xref: /openbmc/qemu/hw/misc/zynq_slcr.c (revision c5a5839856119a3644dcc0775a046ed0ee3081c3)
1 /*
2  * Status and system control registers for Xilinx Zynq Platform
3  *
4  * Copyright (c) 2011 Michal Simek <monstr@monstr.eu>
5  * Copyright (c) 2012 PetaLogix Pty Ltd.
6  * Based on hw/arm_sysctl.c, written by Paul Brook
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version
11  * 2 of the License, or (at your option) any later version.
12  *
13  * You should have received a copy of the GNU General Public License along
14  * with this program; if not, see <http://www.gnu.org/licenses/>.
15  */
16 
17 #include "qemu/osdep.h"
18 #include "qemu/timer.h"
19 #include "sysemu/runstate.h"
20 #include "hw/sysbus.h"
21 #include "migration/vmstate.h"
22 #include "qemu/log.h"
23 #include "qemu/module.h"
24 #include "hw/registerfields.h"
25 #include "hw/qdev-clock.h"
26 
27 #ifndef ZYNQ_SLCR_ERR_DEBUG
28 #define ZYNQ_SLCR_ERR_DEBUG 0
29 #endif
30 
31 #define DB_PRINT(...) do { \
32         if (ZYNQ_SLCR_ERR_DEBUG) { \
33             fprintf(stderr,  ": %s: ", __func__); \
34             fprintf(stderr, ## __VA_ARGS__); \
35         } \
36     } while (0)
37 
38 #define XILINX_LOCK_KEY 0x767b
39 #define XILINX_UNLOCK_KEY 0xdf0d
40 
41 REG32(SCL, 0x000)
42 REG32(LOCK, 0x004)
43 REG32(UNLOCK, 0x008)
44 REG32(LOCKSTA, 0x00c)
45 
46 REG32(ARM_PLL_CTRL, 0x100)
47 REG32(DDR_PLL_CTRL, 0x104)
48 REG32(IO_PLL_CTRL, 0x108)
49 /* fields for [ARM|DDR|IO]_PLL_CTRL registers */
50     FIELD(xxx_PLL_CTRL, PLL_RESET, 0, 1)
51     FIELD(xxx_PLL_CTRL, PLL_PWRDWN, 1, 1)
52     FIELD(xxx_PLL_CTRL, PLL_BYPASS_QUAL, 3, 1)
53     FIELD(xxx_PLL_CTRL, PLL_BYPASS_FORCE, 4, 1)
54     FIELD(xxx_PLL_CTRL, PLL_FPDIV, 12, 7)
55 REG32(PLL_STATUS, 0x10c)
56 REG32(ARM_PLL_CFG, 0x110)
57 REG32(DDR_PLL_CFG, 0x114)
58 REG32(IO_PLL_CFG, 0x118)
59 
60 REG32(ARM_CLK_CTRL, 0x120)
61 REG32(DDR_CLK_CTRL, 0x124)
62 REG32(DCI_CLK_CTRL, 0x128)
63 REG32(APER_CLK_CTRL, 0x12c)
64 REG32(USB0_CLK_CTRL, 0x130)
65 REG32(USB1_CLK_CTRL, 0x134)
66 REG32(GEM0_RCLK_CTRL, 0x138)
67 REG32(GEM1_RCLK_CTRL, 0x13c)
68 REG32(GEM0_CLK_CTRL, 0x140)
69 REG32(GEM1_CLK_CTRL, 0x144)
70 REG32(SMC_CLK_CTRL, 0x148)
71 REG32(LQSPI_CLK_CTRL, 0x14c)
72 REG32(SDIO_CLK_CTRL, 0x150)
73 REG32(UART_CLK_CTRL, 0x154)
74     FIELD(UART_CLK_CTRL, CLKACT0, 0, 1)
75     FIELD(UART_CLK_CTRL, CLKACT1, 1, 1)
76     FIELD(UART_CLK_CTRL, SRCSEL,  4, 2)
77     FIELD(UART_CLK_CTRL, DIVISOR, 8, 6)
78 REG32(SPI_CLK_CTRL, 0x158)
79 REG32(CAN_CLK_CTRL, 0x15c)
80 REG32(CAN_MIOCLK_CTRL, 0x160)
81 REG32(DBG_CLK_CTRL, 0x164)
82 REG32(PCAP_CLK_CTRL, 0x168)
83 REG32(TOPSW_CLK_CTRL, 0x16c)
84 
85 #define FPGA_CTRL_REGS(n, start) \
86     REG32(FPGA ## n ## _CLK_CTRL, (start)) \
87     REG32(FPGA ## n ## _THR_CTRL, (start) + 0x4)\
88     REG32(FPGA ## n ## _THR_CNT,  (start) + 0x8)\
89     REG32(FPGA ## n ## _THR_STA,  (start) + 0xc)
90 FPGA_CTRL_REGS(0, 0x170)
91 FPGA_CTRL_REGS(1, 0x180)
92 FPGA_CTRL_REGS(2, 0x190)
93 FPGA_CTRL_REGS(3, 0x1a0)
94 
95 REG32(BANDGAP_TRIP, 0x1b8)
96 REG32(PLL_PREDIVISOR, 0x1c0)
97 REG32(CLK_621_TRUE, 0x1c4)
98 
99 REG32(PSS_RST_CTRL, 0x200)
100     FIELD(PSS_RST_CTRL, SOFT_RST, 0, 1)
101 REG32(DDR_RST_CTRL, 0x204)
102 REG32(TOPSW_RESET_CTRL, 0x208)
103 REG32(DMAC_RST_CTRL, 0x20c)
104 REG32(USB_RST_CTRL, 0x210)
105 REG32(GEM_RST_CTRL, 0x214)
106 REG32(SDIO_RST_CTRL, 0x218)
107 REG32(SPI_RST_CTRL, 0x21c)
108 REG32(CAN_RST_CTRL, 0x220)
109 REG32(I2C_RST_CTRL, 0x224)
110 REG32(UART_RST_CTRL, 0x228)
111 REG32(GPIO_RST_CTRL, 0x22c)
112 REG32(LQSPI_RST_CTRL, 0x230)
113 REG32(SMC_RST_CTRL, 0x234)
114 REG32(OCM_RST_CTRL, 0x238)
115 REG32(FPGA_RST_CTRL, 0x240)
116 REG32(A9_CPU_RST_CTRL, 0x244)
117 
118 REG32(RS_AWDT_CTRL, 0x24c)
119 REG32(RST_REASON, 0x250)
120 
121 REG32(REBOOT_STATUS, 0x258)
122 REG32(BOOT_MODE, 0x25c)
123 
124 REG32(APU_CTRL, 0x300)
125 REG32(WDT_CLK_SEL, 0x304)
126 
127 REG32(TZ_DMA_NS, 0x440)
128 REG32(TZ_DMA_IRQ_NS, 0x444)
129 REG32(TZ_DMA_PERIPH_NS, 0x448)
130 
131 REG32(PSS_IDCODE, 0x530)
132 
133 REG32(DDR_URGENT, 0x600)
134 REG32(DDR_CAL_START, 0x60c)
135 REG32(DDR_REF_START, 0x614)
136 REG32(DDR_CMD_STA, 0x618)
137 REG32(DDR_URGENT_SEL, 0x61c)
138 REG32(DDR_DFI_STATUS, 0x620)
139 
140 REG32(MIO, 0x700)
141 #define MIO_LENGTH 54
142 
143 REG32(MIO_LOOPBACK, 0x804)
144 REG32(MIO_MST_TRI0, 0x808)
145 REG32(MIO_MST_TRI1, 0x80c)
146 
147 REG32(SD0_WP_CD_SEL, 0x830)
148 REG32(SD1_WP_CD_SEL, 0x834)
149 
150 REG32(LVL_SHFTR_EN, 0x900)
151 REG32(OCM_CFG, 0x910)
152 
153 REG32(CPU_RAM, 0xa00)
154 
155 REG32(IOU, 0xa30)
156 
157 REG32(DMAC_RAM, 0xa50)
158 
159 REG32(AFI0, 0xa60)
160 REG32(AFI1, 0xa6c)
161 REG32(AFI2, 0xa78)
162 REG32(AFI3, 0xa84)
163 #define AFI_LENGTH 3
164 
165 REG32(OCM, 0xa90)
166 
167 REG32(DEVCI_RAM, 0xaa0)
168 
169 REG32(CSG_RAM, 0xab0)
170 
171 REG32(GPIOB_CTRL, 0xb00)
172 REG32(GPIOB_CFG_CMOS18, 0xb04)
173 REG32(GPIOB_CFG_CMOS25, 0xb08)
174 REG32(GPIOB_CFG_CMOS33, 0xb0c)
175 REG32(GPIOB_CFG_HSTL, 0xb14)
176 REG32(GPIOB_DRVR_BIAS_CTRL, 0xb18)
177 
178 REG32(DDRIOB, 0xb40)
179 #define DDRIOB_LENGTH 14
180 
181 #define ZYNQ_SLCR_MMIO_SIZE     0x1000
182 #define ZYNQ_SLCR_NUM_REGS      (ZYNQ_SLCR_MMIO_SIZE / 4)
183 
184 #define TYPE_ZYNQ_SLCR "xilinx,zynq_slcr"
185 #define ZYNQ_SLCR(obj) OBJECT_CHECK(ZynqSLCRState, (obj), TYPE_ZYNQ_SLCR)
186 
187 typedef struct ZynqSLCRState {
188     SysBusDevice parent_obj;
189 
190     MemoryRegion iomem;
191 
192     uint32_t regs[ZYNQ_SLCR_NUM_REGS];
193 
194     Clock *ps_clk;
195     Clock *uart0_ref_clk;
196     Clock *uart1_ref_clk;
197 } ZynqSLCRState;
198 
199 /*
200  * return the output frequency of ARM/DDR/IO pll
201  * using input frequency and PLL_CTRL register
202  */
203 static uint64_t zynq_slcr_compute_pll(uint64_t input, uint32_t ctrl_reg)
204 {
205     uint32_t mult = ((ctrl_reg & R_xxx_PLL_CTRL_PLL_FPDIV_MASK) >>
206             R_xxx_PLL_CTRL_PLL_FPDIV_SHIFT);
207 
208     /* first, check if pll is bypassed */
209     if (ctrl_reg & R_xxx_PLL_CTRL_PLL_BYPASS_FORCE_MASK) {
210         return input;
211     }
212 
213     /* is pll disabled ? */
214     if (ctrl_reg & (R_xxx_PLL_CTRL_PLL_RESET_MASK |
215                     R_xxx_PLL_CTRL_PLL_PWRDWN_MASK)) {
216         return 0;
217     }
218 
219     /* frequency multiplier -> period division */
220     return input / mult;
221 }
222 
223 /*
224  * return the output period of a clock given:
225  * + the periods in an array corresponding to input mux selector
226  * + the register xxx_CLK_CTRL value
227  * + enable bit index in ctrl register
228  *
229  * This function makes the assumption that the ctrl_reg value is organized as
230  * follows:
231  * + bits[13:8]  clock frequency divisor
232  * + bits[5:4]   clock mux selector (index in array)
233  * + bits[index] clock enable
234  */
235 static uint64_t zynq_slcr_compute_clock(const uint64_t periods[],
236                                         uint32_t ctrl_reg,
237                                         unsigned index)
238 {
239     uint32_t srcsel = extract32(ctrl_reg, 4, 2); /* bits [5:4] */
240     uint32_t divisor = extract32(ctrl_reg, 8, 6); /* bits [13:8] */
241 
242     /* first, check if clock is disabled */
243     if (((ctrl_reg >> index) & 1u) == 0) {
244         return 0;
245     }
246 
247     /*
248      * according to the Zynq technical ref. manual UG585 v1.12.2 in
249      * Clocks chapter, section 25.10.1 page 705:
250      * "The 6-bit divider provides a divide range of 1 to 63"
251      * We follow here what is implemented in linux kernel and consider
252      * the 0 value as a bypass (no division).
253      */
254     /* frequency divisor -> period multiplication */
255     return periods[srcsel] * (divisor ? divisor : 1u);
256 }
257 
258 /*
259  * macro helper around zynq_slcr_compute_clock to avoid repeating
260  * the register name.
261  */
262 #define ZYNQ_COMPUTE_CLK(state, plls, reg, enable_field) \
263     zynq_slcr_compute_clock((plls), (state)->regs[reg], \
264                             reg ## _ ## enable_field ## _SHIFT)
265 
266 /**
267  * Compute and set the ouputs clocks periods.
268  * But do not propagate them further. Connected clocks
269  * will not receive any updates (See zynq_slcr_compute_clocks())
270  */
271 static void zynq_slcr_compute_clocks(ZynqSLCRState *s)
272 {
273     uint64_t ps_clk = clock_get(s->ps_clk);
274 
275     /* consider outputs clocks are disabled while in reset */
276     if (device_is_in_reset(DEVICE(s))) {
277         ps_clk = 0;
278     }
279 
280     uint64_t io_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_IO_PLL_CTRL]);
281     uint64_t arm_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_ARM_PLL_CTRL]);
282     uint64_t ddr_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_DDR_PLL_CTRL]);
283 
284     uint64_t uart_mux[4] = {io_pll, io_pll, arm_pll, ddr_pll};
285 
286     /* compute uartX reference clocks */
287     clock_set(s->uart0_ref_clk,
288               ZYNQ_COMPUTE_CLK(s, uart_mux, R_UART_CLK_CTRL, CLKACT0));
289     clock_set(s->uart1_ref_clk,
290               ZYNQ_COMPUTE_CLK(s, uart_mux, R_UART_CLK_CTRL, CLKACT1));
291 }
292 
293 /**
294  * Propagate the outputs clocks.
295  * zynq_slcr_compute_clocks() should have been called before
296  * to configure them.
297  */
298 static void zynq_slcr_propagate_clocks(ZynqSLCRState *s)
299 {
300     clock_propagate(s->uart0_ref_clk);
301     clock_propagate(s->uart1_ref_clk);
302 }
303 
304 static void zynq_slcr_ps_clk_callback(void *opaque)
305 {
306     ZynqSLCRState *s = (ZynqSLCRState *) opaque;
307     zynq_slcr_compute_clocks(s);
308     zynq_slcr_propagate_clocks(s);
309 }
310 
311 static void zynq_slcr_reset_init(Object *obj, ResetType type)
312 {
313     ZynqSLCRState *s = ZYNQ_SLCR(obj);
314     int i;
315 
316     DB_PRINT("RESET\n");
317 
318     s->regs[R_LOCKSTA] = 1;
319     /* 0x100 - 0x11C */
320     s->regs[R_ARM_PLL_CTRL]   = 0x0001A008;
321     s->regs[R_DDR_PLL_CTRL]   = 0x0001A008;
322     s->regs[R_IO_PLL_CTRL]    = 0x0001A008;
323     s->regs[R_PLL_STATUS]     = 0x0000003F;
324     s->regs[R_ARM_PLL_CFG]    = 0x00014000;
325     s->regs[R_DDR_PLL_CFG]    = 0x00014000;
326     s->regs[R_IO_PLL_CFG]     = 0x00014000;
327 
328     /* 0x120 - 0x16C */
329     s->regs[R_ARM_CLK_CTRL]   = 0x1F000400;
330     s->regs[R_DDR_CLK_CTRL]   = 0x18400003;
331     s->regs[R_DCI_CLK_CTRL]   = 0x01E03201;
332     s->regs[R_APER_CLK_CTRL]  = 0x01FFCCCD;
333     s->regs[R_USB0_CLK_CTRL]  = s->regs[R_USB1_CLK_CTRL]  = 0x00101941;
334     s->regs[R_GEM0_RCLK_CTRL] = s->regs[R_GEM1_RCLK_CTRL] = 0x00000001;
335     s->regs[R_GEM0_CLK_CTRL]  = s->regs[R_GEM1_CLK_CTRL]  = 0x00003C01;
336     s->regs[R_SMC_CLK_CTRL]   = 0x00003C01;
337     s->regs[R_LQSPI_CLK_CTRL] = 0x00002821;
338     s->regs[R_SDIO_CLK_CTRL]  = 0x00001E03;
339     s->regs[R_UART_CLK_CTRL]  = 0x00003F03;
340     s->regs[R_SPI_CLK_CTRL]   = 0x00003F03;
341     s->regs[R_CAN_CLK_CTRL]   = 0x00501903;
342     s->regs[R_DBG_CLK_CTRL]   = 0x00000F03;
343     s->regs[R_PCAP_CLK_CTRL]  = 0x00000F01;
344 
345     /* 0x170 - 0x1AC */
346     s->regs[R_FPGA0_CLK_CTRL] = s->regs[R_FPGA1_CLK_CTRL]
347                               = s->regs[R_FPGA2_CLK_CTRL]
348                               = s->regs[R_FPGA3_CLK_CTRL] = 0x00101800;
349     s->regs[R_FPGA0_THR_STA] = s->regs[R_FPGA1_THR_STA]
350                              = s->regs[R_FPGA2_THR_STA]
351                              = s->regs[R_FPGA3_THR_STA] = 0x00010000;
352 
353     /* 0x1B0 - 0x1D8 */
354     s->regs[R_BANDGAP_TRIP]   = 0x0000001F;
355     s->regs[R_PLL_PREDIVISOR] = 0x00000001;
356     s->regs[R_CLK_621_TRUE]   = 0x00000001;
357 
358     /* 0x200 - 0x25C */
359     s->regs[R_FPGA_RST_CTRL]  = 0x01F33F0F;
360     s->regs[R_RST_REASON]     = 0x00000040;
361 
362     s->regs[R_BOOT_MODE]      = 0x00000001;
363 
364     /* 0x700 - 0x7D4 */
365     for (i = 0; i < 54; i++) {
366         s->regs[R_MIO + i] = 0x00001601;
367     }
368     for (i = 2; i <= 8; i++) {
369         s->regs[R_MIO + i] = 0x00000601;
370     }
371 
372     s->regs[R_MIO_MST_TRI0] = s->regs[R_MIO_MST_TRI1] = 0xFFFFFFFF;
373 
374     s->regs[R_CPU_RAM + 0] = s->regs[R_CPU_RAM + 1] = s->regs[R_CPU_RAM + 3]
375                            = s->regs[R_CPU_RAM + 4] = s->regs[R_CPU_RAM + 7]
376                            = 0x00010101;
377     s->regs[R_CPU_RAM + 2] = s->regs[R_CPU_RAM + 5] = 0x01010101;
378     s->regs[R_CPU_RAM + 6] = 0x00000001;
379 
380     s->regs[R_IOU + 0] = s->regs[R_IOU + 1] = s->regs[R_IOU + 2]
381                        = s->regs[R_IOU + 3] = 0x09090909;
382     s->regs[R_IOU + 4] = s->regs[R_IOU + 5] = 0x00090909;
383     s->regs[R_IOU + 6] = 0x00000909;
384 
385     s->regs[R_DMAC_RAM] = 0x00000009;
386 
387     s->regs[R_AFI0 + 0] = s->regs[R_AFI0 + 1] = 0x09090909;
388     s->regs[R_AFI1 + 0] = s->regs[R_AFI1 + 1] = 0x09090909;
389     s->regs[R_AFI2 + 0] = s->regs[R_AFI2 + 1] = 0x09090909;
390     s->regs[R_AFI3 + 0] = s->regs[R_AFI3 + 1] = 0x09090909;
391     s->regs[R_AFI0 + 2] = s->regs[R_AFI1 + 2] = s->regs[R_AFI2 + 2]
392                         = s->regs[R_AFI3 + 2] = 0x00000909;
393 
394     s->regs[R_OCM + 0] = 0x01010101;
395     s->regs[R_OCM + 1] = s->regs[R_OCM + 2] = 0x09090909;
396 
397     s->regs[R_DEVCI_RAM] = 0x00000909;
398     s->regs[R_CSG_RAM]   = 0x00000001;
399 
400     s->regs[R_DDRIOB + 0] = s->regs[R_DDRIOB + 1] = s->regs[R_DDRIOB + 2]
401                           = s->regs[R_DDRIOB + 3] = 0x00000e00;
402     s->regs[R_DDRIOB + 4] = s->regs[R_DDRIOB + 5] = s->regs[R_DDRIOB + 6]
403                           = 0x00000e00;
404     s->regs[R_DDRIOB + 12] = 0x00000021;
405 }
406 
407 static void zynq_slcr_reset_hold(Object *obj)
408 {
409     ZynqSLCRState *s = ZYNQ_SLCR(obj);
410 
411     /* will disable all output clocks */
412     zynq_slcr_compute_clocks(s);
413     zynq_slcr_propagate_clocks(s);
414 }
415 
416 static void zynq_slcr_reset_exit(Object *obj)
417 {
418     ZynqSLCRState *s = ZYNQ_SLCR(obj);
419 
420     /* will compute output clocks according to ps_clk and registers */
421     zynq_slcr_compute_clocks(s);
422     zynq_slcr_propagate_clocks(s);
423 }
424 
425 static bool zynq_slcr_check_offset(hwaddr offset, bool rnw)
426 {
427     switch (offset) {
428     case R_LOCK:
429     case R_UNLOCK:
430     case R_DDR_CAL_START:
431     case R_DDR_REF_START:
432         return !rnw; /* Write only */
433     case R_LOCKSTA:
434     case R_FPGA0_THR_STA:
435     case R_FPGA1_THR_STA:
436     case R_FPGA2_THR_STA:
437     case R_FPGA3_THR_STA:
438     case R_BOOT_MODE:
439     case R_PSS_IDCODE:
440     case R_DDR_CMD_STA:
441     case R_DDR_DFI_STATUS:
442     case R_PLL_STATUS:
443         return rnw;/* read only */
444     case R_SCL:
445     case R_ARM_PLL_CTRL ... R_IO_PLL_CTRL:
446     case R_ARM_PLL_CFG ... R_IO_PLL_CFG:
447     case R_ARM_CLK_CTRL ... R_TOPSW_CLK_CTRL:
448     case R_FPGA0_CLK_CTRL ... R_FPGA0_THR_CNT:
449     case R_FPGA1_CLK_CTRL ... R_FPGA1_THR_CNT:
450     case R_FPGA2_CLK_CTRL ... R_FPGA2_THR_CNT:
451     case R_FPGA3_CLK_CTRL ... R_FPGA3_THR_CNT:
452     case R_BANDGAP_TRIP:
453     case R_PLL_PREDIVISOR:
454     case R_CLK_621_TRUE:
455     case R_PSS_RST_CTRL ... R_A9_CPU_RST_CTRL:
456     case R_RS_AWDT_CTRL:
457     case R_RST_REASON:
458     case R_REBOOT_STATUS:
459     case R_APU_CTRL:
460     case R_WDT_CLK_SEL:
461     case R_TZ_DMA_NS ... R_TZ_DMA_PERIPH_NS:
462     case R_DDR_URGENT:
463     case R_DDR_URGENT_SEL:
464     case R_MIO ... R_MIO + MIO_LENGTH - 1:
465     case R_MIO_LOOPBACK ... R_MIO_MST_TRI1:
466     case R_SD0_WP_CD_SEL:
467     case R_SD1_WP_CD_SEL:
468     case R_LVL_SHFTR_EN:
469     case R_OCM_CFG:
470     case R_CPU_RAM:
471     case R_IOU:
472     case R_DMAC_RAM:
473     case R_AFI0 ... R_AFI3 + AFI_LENGTH - 1:
474     case R_OCM:
475     case R_DEVCI_RAM:
476     case R_CSG_RAM:
477     case R_GPIOB_CTRL ... R_GPIOB_CFG_CMOS33:
478     case R_GPIOB_CFG_HSTL:
479     case R_GPIOB_DRVR_BIAS_CTRL:
480     case R_DDRIOB ... R_DDRIOB + DDRIOB_LENGTH - 1:
481         return true;
482     default:
483         return false;
484     }
485 }
486 
487 static uint64_t zynq_slcr_read(void *opaque, hwaddr offset,
488     unsigned size)
489 {
490     ZynqSLCRState *s = opaque;
491     offset /= 4;
492     uint32_t ret = s->regs[offset];
493 
494     if (!zynq_slcr_check_offset(offset, true)) {
495         qemu_log_mask(LOG_GUEST_ERROR, "zynq_slcr: Invalid read access to "
496                       " addr %" HWADDR_PRIx "\n", offset * 4);
497     }
498 
499     DB_PRINT("addr: %08" HWADDR_PRIx " data: %08" PRIx32 "\n", offset * 4, ret);
500     return ret;
501 }
502 
503 static void zynq_slcr_write(void *opaque, hwaddr offset,
504                           uint64_t val, unsigned size)
505 {
506     ZynqSLCRState *s = (ZynqSLCRState *)opaque;
507     offset /= 4;
508 
509     DB_PRINT("addr: %08" HWADDR_PRIx " data: %08" PRIx64 "\n", offset * 4, val);
510 
511     if (!zynq_slcr_check_offset(offset, false)) {
512         qemu_log_mask(LOG_GUEST_ERROR, "zynq_slcr: Invalid write access to "
513                       "addr %" HWADDR_PRIx "\n", offset * 4);
514         return;
515     }
516 
517     switch (offset) {
518     case R_SCL:
519         s->regs[R_SCL] = val & 0x1;
520         return;
521     case R_LOCK:
522         if ((val & 0xFFFF) == XILINX_LOCK_KEY) {
523             DB_PRINT("XILINX LOCK 0xF8000000 + 0x%x <= 0x%x\n", (int)offset,
524                 (unsigned)val & 0xFFFF);
525             s->regs[R_LOCKSTA] = 1;
526         } else {
527             DB_PRINT("WRONG XILINX LOCK KEY 0xF8000000 + 0x%x <= 0x%x\n",
528                 (int)offset, (unsigned)val & 0xFFFF);
529         }
530         return;
531     case R_UNLOCK:
532         if ((val & 0xFFFF) == XILINX_UNLOCK_KEY) {
533             DB_PRINT("XILINX UNLOCK 0xF8000000 + 0x%x <= 0x%x\n", (int)offset,
534                 (unsigned)val & 0xFFFF);
535             s->regs[R_LOCKSTA] = 0;
536         } else {
537             DB_PRINT("WRONG XILINX UNLOCK KEY 0xF8000000 + 0x%x <= 0x%x\n",
538                 (int)offset, (unsigned)val & 0xFFFF);
539         }
540         return;
541     }
542 
543     if (s->regs[R_LOCKSTA]) {
544         qemu_log_mask(LOG_GUEST_ERROR,
545                       "SCLR registers are locked. Unlock them first\n");
546         return;
547     }
548     s->regs[offset] = val;
549 
550     switch (offset) {
551     case R_PSS_RST_CTRL:
552         if (FIELD_EX32(val, PSS_RST_CTRL, SOFT_RST)) {
553             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
554         }
555         break;
556     case R_IO_PLL_CTRL:
557     case R_ARM_PLL_CTRL:
558     case R_DDR_PLL_CTRL:
559     case R_UART_CLK_CTRL:
560         zynq_slcr_compute_clocks(s);
561         zynq_slcr_propagate_clocks(s);
562         break;
563     }
564 }
565 
566 static const MemoryRegionOps slcr_ops = {
567     .read = zynq_slcr_read,
568     .write = zynq_slcr_write,
569     .endianness = DEVICE_NATIVE_ENDIAN,
570 };
571 
572 static const ClockPortInitArray zynq_slcr_clocks = {
573     QDEV_CLOCK_IN(ZynqSLCRState, ps_clk, zynq_slcr_ps_clk_callback),
574     QDEV_CLOCK_OUT(ZynqSLCRState, uart0_ref_clk),
575     QDEV_CLOCK_OUT(ZynqSLCRState, uart1_ref_clk),
576     QDEV_CLOCK_END
577 };
578 
579 static void zynq_slcr_init(Object *obj)
580 {
581     ZynqSLCRState *s = ZYNQ_SLCR(obj);
582 
583     memory_region_init_io(&s->iomem, obj, &slcr_ops, s, "slcr",
584                           ZYNQ_SLCR_MMIO_SIZE);
585     sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
586 
587     qdev_init_clocks(DEVICE(obj), zynq_slcr_clocks);
588 }
589 
590 static const VMStateDescription vmstate_zynq_slcr = {
591     .name = "zynq_slcr",
592     .version_id = 3,
593     .minimum_version_id = 2,
594     .fields = (VMStateField[]) {
595         VMSTATE_UINT32_ARRAY(regs, ZynqSLCRState, ZYNQ_SLCR_NUM_REGS),
596         VMSTATE_CLOCK_V(ps_clk, ZynqSLCRState, 3),
597         VMSTATE_END_OF_LIST()
598     }
599 };
600 
601 static void zynq_slcr_class_init(ObjectClass *klass, void *data)
602 {
603     DeviceClass *dc = DEVICE_CLASS(klass);
604     ResettableClass *rc = RESETTABLE_CLASS(klass);
605 
606     dc->vmsd = &vmstate_zynq_slcr;
607     rc->phases.enter = zynq_slcr_reset_init;
608     rc->phases.hold  = zynq_slcr_reset_hold;
609     rc->phases.exit  = zynq_slcr_reset_exit;
610 }
611 
612 static const TypeInfo zynq_slcr_info = {
613     .class_init = zynq_slcr_class_init,
614     .name  = TYPE_ZYNQ_SLCR,
615     .parent = TYPE_SYS_BUS_DEVICE,
616     .instance_size  = sizeof(ZynqSLCRState),
617     .instance_init = zynq_slcr_init,
618 };
619 
620 static void zynq_slcr_register_types(void)
621 {
622     type_register_static(&zynq_slcr_info);
623 }
624 
625 type_init(zynq_slcr_register_types)
626