xref: /openbmc/qemu/hw/net/ftgmac100.c (revision b91b0fc1635544341b9d00d1addc8ddf48e5b389)
1 /*
2  * Faraday FTGMAC100 Gigabit Ethernet
3  *
4  * Copyright (C) 2016-2017, IBM Corporation.
5  *
6  * Based on Coldfire Fast Ethernet Controller emulation.
7  *
8  * Copyright (c) 2007 CodeSourcery.
9  *
10  * This code is licensed under the GPL version 2 or later. See the
11  * COPYING file in the top-level directory.
12  */
13 
14 #include "qemu/osdep.h"
15 #include "hw/irq.h"
16 #include "hw/net/ftgmac100.h"
17 #include "sysemu/dma.h"
18 #include "qapi/error.h"
19 #include "qemu/log.h"
20 #include "qemu/module.h"
21 #include "net/checksum.h"
22 #include "net/eth.h"
23 #include "hw/net/mii.h"
24 #include "hw/qdev-properties.h"
25 #include "migration/vmstate.h"
26 
27 /* For crc32 */
28 #include <zlib.h>
29 
30 /*
31  * FTGMAC100 registers
32  */
33 #define FTGMAC100_ISR             0x00
34 #define FTGMAC100_IER             0x04
35 #define FTGMAC100_MAC_MADR        0x08
36 #define FTGMAC100_MAC_LADR        0x0c
37 #define FTGMAC100_MATH0           0x10
38 #define FTGMAC100_MATH1           0x14
39 #define FTGMAC100_NPTXPD          0x18
40 #define FTGMAC100_RXPD            0x1C
41 #define FTGMAC100_NPTXR_BADR      0x20
42 #define FTGMAC100_RXR_BADR        0x24
43 #define FTGMAC100_HPTXPD          0x28
44 #define FTGMAC100_HPTXR_BADR      0x2c
45 #define FTGMAC100_ITC             0x30
46 #define FTGMAC100_APTC            0x34
47 #define FTGMAC100_DBLAC           0x38
48 #define FTGMAC100_REVR            0x40
49 #define FTGMAC100_FEAR1           0x44
50 #define FTGMAC100_RBSR            0x4c
51 #define FTGMAC100_TPAFCR          0x48
52 
53 #define FTGMAC100_MACCR           0x50
54 #define FTGMAC100_MACSR           0x54
55 #define FTGMAC100_PHYCR           0x60
56 #define FTGMAC100_PHYDATA         0x64
57 #define FTGMAC100_FCR             0x68
58 
59 /*
60  * Interrupt status register & interrupt enable register
61  */
62 #define FTGMAC100_INT_RPKT_BUF    (1 << 0)
63 #define FTGMAC100_INT_RPKT_FIFO   (1 << 1)
64 #define FTGMAC100_INT_NO_RXBUF    (1 << 2)
65 #define FTGMAC100_INT_RPKT_LOST   (1 << 3)
66 #define FTGMAC100_INT_XPKT_ETH    (1 << 4)
67 #define FTGMAC100_INT_XPKT_FIFO   (1 << 5)
68 #define FTGMAC100_INT_NO_NPTXBUF  (1 << 6)
69 #define FTGMAC100_INT_XPKT_LOST   (1 << 7)
70 #define FTGMAC100_INT_AHB_ERR     (1 << 8)
71 #define FTGMAC100_INT_PHYSTS_CHG  (1 << 9)
72 #define FTGMAC100_INT_NO_HPTXBUF  (1 << 10)
73 
74 /*
75  * Automatic polling timer control register
76  */
77 #define FTGMAC100_APTC_RXPOLL_CNT(x)        ((x) & 0xf)
78 #define FTGMAC100_APTC_RXPOLL_TIME_SEL      (1 << 4)
79 #define FTGMAC100_APTC_TXPOLL_CNT(x)        (((x) >> 8) & 0xf)
80 #define FTGMAC100_APTC_TXPOLL_TIME_SEL      (1 << 12)
81 
82 /*
83  * DMA burst length and arbitration control register
84  */
85 #define FTGMAC100_DBLAC_RXBURST_SIZE(x)     (((x) >> 8) & 0x3)
86 #define FTGMAC100_DBLAC_TXBURST_SIZE(x)     (((x) >> 10) & 0x3)
87 #define FTGMAC100_DBLAC_RXDES_SIZE(x)       ((((x) >> 12) & 0xf) * 8)
88 #define FTGMAC100_DBLAC_TXDES_SIZE(x)       ((((x) >> 16) & 0xf) * 8)
89 #define FTGMAC100_DBLAC_IFG_CNT(x)          (((x) >> 20) & 0x7)
90 #define FTGMAC100_DBLAC_IFG_INC             (1 << 23)
91 
92 /*
93  * PHY control register
94  */
95 #define FTGMAC100_PHYCR_MIIRD               (1 << 26)
96 #define FTGMAC100_PHYCR_MIIWR               (1 << 27)
97 
98 #define FTGMAC100_PHYCR_DEV(x)              (((x) >> 16) & 0x1f)
99 #define FTGMAC100_PHYCR_REG(x)              (((x) >> 21) & 0x1f)
100 
101 /*
102  * PHY data register
103  */
104 #define FTGMAC100_PHYDATA_MIIWDATA(x)       ((x) & 0xffff)
105 #define FTGMAC100_PHYDATA_MIIRDATA(x)       (((x) >> 16) & 0xffff)
106 
107 /*
108  * PHY control register - New MDC/MDIO interface
109  */
110 #define FTGMAC100_PHYCR_NEW_DATA(x)     (((x) >> 16) & 0xffff)
111 #define FTGMAC100_PHYCR_NEW_FIRE        (1 << 15)
112 #define FTGMAC100_PHYCR_NEW_ST_22       (1 << 12)
113 #define FTGMAC100_PHYCR_NEW_OP(x)       (((x) >> 10) & 3)
114 #define   FTGMAC100_PHYCR_NEW_OP_WRITE    0x1
115 #define   FTGMAC100_PHYCR_NEW_OP_READ     0x2
116 #define FTGMAC100_PHYCR_NEW_DEV(x)      (((x) >> 5) & 0x1f)
117 #define FTGMAC100_PHYCR_NEW_REG(x)      ((x) & 0x1f)
118 
119 /*
120  * Feature Register
121  */
122 #define FTGMAC100_REVR_NEW_MDIO_INTERFACE   (1 << 31)
123 
124 /*
125  * MAC control register
126  */
127 #define FTGMAC100_MACCR_TXDMA_EN         (1 << 0)
128 #define FTGMAC100_MACCR_RXDMA_EN         (1 << 1)
129 #define FTGMAC100_MACCR_TXMAC_EN         (1 << 2)
130 #define FTGMAC100_MACCR_RXMAC_EN         (1 << 3)
131 #define FTGMAC100_MACCR_RM_VLAN          (1 << 4)
132 #define FTGMAC100_MACCR_HPTXR_EN         (1 << 5)
133 #define FTGMAC100_MACCR_LOOP_EN          (1 << 6)
134 #define FTGMAC100_MACCR_ENRX_IN_HALFTX   (1 << 7)
135 #define FTGMAC100_MACCR_FULLDUP          (1 << 8)
136 #define FTGMAC100_MACCR_GIGA_MODE        (1 << 9)
137 #define FTGMAC100_MACCR_CRC_APD          (1 << 10) /* not needed */
138 #define FTGMAC100_MACCR_RX_RUNT          (1 << 12)
139 #define FTGMAC100_MACCR_JUMBO_LF         (1 << 13)
140 #define FTGMAC100_MACCR_RX_ALL           (1 << 14)
141 #define FTGMAC100_MACCR_HT_MULTI_EN      (1 << 15)
142 #define FTGMAC100_MACCR_RX_MULTIPKT      (1 << 16)
143 #define FTGMAC100_MACCR_RX_BROADPKT      (1 << 17)
144 #define FTGMAC100_MACCR_DISCARD_CRCERR   (1 << 18)
145 #define FTGMAC100_MACCR_FAST_MODE        (1 << 19)
146 #define FTGMAC100_MACCR_SW_RST           (1 << 31)
147 
148 /*
149  * Transmit descriptor
150  */
151 #define FTGMAC100_TXDES0_TXBUF_SIZE(x)   ((x) & 0x3fff)
152 #define FTGMAC100_TXDES0_EDOTR           (1 << 15)
153 #define FTGMAC100_TXDES0_CRC_ERR         (1 << 19)
154 #define FTGMAC100_TXDES0_LTS             (1 << 28)
155 #define FTGMAC100_TXDES0_FTS             (1 << 29)
156 #define FTGMAC100_TXDES0_EDOTR_ASPEED    (1 << 30)
157 #define FTGMAC100_TXDES0_TXDMA_OWN       (1 << 31)
158 
159 #define FTGMAC100_TXDES1_VLANTAG_CI(x)   ((x) & 0xffff)
160 #define FTGMAC100_TXDES1_INS_VLANTAG     (1 << 16)
161 #define FTGMAC100_TXDES1_TCP_CHKSUM      (1 << 17)
162 #define FTGMAC100_TXDES1_UDP_CHKSUM      (1 << 18)
163 #define FTGMAC100_TXDES1_IP_CHKSUM       (1 << 19)
164 #define FTGMAC100_TXDES1_LLC             (1 << 22)
165 #define FTGMAC100_TXDES1_TX2FIC          (1 << 30)
166 #define FTGMAC100_TXDES1_TXIC            (1 << 31)
167 
168 /*
169  * Receive descriptor
170  */
171 #define FTGMAC100_RXDES0_VDBC            0x3fff
172 #define FTGMAC100_RXDES0_EDORR           (1 << 15)
173 #define FTGMAC100_RXDES0_MULTICAST       (1 << 16)
174 #define FTGMAC100_RXDES0_BROADCAST       (1 << 17)
175 #define FTGMAC100_RXDES0_RX_ERR          (1 << 18)
176 #define FTGMAC100_RXDES0_CRC_ERR         (1 << 19)
177 #define FTGMAC100_RXDES0_FTL             (1 << 20)
178 #define FTGMAC100_RXDES0_RUNT            (1 << 21)
179 #define FTGMAC100_RXDES0_RX_ODD_NB       (1 << 22)
180 #define FTGMAC100_RXDES0_FIFO_FULL       (1 << 23)
181 #define FTGMAC100_RXDES0_PAUSE_OPCODE    (1 << 24)
182 #define FTGMAC100_RXDES0_PAUSE_FRAME     (1 << 25)
183 #define FTGMAC100_RXDES0_LRS             (1 << 28)
184 #define FTGMAC100_RXDES0_FRS             (1 << 29)
185 #define FTGMAC100_RXDES0_EDORR_ASPEED    (1 << 30)
186 #define FTGMAC100_RXDES0_RXPKT_RDY       (1 << 31)
187 
188 #define FTGMAC100_RXDES1_VLANTAG_CI      0xffff
189 #define FTGMAC100_RXDES1_PROT_MASK       (0x3 << 20)
190 #define FTGMAC100_RXDES1_PROT_NONIP      (0x0 << 20)
191 #define FTGMAC100_RXDES1_PROT_IP         (0x1 << 20)
192 #define FTGMAC100_RXDES1_PROT_TCPIP      (0x2 << 20)
193 #define FTGMAC100_RXDES1_PROT_UDPIP      (0x3 << 20)
194 #define FTGMAC100_RXDES1_LLC             (1 << 22)
195 #define FTGMAC100_RXDES1_DF              (1 << 23)
196 #define FTGMAC100_RXDES1_VLANTAG_AVAIL   (1 << 24)
197 #define FTGMAC100_RXDES1_TCP_CHKSUM_ERR  (1 << 25)
198 #define FTGMAC100_RXDES1_UDP_CHKSUM_ERR  (1 << 26)
199 #define FTGMAC100_RXDES1_IP_CHKSUM_ERR   (1 << 27)
200 
201 /*
202  * Receive and transmit Buffer Descriptor
203  */
204 typedef struct {
205     uint32_t        des0;
206     uint32_t        des1;
207     uint32_t        des2;        /* not used by HW */
208     uint32_t        des3;
209 } FTGMAC100Desc;
210 
211 #define FTGMAC100_DESC_ALIGNMENT 16
212 
213 /*
214  * Specific RTL8211E MII Registers
215  */
216 #define RTL8211E_MII_PHYCR        16 /* PHY Specific Control */
217 #define RTL8211E_MII_PHYSR        17 /* PHY Specific Status */
218 #define RTL8211E_MII_INER         18 /* Interrupt Enable */
219 #define RTL8211E_MII_INSR         19 /* Interrupt Status */
220 #define RTL8211E_MII_RXERC        24 /* Receive Error Counter */
221 #define RTL8211E_MII_LDPSR        27 /* Link Down Power Saving */
222 #define RTL8211E_MII_EPAGSR       30 /* Extension Page Select */
223 #define RTL8211E_MII_PAGSEL       31 /* Page Select */
224 
225 /*
226  * RTL8211E Interrupt Status
227  */
228 #define PHY_INT_AUTONEG_ERROR       (1 << 15)
229 #define PHY_INT_PAGE_RECV           (1 << 12)
230 #define PHY_INT_AUTONEG_COMPLETE    (1 << 11)
231 #define PHY_INT_LINK_STATUS         (1 << 10)
232 #define PHY_INT_ERROR               (1 << 9)
233 #define PHY_INT_DOWN                (1 << 8)
234 #define PHY_INT_JABBER              (1 << 0)
235 
236 /*
237  * Max frame size for the receiving buffer
238  */
239 #define FTGMAC100_MAX_FRAME_SIZE    9220
240 
241 /* Limits depending on the type of the frame
242  *
243  *   9216 for Jumbo frames (+ 4 for VLAN)
244  *   1518 for other frames (+ 4 for VLAN)
245  */
246 static int ftgmac100_max_frame_size(FTGMAC100State *s, uint16_t proto)
247 {
248     int max = (s->maccr & FTGMAC100_MACCR_JUMBO_LF ? 9216 : 1518);
249 
250     return max + (proto == ETH_P_VLAN ? 4 : 0);
251 }
252 
253 static void ftgmac100_update_irq(FTGMAC100State *s)
254 {
255     qemu_set_irq(s->irq, s->isr & s->ier);
256 }
257 
258 /*
259  * The MII phy could raise a GPIO to the processor which in turn
260  * could be handled as an interrpt by the OS.
261  * For now we don't handle any GPIO/interrupt line, so the OS will
262  * have to poll for the PHY status.
263  */
264 static void phy_update_irq(FTGMAC100State *s)
265 {
266     ftgmac100_update_irq(s);
267 }
268 
269 static void phy_update_link(FTGMAC100State *s)
270 {
271     /* Autonegotiation status mirrors link status.  */
272     if (qemu_get_queue(s->nic)->link_down) {
273         s->phy_status &= ~(MII_BMSR_LINK_ST | MII_BMSR_AN_COMP);
274         s->phy_int |= PHY_INT_DOWN;
275     } else {
276         s->phy_status |= (MII_BMSR_LINK_ST | MII_BMSR_AN_COMP);
277         s->phy_int |= PHY_INT_AUTONEG_COMPLETE;
278     }
279     phy_update_irq(s);
280 }
281 
282 static void ftgmac100_set_link(NetClientState *nc)
283 {
284     phy_update_link(FTGMAC100(qemu_get_nic_opaque(nc)));
285 }
286 
287 static void phy_reset(FTGMAC100State *s)
288 {
289     s->phy_status = (MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD |
290                      MII_BMSR_10T_HD | MII_BMSR_EXTSTAT | MII_BMSR_MFPS |
291                      MII_BMSR_AN_COMP | MII_BMSR_AUTONEG | MII_BMSR_LINK_ST |
292                      MII_BMSR_EXTCAP);
293     s->phy_control = (MII_BMCR_AUTOEN | MII_BMCR_FD | MII_BMCR_SPEED1000);
294     s->phy_advertise = (MII_ANAR_PAUSE_ASYM | MII_ANAR_PAUSE | MII_ANAR_TXFD |
295                         MII_ANAR_TX | MII_ANAR_10FD | MII_ANAR_10 |
296                         MII_ANAR_CSMACD);
297     s->phy_int_mask = 0;
298     s->phy_int = 0;
299 }
300 
301 static uint16_t do_phy_read(FTGMAC100State *s, uint8_t reg)
302 {
303     uint16_t val;
304 
305     switch (reg) {
306     case MII_BMCR: /* Basic Control */
307         val = s->phy_control;
308         break;
309     case MII_BMSR: /* Basic Status */
310         val = s->phy_status;
311         break;
312     case MII_PHYID1: /* ID1 */
313         val = RTL8211E_PHYID1;
314         break;
315     case MII_PHYID2: /* ID2 */
316         val = RTL8211E_PHYID2;
317         break;
318     case MII_ANAR: /* Auto-neg advertisement */
319         val = s->phy_advertise;
320         break;
321     case MII_ANLPAR: /* Auto-neg Link Partner Ability */
322         val = (MII_ANLPAR_ACK | MII_ANLPAR_PAUSE | MII_ANLPAR_TXFD |
323                MII_ANLPAR_TX | MII_ANLPAR_10FD | MII_ANLPAR_10 |
324                MII_ANLPAR_CSMACD);
325         break;
326     case MII_ANER: /* Auto-neg Expansion */
327         val = MII_ANER_NWAY;
328         break;
329     case MII_CTRL1000: /* 1000BASE-T control  */
330         val = (MII_CTRL1000_HALF | MII_CTRL1000_FULL);
331         break;
332     case MII_STAT1000: /* 1000BASE-T status  */
333         val = MII_STAT1000_FULL;
334         break;
335     case RTL8211E_MII_INSR:  /* Interrupt status.  */
336         val = s->phy_int;
337         s->phy_int = 0;
338         phy_update_irq(s);
339         break;
340     case RTL8211E_MII_INER:  /* Interrupt enable */
341         val = s->phy_int_mask;
342         break;
343     case RTL8211E_MII_PHYCR:
344     case RTL8211E_MII_PHYSR:
345     case RTL8211E_MII_RXERC:
346     case RTL8211E_MII_LDPSR:
347     case RTL8211E_MII_EPAGSR:
348     case RTL8211E_MII_PAGSEL:
349         qemu_log_mask(LOG_UNIMP, "%s: reg %d not implemented\n",
350                       __func__, reg);
351         val = 0;
352         break;
353     default:
354         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset %d\n",
355                       __func__, reg);
356         val = 0;
357         break;
358     }
359 
360     return val;
361 }
362 
363 #define MII_BMCR_MASK (MII_BMCR_LOOPBACK | MII_BMCR_SPEED100 |          \
364                        MII_BMCR_SPEED | MII_BMCR_AUTOEN | MII_BMCR_PDOWN | \
365                        MII_BMCR_FD | MII_BMCR_CTST)
366 #define MII_ANAR_MASK 0x2d7f
367 
368 static void do_phy_write(FTGMAC100State *s, uint8_t reg, uint16_t val)
369 {
370     switch (reg) {
371     case MII_BMCR:     /* Basic Control */
372         if (val & MII_BMCR_RESET) {
373             phy_reset(s);
374         } else {
375             s->phy_control = val & MII_BMCR_MASK;
376             /* Complete autonegotiation immediately.  */
377             if (val & MII_BMCR_AUTOEN) {
378                 s->phy_status |= MII_BMSR_AN_COMP;
379             }
380         }
381         break;
382     case MII_ANAR:     /* Auto-neg advertisement */
383         s->phy_advertise = (val & MII_ANAR_MASK) | MII_ANAR_TX;
384         break;
385     case RTL8211E_MII_INER: /* Interrupt enable */
386         s->phy_int_mask = val & 0xff;
387         phy_update_irq(s);
388         break;
389     case RTL8211E_MII_PHYCR:
390     case RTL8211E_MII_PHYSR:
391     case RTL8211E_MII_RXERC:
392     case RTL8211E_MII_LDPSR:
393     case RTL8211E_MII_EPAGSR:
394     case RTL8211E_MII_PAGSEL:
395         qemu_log_mask(LOG_UNIMP, "%s: reg %d not implemented\n",
396                       __func__, reg);
397         break;
398     default:
399         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset %d\n",
400                       __func__, reg);
401         break;
402     }
403 }
404 
405 static void do_phy_new_ctl(FTGMAC100State *s)
406 {
407     uint8_t reg;
408     uint16_t data;
409 
410     if (!(s->phycr & FTGMAC100_PHYCR_NEW_ST_22)) {
411         qemu_log_mask(LOG_UNIMP, "%s: unsupported ST code\n", __func__);
412         return;
413     }
414 
415     /* Nothing to do */
416     if (!(s->phycr & FTGMAC100_PHYCR_NEW_FIRE)) {
417         return;
418     }
419 
420     reg = FTGMAC100_PHYCR_NEW_REG(s->phycr);
421     data = FTGMAC100_PHYCR_NEW_DATA(s->phycr);
422 
423     switch (FTGMAC100_PHYCR_NEW_OP(s->phycr)) {
424     case FTGMAC100_PHYCR_NEW_OP_WRITE:
425         do_phy_write(s, reg, data);
426         break;
427     case FTGMAC100_PHYCR_NEW_OP_READ:
428         s->phydata = do_phy_read(s, reg) & 0xffff;
429         break;
430     default:
431         qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid OP code %08x\n",
432                       __func__, s->phycr);
433     }
434 
435     s->phycr &= ~FTGMAC100_PHYCR_NEW_FIRE;
436 }
437 
438 static void do_phy_ctl(FTGMAC100State *s)
439 {
440     uint8_t reg = FTGMAC100_PHYCR_REG(s->phycr);
441 
442     if (s->phycr & FTGMAC100_PHYCR_MIIWR) {
443         do_phy_write(s, reg, s->phydata & 0xffff);
444         s->phycr &= ~FTGMAC100_PHYCR_MIIWR;
445     } else if (s->phycr & FTGMAC100_PHYCR_MIIRD) {
446         s->phydata = do_phy_read(s, reg) << 16;
447         s->phycr &= ~FTGMAC100_PHYCR_MIIRD;
448     } else {
449         qemu_log_mask(LOG_GUEST_ERROR, "%s: no OP code %08x\n",
450                       __func__, s->phycr);
451     }
452 }
453 
454 static int ftgmac100_read_bd(FTGMAC100Desc *bd, dma_addr_t addr)
455 {
456     if (dma_memory_read(&address_space_memory, addr,
457                         bd, sizeof(*bd), MEMTXATTRS_UNSPECIFIED)) {
458         qemu_log_mask(LOG_GUEST_ERROR, "%s: failed to read descriptor @ 0x%"
459                       HWADDR_PRIx "\n", __func__, addr);
460         return -1;
461     }
462     bd->des0 = le32_to_cpu(bd->des0);
463     bd->des1 = le32_to_cpu(bd->des1);
464     bd->des2 = le32_to_cpu(bd->des2);
465     bd->des3 = le32_to_cpu(bd->des3);
466     return 0;
467 }
468 
469 static int ftgmac100_write_bd(FTGMAC100Desc *bd, dma_addr_t addr)
470 {
471     FTGMAC100Desc lebd;
472 
473     lebd.des0 = cpu_to_le32(bd->des0);
474     lebd.des1 = cpu_to_le32(bd->des1);
475     lebd.des2 = cpu_to_le32(bd->des2);
476     lebd.des3 = cpu_to_le32(bd->des3);
477     if (dma_memory_write(&address_space_memory, addr,
478                          &lebd, sizeof(lebd), MEMTXATTRS_UNSPECIFIED)) {
479         qemu_log_mask(LOG_GUEST_ERROR, "%s: failed to write descriptor @ 0x%"
480                       HWADDR_PRIx "\n", __func__, addr);
481         return -1;
482     }
483     return 0;
484 }
485 
486 static int ftgmac100_insert_vlan(FTGMAC100State *s, int frame_size,
487                                   uint8_t vlan_tci)
488 {
489     uint8_t *vlan_hdr = s->frame + (ETH_ALEN * 2);
490     uint8_t *payload = vlan_hdr + sizeof(struct vlan_header);
491 
492     if (frame_size < sizeof(struct eth_header)) {
493         qemu_log_mask(LOG_GUEST_ERROR,
494                       "%s: frame too small for VLAN insertion : %d bytes\n",
495                       __func__, frame_size);
496         s->isr |= FTGMAC100_INT_XPKT_LOST;
497         goto out;
498     }
499 
500     if (frame_size + sizeof(struct vlan_header) > sizeof(s->frame)) {
501         qemu_log_mask(LOG_GUEST_ERROR,
502                       "%s: frame too big : %d bytes\n",
503                       __func__, frame_size);
504         s->isr |= FTGMAC100_INT_XPKT_LOST;
505         frame_size -= sizeof(struct vlan_header);
506     }
507 
508     memmove(payload, vlan_hdr, frame_size - (ETH_ALEN * 2));
509     stw_be_p(vlan_hdr, ETH_P_VLAN);
510     stw_be_p(vlan_hdr + 2, vlan_tci);
511     frame_size += sizeof(struct vlan_header);
512 
513 out:
514     return frame_size;
515 }
516 
517 static void ftgmac100_do_tx(FTGMAC100State *s, uint32_t tx_ring,
518                             uint32_t tx_descriptor)
519 {
520     int frame_size = 0;
521     uint8_t *ptr = s->frame;
522     uint32_t addr = tx_descriptor;
523     uint32_t flags = 0;
524 
525     while (1) {
526         FTGMAC100Desc bd;
527         int len;
528 
529         if (ftgmac100_read_bd(&bd, addr) ||
530             ((bd.des0 & FTGMAC100_TXDES0_TXDMA_OWN) == 0)) {
531             /* Run out of descriptors to transmit.  */
532             s->isr |= FTGMAC100_INT_NO_NPTXBUF;
533             break;
534         }
535 
536         /* record transmit flags as they are valid only on the first
537          * segment */
538         if (bd.des0 & FTGMAC100_TXDES0_FTS) {
539             flags = bd.des1;
540         }
541 
542         len = FTGMAC100_TXDES0_TXBUF_SIZE(bd.des0);
543         if (!len) {
544             /*
545              * 0 is an invalid size, however the HW does not raise any
546              * interrupt. Flag an error because the guest is buggy.
547              */
548             qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid segment size\n",
549                           __func__);
550         }
551 
552         if (frame_size + len > sizeof(s->frame)) {
553             qemu_log_mask(LOG_GUEST_ERROR, "%s: frame too big : %d bytes\n",
554                           __func__, len);
555             s->isr |= FTGMAC100_INT_XPKT_LOST;
556             len =  sizeof(s->frame) - frame_size;
557         }
558 
559         if (dma_memory_read(&address_space_memory, bd.des3,
560                             ptr, len, MEMTXATTRS_UNSPECIFIED)) {
561             qemu_log_mask(LOG_GUEST_ERROR, "%s: failed to read packet @ 0x%x\n",
562                           __func__, bd.des3);
563             s->isr |= FTGMAC100_INT_AHB_ERR;
564             break;
565         }
566 
567         ptr += len;
568         frame_size += len;
569         if (bd.des0 & FTGMAC100_TXDES0_LTS) {
570             int csum = 0;
571 
572             /* Check for VLAN */
573             if (flags & FTGMAC100_TXDES1_INS_VLANTAG &&
574                 be16_to_cpu(PKT_GET_ETH_HDR(s->frame)->h_proto) != ETH_P_VLAN) {
575                 frame_size = ftgmac100_insert_vlan(s, frame_size,
576                                             FTGMAC100_TXDES1_VLANTAG_CI(flags));
577             }
578 
579             if (flags & FTGMAC100_TXDES1_IP_CHKSUM) {
580                 csum |= CSUM_IP;
581             }
582             if (flags & FTGMAC100_TXDES1_TCP_CHKSUM) {
583                 csum |= CSUM_TCP;
584             }
585             if (flags & FTGMAC100_TXDES1_UDP_CHKSUM) {
586                 csum |= CSUM_UDP;
587             }
588             if (csum) {
589                 net_checksum_calculate(s->frame, frame_size, csum);
590             }
591 
592             /* Last buffer in frame.  */
593             qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size);
594             ptr = s->frame;
595             frame_size = 0;
596             s->isr |= FTGMAC100_INT_XPKT_ETH;
597         }
598 
599         if (flags & FTGMAC100_TXDES1_TX2FIC) {
600             s->isr |= FTGMAC100_INT_XPKT_FIFO;
601         }
602         bd.des0 &= ~FTGMAC100_TXDES0_TXDMA_OWN;
603 
604         /* Write back the modified descriptor.  */
605         ftgmac100_write_bd(&bd, addr);
606         /* Advance to the next descriptor.  */
607         if (bd.des0 & s->txdes0_edotr) {
608             addr = tx_ring;
609         } else {
610             addr += FTGMAC100_DBLAC_TXDES_SIZE(s->dblac);
611         }
612     }
613 
614     s->tx_descriptor = addr;
615 
616     ftgmac100_update_irq(s);
617 }
618 
619 static bool ftgmac100_can_receive(NetClientState *nc)
620 {
621     FTGMAC100State *s = FTGMAC100(qemu_get_nic_opaque(nc));
622     FTGMAC100Desc bd;
623 
624     if ((s->maccr & (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN))
625          != (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN)) {
626         return false;
627     }
628 
629     if (ftgmac100_read_bd(&bd, s->rx_descriptor)) {
630         return false;
631     }
632     return !(bd.des0 & FTGMAC100_RXDES0_RXPKT_RDY);
633 }
634 
635 /*
636  * This is purely informative. The HW can poll the RW (and RX) ring
637  * buffers for available descriptors but we don't need to trigger a
638  * timer for that in qemu.
639  */
640 static uint32_t ftgmac100_rxpoll(FTGMAC100State *s)
641 {
642     /* Polling times :
643      *
644      * Speed      TIME_SEL=0    TIME_SEL=1
645      *
646      *    10         51.2 ms      819.2 ms
647      *   100         5.12 ms      81.92 ms
648      *  1000        1.024 ms     16.384 ms
649      */
650     static const int div[] = { 20, 200, 1000 };
651 
652     uint32_t cnt = 1024 * FTGMAC100_APTC_RXPOLL_CNT(s->aptcr);
653     uint32_t speed = (s->maccr & FTGMAC100_MACCR_FAST_MODE) ? 1 : 0;
654 
655     if (s->aptcr & FTGMAC100_APTC_RXPOLL_TIME_SEL) {
656         cnt <<= 4;
657     }
658 
659     if (s->maccr & FTGMAC100_MACCR_GIGA_MODE) {
660         speed = 2;
661     }
662 
663     return cnt / div[speed];
664 }
665 
666 static void ftgmac100_do_reset(FTGMAC100State *s, bool sw_reset)
667 {
668     /* Reset the FTGMAC100 */
669     s->isr = 0;
670     s->ier = 0;
671     s->rx_enabled = 0;
672     s->rx_ring = 0;
673     s->rbsr = 0x640;
674     s->rx_descriptor = 0;
675     s->tx_ring = 0;
676     s->tx_descriptor = 0;
677     s->math[0] = 0;
678     s->math[1] = 0;
679     s->itc = 0;
680     s->aptcr = 1;
681     s->dblac = 0x00022f00;
682     s->revr = 0;
683     s->fear1 = 0;
684     s->tpafcr = 0xf1;
685 
686     if (sw_reset) {
687         s->maccr &= FTGMAC100_MACCR_GIGA_MODE | FTGMAC100_MACCR_FAST_MODE;
688     } else {
689         s->maccr = 0;
690     }
691 
692     s->phycr = 0;
693     s->phydata = 0;
694     s->fcr = 0x400;
695 
696     /* and the PHY */
697     phy_reset(s);
698 }
699 
700 static void ftgmac100_reset(DeviceState *d)
701 {
702     ftgmac100_do_reset(FTGMAC100(d), false);
703 }
704 
705 static uint64_t ftgmac100_read(void *opaque, hwaddr addr, unsigned size)
706 {
707     FTGMAC100State *s = FTGMAC100(opaque);
708 
709     switch (addr & 0xff) {
710     case FTGMAC100_ISR:
711         return s->isr;
712     case FTGMAC100_IER:
713         return s->ier;
714     case FTGMAC100_MAC_MADR:
715         return (s->conf.macaddr.a[0] << 8)  | s->conf.macaddr.a[1];
716     case FTGMAC100_MAC_LADR:
717         return ((uint32_t) s->conf.macaddr.a[2] << 24) |
718             (s->conf.macaddr.a[3] << 16) | (s->conf.macaddr.a[4] << 8) |
719             s->conf.macaddr.a[5];
720     case FTGMAC100_MATH0:
721         return s->math[0];
722     case FTGMAC100_MATH1:
723         return s->math[1];
724     case FTGMAC100_RXR_BADR:
725         return s->rx_ring;
726     case FTGMAC100_NPTXR_BADR:
727         return s->tx_ring;
728     case FTGMAC100_ITC:
729         return s->itc;
730     case FTGMAC100_DBLAC:
731         return s->dblac;
732     case FTGMAC100_REVR:
733         return s->revr;
734     case FTGMAC100_FEAR1:
735         return s->fear1;
736     case FTGMAC100_TPAFCR:
737         return s->tpafcr;
738     case FTGMAC100_FCR:
739         return s->fcr;
740     case FTGMAC100_MACCR:
741         return s->maccr;
742     case FTGMAC100_PHYCR:
743         return s->phycr;
744     case FTGMAC100_PHYDATA:
745         return s->phydata;
746 
747         /* We might want to support these one day */
748     case FTGMAC100_HPTXPD: /* High Priority Transmit Poll Demand */
749     case FTGMAC100_HPTXR_BADR: /* High Priority Transmit Ring Base Address */
750     case FTGMAC100_MACSR: /* MAC Status Register (MACSR) */
751         qemu_log_mask(LOG_UNIMP, "%s: read to unimplemented register 0x%"
752                       HWADDR_PRIx "\n", __func__, addr);
753         return 0;
754     default:
755         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset 0x%"
756                       HWADDR_PRIx "\n", __func__, addr);
757         return 0;
758     }
759 }
760 
761 static void ftgmac100_write(void *opaque, hwaddr addr,
762                           uint64_t value, unsigned size)
763 {
764     FTGMAC100State *s = FTGMAC100(opaque);
765 
766     switch (addr & 0xff) {
767     case FTGMAC100_ISR: /* Interrupt status */
768         s->isr &= ~value;
769         break;
770     case FTGMAC100_IER: /* Interrupt control */
771         s->ier = value;
772         break;
773     case FTGMAC100_MAC_MADR: /* MAC */
774         s->conf.macaddr.a[0] = value >> 8;
775         s->conf.macaddr.a[1] = value;
776         break;
777     case FTGMAC100_MAC_LADR:
778         s->conf.macaddr.a[2] = value >> 24;
779         s->conf.macaddr.a[3] = value >> 16;
780         s->conf.macaddr.a[4] = value >> 8;
781         s->conf.macaddr.a[5] = value;
782         break;
783     case FTGMAC100_MATH0: /* Multicast Address Hash Table 0 */
784         s->math[0] = value;
785         break;
786     case FTGMAC100_MATH1: /* Multicast Address Hash Table 1 */
787         s->math[1] = value;
788         break;
789     case FTGMAC100_ITC: /* TODO: Interrupt Timer Control */
790         s->itc = value;
791         break;
792     case FTGMAC100_RXR_BADR: /* Ring buffer address */
793         if (!QEMU_IS_ALIGNED(value, FTGMAC100_DESC_ALIGNMENT)) {
794             qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad RX buffer alignment 0x%"
795                           HWADDR_PRIx "\n", __func__, value);
796             return;
797         }
798 
799         s->rx_ring = value;
800         s->rx_descriptor = s->rx_ring;
801         break;
802 
803     case FTGMAC100_RBSR: /* DMA buffer size */
804         s->rbsr = value;
805         break;
806 
807     case FTGMAC100_NPTXR_BADR: /* Transmit buffer address */
808         if (!QEMU_IS_ALIGNED(value, FTGMAC100_DESC_ALIGNMENT)) {
809             qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad TX buffer alignment 0x%"
810                           HWADDR_PRIx "\n", __func__, value);
811             return;
812         }
813         s->tx_ring = value;
814         s->tx_descriptor = s->tx_ring;
815         break;
816 
817     case FTGMAC100_NPTXPD: /* Trigger transmit */
818         if ((s->maccr & (FTGMAC100_MACCR_TXDMA_EN | FTGMAC100_MACCR_TXMAC_EN))
819             == (FTGMAC100_MACCR_TXDMA_EN | FTGMAC100_MACCR_TXMAC_EN)) {
820             /* TODO: high priority tx ring */
821             ftgmac100_do_tx(s, s->tx_ring, s->tx_descriptor);
822         }
823         if (ftgmac100_can_receive(qemu_get_queue(s->nic))) {
824             qemu_flush_queued_packets(qemu_get_queue(s->nic));
825         }
826         break;
827 
828     case FTGMAC100_RXPD: /* Receive Poll Demand Register */
829         if (ftgmac100_can_receive(qemu_get_queue(s->nic))) {
830             qemu_flush_queued_packets(qemu_get_queue(s->nic));
831         }
832         break;
833 
834     case FTGMAC100_APTC: /* Automatic polling */
835         s->aptcr = value;
836 
837         if (FTGMAC100_APTC_RXPOLL_CNT(s->aptcr)) {
838             ftgmac100_rxpoll(s);
839         }
840 
841         if (FTGMAC100_APTC_TXPOLL_CNT(s->aptcr)) {
842             qemu_log_mask(LOG_UNIMP, "%s: no transmit polling\n", __func__);
843         }
844         break;
845 
846     case FTGMAC100_MACCR: /* MAC Device control */
847         s->maccr = value;
848         if (value & FTGMAC100_MACCR_SW_RST) {
849             ftgmac100_do_reset(s, true);
850         }
851 
852         if (ftgmac100_can_receive(qemu_get_queue(s->nic))) {
853             qemu_flush_queued_packets(qemu_get_queue(s->nic));
854         }
855         break;
856 
857     case FTGMAC100_PHYCR:  /* PHY Device control */
858         s->phycr = value;
859         if (s->revr & FTGMAC100_REVR_NEW_MDIO_INTERFACE) {
860             do_phy_new_ctl(s);
861         } else {
862             do_phy_ctl(s);
863         }
864         break;
865     case FTGMAC100_PHYDATA:
866         s->phydata = value & 0xffff;
867         break;
868     case FTGMAC100_DBLAC: /* DMA Burst Length and Arbitration Control */
869         if (FTGMAC100_DBLAC_TXDES_SIZE(value) < sizeof(FTGMAC100Desc)) {
870             qemu_log_mask(LOG_GUEST_ERROR,
871                           "%s: transmit descriptor too small: %" PRIx64
872                           " bytes\n", __func__,
873                           FTGMAC100_DBLAC_TXDES_SIZE(value));
874             break;
875         }
876         if (FTGMAC100_DBLAC_RXDES_SIZE(value) < sizeof(FTGMAC100Desc)) {
877             qemu_log_mask(LOG_GUEST_ERROR,
878                           "%s: receive descriptor too small : %" PRIx64
879                           " bytes\n", __func__,
880                           FTGMAC100_DBLAC_RXDES_SIZE(value));
881             break;
882         }
883         s->dblac = value;
884         break;
885     case FTGMAC100_REVR:  /* Feature Register */
886         s->revr = value;
887         break;
888     case FTGMAC100_FEAR1: /* Feature Register 1 */
889         s->fear1 = value;
890         break;
891     case FTGMAC100_TPAFCR: /* Transmit Priority Arbitration and FIFO Control */
892         s->tpafcr = value;
893         break;
894     case FTGMAC100_FCR: /* Flow Control  */
895         s->fcr  = value;
896         break;
897 
898     case FTGMAC100_HPTXPD: /* High Priority Transmit Poll Demand */
899     case FTGMAC100_HPTXR_BADR: /* High Priority Transmit Ring Base Address */
900     case FTGMAC100_MACSR: /* MAC Status Register (MACSR) */
901         qemu_log_mask(LOG_UNIMP, "%s: write to unimplemented register 0x%"
902                       HWADDR_PRIx "\n", __func__, addr);
903         break;
904     default:
905         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset 0x%"
906                       HWADDR_PRIx "\n", __func__, addr);
907         break;
908     }
909 
910     ftgmac100_update_irq(s);
911 }
912 
913 static int ftgmac100_filter(FTGMAC100State *s, const uint8_t *buf, size_t len)
914 {
915     unsigned mcast_idx;
916 
917     if (s->maccr & FTGMAC100_MACCR_RX_ALL) {
918         return 1;
919     }
920 
921     switch (get_eth_packet_type(PKT_GET_ETH_HDR(buf))) {
922     case ETH_PKT_BCAST:
923         if (!(s->maccr & FTGMAC100_MACCR_RX_BROADPKT)) {
924             return 0;
925         }
926         break;
927     case ETH_PKT_MCAST:
928         if (!(s->maccr & FTGMAC100_MACCR_RX_MULTIPKT)) {
929             if (!(s->maccr & FTGMAC100_MACCR_HT_MULTI_EN)) {
930                 return 0;
931             }
932 
933             mcast_idx = net_crc32_le(buf, ETH_ALEN);
934             mcast_idx = (~(mcast_idx >> 2)) & 0x3f;
935             if (!(s->math[mcast_idx / 32] & (1 << (mcast_idx % 32)))) {
936                 return 0;
937             }
938         }
939         break;
940     case ETH_PKT_UCAST:
941         if (memcmp(s->conf.macaddr.a, buf, 6)) {
942             return 0;
943         }
944         break;
945     }
946 
947     return 1;
948 }
949 
950 static ssize_t ftgmac100_receive(NetClientState *nc, const uint8_t *buf,
951                                  size_t len)
952 {
953     FTGMAC100State *s = FTGMAC100(qemu_get_nic_opaque(nc));
954     FTGMAC100Desc bd;
955     uint32_t flags = 0;
956     uint32_t addr;
957     uint32_t crc;
958     uint32_t buf_addr;
959     uint8_t *crc_ptr;
960     uint32_t buf_len;
961     size_t size = len;
962     uint32_t first = FTGMAC100_RXDES0_FRS;
963     uint16_t proto = be16_to_cpu(PKT_GET_ETH_HDR(buf)->h_proto);
964     int max_frame_size = ftgmac100_max_frame_size(s, proto);
965 
966     if ((s->maccr & (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN))
967          != (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN)) {
968         return -1;
969     }
970 
971     if (!ftgmac100_filter(s, buf, size)) {
972         return size;
973     }
974 
975     crc = cpu_to_be32(crc32(~0, buf, size));
976     /* Increase size by 4, loop below reads the last 4 bytes from crc_ptr. */
977     size += 4;
978     crc_ptr = (uint8_t *) &crc;
979 
980     /* Huge frames are truncated.  */
981     if (size > max_frame_size) {
982         qemu_log_mask(LOG_GUEST_ERROR, "%s: frame too big : %zd bytes\n",
983                       __func__, size);
984         size = max_frame_size;
985         flags |= FTGMAC100_RXDES0_FTL;
986     }
987 
988     switch (get_eth_packet_type(PKT_GET_ETH_HDR(buf))) {
989     case ETH_PKT_BCAST:
990         flags |= FTGMAC100_RXDES0_BROADCAST;
991         break;
992     case ETH_PKT_MCAST:
993         flags |= FTGMAC100_RXDES0_MULTICAST;
994         break;
995     case ETH_PKT_UCAST:
996         break;
997     }
998 
999     s->isr |= FTGMAC100_INT_RPKT_FIFO;
1000     addr = s->rx_descriptor;
1001     while (size > 0) {
1002         if (!ftgmac100_can_receive(nc)) {
1003             qemu_log_mask(LOG_GUEST_ERROR, "%s: Unexpected packet\n", __func__);
1004             return -1;
1005         }
1006 
1007         if (ftgmac100_read_bd(&bd, addr) ||
1008             (bd.des0 & FTGMAC100_RXDES0_RXPKT_RDY)) {
1009             /* No descriptors available.  Bail out.  */
1010             qemu_log_mask(LOG_GUEST_ERROR, "%s: Lost end of frame\n",
1011                           __func__);
1012             s->isr |= FTGMAC100_INT_NO_RXBUF;
1013             break;
1014         }
1015         buf_len = (size <= s->rbsr) ? size : s->rbsr;
1016         bd.des0 |= buf_len & 0x3fff;
1017         size -= buf_len;
1018 
1019         /* The last 4 bytes are the CRC.  */
1020         if (size < 4) {
1021             buf_len += size - 4;
1022         }
1023         buf_addr = bd.des3;
1024         if (first && proto == ETH_P_VLAN && buf_len >= 18) {
1025             bd.des1 = lduw_be_p(buf + 14) | FTGMAC100_RXDES1_VLANTAG_AVAIL;
1026 
1027             if (s->maccr & FTGMAC100_MACCR_RM_VLAN) {
1028                 dma_memory_write(&address_space_memory, buf_addr, buf, 12,
1029                                  MEMTXATTRS_UNSPECIFIED);
1030                 dma_memory_write(&address_space_memory, buf_addr + 12,
1031                                  buf + 16, buf_len - 16,
1032                                  MEMTXATTRS_UNSPECIFIED);
1033             } else {
1034                 dma_memory_write(&address_space_memory, buf_addr, buf,
1035                                  buf_len, MEMTXATTRS_UNSPECIFIED);
1036             }
1037         } else {
1038             bd.des1 = 0;
1039             dma_memory_write(&address_space_memory, buf_addr, buf, buf_len,
1040                              MEMTXATTRS_UNSPECIFIED);
1041         }
1042         buf += buf_len;
1043         if (size < 4) {
1044             dma_memory_write(&address_space_memory, buf_addr + buf_len,
1045                              crc_ptr, 4 - size, MEMTXATTRS_UNSPECIFIED);
1046             crc_ptr += 4 - size;
1047         }
1048 
1049         bd.des0 |= first | FTGMAC100_RXDES0_RXPKT_RDY;
1050         first = 0;
1051         if (size == 0) {
1052             /* Last buffer in frame.  */
1053             bd.des0 |= flags | FTGMAC100_RXDES0_LRS;
1054             s->isr |= FTGMAC100_INT_RPKT_BUF;
1055         }
1056         ftgmac100_write_bd(&bd, addr);
1057         if (bd.des0 & s->rxdes0_edorr) {
1058             addr = s->rx_ring;
1059         } else {
1060             addr += FTGMAC100_DBLAC_RXDES_SIZE(s->dblac);
1061         }
1062     }
1063     s->rx_descriptor = addr;
1064 
1065     ftgmac100_update_irq(s);
1066     return len;
1067 }
1068 
1069 static const MemoryRegionOps ftgmac100_ops = {
1070     .read = ftgmac100_read,
1071     .write = ftgmac100_write,
1072     .valid.min_access_size = 4,
1073     .valid.max_access_size = 4,
1074     .endianness = DEVICE_LITTLE_ENDIAN,
1075 };
1076 
1077 static void ftgmac100_cleanup(NetClientState *nc)
1078 {
1079     FTGMAC100State *s = FTGMAC100(qemu_get_nic_opaque(nc));
1080 
1081     s->nic = NULL;
1082 }
1083 
1084 static NetClientInfo net_ftgmac100_info = {
1085     .type = NET_CLIENT_DRIVER_NIC,
1086     .size = sizeof(NICState),
1087     .can_receive = ftgmac100_can_receive,
1088     .receive = ftgmac100_receive,
1089     .cleanup = ftgmac100_cleanup,
1090     .link_status_changed = ftgmac100_set_link,
1091 };
1092 
1093 static void ftgmac100_realize(DeviceState *dev, Error **errp)
1094 {
1095     FTGMAC100State *s = FTGMAC100(dev);
1096     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1097 
1098     if (s->aspeed) {
1099         s->txdes0_edotr = FTGMAC100_TXDES0_EDOTR_ASPEED;
1100         s->rxdes0_edorr = FTGMAC100_RXDES0_EDORR_ASPEED;
1101     } else {
1102         s->txdes0_edotr = FTGMAC100_TXDES0_EDOTR;
1103         s->rxdes0_edorr = FTGMAC100_RXDES0_EDORR;
1104     }
1105 
1106     memory_region_init_io(&s->iomem, OBJECT(dev), &ftgmac100_ops, s,
1107                           TYPE_FTGMAC100, 0x2000);
1108     sysbus_init_mmio(sbd, &s->iomem);
1109     sysbus_init_irq(sbd, &s->irq);
1110     qemu_macaddr_default_if_unset(&s->conf.macaddr);
1111 
1112     s->nic = qemu_new_nic(&net_ftgmac100_info, &s->conf,
1113                           object_get_typename(OBJECT(dev)), dev->id, s);
1114     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
1115 }
1116 
1117 static const VMStateDescription vmstate_ftgmac100 = {
1118     .name = TYPE_FTGMAC100,
1119     .version_id = 1,
1120     .minimum_version_id = 1,
1121     .fields = (VMStateField[]) {
1122         VMSTATE_UINT32(irq_state, FTGMAC100State),
1123         VMSTATE_UINT32(isr, FTGMAC100State),
1124         VMSTATE_UINT32(ier, FTGMAC100State),
1125         VMSTATE_UINT32(rx_enabled, FTGMAC100State),
1126         VMSTATE_UINT32(rx_ring, FTGMAC100State),
1127         VMSTATE_UINT32(rbsr, FTGMAC100State),
1128         VMSTATE_UINT32(tx_ring, FTGMAC100State),
1129         VMSTATE_UINT32(rx_descriptor, FTGMAC100State),
1130         VMSTATE_UINT32(tx_descriptor, FTGMAC100State),
1131         VMSTATE_UINT32_ARRAY(math, FTGMAC100State, 2),
1132         VMSTATE_UINT32(itc, FTGMAC100State),
1133         VMSTATE_UINT32(aptcr, FTGMAC100State),
1134         VMSTATE_UINT32(dblac, FTGMAC100State),
1135         VMSTATE_UINT32(revr, FTGMAC100State),
1136         VMSTATE_UINT32(fear1, FTGMAC100State),
1137         VMSTATE_UINT32(tpafcr, FTGMAC100State),
1138         VMSTATE_UINT32(maccr, FTGMAC100State),
1139         VMSTATE_UINT32(phycr, FTGMAC100State),
1140         VMSTATE_UINT32(phydata, FTGMAC100State),
1141         VMSTATE_UINT32(fcr, FTGMAC100State),
1142         VMSTATE_UINT32(phy_status, FTGMAC100State),
1143         VMSTATE_UINT32(phy_control, FTGMAC100State),
1144         VMSTATE_UINT32(phy_advertise, FTGMAC100State),
1145         VMSTATE_UINT32(phy_int, FTGMAC100State),
1146         VMSTATE_UINT32(phy_int_mask, FTGMAC100State),
1147         VMSTATE_UINT32(txdes0_edotr, FTGMAC100State),
1148         VMSTATE_UINT32(rxdes0_edorr, FTGMAC100State),
1149         VMSTATE_END_OF_LIST()
1150     }
1151 };
1152 
1153 static Property ftgmac100_properties[] = {
1154     DEFINE_PROP_BOOL("aspeed", FTGMAC100State, aspeed, false),
1155     DEFINE_NIC_PROPERTIES(FTGMAC100State, conf),
1156     DEFINE_PROP_END_OF_LIST(),
1157 };
1158 
1159 static void ftgmac100_class_init(ObjectClass *klass, void *data)
1160 {
1161     DeviceClass *dc = DEVICE_CLASS(klass);
1162 
1163     dc->vmsd = &vmstate_ftgmac100;
1164     dc->reset = ftgmac100_reset;
1165     device_class_set_props(dc, ftgmac100_properties);
1166     set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
1167     dc->realize = ftgmac100_realize;
1168     dc->desc = "Faraday FTGMAC100 Gigabit Ethernet emulation";
1169 }
1170 
1171 static const TypeInfo ftgmac100_info = {
1172     .name = TYPE_FTGMAC100,
1173     .parent = TYPE_SYS_BUS_DEVICE,
1174     .instance_size = sizeof(FTGMAC100State),
1175     .class_init = ftgmac100_class_init,
1176 };
1177 
1178 /*
1179  * AST2600 MII controller
1180  */
1181 #define ASPEED_MII_PHYCR_FIRE        BIT(31)
1182 #define ASPEED_MII_PHYCR_ST_22       BIT(28)
1183 #define ASPEED_MII_PHYCR_OP(x)       ((x) & (ASPEED_MII_PHYCR_OP_WRITE | \
1184                                              ASPEED_MII_PHYCR_OP_READ))
1185 #define ASPEED_MII_PHYCR_OP_WRITE    BIT(26)
1186 #define ASPEED_MII_PHYCR_OP_READ     BIT(27)
1187 #define ASPEED_MII_PHYCR_DATA(x)     (x & 0xffff)
1188 #define ASPEED_MII_PHYCR_PHY(x)      (((x) >> 21) & 0x1f)
1189 #define ASPEED_MII_PHYCR_REG(x)      (((x) >> 16) & 0x1f)
1190 
1191 #define ASPEED_MII_PHYDATA_IDLE      BIT(16)
1192 
1193 static void aspeed_mii_transition(AspeedMiiState *s, bool fire)
1194 {
1195     if (fire) {
1196         s->phycr |= ASPEED_MII_PHYCR_FIRE;
1197         s->phydata &= ~ASPEED_MII_PHYDATA_IDLE;
1198     } else {
1199         s->phycr &= ~ASPEED_MII_PHYCR_FIRE;
1200         s->phydata |= ASPEED_MII_PHYDATA_IDLE;
1201     }
1202 }
1203 
1204 static void aspeed_mii_do_phy_ctl(AspeedMiiState *s)
1205 {
1206     uint8_t reg;
1207     uint16_t data;
1208 
1209     if (!(s->phycr & ASPEED_MII_PHYCR_ST_22)) {
1210         aspeed_mii_transition(s, !ASPEED_MII_PHYCR_FIRE);
1211         qemu_log_mask(LOG_UNIMP, "%s: unsupported ST code\n", __func__);
1212         return;
1213     }
1214 
1215     /* Nothing to do */
1216     if (!(s->phycr & ASPEED_MII_PHYCR_FIRE)) {
1217         return;
1218     }
1219 
1220     reg = ASPEED_MII_PHYCR_REG(s->phycr);
1221     data = ASPEED_MII_PHYCR_DATA(s->phycr);
1222 
1223     switch (ASPEED_MII_PHYCR_OP(s->phycr)) {
1224     case ASPEED_MII_PHYCR_OP_WRITE:
1225         do_phy_write(s->nic, reg, data);
1226         break;
1227     case ASPEED_MII_PHYCR_OP_READ:
1228         s->phydata = (s->phydata & ~0xffff) | do_phy_read(s->nic, reg);
1229         break;
1230     default:
1231         qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid OP code %08x\n",
1232                       __func__, s->phycr);
1233     }
1234 
1235     aspeed_mii_transition(s, !ASPEED_MII_PHYCR_FIRE);
1236 }
1237 
1238 static uint64_t aspeed_mii_read(void *opaque, hwaddr addr, unsigned size)
1239 {
1240     AspeedMiiState *s = ASPEED_MII(opaque);
1241 
1242     switch (addr) {
1243     case 0x0:
1244         return s->phycr;
1245     case 0x4:
1246         return s->phydata;
1247     default:
1248         g_assert_not_reached();
1249     }
1250 }
1251 
1252 static void aspeed_mii_write(void *opaque, hwaddr addr,
1253                              uint64_t value, unsigned size)
1254 {
1255     AspeedMiiState *s = ASPEED_MII(opaque);
1256 
1257     switch (addr) {
1258     case 0x0:
1259         s->phycr = value & ~(s->phycr & ASPEED_MII_PHYCR_FIRE);
1260         break;
1261     case 0x4:
1262         s->phydata = value & ~(0xffff | ASPEED_MII_PHYDATA_IDLE);
1263         break;
1264     default:
1265         g_assert_not_reached();
1266     }
1267 
1268     aspeed_mii_transition(s, !!(s->phycr & ASPEED_MII_PHYCR_FIRE));
1269     aspeed_mii_do_phy_ctl(s);
1270 }
1271 
1272 static const MemoryRegionOps aspeed_mii_ops = {
1273     .read = aspeed_mii_read,
1274     .write = aspeed_mii_write,
1275     .valid.min_access_size = 4,
1276     .valid.max_access_size = 4,
1277     .endianness = DEVICE_LITTLE_ENDIAN,
1278 };
1279 
1280 static void aspeed_mii_reset(DeviceState *dev)
1281 {
1282     AspeedMiiState *s = ASPEED_MII(dev);
1283 
1284     s->phycr = 0;
1285     s->phydata = 0;
1286 
1287     aspeed_mii_transition(s, !!(s->phycr & ASPEED_MII_PHYCR_FIRE));
1288 };
1289 
1290 static void aspeed_mii_realize(DeviceState *dev, Error **errp)
1291 {
1292     AspeedMiiState *s = ASPEED_MII(dev);
1293     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1294 
1295     assert(s->nic);
1296 
1297     memory_region_init_io(&s->iomem, OBJECT(dev), &aspeed_mii_ops, s,
1298                           TYPE_ASPEED_MII, 0x8);
1299     sysbus_init_mmio(sbd, &s->iomem);
1300 }
1301 
1302 static const VMStateDescription vmstate_aspeed_mii = {
1303     .name = TYPE_ASPEED_MII,
1304     .version_id = 1,
1305     .minimum_version_id = 1,
1306     .fields = (VMStateField[]) {
1307         VMSTATE_UINT32(phycr, FTGMAC100State),
1308         VMSTATE_UINT32(phydata, FTGMAC100State),
1309         VMSTATE_END_OF_LIST()
1310     }
1311 };
1312 
1313 static Property aspeed_mii_properties[] = {
1314     DEFINE_PROP_LINK("nic", AspeedMiiState, nic, TYPE_FTGMAC100,
1315                      FTGMAC100State *),
1316     DEFINE_PROP_END_OF_LIST(),
1317 };
1318 
1319 static void aspeed_mii_class_init(ObjectClass *klass, void *data)
1320 {
1321     DeviceClass *dc = DEVICE_CLASS(klass);
1322 
1323     dc->vmsd = &vmstate_aspeed_mii;
1324     dc->reset = aspeed_mii_reset;
1325     dc->realize = aspeed_mii_realize;
1326     dc->desc = "Aspeed MII controller";
1327     device_class_set_props(dc, aspeed_mii_properties);
1328 }
1329 
1330 static const TypeInfo aspeed_mii_info = {
1331     .name = TYPE_ASPEED_MII,
1332     .parent = TYPE_SYS_BUS_DEVICE,
1333     .instance_size = sizeof(AspeedMiiState),
1334     .class_init = aspeed_mii_class_init,
1335 };
1336 
1337 static void ftgmac100_register_types(void)
1338 {
1339     type_register_static(&ftgmac100_info);
1340     type_register_static(&aspeed_mii_info);
1341 }
1342 
1343 type_init(ftgmac100_register_types)
1344