xref: /openbmc/qemu/hw/net/e1000x_common.c (revision 53e116fed6dde572003aebf3bc32e25663eeb446)
1 /*
2 * QEMU e1000(e) emulation - shared code
3 *
4 * Copyright (c) 2008 Qumranet
5 *
6 * Based on work done by:
7 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
8 * Copyright (c) 2007 Dan Aloni
9 * Copyright (c) 2004 Antony T Curtis
10 *
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2 of the License, or (at your option) any later version.
15 *
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/hw.h"
28 #include "hw/pci/pci.h"
29 #include "net/net.h"
30 
31 #include "e1000x_common.h"
32 
33 #include "trace.h"
34 
35 bool e1000x_rx_ready(PCIDevice *d, uint32_t *mac)
36 {
37     bool link_up = mac[STATUS] & E1000_STATUS_LU;
38     bool rx_enabled = mac[RCTL] & E1000_RCTL_EN;
39     bool pci_master = d->config[PCI_COMMAND] & PCI_COMMAND_MASTER;
40 
41     if (!link_up || !rx_enabled || !pci_master) {
42         trace_e1000x_rx_can_recv_disabled(link_up, rx_enabled, pci_master);
43         return false;
44     }
45 
46     return true;
47 }
48 
49 bool e1000x_is_vlan_packet(const uint8_t *buf, uint16_t vet)
50 {
51     uint16_t eth_proto = lduw_be_p(buf + 12);
52     bool res = (eth_proto == vet);
53 
54     trace_e1000x_vlan_is_vlan_pkt(res, eth_proto, vet);
55 
56     return res;
57 }
58 
59 bool e1000x_rx_group_filter(uint32_t *mac, const uint8_t *buf)
60 {
61     static const int mta_shift[] = { 4, 3, 2, 0 };
62     uint32_t f, ra[2], *rp, rctl = mac[RCTL];
63 
64     for (rp = mac + RA; rp < mac + RA + 32; rp += 2) {
65         if (!(rp[1] & E1000_RAH_AV)) {
66             continue;
67         }
68         ra[0] = cpu_to_le32(rp[0]);
69         ra[1] = cpu_to_le32(rp[1]);
70         if (!memcmp(buf, (uint8_t *)ra, 6)) {
71             trace_e1000x_rx_flt_ucast_match((int)(rp - mac - RA) / 2,
72                                             MAC_ARG(buf));
73             return true;
74         }
75     }
76     trace_e1000x_rx_flt_ucast_mismatch(MAC_ARG(buf));
77 
78     f = mta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3];
79     f = (((buf[5] << 8) | buf[4]) >> f) & 0xfff;
80     if (mac[MTA + (f >> 5)] & (1 << (f & 0x1f))) {
81         e1000x_inc_reg_if_not_full(mac, MPRC);
82         return true;
83     }
84 
85     trace_e1000x_rx_flt_inexact_mismatch(MAC_ARG(buf),
86                                          (rctl >> E1000_RCTL_MO_SHIFT) & 3,
87                                          f >> 5,
88                                          mac[MTA + (f >> 5)]);
89 
90     return false;
91 }
92 
93 bool e1000x_hw_rx_enabled(uint32_t *mac)
94 {
95     if (!(mac[STATUS] & E1000_STATUS_LU)) {
96         trace_e1000x_rx_link_down(mac[STATUS]);
97         return false;
98     }
99 
100     if (!(mac[RCTL] & E1000_RCTL_EN)) {
101         trace_e1000x_rx_disabled(mac[RCTL]);
102         return false;
103     }
104 
105     return true;
106 }
107 
108 bool e1000x_is_oversized(uint32_t *mac, size_t size)
109 {
110     /* this is the size past which hardware will
111        drop packets when setting LPE=0 */
112     static const int maximum_ethernet_vlan_size = 1522;
113     /* this is the size past which hardware will
114        drop packets when setting LPE=1 */
115     static const int maximum_ethernet_lpe_size = 16 * KiB;
116 
117     if ((size > maximum_ethernet_lpe_size ||
118         (size > maximum_ethernet_vlan_size
119             && !(mac[RCTL] & E1000_RCTL_LPE)))
120         && !(mac[RCTL] & E1000_RCTL_SBP)) {
121         e1000x_inc_reg_if_not_full(mac, ROC);
122         trace_e1000x_rx_oversized(size);
123         return true;
124     }
125 
126     return false;
127 }
128 
129 void e1000x_restart_autoneg(uint32_t *mac, uint16_t *phy, QEMUTimer *timer)
130 {
131     e1000x_update_regs_on_link_down(mac, phy);
132     trace_e1000x_link_negotiation_start();
133     timer_mod(timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
134 }
135 
136 void e1000x_reset_mac_addr(NICState *nic, uint32_t *mac_regs,
137                            uint8_t *mac_addr)
138 {
139     int i;
140 
141     mac_regs[RA] = 0;
142     mac_regs[RA + 1] = E1000_RAH_AV;
143     for (i = 0; i < 4; i++) {
144         mac_regs[RA] |= mac_addr[i] << (8 * i);
145         mac_regs[RA + 1] |=
146             (i < 2) ? mac_addr[i + 4] << (8 * i) : 0;
147     }
148 
149     qemu_format_nic_info_str(qemu_get_queue(nic), mac_addr);
150     trace_e1000x_mac_indicate(MAC_ARG(mac_addr));
151 }
152 
153 void e1000x_update_regs_on_autoneg_done(uint32_t *mac, uint16_t *phy)
154 {
155     e1000x_update_regs_on_link_up(mac, phy);
156     phy[PHY_LP_ABILITY] |= MII_LPAR_LPACK;
157     phy[PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE;
158     trace_e1000x_link_negotiation_done();
159 }
160 
161 void
162 e1000x_core_prepare_eeprom(uint16_t       *eeprom,
163                            const uint16_t *templ,
164                            uint32_t        templ_size,
165                            uint16_t        dev_id,
166                            const uint8_t  *macaddr)
167 {
168     uint16_t checksum = 0;
169     int i;
170 
171     memmove(eeprom, templ, templ_size);
172 
173     for (i = 0; i < 3; i++) {
174         eeprom[i] = (macaddr[2 * i + 1] << 8) | macaddr[2 * i];
175     }
176 
177     eeprom[11] = eeprom[13] = dev_id;
178 
179     for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
180         checksum += eeprom[i];
181     }
182 
183     checksum = (uint16_t) EEPROM_SUM - checksum;
184 
185     eeprom[EEPROM_CHECKSUM_REG] = checksum;
186 }
187 
188 uint32_t
189 e1000x_rxbufsize(uint32_t rctl)
190 {
191     rctl &= E1000_RCTL_BSEX | E1000_RCTL_SZ_16384 | E1000_RCTL_SZ_8192 |
192         E1000_RCTL_SZ_4096 | E1000_RCTL_SZ_2048 | E1000_RCTL_SZ_1024 |
193         E1000_RCTL_SZ_512 | E1000_RCTL_SZ_256;
194     switch (rctl) {
195     case E1000_RCTL_BSEX | E1000_RCTL_SZ_16384:
196         return 16384;
197     case E1000_RCTL_BSEX | E1000_RCTL_SZ_8192:
198         return 8192;
199     case E1000_RCTL_BSEX | E1000_RCTL_SZ_4096:
200         return 4096;
201     case E1000_RCTL_SZ_1024:
202         return 1024;
203     case E1000_RCTL_SZ_512:
204         return 512;
205     case E1000_RCTL_SZ_256:
206         return 256;
207     }
208     return 2048;
209 }
210 
211 void
212 e1000x_update_rx_total_stats(uint32_t *mac,
213                              size_t data_size,
214                              size_t data_fcs_size)
215 {
216     static const int PRCregs[6] = { PRC64, PRC127, PRC255, PRC511,
217                                     PRC1023, PRC1522 };
218 
219     e1000x_increase_size_stats(mac, PRCregs, data_fcs_size);
220     e1000x_inc_reg_if_not_full(mac, TPR);
221     mac[GPRC] = mac[TPR];
222     /* TOR - Total Octets Received:
223     * This register includes bytes received in a packet from the <Destination
224     * Address> field through the <CRC> field, inclusively.
225     * Always include FCS length (4) in size.
226     */
227     e1000x_grow_8reg_if_not_full(mac, TORL, data_size + 4);
228     mac[GORCL] = mac[TORL];
229     mac[GORCH] = mac[TORH];
230 }
231 
232 void
233 e1000x_increase_size_stats(uint32_t *mac, const int *size_regs, int size)
234 {
235     if (size > 1023) {
236         e1000x_inc_reg_if_not_full(mac, size_regs[5]);
237     } else if (size > 511) {
238         e1000x_inc_reg_if_not_full(mac, size_regs[4]);
239     } else if (size > 255) {
240         e1000x_inc_reg_if_not_full(mac, size_regs[3]);
241     } else if (size > 127) {
242         e1000x_inc_reg_if_not_full(mac, size_regs[2]);
243     } else if (size > 64) {
244         e1000x_inc_reg_if_not_full(mac, size_regs[1]);
245     } else if (size == 64) {
246         e1000x_inc_reg_if_not_full(mac, size_regs[0]);
247     }
248 }
249 
250 void
251 e1000x_read_tx_ctx_descr(struct e1000_context_desc *d,
252                          e1000x_txd_props *props)
253 {
254     uint32_t op = le32_to_cpu(d->cmd_and_length);
255 
256     props->ipcss = d->lower_setup.ip_fields.ipcss;
257     props->ipcso = d->lower_setup.ip_fields.ipcso;
258     props->ipcse = le16_to_cpu(d->lower_setup.ip_fields.ipcse);
259     props->tucss = d->upper_setup.tcp_fields.tucss;
260     props->tucso = d->upper_setup.tcp_fields.tucso;
261     props->tucse = le16_to_cpu(d->upper_setup.tcp_fields.tucse);
262     props->paylen = op & 0xfffff;
263     props->hdr_len = d->tcp_seg_setup.fields.hdr_len;
264     props->mss = le16_to_cpu(d->tcp_seg_setup.fields.mss);
265     props->ip = (op & E1000_TXD_CMD_IP) ? 1 : 0;
266     props->tcp = (op & E1000_TXD_CMD_TCP) ? 1 : 0;
267     props->tse = (op & E1000_TXD_CMD_TSE) ? 1 : 0;
268 }
269