_t ret = 0;
2473 
2474     /* Simulate TSAD, it is read only anyway */
2475 
2476     ret = ((s->TxStatus[3] & TxStatOK  )?TSAD_TOK3:0)
2477          |((s->TxStatus[2] & TxStatOK  )?TSAD_TOK2:0)
2478          |((s->TxStatus[1] & TxStatOK  )?TSAD_TOK1:0)
2479          |((s->TxStatus[0] & TxStatOK  )?TSAD_TOK0:0)
2480 
2481          |((s->TxStatus[3] & TxUnderrun)?TSAD_TUN3:0)
2482          |((s->TxStatus[2] & TxUnderrun)?TSAD_TUN2:0)
2483          |((s->TxStatus[1] & TxUnderrun)?TSAD_TUN1:0)
2484          |((s->TxStatus[0] & TxUnderrun)?TSAD_TUN0:0)
2485 
2486          |((s->TxStatus[3] & TxAborted )?TSAD_TABT3:0)
2487          |((s->TxStatus[2] & TxAborted )?TSAD_TABT2:0)
2488          |((s->TxStatus[1] & TxAborted )?TSAD_TABT1:0)
2489          |((s->TxStatus[0] & TxAborted )?TSAD_TABT0:0)
2490 
2491          |((s->TxStatus[3] & TxHostOwns )?TSAD_OWN3:0)
2492          |((s->TxStatus[2] & TxHostOwns )?TSAD_OWN2:0)
2493          |((s->TxStatus[1] & TxHostOwns )?TSAD_OWN1:0)
2494          |((s->TxStatus[0] & TxHostOwns )?TSAD_OWN0:0) ;
2495 
2496 
2497     DPRINTF("TSAD read val=0x%04x\n", ret);
2498 
2499     return ret;
2500 }
2501 
2502 static uint16_t rtl8139_CSCR_read(RTL8139State *s)
2503 {
2504     uint16_t ret = s->CSCR;
2505 
2506     DPRINTF("CSCR read val=0x%04x\n", ret);
2507 
2508     return ret;
2509 }
2510 
2511 static void rtl8139_TxAddr_write(RTL8139State *s, uint32_t txAddrOffset, uint32_t val)
2512 {
2513     DPRINTF("TxAddr write offset=0x%x val=0x%08x\n", txAddrOffset, val);
2514 
2515     s->TxAddr[txAddrOffset/4] = val;
2516 }
2517 
2518 static uint32_t rtl8139_TxAddr_read(RTL8139State *s, uint32_t txAddrOffset)
2519 {
2520     uint32_t ret = s->TxAddr[txAddrOffset/4];
2521 
2522     DPRINTF("TxAddr read offset=0x%x val=0x%08x\n", txAddrOffset, ret);
2523 
2524     return ret;
2525 }
2526 
2527 static void rtl8139_RxBufPtr_write(RTL8139State *s, uint32_t val)
2528 {
2529     DPRINTF("RxBufPtr write val=0x%04x\n", val);
2530 
2531     /* this value is off by 16 */
2532     s->RxBufPtr = MOD2(val + 0x10, s->RxBufferSize);
2533 
2534     /* more buffer space may be available so try to receive */
2535     qemu_flush_queued_packets(qemu_get_queue(s->nic));
2536 
2537     DPRINTF(" CAPR write: rx buffer length %d head 0x%04x read 0x%04x\n",
2538         s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
2539 }
2540 
2541 static uint32_t rtl8139_RxBufPtr_read(RTL8139State *s)
2542 {
2543     /* this value is off by 16 */
2544     uint32_t ret = s->RxBufPtr - 0x10;
2545 
2546     DPRINTF("RxBufPtr read val=0x%04x\n", ret);
2547 
2548     return ret;
2549 }
2550 
2551 static uint32_t rtl8139_RxBufAddr_read(RTL8139State *s)
2552 {
2553     /* this value is NOT off by 16 */
2554     uint32_t ret = s->RxBufAddr;
2555 
2556     DPRINTF("RxBufAddr read val=0x%04x\n", ret);
2557 
2558     return ret;
2559 }
2560 
2561 static void rtl8139_RxBuf_write(RTL8139State *s, uint32_t val)
2562 {
2563     DPRINTF("RxBuf write val=0x%08x\n", val);
2564 
2565     s->RxBuf = val;
2566 
2567     /* may need to reset rxring here */
2568 }
2569 
2570 static uint32_t rtl8139_RxBuf_read(RTL8139State *s)
2571 {
2572     uint32_t ret = s->RxBuf;
2573 
2574     DPRINTF("RxBuf read val=0x%08x\n", ret);
2575 
2576     return ret;
2577 }
2578 
2579 static void rtl8139_IntrMask_write(RTL8139State *s, uint32_t val)
2580 {
2581     DPRINTF("IntrMask write(w) val=0x%04x\n", val);
2582 
2583     /* mask unwritable bits */
2584     val = SET_MASKED(val, 0x1e00, s->IntrMask);
2585 
2586     s->IntrMask = val;
2587 
2588     rtl8139_update_irq(s);
2589 
2590 }
2591 
2592 static uint32_t rtl8139_IntrMask_read(RTL8139State *s)
2593 {
2594     uint32_t ret = s->IntrMask;
2595 
2596     DPRINTF("IntrMask read(w) val=0x%04x\n", ret);
2597 
2598     return ret;
2599 }
2600 
2601 static void rtl8139_IntrStatus_write(RTL8139State *s, uint32_t val)
2602 {
2603     DPRINTF("IntrStatus write(w) val=0x%04x\n", val);
2604 
2605 #if 0
2606 
2607     /* writing to ISR has no effect */
2608 
2609     return;
2610 
2611 #else
2612     uint16_t newStatus = s->IntrStatus & ~val;
2613 
2614     /* mask unwritable bits */
2615     newStatus = SET_MASKED(newStatus, 0x1e00, s->IntrStatus);
2616 
2617     /* writing 1 to interrupt status register bit clears it */
2618     s->IntrStatus = 0;
2619     rtl8139_update_irq(s);
2620 
2621     s->IntrStatus = newStatus;
2622     rtl8139_set_next_tctr_time(s);
2623     rtl8139_update_irq(s);
2624 
2625 #endif
2626 }
2627 
2628 static uint32_t rtl8139_IntrStatus_read(RTL8139State *s)
2629 {
2630     uint32_t ret = s->IntrStatus;
2631 
2632     DPRINTF("IntrStatus read(w) val=0x%04x\n", ret);
2633 
2634 #if 0
2635 
2636     /* reading ISR clears all interrupts */
2637     s->IntrStatus = 0;
2638 
2639     rtl8139_update_irq(s);
2640 
2641 #endif
2642 
2643     return ret;
2644 }
2645 
2646 static void rtl8139_MultiIntr_write(RTL8139State *s, uint32_t val)
2647 {
2648     DPRINTF("MultiIntr write(w) val=0x%04x\n", val);
2649 
2650     /* mask unwritable bits */
2651     val = SET_MASKED(val, 0xf000, s->MultiIntr);
2652 
2653     s->MultiIntr = val;
2654 }
2655 
2656 static uint32_t rtl8139_MultiIntr_read(RTL8139State *s)
2657 {
2658     uint32_t ret = s->MultiIntr;
2659 
2660     DPRINTF("MultiIntr read(w) val=0x%04x\n", ret);
2661 
2662     return ret;
2663 }
2664 
2665 static void rtl8139_io_writeb(void *opaque, uint8_t addr, uint32_t val)
2666 {
2667     RTL8139State *s = opaque;
2668 
2669     switch (addr)
2670     {
2671         case MAC0 ... MAC0+4:
2672             s->phys[addr - MAC0] = val;
2673             break;
2674         case MAC0+5:
2675             s->phys[addr - MAC0] = val;
2676             qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
2677             break;
2678         case MAC0+6 ... MAC0+7:
2679             /* reserved */
2680             break;
2681         case MAR0 ... MAR0+7:
2682             s->mult[addr - MAR0] = val;
2683             break;
2684         case ChipCmd:
2685             rtl8139_ChipCmd_write(s, val);
2686             break;
2687         case Cfg9346:
2688             rtl8139_Cfg9346_write(s, val);
2689             break;
2690         case TxConfig: /* windows driver sometimes writes using byte-lenth call */
2691             rtl8139_TxConfig_writeb(s, val);
2692             break;
2693         case Config0:
2694             rtl8139_Config0_write(s, val);
2695             break;
2696         case Config1:
2697             rtl8139_Config1_write(s, val);
2698             break;
2699         case Config3:
2700             rtl8139_Config3_write(s, val);
2701             break;
2702         case Config4:
2703             rtl8139_Config4_write(s, val);
2704             break;
2705         case Config5:
2706             rtl8139_Config5_write(s, val);
2707             break;
2708         case MediaStatus:
2709             /* ignore */
2710             DPRINTF("not implemented write(b) to MediaStatus val=0x%02x\n",
2711                 val);
2712             break;
2713 
2714         case HltClk:
2715             DPRINTF("HltClk write val=0x%08x\n", val);
2716             if (val == 'R')
2717             {
2718                 s->clock_enabled = 1;
2719             }
2720             else if (val == 'H')
2721             {
2722                 s->clock_enabled = 0;
2723             }
2724             break;
2725 
2726         case TxThresh:
2727             DPRINTF("C+ TxThresh write(b) val=0x%02x\n", val);
2728             s->TxThresh = val;
2729             break;
2730 
2731         case TxPoll:
2732             DPRINTF("C+ TxPoll write(b) val=0x%02x\n", val);
2733             if (val & (1 << 7))
2734             {
2735                 DPRINTF("C+ TxPoll high priority transmission (not "
2736                     "implemented)\n");
2737                 //rtl8139_cplus_transmit(s);
2738             }
2739             if (val & (1 << 6))
2740             {
2741                 DPRINTF("C+ TxPoll normal priority transmission\n");
2742                 rtl8139_cplus_transmit(s);
2743             }
2744 
2745             break;
2746 
2747         default:
2748             DPRINTF("not implemented write(b) addr=0x%x val=0x%02x\n", addr,
2749                 val);
2750             break;
2751     }
2752 }
2753 
2754 static void rtl8139_io_writew(void *opaque, uint8_t addr, uint32_t val)
2755 {
2756     RTL8139State *s = opaque;
2757 
2758     switch (addr)
2759     {
2760         case IntrMask:
2761             rtl8139_IntrMask_write(s, val);
2762             break;
2763 
2764         case IntrStatus:
2765             rtl8139_IntrStatus_write(s, val);
2766             break;
2767 
2768         case MultiIntr:
2769             rtl8139_MultiIntr_write(s, val);
2770             break;
2771 
2772         case RxBufPtr:
2773             rtl8139_RxBufPtr_write(s, val);
2774             break;
2775 
2776         case BasicModeCtrl:
2777             rtl8139_BasicModeCtrl_write(s, val);
2778             break;
2779         case BasicModeStatus:
2780             rtl8139_BasicModeStatus_write(s, val);
2781             break;
2782         case NWayAdvert:
2783             DPRINTF("NWayAdvert write(w) val=0x%04x\n", val);
2784             s->NWayAdvert = val;
2785             break;
2786         case NWayLPAR:
2787             DPRINTF("forbidden NWayLPAR write(w) val=0x%04x\n", val);
2788             break;
2789         case NWayExpansion:
2790             DPRINTF("NWayExpansion write(w) val=0x%04x\n", val);
2791             s->NWayExpansion = val;
2792             break;
2793 
2794         case CpCmd:
2795             rtl8139_CpCmd_write(s, val);
2796             break;
2797 
2798         case IntrMitigate:
2799             rtl8139_IntrMitigate_write(s, val);
2800             break;
2801 
2802         default:
2803             DPRINTF("ioport write(w) addr=0x%x val=0x%04x via write(b)\n",
2804                 addr, val);
2805 
2806             rtl8139_io_writeb(opaque, addr, val & 0xff);
2807             rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2808             break;
2809     }
2810 }
2811 
2812 static void rtl8139_set_next_tctr_time(RTL8139State *s)
2813 {
2814     const uint64_t ns_per_period = (uint64_t)PCI_PERIOD << 32;
2815 
2816     DPRINTF("entered rtl8139_set_next_tctr_time\n");
2817 
2818     /* This function is called at least once per period, so it is a good
2819      * place to update the timer base.
2820      *
2821      * After one iteration of this loop the value in the Timer register does
2822      * not change, but the device model is counting up by 2^32 ticks (approx.
2823      * 130 seconds).
2824      */
2825     while (s->TCTR_base + ns_per_period <= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) {
2826         s->TCTR_base += ns_per_period;
2827     }
2828 
2829     if (!s->TimerInt) {
2830         timer_del(s->timer);
2831     } else {
2832         uint64_t delta = (uint64_t)s->TimerInt * PCI_PERIOD;
2833         if (s->TCTR_base + delta <= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) {
2834             delta += ns_per_period;
2835         }
2836         timer_mod(s->timer, s->TCTR_base + delta);
2837     }
2838 }
2839 
2840 static void rtl8139_io_writel(void *opaque, uint8_t addr, uint32_t val)
2841 {
2842     RTL8139State *s = opaque;
2843 
2844     switch (addr)
2845     {
2846         case RxMissed:
2847             DPRINTF("RxMissed clearing on write\n");
2848             s->RxMissed = 0;
2849             break;
2850 
2851         case TxConfig:
2852             rtl8139_TxConfig_write(s, val);
2853             break;
2854 
2855         case RxConfig:
2856             rtl8139_RxConfig_write(s, val);
2857             break;
2858 
2859         case TxStatus0 ... TxStatus0+4*4-1:
2860             rtl8139_TxStatus_write(s, addr-TxStatus0, val);
2861             break;
2862 
2863         case TxAddr0 ... TxAddr0+4*4-1:
2864             rtl8139_TxAddr_write(s, addr-TxAddr0, val);
2865             break;
2866 
2867         case RxBuf:
2868             rtl8139_RxBuf_write(s, val);
2869             break;
2870 
2871         case RxRingAddrLO:
2872             DPRINTF("C+ RxRing low bits write val=0x%08x\n", val);
2873             s->RxRingAddrLO = val;
2874             break;
2875 
2876         case RxRingAddrHI:
2877             DPRINTF("C+ RxRing high bits write val=0x%08x\n", val);
2878             s->RxRingAddrHI = val;
2879             break;
2880 
2881         case Timer:
2882             DPRINTF("TCTR Timer reset on write\n");
2883             s->TCTR_base = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
2884             rtl8139_set_next_tctr_time(s);
2885             break;
2886 
2887         case FlashReg:
2888             DPRINTF("FlashReg TimerInt write val=0x%08x\n", val);
2889             if (s->TimerInt != val) {
2890                 s->TimerInt = val;
2891                 rtl8139_set_next_tctr_time(s);
2892             }
2893             break;
2894 
2895         default:
2896             DPRINTF("ioport write(l) addr=0x%x val=0x%08x via write(b)\n",
2897                 addr, val);
2898             rtl8139_io_writeb(opaque, addr, val & 0xff);
2899             rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2900             rtl8139_io_writeb(opaque, addr + 2, (val >> 16) & 0xff);
2901             rtl8139_io_writeb(opaque, addr + 3, (val >> 24) & 0xff);
2902             break;
2903     }
2904 }
2905 
2906 static uint32_t rtl8139_io_readb(void *opaque, uint8_t addr)
2907 {
2908     RTL8139State *s = opaque;
2909     int ret;
2910 
2911     switch (addr)
2912     {
2913         case MAC0 ... MAC0+5:
2914             ret = s->phys[addr - MAC0];
2915             break;
2916         case MAC0+6 ... MAC0+7:
2917             ret = 0;
2918             break;
2919         case MAR0 ... MAR0+7:
2920             ret = s->mult[addr - MAR0];
2921             break;
2922         case TxStatus0 ... TxStatus0+4*4-1:
2923             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
2924                                                addr, 1);
2925             break;
2926         case ChipCmd:
2927             ret = rtl8139_ChipCmd_read(s);
2928             break;
2929         case Cfg9346:
2930             ret = rtl8139_Cfg9346_read(s);
2931             break;
2932         case Config0:
2933             ret = rtl8139_Config0_read(s);
2934             break;
2935         case Config1:
2936             ret = rtl8139_Config1_read(s);
2937             break;
2938         case Config3:
2939             ret = rtl8139_Config3_read(s);
2940             break;
2941         case Config4:
2942             ret = rtl8139_Config4_read(s);
2943             break;
2944         case Config5:
2945             ret = rtl8139_Config5_read(s);
2946             break;
2947 
2948         case MediaStatus:
2949             /* The LinkDown bit of MediaStatus is inverse with link status */
2950             ret = 0xd0 | (~s->BasicModeStatus & 0x04);
2951             DPRINTF("MediaStatus read 0x%x\n", ret);
2952             break;
2953 
2954         case HltClk:
2955             ret = s->clock_enabled;
2956             DPRINTF("HltClk read 0x%x\n", ret);
2957             break;
2958 
2959         case PCIRevisionID:
2960             ret = RTL8139_PCI_REVID;
2961             DPRINTF("PCI Revision ID read 0x%x\n", ret);
2962             break;
2963 
2964         case TxThresh:
2965             ret = s->TxThresh;
2966             DPRINTF("C+ TxThresh read(b) val=0x%02x\n", ret);
2967             break;
2968 
2969         case 0x43: /* Part of TxConfig register. Windows driver tries to read it */
2970             ret = s->TxConfig >> 24;
2971             DPRINTF("RTL8139C TxConfig at 0x43 read(b) val=0x%02x\n", ret);
2972             break;
2973 
2974         default:
2975             DPRINTF("not implemented read(b) addr=0x%x\n", addr);
2976             ret = 0;
2977             break;
2978     }
2979 
2980     return ret;
2981 }
2982 
2983 static uint32_t rtl8139_io_readw(void *opaque, uint8_t addr)
2984 {
2985     RTL8139State *s = opaque;
2986     uint32_t ret;
2987 
2988     switch (addr)
2989     {
2990         case TxAddr0 ... TxAddr0+4*4-1:
2991             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxAddr, TxAddr0, addr, 2);
2992             break;
2993         case IntrMask:
2994             ret = rtl8139_IntrMask_read(s);
2995             break;
2996 
2997         case IntrStatus:
2998             ret = rtl8139_IntrStatus_read(s);
2999             break;
3000 
3001         case MultiIntr:
3002             ret = rtl8139_MultiIntr_read(s);
3003             break;
3004 
3005         case RxBufPtr:
3006             ret = rtl8139_RxBufPtr_read(s);
3007             break;
3008 
3009         case RxBufAddr:
3010             ret = rtl8139_RxBufAddr_read(s);
3011             break;
3012 
3013         case BasicModeCtrl:
3014             ret = rtl8139_BasicModeCtrl_read(s);
3015             break;
3016         case BasicModeStatus:
3017             ret = rtl8139_BasicModeStatus_read(s);
3018             break;
3019         case NWayAdvert:
3020             ret = s->NWayAdvert;
3021             DPRINTF("NWayAdvert read(w) val=0x%04x\n", ret);
3022             break;
3023         case NWayLPAR:
3024             ret = s->NWayLPAR;
3025             DPRINTF("NWayLPAR read(w) val=0x%04x\n", ret);
3026             break;
3027         case NWayExpansion:
3028             ret = s->NWayExpansion;
3029             DPRINTF("NWayExpansion read(w) val=0x%04x\n", ret);
3030             break;
3031 
3032         case CpCmd:
3033             ret = rtl8139_CpCmd_read(s);
3034             break;
3035 
3036         case IntrMitigate:
3037             ret = rtl8139_IntrMitigate_read(s);
3038             break;
3039 
3040         case TxSummary:
3041             ret = rtl8139_TSAD_read(s);
3042             break;
3043 
3044         case CSCR:
3045             ret = rtl8139_CSCR_read(s);
3046             break;
3047 
3048         default:
3049             DPRINTF("ioport read(w) addr=0x%x via read(b)\n", addr);
3050 
3051             ret  = rtl8139_io_readb(opaque, addr);
3052             ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3053 
3054             DPRINTF("ioport read(w) addr=0x%x val=0x%04x\n", addr, ret);
3055             break;
3056     }
3057 
3058     return ret;
3059 }
3060 
3061 static uint32_t rtl8139_io_readl(void *opaque, uint8_t addr)
3062 {
3063     RTL8139State *s = opaque;
3064     uint32_t ret;
3065 
3066     switch (addr)
3067     {
3068         case RxMissed:
3069             ret = s->RxMissed;
3070 
3071             DPRINTF("RxMissed read val=0x%08x\n", ret);
3072             break;
3073 
3074         case TxConfig:
3075             ret = rtl8139_TxConfig_read(s);
3076             break;
3077 
3078         case RxConfig:
3079             ret = rtl8139_RxConfig_read(s);
3080             break;
3081 
3082         case TxStatus0 ... TxStatus0+4*4-1:
3083             ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
3084                                                addr, 4);
3085             break;
3086 
3087         case TxAddr0 ... TxAddr0+4*4-1:
3088             ret = rtl8139_TxAddr_read(s, addr-TxAddr0);
3089             break;
3090 
3091         case RxBuf:
3092             ret = rtl8139_RxBuf_read(s);
3093             break;
3094 
3095         case RxRingAddrLO:
3096             ret = s->RxRingAddrLO;
3097             DPRINTF("C+ RxRing low bits read val=0x%08x\n", ret);
3098             break;
3099 
3100         case RxRingAddrHI:
3101             ret = s->RxRingAddrHI;
3102             DPRINTF("C+ RxRing high bits read val=0x%08x\n", ret);
3103             break;
3104 
3105         case Timer:
3106             ret = (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - s->TCTR_base) /
3107                   PCI_PERIOD;
3108             DPRINTF("TCTR Timer read val=0x%08x\n", ret);
3109             break;
3110 
3111         case FlashReg:
3112             ret = s->TimerInt;
3113             DPRINTF("FlashReg TimerInt read val=0x%08x\n", ret);
3114             break;
3115 
3116         default:
3117             DPRINTF("ioport read(l) addr=0x%x via read(b)\n", addr);
3118 
3119             ret  = rtl8139_io_readb(opaque, addr);
3120             ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3121             ret |= rtl8139_io_readb(opaque, addr + 2) << 16;
3122             ret |= rtl8139_io_readb(opaque, addr + 3) << 24;
3123 
3124             DPRINTF("read(l) addr=0x%x val=%08x\n", addr, ret);
3125             break;
3126     }
3127 
3128     return ret;
3129 }
3130 
3131 /* */
3132 
3133 static int rtl8139_post_load(void *opaque, int version_id)
3134 {
3135     RTL8139State* s = opaque;
3136     rtl8139_set_next_tctr_time(s);
3137     if (version_id < 4) {
3138         s->cplus_enabled = s->CpCmd != 0;
3139     }
3140 
3141     /* nc.link_down can't be migrated, so infer link_down according
3142      * to link status bit in BasicModeStatus */
3143     qemu_get_queue(s->nic)->link_down = (s->BasicModeStatus & 0x04) == 0;
3144 
3145     return 0;
3146 }
3147 
3148 static bool rtl8139_hotplug_ready_needed(void *opaque)
3149 {
3150     return qdev_machine_modified();
3151 }
3152 
3153 static const VMStateDescription vmstate_rtl8139_hotplug_ready ={
3154     .name = "rtl8139/hotplug_ready",
3155     .version_id = 1,
3156     .minimum_version_id = 1,
3157     .needed = rtl8139_hotplug_ready_needed,
3158     .fields = (VMStateField[]) {
3159         VMSTATE_END_OF_LIST()
3160     }
3161 };
3162 
3163 static int rtl8139_pre_save(void *opaque)
3164 {
3165     RTL8139State* s = opaque;
3166     int64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
3167 
3168     /* for migration to older versions */
3169     s->TCTR = (current_time - s->TCTR_base) / PCI_PERIOD;
3170     s->rtl8139_mmio_io_addr_dummy = 0;
3171 
3172     return 0;
3173 }
3174 
3175 static const VMStateDescription vmstate_rtl8139 = {
3176     .name = "rtl8139",
3177     .version_id = 5,
3178     .minimum_version_id = 3,
3179     .post_load = rtl8139_post_load,
3180     .pre_save  = rtl8139_pre_save,
3181     .fields = (VMStateField[]) {
3182         VMSTATE_PCI_DEVICE(parent_obj, RTL8139State),
3183         VMSTATE_PARTIAL_BUFFER(phys, RTL8139State, 6),
3184         VMSTATE_BUFFER(mult, RTL8139State),
3185         VMSTATE_UINT32_ARRAY(TxStatus, RTL8139State, 4),
3186         VMSTATE_UINT32_ARRAY(TxAddr, RTL8139State, 4),
3187 
3188         VMSTATE_UINT32(RxBuf, RTL8139State),
3189         VMSTATE_UINT32(RxBufferSize, RTL8139State),
3190         VMSTATE_UINT32(RxBufPtr, RTL8139State),
3191         VMSTATE_UINT32(RxBufAddr, RTL8139State),
3192 
3193         VMSTATE_UINT16(IntrStatus, RTL8139State),
3194         VMSTATE_UINT16(IntrMask, RTL8139State),
3195 
3196         VMSTATE_UINT32(TxConfig, RTL8139State),
3197         VMSTATE_UINT32(RxConfig, RTL8139State),
3198         VMSTATE_UINT32(RxMissed, RTL8139State),
3199         VMSTATE_UINT16(CSCR, RTL8139State),
3200 
3201         VMSTATE_UINT8(Cfg9346, RTL8139State),
3202         VMSTATE_UINT8(Config0, RTL8139State),
3203         VMSTATE_UINT8(Config1, RTL8139State),
3204         VMSTATE_UINT8(Config3, RTL8139State),
3205         VMSTATE_UINT8(Config4, RTL8139State),
3206         VMSTATE_UINT8(Config5, RTL8139State),
3207 
3208         VMSTATE_UINT8(clock_enabled, RTL8139State),
3209         VMSTATE_UINT8(bChipCmdState, RTL8139State),
3210 
3211         VMSTATE_UINT16(MultiIntr, RTL8139State),
3212 
3213         VMSTATE_UINT16(BasicModeCtrl, RTL8139State),
3214         VMSTATE_UINT16(BasicModeStatus, RTL8139State),
3215         VMSTATE_UINT16(NWayAdvert, RTL8139State),
3216         VMSTATE_UINT16(NWayLPAR, RTL8139State),
3217         VMSTATE_UINT16(NWayExpansion, RTL8139State),
3218 
3219         VMSTATE_UINT16(CpCmd, RTL8139State),
3220         VMSTATE_UINT8(TxThresh, RTL8139State),
3221 
3222         VMSTATE_UNUSED(4),
3223         VMSTATE_MACADDR(conf.macaddr, RTL8139State),
3224         VMSTATE_INT32(rtl8139_mmio_io_addr_dummy, RTL8139State),
3225 
3226         VMSTATE_UINT32(currTxDesc, RTL8139State),
3227         VMSTATE_UINT32(currCPlusRxDesc, RTL8139State),
3228         VMSTATE_UINT32(currCPlusTxDesc, RTL8139State),
3229         VMSTATE_UINT32(RxRingAddrLO, RTL8139State),
3230         VMSTATE_UINT32(RxRingAddrHI, RTL8139State),
3231 
3232         VMSTATE_UINT16_ARRAY(eeprom.contents, RTL8139State, EEPROM_9346_SIZE),
3233         VMSTATE_INT32(eeprom.mode, RTL8139State),
3234         VMSTATE_UINT32(eeprom.tick, RTL8139State),
3235         VMSTATE_UINT8(eeprom.address, RTL8139State),
3236         VMSTATE_UINT16(eeprom.input, RTL8139State),
3237         VMSTATE_UINT16(eeprom.output, RTL8139State),
3238 
3239         VMSTATE_UINT8(eeprom.eecs, RTL8139State),
3240         VMSTATE_UINT8(eeprom.eesk, RTL8139State),
3241         VMSTATE_UINT8(eeprom.eedi, RTL8139State),
3242         VMSTATE_UINT8(eeprom.eedo, RTL8139State),
3243 
3244         VMSTATE_UINT32(TCTR, RTL8139State),
3245         VMSTATE_UINT32(TimerInt, RTL8139State),
3246         VMSTATE_INT64(TCTR_base, RTL8139State),
3247 
3248         VMSTATE_UINT64(tally_counters.TxOk, RTL8139State),
3249         VMSTATE_UINT64(tally_counters.RxOk, RTL8139State),
3250         VMSTATE_UINT64(tally_counters.TxERR, RTL8139State),
3251         VMSTATE_UINT32(tally_counters.RxERR, RTL8139State),
3252         VMSTATE_UINT16(tally_counters.MissPkt, RTL8139State),
3253         VMSTATE_UINT16(tally_counters.FAE, RTL8139State),
3254         VMSTATE_UINT32(tally_counters.Tx1Col, RTL8139State),
3255         VMSTATE_UINT32(tally_counters.TxMCol, RTL8139State),
3256         VMSTATE_UINT64(tally_counters.RxOkPhy, RTL8139State),
3257         VMSTATE_UINT64(tally_counters.RxOkBrd, RTL8139State),
3258         VMSTATE_UINT32_V(tally_counters.RxOkMul, RTL8139State, 5),
3259         VMSTATE_UINT16(tally_counters.TxAbt, RTL8139State),
3260         VMSTATE_UINT16(tally_counters.TxUndrn, RTL8139State),
3261 
3262         VMSTATE_UINT32_V(cplus_enabled, RTL8139State, 4),
3263         VMSTATE_END_OF_LIST()
3264     },
3265     .subsections = (const VMStateDescription*[]) {
3266         &vmstate_rtl8139_hotplug_ready,
3267         NULL
3268     }
3269 };
3270 
3271 /***********************************************************/
3272 /* PCI RTL8139 definitions */
3273 
3274 static void rtl8139_ioport_write(void *opaque, hwaddr addr,
3275                                  uint64_t val, unsigned size)
3276 {
3277     switch (size) {
3278     case 1:
3279         rtl8139_io_writeb(opaque, addr, val);
3280         break;
3281     case 2:
3282         rtl8139_io_writew(opaque, addr, val);
3283         break;
3284     case 4:
3285         rtl8139_io_writel(opaque, addr, val);
3286         break;
3287     }
3288 }
3289 
3290 static uint64_t rtl8139_ioport_read(void *opaque, hwaddr addr,
3291                                     unsigned size)
3292 {
3293     switch (size) {
3294     case 1:
3295         return rtl8139_io_readb(opaque, addr);
3296     case 2:
3297         return rtl8139_io_readw(opaque, addr);
3298     case 4:
3299         return rtl8139_io_readl(opaque, addr);
3300     }
3301 
3302     return -1;
3303 }
3304 
3305 static const MemoryRegionOps rtl8139_io_ops = {
3306     .read = rtl8139_ioport_read,
3307     .write = rtl8139_ioport_write,
3308     .impl = {
3309         .min_access_size = 1,
3310         .max_access_size = 4,
3311     },
3312     .endianness = DEVICE_LITTLE_ENDIAN,
3313 };
3314 
3315 static void rtl8139_timer(void *opaque)
3316 {
3317     RTL8139State *s = opaque;
3318 
3319     if (!s->clock_enabled)
3320     {
3321         DPRINTF(">>> timer: clock is not running\n");
3322         return;
3323     }
3324 
3325     s->IntrStatus |= PCSTimeout;
3326     rtl8139_update_irq(s);
3327     rtl8139_set_next_tctr_time(s);
3328 }
3329 
3330 static void pci_rtl8139_uninit(PCIDevice *dev)
3331 {
3332     RTL8139State *s = RTL8139(dev);
3333 
3334     g_free(s->cplus_txbuffer);
3335     s->cplus_txbuffer = NULL;
3336     timer_del(s->timer);
3337     timer_free(s->timer);
3338     qemu_del_nic(s->nic);
3339 }
3340 
3341 static void rtl8139_set_link_status(NetClientState *nc)
3342 {
3343     RTL8139State *s = qemu_get_nic_opaque(nc);
3344 
3345     if (nc->link_down) {
3346         s->BasicModeStatus &= ~0x04;
3347     } else {
3348         s->BasicModeStatus |= 0x04;
3349     }
3350 
3351     s->IntrStatus |= RxUnderrun;
3352     rtl8139_update_irq(s);
3353 }
3354 
3355 static NetClientInfo net_rtl8139_info = {
3356     .type = NET_CLIENT_DRIVER_NIC,
3357     .size = sizeof(NICState),
3358     .can_receive = rtl8139_can_receive,
3359     .receive = rtl8139_receive,
3360     .link_status_changed = rtl8139_set_link_status,
3361 };
3362 
3363 static void pci_rtl8139_realize(PCIDevice *dev, Error **errp)
3364 {
3365     RTL8139State *s = RTL8139(dev);
3366     DeviceState *d = DEVICE(dev);
3367     uint8_t *pci_conf;
3368 
3369     pci_conf = dev->config;
3370     pci_conf[PCI_INTERRUPT_PIN] = 1;    /* interrupt pin A */
3371     /* TODO: start of capability list, but no capability
3372      * list bit in status register, and offset 0xdc seems unused. */
3373     pci_conf[PCI_CAPABILITY_LIST] = 0xdc;
3374 
3375     memory_region_init_io(&s->bar_io, OBJECT(s), &rtl8139_io_ops, s,
3376                           "rtl8139", 0x100);
3377     memory_region_init_alias(&s->bar_mem, OBJECT(s), "rtl8139-mem", &s->bar_io,
3378                              0, 0x100);
3379 
3380     pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->bar_io);
3381     pci_register_bar(dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar_mem);
3382 
3383     qemu_macaddr_default_if_unset(&s->conf.macaddr);
3384 
3385     /* prepare eeprom */
3386     s->eeprom.contents[0] = 0x8129;
3387 #if 1
3388     /* PCI vendor and device ID should be mirrored here */
3389     s->eeprom.contents[1] = PCI_VENDOR_ID_REALTEK;
3390     s->eeprom.contents[2] = PCI_DEVICE_ID_REALTEK_8139;
3391 #endif
3392     s->eeprom.contents[7] = s->conf.macaddr.a[0] | s->conf.macaddr.a[1] << 8;
3393     s->eeprom.contents[8] = s->conf.macaddr.a[2] | s->conf.macaddr.a[3] << 8;
3394     s->eeprom.contents[9] = s->conf.macaddr.a[4] | s->conf.macaddr.a[5] << 8;
3395 
3396     s->nic = qemu_new_nic(&net_rtl8139_info, &s->conf,
3397                           object_get_typename(OBJECT(dev)), d->id, s);
3398     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
3399 
3400     s->cplus_txbuffer = NULL;
3401     s->cplus_txbuffer_len = 0;
3402     s->cplus_txbuffer_offset = 0;
3403 
3404     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, rtl8139_timer, s);
3405 }
3406 
3407 static void rtl8139_instance_init(Object *obj)
3408 {
3409     RTL8139State *s = RTL8139(obj);
3410 
3411     device_add_bootindex_property(obj, &s->conf.bootindex,
3412                                   "bootindex", "/ethernet-phy@0",
3413                                   DEVICE(obj), NULL);
3414 }
3415 
3416 static Property rtl8139_properties[] = {
3417     DEFINE_NIC_PROPERTIES(RTL8139State, conf),
3418     DEFINE_PROP_END_OF_LIST(),
3419 };
3420 
3421 static void rtl8139_class_init(ObjectClass *klass, void *data)
3422 {
3423     DeviceClass *dc = DEVICE_CLASS(klass);
3424     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
3425 
3426     k->realize = pci_rtl8139_realize;
3427     k->exit = pci_rtl8139_uninit;
3428     k->romfile = "efi-rtl8139.rom";
3429     k->vendor_id = PCI_VENDOR_ID_REALTEK;
3430     k->device_id = PCI_DEVICE_ID_REALTEK_8139;
3431     k->revision = RTL8139_PCI_REVID; /* >=0x20 is for 8139C+ */
3432     k->class_id = PCI_CLASS_NETWORK_ETHERNET;
3433     dc->reset = rtl8139_reset;
3434     dc->vmsd = &vmstate_rtl8139;
3435     dc->props = rtl8139_properties;
3436     set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
3437 }
3438 
3439 static const TypeInfo rtl8139_info = {
3440     .name          = TYPE_RTL8139,
3441     .parent        = TYPE_PCI_DEVICE,
3442     .instance_size = sizeof(RTL8139State),
3443     .class_init    = rtl8139_class_init,
3444     .instance_init = rtl8139_instance_init,
3445     .interfaces = (InterfaceInfo[]) {
3446         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
3447         { },
3448     },
3449 };
3450 
3451 static void rtl8139_register_types(void)
3452 {
3453     type_register_static(&rtl8139_info);
3454 }
3455 
3456 type_init(rtl8139_register_types)
3457