xref: /openbmc/qemu/hw/net/imx_fec.c (revision 8e0ef068942e4152f0d23e76ca1f5e35dc4456f7)
1 /*
2  * i.MX Fast Ethernet Controller emulation.
3  *
4  * Copyright (c) 2013 Jean-Christophe Dubois. <jcd@tribudubois.net>
5  *
6  * Based on Coldfire Fast Ethernet Controller emulation.
7  *
8  * Copyright (c) 2007 CodeSourcery.
9  *
10  *  This program is free software; you can redistribute it and/or modify it
11  *  under the terms of the GNU General Public License as published by the
12  *  Free Software Foundation; either version 2 of the License, or
13  *  (at your option) any later version.
14  *
15  *  This program is distributed in the hope that it will be useful, but WITHOUT
16  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  *  FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18  *  for more details.
19  *
20  *  You should have received a copy of the GNU General Public License along
21  *  with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "hw/irq.h"
26 #include "hw/net/imx_fec.h"
27 #include "hw/qdev-properties.h"
28 #include "migration/vmstate.h"
29 #include "sysemu/dma.h"
30 #include "qemu/log.h"
31 #include "qemu/module.h"
32 #include "net/checksum.h"
33 #include "net/eth.h"
34 #include "trace.h"
35 
36 /* For crc32 */
37 #include <zlib.h>
38 
39 #define IMX_MAX_DESC    1024
40 
41 static const char *imx_default_reg_name(IMXFECState *s, uint32_t index)
42 {
43     static char tmp[20];
44     sprintf(tmp, "index %d", index);
45     return tmp;
46 }
47 
48 static const char *imx_fec_reg_name(IMXFECState *s, uint32_t index)
49 {
50     switch (index) {
51     case ENET_FRBR:
52         return "FRBR";
53     case ENET_FRSR:
54         return "FRSR";
55     case ENET_MIIGSK_CFGR:
56         return "MIIGSK_CFGR";
57     case ENET_MIIGSK_ENR:
58         return "MIIGSK_ENR";
59     default:
60         return imx_default_reg_name(s, index);
61     }
62 }
63 
64 static const char *imx_enet_reg_name(IMXFECState *s, uint32_t index)
65 {
66     switch (index) {
67     case ENET_RSFL:
68         return "RSFL";
69     case ENET_RSEM:
70         return "RSEM";
71     case ENET_RAEM:
72         return "RAEM";
73     case ENET_RAFL:
74         return "RAFL";
75     case ENET_TSEM:
76         return "TSEM";
77     case ENET_TAEM:
78         return "TAEM";
79     case ENET_TAFL:
80         return "TAFL";
81     case ENET_TIPG:
82         return "TIPG";
83     case ENET_FTRL:
84         return "FTRL";
85     case ENET_TACC:
86         return "TACC";
87     case ENET_RACC:
88         return "RACC";
89     case ENET_ATCR:
90         return "ATCR";
91     case ENET_ATVR:
92         return "ATVR";
93     case ENET_ATOFF:
94         return "ATOFF";
95     case ENET_ATPER:
96         return "ATPER";
97     case ENET_ATCOR:
98         return "ATCOR";
99     case ENET_ATINC:
100         return "ATINC";
101     case ENET_ATSTMP:
102         return "ATSTMP";
103     case ENET_TGSR:
104         return "TGSR";
105     case ENET_TCSR0:
106         return "TCSR0";
107     case ENET_TCCR0:
108         return "TCCR0";
109     case ENET_TCSR1:
110         return "TCSR1";
111     case ENET_TCCR1:
112         return "TCCR1";
113     case ENET_TCSR2:
114         return "TCSR2";
115     case ENET_TCCR2:
116         return "TCCR2";
117     case ENET_TCSR3:
118         return "TCSR3";
119     case ENET_TCCR3:
120         return "TCCR3";
121     default:
122         return imx_default_reg_name(s, index);
123     }
124 }
125 
126 static const char *imx_eth_reg_name(IMXFECState *s, uint32_t index)
127 {
128     switch (index) {
129     case ENET_EIR:
130         return "EIR";
131     case ENET_EIMR:
132         return "EIMR";
133     case ENET_RDAR:
134         return "RDAR";
135     case ENET_TDAR:
136         return "TDAR";
137     case ENET_ECR:
138         return "ECR";
139     case ENET_MMFR:
140         return "MMFR";
141     case ENET_MSCR:
142         return "MSCR";
143     case ENET_MIBC:
144         return "MIBC";
145     case ENET_RCR:
146         return "RCR";
147     case ENET_TCR:
148         return "TCR";
149     case ENET_PALR:
150         return "PALR";
151     case ENET_PAUR:
152         return "PAUR";
153     case ENET_OPD:
154         return "OPD";
155     case ENET_IAUR:
156         return "IAUR";
157     case ENET_IALR:
158         return "IALR";
159     case ENET_GAUR:
160         return "GAUR";
161     case ENET_GALR:
162         return "GALR";
163     case ENET_TFWR:
164         return "TFWR";
165     case ENET_RDSR:
166         return "RDSR";
167     case ENET_TDSR:
168         return "TDSR";
169     case ENET_MRBR:
170         return "MRBR";
171     default:
172         if (s->is_fec) {
173             return imx_fec_reg_name(s, index);
174         } else {
175             return imx_enet_reg_name(s, index);
176         }
177     }
178 }
179 
180 /*
181  * Versions of this device with more than one TX descriptor save the
182  * 2nd and 3rd descriptors in a subsection, to maintain migration
183  * compatibility with previous versions of the device that only
184  * supported a single descriptor.
185  */
186 static bool imx_eth_is_multi_tx_ring(void *opaque)
187 {
188     IMXFECState *s = IMX_FEC(opaque);
189 
190     return s->tx_ring_num > 1;
191 }
192 
193 static const VMStateDescription vmstate_imx_eth_txdescs = {
194     .name = "imx.fec/txdescs",
195     .version_id = 1,
196     .minimum_version_id = 1,
197     .needed = imx_eth_is_multi_tx_ring,
198     .fields = (VMStateField[]) {
199          VMSTATE_UINT32(tx_descriptor[1], IMXFECState),
200          VMSTATE_UINT32(tx_descriptor[2], IMXFECState),
201          VMSTATE_END_OF_LIST()
202     }
203 };
204 
205 static const VMStateDescription vmstate_imx_eth = {
206     .name = TYPE_IMX_FEC,
207     .version_id = 2,
208     .minimum_version_id = 2,
209     .fields = (VMStateField[]) {
210         VMSTATE_UINT32_ARRAY(regs, IMXFECState, ENET_MAX),
211         VMSTATE_UINT32(rx_descriptor, IMXFECState),
212         VMSTATE_UINT32(tx_descriptor[0], IMXFECState),
213         VMSTATE_UINT32(phy_status, IMXFECState),
214         VMSTATE_UINT32(phy_control, IMXFECState),
215         VMSTATE_UINT32(phy_advertise, IMXFECState),
216         VMSTATE_UINT32(phy_int, IMXFECState),
217         VMSTATE_UINT32(phy_int_mask, IMXFECState),
218         VMSTATE_END_OF_LIST()
219     },
220     .subsections = (const VMStateDescription * []) {
221         &vmstate_imx_eth_txdescs,
222         NULL
223     },
224 };
225 
226 #define PHY_INT_ENERGYON            (1 << 7)
227 #define PHY_INT_AUTONEG_COMPLETE    (1 << 6)
228 #define PHY_INT_FAULT               (1 << 5)
229 #define PHY_INT_DOWN                (1 << 4)
230 #define PHY_INT_AUTONEG_LP          (1 << 3)
231 #define PHY_INT_PARFAULT            (1 << 2)
232 #define PHY_INT_AUTONEG_PAGE        (1 << 1)
233 
234 static void imx_eth_update(IMXFECState *s);
235 
236 /*
237  * The MII phy could raise a GPIO to the processor which in turn
238  * could be handled as an interrpt by the OS.
239  * For now we don't handle any GPIO/interrupt line, so the OS will
240  * have to poll for the PHY status.
241  */
242 static void imx_phy_update_irq(IMXFECState *s)
243 {
244     imx_eth_update(s);
245 }
246 
247 static void imx_phy_update_link(IMXFECState *s)
248 {
249     /* Autonegotiation status mirrors link status.  */
250     if (qemu_get_queue(s->nic)->link_down) {
251         trace_imx_phy_update_link("down");
252         s->phy_status &= ~0x0024;
253         s->phy_int |= PHY_INT_DOWN;
254     } else {
255         trace_imx_phy_update_link("up");
256         s->phy_status |= 0x0024;
257         s->phy_int |= PHY_INT_ENERGYON;
258         s->phy_int |= PHY_INT_AUTONEG_COMPLETE;
259     }
260     imx_phy_update_irq(s);
261 }
262 
263 static void imx_eth_set_link(NetClientState *nc)
264 {
265     imx_phy_update_link(IMX_FEC(qemu_get_nic_opaque(nc)));
266 }
267 
268 static void imx_phy_reset(IMXFECState *s)
269 {
270     trace_imx_phy_reset();
271 
272     s->phy_status = 0x7809;
273     s->phy_control = 0x3000;
274     s->phy_advertise = 0x01e1;
275     s->phy_int_mask = 0;
276     s->phy_int = 0;
277     imx_phy_update_link(s);
278 }
279 
280 static uint32_t imx_phy_read(IMXFECState *s, int reg)
281 {
282     uint32_t val;
283     uint32_t phy = reg / 32;
284 
285     if (phy != s->phy_num) {
286         qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad phy num %u\n",
287                       TYPE_IMX_FEC, __func__, phy);
288         return 0;
289     }
290 
291     reg %= 32;
292 
293     switch (reg) {
294     case 0:     /* Basic Control */
295         val = s->phy_control;
296         break;
297     case 1:     /* Basic Status */
298         val = s->phy_status;
299         break;
300     case 2:     /* ID1 */
301         val = 0x0007;
302         break;
303     case 3:     /* ID2 */
304         val = 0xc0d1;
305         break;
306     case 4:     /* Auto-neg advertisement */
307         val = s->phy_advertise;
308         break;
309     case 5:     /* Auto-neg Link Partner Ability */
310         val = 0x0f71;
311         break;
312     case 6:     /* Auto-neg Expansion */
313         val = 1;
314         break;
315     case 29:    /* Interrupt source.  */
316         val = s->phy_int;
317         s->phy_int = 0;
318         imx_phy_update_irq(s);
319         break;
320     case 30:    /* Interrupt mask */
321         val = s->phy_int_mask;
322         break;
323     case 17:
324     case 18:
325     case 27:
326     case 31:
327         qemu_log_mask(LOG_UNIMP, "[%s.phy]%s: reg %d not implemented\n",
328                       TYPE_IMX_FEC, __func__, reg);
329         val = 0;
330         break;
331     default:
332         qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n",
333                       TYPE_IMX_FEC, __func__, reg);
334         val = 0;
335         break;
336     }
337 
338     trace_imx_phy_read(val, phy, reg);
339 
340     return val;
341 }
342 
343 static void imx_phy_write(IMXFECState *s, int reg, uint32_t val)
344 {
345     uint32_t phy = reg / 32;
346 
347     if (phy != s->phy_num) {
348         qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad phy num %u\n",
349                       TYPE_IMX_FEC, __func__, phy);
350         return;
351     }
352 
353     reg %= 32;
354 
355     trace_imx_phy_write(val, phy, reg);
356 
357     switch (reg) {
358     case 0:     /* Basic Control */
359         if (val & 0x8000) {
360             imx_phy_reset(s);
361         } else {
362             s->phy_control = val & 0x7980;
363             /* Complete autonegotiation immediately.  */
364             if (val & 0x1000) {
365                 s->phy_status |= 0x0020;
366             }
367         }
368         break;
369     case 4:     /* Auto-neg advertisement */
370         s->phy_advertise = (val & 0x2d7f) | 0x80;
371         break;
372     case 30:    /* Interrupt mask */
373         s->phy_int_mask = val & 0xff;
374         imx_phy_update_irq(s);
375         break;
376     case 17:
377     case 18:
378     case 27:
379     case 31:
380         qemu_log_mask(LOG_UNIMP, "[%s.phy)%s: reg %d not implemented\n",
381                       TYPE_IMX_FEC, __func__, reg);
382         break;
383     default:
384         qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n",
385                       TYPE_IMX_FEC, __func__, reg);
386         break;
387     }
388 }
389 
390 static void imx_fec_read_bd(IMXFECBufDesc *bd, dma_addr_t addr)
391 {
392     dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd));
393 
394     trace_imx_fec_read_bd(addr, bd->flags, bd->length, bd->data);
395 }
396 
397 static void imx_fec_write_bd(IMXFECBufDesc *bd, dma_addr_t addr)
398 {
399     dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd));
400 }
401 
402 static void imx_enet_read_bd(IMXENETBufDesc *bd, dma_addr_t addr)
403 {
404     dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd));
405 
406     trace_imx_enet_read_bd(addr, bd->flags, bd->length, bd->data,
407                    bd->option, bd->status);
408 }
409 
410 static void imx_enet_write_bd(IMXENETBufDesc *bd, dma_addr_t addr)
411 {
412     dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd));
413 }
414 
415 static void imx_eth_update(IMXFECState *s)
416 {
417     /*
418      * Previous versions of qemu had the ENET_INT_MAC and ENET_INT_TS_TIMER
419      * interrupts swapped. This worked with older versions of Linux (4.14
420      * and older) since Linux associated both interrupt lines with Ethernet
421      * MAC interrupts. Specifically,
422      * - Linux 4.15 and later have separate interrupt handlers for the MAC and
423      *   timer interrupts. Those versions of Linux fail with versions of QEMU
424      *   with swapped interrupt assignments.
425      * - In linux 4.14, both interrupt lines were registered with the Ethernet
426      *   MAC interrupt handler. As a result, all versions of qemu happen to
427      *   work, though that is accidental.
428      * - In Linux 4.9 and older, the timer interrupt was registered directly
429      *   with the Ethernet MAC interrupt handler. The MAC interrupt was
430      *   redirected to a GPIO interrupt to work around erratum ERR006687.
431      *   This was implemented using the SOC's IOMUX block. In qemu, this GPIO
432      *   interrupt never fired since IOMUX is currently not supported in qemu.
433      *   Linux instead received MAC interrupts on the timer interrupt.
434      *   As a result, qemu versions with the swapped interrupt assignment work,
435      *   albeit accidentally, but qemu versions with the correct interrupt
436      *   assignment fail.
437      *
438      * To ensure that all versions of Linux work, generate ENET_INT_MAC
439      * interrrupts on both interrupt lines. This should be changed if and when
440      * qemu supports IOMUX.
441      */
442     if (s->regs[ENET_EIR] & s->regs[ENET_EIMR] &
443         (ENET_INT_MAC | ENET_INT_TS_TIMER)) {
444         qemu_set_irq(s->irq[1], 1);
445     } else {
446         qemu_set_irq(s->irq[1], 0);
447     }
448 
449     if (s->regs[ENET_EIR] & s->regs[ENET_EIMR] & ENET_INT_MAC) {
450         qemu_set_irq(s->irq[0], 1);
451     } else {
452         qemu_set_irq(s->irq[0], 0);
453     }
454 }
455 
456 static void imx_fec_do_tx(IMXFECState *s)
457 {
458     int frame_size = 0, descnt = 0;
459     uint8_t *ptr = s->frame;
460     uint32_t addr = s->tx_descriptor[0];
461 
462     while (descnt++ < IMX_MAX_DESC) {
463         IMXFECBufDesc bd;
464         int len;
465 
466         imx_fec_read_bd(&bd, addr);
467         if ((bd.flags & ENET_BD_R) == 0) {
468 
469             /* Run out of descriptors to transmit.  */
470             trace_imx_eth_tx_bd_busy();
471 
472             break;
473         }
474         len = bd.length;
475         if (frame_size + len > ENET_MAX_FRAME_SIZE) {
476             len = ENET_MAX_FRAME_SIZE - frame_size;
477             s->regs[ENET_EIR] |= ENET_INT_BABT;
478         }
479         dma_memory_read(&address_space_memory, bd.data, ptr, len);
480         ptr += len;
481         frame_size += len;
482         if (bd.flags & ENET_BD_L) {
483             /* Last buffer in frame.  */
484             qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size);
485             ptr = s->frame;
486             frame_size = 0;
487             s->regs[ENET_EIR] |= ENET_INT_TXF;
488         }
489         s->regs[ENET_EIR] |= ENET_INT_TXB;
490         bd.flags &= ~ENET_BD_R;
491         /* Write back the modified descriptor.  */
492         imx_fec_write_bd(&bd, addr);
493         /* Advance to the next descriptor.  */
494         if ((bd.flags & ENET_BD_W) != 0) {
495             addr = s->regs[ENET_TDSR];
496         } else {
497             addr += sizeof(bd);
498         }
499     }
500 
501     s->tx_descriptor[0] = addr;
502 
503     imx_eth_update(s);
504 }
505 
506 static void imx_enet_do_tx(IMXFECState *s, uint32_t index)
507 {
508     int frame_size = 0, descnt = 0;
509 
510     uint8_t *ptr = s->frame;
511     uint32_t addr, int_txb, int_txf, tdsr;
512     size_t ring;
513 
514     switch (index) {
515     case ENET_TDAR:
516         ring    = 0;
517         int_txb = ENET_INT_TXB;
518         int_txf = ENET_INT_TXF;
519         tdsr    = ENET_TDSR;
520         break;
521     case ENET_TDAR1:
522         ring    = 1;
523         int_txb = ENET_INT_TXB1;
524         int_txf = ENET_INT_TXF1;
525         tdsr    = ENET_TDSR1;
526         break;
527     case ENET_TDAR2:
528         ring    = 2;
529         int_txb = ENET_INT_TXB2;
530         int_txf = ENET_INT_TXF2;
531         tdsr    = ENET_TDSR2;
532         break;
533     default:
534         qemu_log_mask(LOG_GUEST_ERROR,
535                       "%s: bogus value for index %x\n",
536                       __func__, index);
537         abort();
538         break;
539     }
540 
541     addr = s->tx_descriptor[ring];
542 
543     while (descnt++ < IMX_MAX_DESC) {
544         IMXENETBufDesc bd;
545         int len;
546 
547         imx_enet_read_bd(&bd, addr);
548         if ((bd.flags & ENET_BD_R) == 0) {
549             /* Run out of descriptors to transmit.  */
550 
551             trace_imx_eth_tx_bd_busy();
552 
553             break;
554         }
555         len = bd.length;
556         if (frame_size + len > ENET_MAX_FRAME_SIZE) {
557             len = ENET_MAX_FRAME_SIZE - frame_size;
558             s->regs[ENET_EIR] |= ENET_INT_BABT;
559         }
560         dma_memory_read(&address_space_memory, bd.data, ptr, len);
561         ptr += len;
562         frame_size += len;
563         if (bd.flags & ENET_BD_L) {
564             if (bd.option & ENET_BD_PINS) {
565                 struct ip_header *ip_hd = PKT_GET_IP_HDR(s->frame);
566                 if (IP_HEADER_VERSION(ip_hd) == 4) {
567                     net_checksum_calculate(s->frame, frame_size);
568                 }
569             }
570             if (bd.option & ENET_BD_IINS) {
571                 struct ip_header *ip_hd = PKT_GET_IP_HDR(s->frame);
572                 /* We compute checksum only for IPv4 frames */
573                 if (IP_HEADER_VERSION(ip_hd) == 4) {
574                     uint16_t csum;
575                     ip_hd->ip_sum = 0;
576                     csum = net_raw_checksum((uint8_t *)ip_hd, sizeof(*ip_hd));
577                     ip_hd->ip_sum = cpu_to_be16(csum);
578                 }
579             }
580             /* Last buffer in frame.  */
581 
582             qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size);
583             ptr = s->frame;
584 
585             frame_size = 0;
586             if (bd.option & ENET_BD_TX_INT) {
587                 s->regs[ENET_EIR] |= int_txf;
588             }
589             /* Indicate that we've updated the last buffer descriptor. */
590             bd.last_buffer = ENET_BD_BDU;
591         }
592         if (bd.option & ENET_BD_TX_INT) {
593             s->regs[ENET_EIR] |= int_txb;
594         }
595         bd.flags &= ~ENET_BD_R;
596         /* Write back the modified descriptor.  */
597         imx_enet_write_bd(&bd, addr);
598         /* Advance to the next descriptor.  */
599         if ((bd.flags & ENET_BD_W) != 0) {
600             addr = s->regs[tdsr];
601         } else {
602             addr += sizeof(bd);
603         }
604     }
605 
606     s->tx_descriptor[ring] = addr;
607 
608     imx_eth_update(s);
609 }
610 
611 static void imx_eth_do_tx(IMXFECState *s, uint32_t index)
612 {
613     if (!s->is_fec && (s->regs[ENET_ECR] & ENET_ECR_EN1588)) {
614         imx_enet_do_tx(s, index);
615     } else {
616         imx_fec_do_tx(s);
617     }
618 }
619 
620 static void imx_eth_enable_rx(IMXFECState *s, bool flush)
621 {
622     IMXFECBufDesc bd;
623 
624     imx_fec_read_bd(&bd, s->rx_descriptor);
625 
626     s->regs[ENET_RDAR] = (bd.flags & ENET_BD_E) ? ENET_RDAR_RDAR : 0;
627 
628     if (!s->regs[ENET_RDAR]) {
629         trace_imx_eth_rx_bd_full();
630     } else if (flush) {
631         qemu_flush_queued_packets(qemu_get_queue(s->nic));
632     }
633 }
634 
635 static void imx_eth_reset(DeviceState *d)
636 {
637     IMXFECState *s = IMX_FEC(d);
638 
639     /* Reset the Device */
640     memset(s->regs, 0, sizeof(s->regs));
641     s->regs[ENET_ECR]   = 0xf0000000;
642     s->regs[ENET_MIBC]  = 0xc0000000;
643     s->regs[ENET_RCR]   = 0x05ee0001;
644     s->regs[ENET_OPD]   = 0x00010000;
645 
646     s->regs[ENET_PALR]  = (s->conf.macaddr.a[0] << 24)
647                           | (s->conf.macaddr.a[1] << 16)
648                           | (s->conf.macaddr.a[2] << 8)
649                           | s->conf.macaddr.a[3];
650     s->regs[ENET_PAUR]  = (s->conf.macaddr.a[4] << 24)
651                           | (s->conf.macaddr.a[5] << 16)
652                           | 0x8808;
653 
654     if (s->is_fec) {
655         s->regs[ENET_FRBR]  = 0x00000600;
656         s->regs[ENET_FRSR]  = 0x00000500;
657         s->regs[ENET_MIIGSK_ENR]  = 0x00000006;
658     } else {
659         s->regs[ENET_RAEM]  = 0x00000004;
660         s->regs[ENET_RAFL]  = 0x00000004;
661         s->regs[ENET_TAEM]  = 0x00000004;
662         s->regs[ENET_TAFL]  = 0x00000008;
663         s->regs[ENET_TIPG]  = 0x0000000c;
664         s->regs[ENET_FTRL]  = 0x000007ff;
665         s->regs[ENET_ATPER] = 0x3b9aca00;
666     }
667 
668     s->rx_descriptor = 0;
669     memset(s->tx_descriptor, 0, sizeof(s->tx_descriptor));
670 
671     /* We also reset the PHY */
672     imx_phy_reset(s);
673 }
674 
675 static uint32_t imx_default_read(IMXFECState *s, uint32_t index)
676 {
677     qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
678                   PRIx32 "\n", TYPE_IMX_FEC, __func__, index * 4);
679     return 0;
680 }
681 
682 static uint32_t imx_fec_read(IMXFECState *s, uint32_t index)
683 {
684     switch (index) {
685     case ENET_FRBR:
686     case ENET_FRSR:
687     case ENET_MIIGSK_CFGR:
688     case ENET_MIIGSK_ENR:
689         return s->regs[index];
690     default:
691         return imx_default_read(s, index);
692     }
693 }
694 
695 static uint32_t imx_enet_read(IMXFECState *s, uint32_t index)
696 {
697     switch (index) {
698     case ENET_RSFL:
699     case ENET_RSEM:
700     case ENET_RAEM:
701     case ENET_RAFL:
702     case ENET_TSEM:
703     case ENET_TAEM:
704     case ENET_TAFL:
705     case ENET_TIPG:
706     case ENET_FTRL:
707     case ENET_TACC:
708     case ENET_RACC:
709     case ENET_ATCR:
710     case ENET_ATVR:
711     case ENET_ATOFF:
712     case ENET_ATPER:
713     case ENET_ATCOR:
714     case ENET_ATINC:
715     case ENET_ATSTMP:
716     case ENET_TGSR:
717     case ENET_TCSR0:
718     case ENET_TCCR0:
719     case ENET_TCSR1:
720     case ENET_TCCR1:
721     case ENET_TCSR2:
722     case ENET_TCCR2:
723     case ENET_TCSR3:
724     case ENET_TCCR3:
725         return s->regs[index];
726     default:
727         return imx_default_read(s, index);
728     }
729 }
730 
731 static uint64_t imx_eth_read(void *opaque, hwaddr offset, unsigned size)
732 {
733     uint32_t value = 0;
734     IMXFECState *s = IMX_FEC(opaque);
735     uint32_t index = offset >> 2;
736 
737     switch (index) {
738     case ENET_EIR:
739     case ENET_EIMR:
740     case ENET_RDAR:
741     case ENET_TDAR:
742     case ENET_ECR:
743     case ENET_MMFR:
744     case ENET_MSCR:
745     case ENET_MIBC:
746     case ENET_RCR:
747     case ENET_TCR:
748     case ENET_PALR:
749     case ENET_PAUR:
750     case ENET_OPD:
751     case ENET_IAUR:
752     case ENET_IALR:
753     case ENET_GAUR:
754     case ENET_GALR:
755     case ENET_TFWR:
756     case ENET_RDSR:
757     case ENET_TDSR:
758     case ENET_MRBR:
759         value = s->regs[index];
760         break;
761     default:
762         if (s->is_fec) {
763             value = imx_fec_read(s, index);
764         } else {
765             value = imx_enet_read(s, index);
766         }
767         break;
768     }
769 
770     trace_imx_eth_read(index, imx_eth_reg_name(s, index), value);
771 
772     return value;
773 }
774 
775 static void imx_default_write(IMXFECState *s, uint32_t index, uint32_t value)
776 {
777     qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad address at offset 0x%"
778                   PRIx32 "\n", TYPE_IMX_FEC, __func__, index * 4);
779     return;
780 }
781 
782 static void imx_fec_write(IMXFECState *s, uint32_t index, uint32_t value)
783 {
784     switch (index) {
785     case ENET_FRBR:
786         /* FRBR is read only */
787         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Register FRBR is read only\n",
788                       TYPE_IMX_FEC, __func__);
789         break;
790     case ENET_FRSR:
791         s->regs[index] = (value & 0x000003fc) | 0x00000400;
792         break;
793     case ENET_MIIGSK_CFGR:
794         s->regs[index] = value & 0x00000053;
795         break;
796     case ENET_MIIGSK_ENR:
797         s->regs[index] = (value & 0x00000002) ? 0x00000006 : 0;
798         break;
799     default:
800         imx_default_write(s, index, value);
801         break;
802     }
803 }
804 
805 static void imx_enet_write(IMXFECState *s, uint32_t index, uint32_t value)
806 {
807     switch (index) {
808     case ENET_RSFL:
809     case ENET_RSEM:
810     case ENET_RAEM:
811     case ENET_RAFL:
812     case ENET_TSEM:
813     case ENET_TAEM:
814     case ENET_TAFL:
815         s->regs[index] = value & 0x000001ff;
816         break;
817     case ENET_TIPG:
818         s->regs[index] = value & 0x0000001f;
819         break;
820     case ENET_FTRL:
821         s->regs[index] = value & 0x00003fff;
822         break;
823     case ENET_TACC:
824         s->regs[index] = value & 0x00000019;
825         break;
826     case ENET_RACC:
827         s->regs[index] = value & 0x000000C7;
828         break;
829     case ENET_ATCR:
830         s->regs[index] = value & 0x00002a9d;
831         break;
832     case ENET_ATVR:
833     case ENET_ATOFF:
834     case ENET_ATPER:
835         s->regs[index] = value;
836         break;
837     case ENET_ATSTMP:
838         /* ATSTMP is read only */
839         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Register ATSTMP is read only\n",
840                       TYPE_IMX_FEC, __func__);
841         break;
842     case ENET_ATCOR:
843         s->regs[index] = value & 0x7fffffff;
844         break;
845     case ENET_ATINC:
846         s->regs[index] = value & 0x00007f7f;
847         break;
848     case ENET_TGSR:
849         /* implement clear timer flag */
850         s->regs[index] &= ~(value & 0x0000000f); /* all bits W1C */
851         break;
852     case ENET_TCSR0:
853     case ENET_TCSR1:
854     case ENET_TCSR2:
855     case ENET_TCSR3:
856         s->regs[index] &= ~(value & 0x00000080); /* W1C bits */
857         s->regs[index] &= ~0x0000007d; /* writable fields */
858         s->regs[index] |= (value & 0x0000007d);
859         break;
860     case ENET_TCCR0:
861     case ENET_TCCR1:
862     case ENET_TCCR2:
863     case ENET_TCCR3:
864         s->regs[index] = value;
865         break;
866     default:
867         imx_default_write(s, index, value);
868         break;
869     }
870 }
871 
872 static void imx_eth_write(void *opaque, hwaddr offset, uint64_t value,
873                            unsigned size)
874 {
875     IMXFECState *s = IMX_FEC(opaque);
876     const bool single_tx_ring = !imx_eth_is_multi_tx_ring(s);
877     uint32_t index = offset >> 2;
878 
879     trace_imx_eth_write(index, imx_eth_reg_name(s, index), value);
880 
881     switch (index) {
882     case ENET_EIR:
883         s->regs[index] &= ~value;
884         break;
885     case ENET_EIMR:
886         s->regs[index] = value;
887         break;
888     case ENET_RDAR:
889         if (s->regs[ENET_ECR] & ENET_ECR_ETHEREN) {
890             if (!s->regs[index]) {
891                 imx_eth_enable_rx(s, true);
892             }
893         } else {
894             s->regs[index] = 0;
895         }
896         break;
897     case ENET_TDAR1:
898     case ENET_TDAR2:
899         if (unlikely(single_tx_ring)) {
900             qemu_log_mask(LOG_GUEST_ERROR,
901                           "[%s]%s: trying to access TDAR2 or TDAR1\n",
902                           TYPE_IMX_FEC, __func__);
903             return;
904         }
905         /* fall through */
906     case ENET_TDAR:
907         if (s->regs[ENET_ECR] & ENET_ECR_ETHEREN) {
908             s->regs[index] = ENET_TDAR_TDAR;
909             imx_eth_do_tx(s, index);
910         }
911         s->regs[index] = 0;
912         break;
913     case ENET_ECR:
914         if (value & ENET_ECR_RESET) {
915             return imx_eth_reset(DEVICE(s));
916         }
917         s->regs[index] = value;
918         if ((s->regs[index] & ENET_ECR_ETHEREN) == 0) {
919             s->regs[ENET_RDAR] = 0;
920             s->rx_descriptor = s->regs[ENET_RDSR];
921             s->regs[ENET_TDAR]  = 0;
922             s->regs[ENET_TDAR1] = 0;
923             s->regs[ENET_TDAR2] = 0;
924             s->tx_descriptor[0] = s->regs[ENET_TDSR];
925             s->tx_descriptor[1] = s->regs[ENET_TDSR1];
926             s->tx_descriptor[2] = s->regs[ENET_TDSR2];
927         }
928         break;
929     case ENET_MMFR:
930         s->regs[index] = value;
931         if (extract32(value, 29, 1)) {
932             /* This is a read operation */
933             s->regs[ENET_MMFR] = deposit32(s->regs[ENET_MMFR], 0, 16,
934                                            imx_phy_read(s,
935                                                        extract32(value,
936                                                                  18, 10)));
937         } else {
938             /* This is a write operation */
939             imx_phy_write(s, extract32(value, 18, 10), extract32(value, 0, 16));
940         }
941         /* raise the interrupt as the PHY operation is done */
942         s->regs[ENET_EIR] |= ENET_INT_MII;
943         break;
944     case ENET_MSCR:
945         s->regs[index] = value & 0xfe;
946         break;
947     case ENET_MIBC:
948         /* TODO: Implement MIB.  */
949         s->regs[index] = (value & 0x80000000) ? 0xc0000000 : 0;
950         break;
951     case ENET_RCR:
952         s->regs[index] = value & 0x07ff003f;
953         /* TODO: Implement LOOP mode.  */
954         break;
955     case ENET_TCR:
956         /* We transmit immediately, so raise GRA immediately.  */
957         s->regs[index] = value;
958         if (value & 1) {
959             s->regs[ENET_EIR] |= ENET_INT_GRA;
960         }
961         break;
962     case ENET_PALR:
963         s->regs[index] = value;
964         s->conf.macaddr.a[0] = value >> 24;
965         s->conf.macaddr.a[1] = value >> 16;
966         s->conf.macaddr.a[2] = value >> 8;
967         s->conf.macaddr.a[3] = value;
968         break;
969     case ENET_PAUR:
970         s->regs[index] = (value | 0x0000ffff) & 0xffff8808;
971         s->conf.macaddr.a[4] = value >> 24;
972         s->conf.macaddr.a[5] = value >> 16;
973         break;
974     case ENET_OPD:
975         s->regs[index] = (value & 0x0000ffff) | 0x00010000;
976         break;
977     case ENET_IAUR:
978     case ENET_IALR:
979     case ENET_GAUR:
980     case ENET_GALR:
981         /* TODO: implement MAC hash filtering.  */
982         break;
983     case ENET_TFWR:
984         if (s->is_fec) {
985             s->regs[index] = value & 0x3;
986         } else {
987             s->regs[index] = value & 0x13f;
988         }
989         break;
990     case ENET_RDSR:
991         if (s->is_fec) {
992             s->regs[index] = value & ~3;
993         } else {
994             s->regs[index] = value & ~7;
995         }
996         s->rx_descriptor = s->regs[index];
997         break;
998     case ENET_TDSR:
999         if (s->is_fec) {
1000             s->regs[index] = value & ~3;
1001         } else {
1002             s->regs[index] = value & ~7;
1003         }
1004         s->tx_descriptor[0] = s->regs[index];
1005         break;
1006     case ENET_TDSR1:
1007         if (unlikely(single_tx_ring)) {
1008             qemu_log_mask(LOG_GUEST_ERROR,
1009                           "[%s]%s: trying to access TDSR1\n",
1010                           TYPE_IMX_FEC, __func__);
1011             return;
1012         }
1013 
1014         s->regs[index] = value & ~7;
1015         s->tx_descriptor[1] = s->regs[index];
1016         break;
1017     case ENET_TDSR2:
1018         if (unlikely(single_tx_ring)) {
1019             qemu_log_mask(LOG_GUEST_ERROR,
1020                           "[%s]%s: trying to access TDSR2\n",
1021                           TYPE_IMX_FEC, __func__);
1022             return;
1023         }
1024 
1025         s->regs[index] = value & ~7;
1026         s->tx_descriptor[2] = s->regs[index];
1027         break;
1028     case ENET_MRBR:
1029         s->regs[index] = value & 0x00003ff0;
1030         break;
1031     default:
1032         if (s->is_fec) {
1033             imx_fec_write(s, index, value);
1034         } else {
1035             imx_enet_write(s, index, value);
1036         }
1037         return;
1038     }
1039 
1040     imx_eth_update(s);
1041 }
1042 
1043 static bool imx_eth_can_receive(NetClientState *nc)
1044 {
1045     IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1046 
1047     return !!s->regs[ENET_RDAR];
1048 }
1049 
1050 static ssize_t imx_fec_receive(NetClientState *nc, const uint8_t *buf,
1051                                size_t len)
1052 {
1053     IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1054     IMXFECBufDesc bd;
1055     uint32_t flags = 0;
1056     uint32_t addr;
1057     uint32_t crc;
1058     uint32_t buf_addr;
1059     uint8_t *crc_ptr;
1060     unsigned int buf_len;
1061     size_t size = len;
1062 
1063     trace_imx_fec_receive(size);
1064 
1065     if (!s->regs[ENET_RDAR]) {
1066         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n",
1067                       TYPE_IMX_FEC, __func__);
1068         return 0;
1069     }
1070 
1071     /* 4 bytes for the CRC.  */
1072     size += 4;
1073     crc = cpu_to_be32(crc32(~0, buf, size));
1074     crc_ptr = (uint8_t *) &crc;
1075 
1076     /* Huge frames are truncated.  */
1077     if (size > ENET_MAX_FRAME_SIZE) {
1078         size = ENET_MAX_FRAME_SIZE;
1079         flags |= ENET_BD_TR | ENET_BD_LG;
1080     }
1081 
1082     /* Frames larger than the user limit just set error flags.  */
1083     if (size > (s->regs[ENET_RCR] >> 16)) {
1084         flags |= ENET_BD_LG;
1085     }
1086 
1087     addr = s->rx_descriptor;
1088     while (size > 0) {
1089         imx_fec_read_bd(&bd, addr);
1090         if ((bd.flags & ENET_BD_E) == 0) {
1091             /* No descriptors available.  Bail out.  */
1092             /*
1093              * FIXME: This is wrong. We should probably either
1094              * save the remainder for when more RX buffers are
1095              * available, or flag an error.
1096              */
1097             qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n",
1098                           TYPE_IMX_FEC, __func__);
1099             break;
1100         }
1101         buf_len = (size <= s->regs[ENET_MRBR]) ? size : s->regs[ENET_MRBR];
1102         bd.length = buf_len;
1103         size -= buf_len;
1104 
1105         trace_imx_fec_receive_len(addr, bd.length);
1106 
1107         /* The last 4 bytes are the CRC.  */
1108         if (size < 4) {
1109             buf_len += size - 4;
1110         }
1111         buf_addr = bd.data;
1112         dma_memory_write(&address_space_memory, buf_addr, buf, buf_len);
1113         buf += buf_len;
1114         if (size < 4) {
1115             dma_memory_write(&address_space_memory, buf_addr + buf_len,
1116                              crc_ptr, 4 - size);
1117             crc_ptr += 4 - size;
1118         }
1119         bd.flags &= ~ENET_BD_E;
1120         if (size == 0) {
1121             /* Last buffer in frame.  */
1122             bd.flags |= flags | ENET_BD_L;
1123 
1124             trace_imx_fec_receive_last(bd.flags);
1125 
1126             s->regs[ENET_EIR] |= ENET_INT_RXF;
1127         } else {
1128             s->regs[ENET_EIR] |= ENET_INT_RXB;
1129         }
1130         imx_fec_write_bd(&bd, addr);
1131         /* Advance to the next descriptor.  */
1132         if ((bd.flags & ENET_BD_W) != 0) {
1133             addr = s->regs[ENET_RDSR];
1134         } else {
1135             addr += sizeof(bd);
1136         }
1137     }
1138     s->rx_descriptor = addr;
1139     imx_eth_enable_rx(s, false);
1140     imx_eth_update(s);
1141     return len;
1142 }
1143 
1144 static ssize_t imx_enet_receive(NetClientState *nc, const uint8_t *buf,
1145                                 size_t len)
1146 {
1147     IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1148     IMXENETBufDesc bd;
1149     uint32_t flags = 0;
1150     uint32_t addr;
1151     uint32_t crc;
1152     uint32_t buf_addr;
1153     uint8_t *crc_ptr;
1154     unsigned int buf_len;
1155     size_t size = len;
1156     bool shift16 = s->regs[ENET_RACC] & ENET_RACC_SHIFT16;
1157 
1158     trace_imx_enet_receive(size);
1159 
1160     if (!s->regs[ENET_RDAR]) {
1161         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n",
1162                       TYPE_IMX_FEC, __func__);
1163         return 0;
1164     }
1165 
1166     /* 4 bytes for the CRC.  */
1167     size += 4;
1168     crc = cpu_to_be32(crc32(~0, buf, size));
1169     crc_ptr = (uint8_t *) &crc;
1170 
1171     if (shift16) {
1172         size += 2;
1173     }
1174 
1175     /* Huge frames are truncated. */
1176     if (size > s->regs[ENET_FTRL]) {
1177         size = s->regs[ENET_FTRL];
1178         flags |= ENET_BD_TR | ENET_BD_LG;
1179     }
1180 
1181     /* Frames larger than the user limit just set error flags.  */
1182     if (size > (s->regs[ENET_RCR] >> 16)) {
1183         flags |= ENET_BD_LG;
1184     }
1185 
1186     addr = s->rx_descriptor;
1187     while (size > 0) {
1188         imx_enet_read_bd(&bd, addr);
1189         if ((bd.flags & ENET_BD_E) == 0) {
1190             /* No descriptors available.  Bail out.  */
1191             /*
1192              * FIXME: This is wrong. We should probably either
1193              * save the remainder for when more RX buffers are
1194              * available, or flag an error.
1195              */
1196             qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n",
1197                           TYPE_IMX_FEC, __func__);
1198             break;
1199         }
1200         buf_len = MIN(size, s->regs[ENET_MRBR]);
1201         bd.length = buf_len;
1202         size -= buf_len;
1203 
1204         trace_imx_enet_receive_len(addr, bd.length);
1205 
1206         /* The last 4 bytes are the CRC.  */
1207         if (size < 4) {
1208             buf_len += size - 4;
1209         }
1210         buf_addr = bd.data;
1211 
1212         if (shift16) {
1213             /*
1214              * If SHIFT16 bit of ENETx_RACC register is set we need to
1215              * align the payload to 4-byte boundary.
1216              */
1217             const uint8_t zeros[2] = { 0 };
1218 
1219             dma_memory_write(&address_space_memory, buf_addr,
1220                              zeros, sizeof(zeros));
1221 
1222             buf_addr += sizeof(zeros);
1223             buf_len  -= sizeof(zeros);
1224 
1225             /* We only do this once per Ethernet frame */
1226             shift16 = false;
1227         }
1228 
1229         dma_memory_write(&address_space_memory, buf_addr, buf, buf_len);
1230         buf += buf_len;
1231         if (size < 4) {
1232             dma_memory_write(&address_space_memory, buf_addr + buf_len,
1233                              crc_ptr, 4 - size);
1234             crc_ptr += 4 - size;
1235         }
1236         bd.flags &= ~ENET_BD_E;
1237         if (size == 0) {
1238             /* Last buffer in frame.  */
1239             bd.flags |= flags | ENET_BD_L;
1240 
1241             trace_imx_enet_receive_last(bd.flags);
1242 
1243             /* Indicate that we've updated the last buffer descriptor. */
1244             bd.last_buffer = ENET_BD_BDU;
1245             if (bd.option & ENET_BD_RX_INT) {
1246                 s->regs[ENET_EIR] |= ENET_INT_RXF;
1247             }
1248         } else {
1249             if (bd.option & ENET_BD_RX_INT) {
1250                 s->regs[ENET_EIR] |= ENET_INT_RXB;
1251             }
1252         }
1253         imx_enet_write_bd(&bd, addr);
1254         /* Advance to the next descriptor.  */
1255         if ((bd.flags & ENET_BD_W) != 0) {
1256             addr = s->regs[ENET_RDSR];
1257         } else {
1258             addr += sizeof(bd);
1259         }
1260     }
1261     s->rx_descriptor = addr;
1262     imx_eth_enable_rx(s, false);
1263     imx_eth_update(s);
1264     return len;
1265 }
1266 
1267 static ssize_t imx_eth_receive(NetClientState *nc, const uint8_t *buf,
1268                                 size_t len)
1269 {
1270     IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1271 
1272     if (!s->is_fec && (s->regs[ENET_ECR] & ENET_ECR_EN1588)) {
1273         return imx_enet_receive(nc, buf, len);
1274     } else {
1275         return imx_fec_receive(nc, buf, len);
1276     }
1277 }
1278 
1279 static const MemoryRegionOps imx_eth_ops = {
1280     .read                  = imx_eth_read,
1281     .write                 = imx_eth_write,
1282     .valid.min_access_size = 4,
1283     .valid.max_access_size = 4,
1284     .endianness            = DEVICE_NATIVE_ENDIAN,
1285 };
1286 
1287 static void imx_eth_cleanup(NetClientState *nc)
1288 {
1289     IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1290 
1291     s->nic = NULL;
1292 }
1293 
1294 static NetClientInfo imx_eth_net_info = {
1295     .type                = NET_CLIENT_DRIVER_NIC,
1296     .size                = sizeof(NICState),
1297     .can_receive         = imx_eth_can_receive,
1298     .receive             = imx_eth_receive,
1299     .cleanup             = imx_eth_cleanup,
1300     .link_status_changed = imx_eth_set_link,
1301 };
1302 
1303 
1304 static void imx_eth_realize(DeviceState *dev, Error **errp)
1305 {
1306     IMXFECState *s = IMX_FEC(dev);
1307     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1308 
1309     memory_region_init_io(&s->iomem, OBJECT(dev), &imx_eth_ops, s,
1310                           TYPE_IMX_FEC, FSL_IMX25_FEC_SIZE);
1311     sysbus_init_mmio(sbd, &s->iomem);
1312     sysbus_init_irq(sbd, &s->irq[0]);
1313     sysbus_init_irq(sbd, &s->irq[1]);
1314 
1315     qemu_macaddr_default_if_unset(&s->conf.macaddr);
1316 
1317     s->nic = qemu_new_nic(&imx_eth_net_info, &s->conf,
1318                           object_get_typename(OBJECT(dev)),
1319                           dev->id, s);
1320 
1321     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
1322 }
1323 
1324 static Property imx_eth_properties[] = {
1325     DEFINE_NIC_PROPERTIES(IMXFECState, conf),
1326     DEFINE_PROP_UINT32("tx-ring-num", IMXFECState, tx_ring_num, 1),
1327     DEFINE_PROP_UINT32("phy-num", IMXFECState, phy_num, 0),
1328     DEFINE_PROP_END_OF_LIST(),
1329 };
1330 
1331 static void imx_eth_class_init(ObjectClass *klass, void *data)
1332 {
1333     DeviceClass *dc = DEVICE_CLASS(klass);
1334 
1335     dc->vmsd    = &vmstate_imx_eth;
1336     dc->reset   = imx_eth_reset;
1337     device_class_set_props(dc, imx_eth_properties);
1338     dc->realize = imx_eth_realize;
1339     dc->desc    = "i.MX FEC/ENET Ethernet Controller";
1340 }
1341 
1342 static void imx_fec_init(Object *obj)
1343 {
1344     IMXFECState *s = IMX_FEC(obj);
1345 
1346     s->is_fec = true;
1347 }
1348 
1349 static void imx_enet_init(Object *obj)
1350 {
1351     IMXFECState *s = IMX_FEC(obj);
1352 
1353     s->is_fec = false;
1354 }
1355 
1356 static const TypeInfo imx_fec_info = {
1357     .name          = TYPE_IMX_FEC,
1358     .parent        = TYPE_SYS_BUS_DEVICE,
1359     .instance_size = sizeof(IMXFECState),
1360     .instance_init = imx_fec_init,
1361     .class_init    = imx_eth_class_init,
1362 };
1363 
1364 static const TypeInfo imx_enet_info = {
1365     .name          = TYPE_IMX_ENET,
1366     .parent        = TYPE_IMX_FEC,
1367     .instance_init = imx_enet_init,
1368 };
1369 
1370 static void imx_eth_register_types(void)
1371 {
1372     type_register_static(&imx_fec_info);
1373     type_register_static(&imx_enet_info);
1374 }
1375 
1376 type_init(imx_eth_register_types)
1377