xref: /openbmc/qemu/hw/misc/stm32l4x5_rcc.c (revision 0cc14182aba961f4c34a21dd202ce6e4a87470f5)
1 /*
2  * STM32L4X5 RCC (Reset and clock control)
3  *
4  * Copyright (c) 2023 Arnaud Minier <arnaud.minier@telecom-paris.fr>
5  * Copyright (c) 2023 Inès Varhol <ines.varhol@telecom-paris.fr>
6  *
7  * SPDX-License-Identifier: GPL-2.0-or-later
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  * The reference used is the STMicroElectronics RM0351 Reference manual
13  * for STM32L4x5 and STM32L4x6 advanced Arm ® -based 32-bit MCUs.
14  *
15  * Inspired by the BCM2835 CPRMAN clock manager implementation by Luc Michel.
16  */
17 
18 #include "qemu/osdep.h"
19 #include "qemu/log.h"
20 #include "qemu/module.h"
21 #include "qemu/timer.h"
22 #include "qapi/error.h"
23 #include "migration/vmstate.h"
24 #include "hw/misc/stm32l4x5_rcc.h"
25 #include "hw/misc/stm32l4x5_rcc_internals.h"
26 #include "hw/clock.h"
27 #include "hw/irq.h"
28 #include "hw/qdev-clock.h"
29 #include "hw/qdev-properties.h"
30 #include "hw/qdev-properties-system.h"
31 #include "hw/registerfields.h"
32 #include "trace.h"
33 
34 #define HSE_DEFAULT_FRQ 48000000ULL
35 #define HSI_FRQ 16000000ULL
36 #define MSI_DEFAULT_FRQ 4000000ULL
37 #define LSE_FRQ 32768ULL
38 #define LSI_FRQ 32000ULL
39 
40 /*
41  * Function to simply acknowledge and propagate changes in a clock mux
42  * frequency.
43  * `bypass_source` allows to bypass the period of the current source and just
44  * consider it equal to 0. This is useful during the hold phase of reset.
45  */
46 static void clock_mux_update(RccClockMuxState *mux, bool bypass_source)
47 {
48     uint64_t src_freq;
49     Clock *current_source = mux->srcs[mux->src];
50     uint32_t freq_multiplier = 0;
51     /*
52      * To avoid rounding errors, we use the clock period instead of the
53      * frequency.
54      * This means that the multiplier of the mux becomes the divider of
55      * the clock and the divider of the mux becomes the multiplier of the
56      * clock.
57      */
58     if (!bypass_source && mux->enabled && mux->divider) {
59         freq_multiplier = mux->divider;
60     }
61 
62     clock_set_mul_div(mux->out, freq_multiplier, mux->multiplier);
63     clock_update(mux->out, clock_get(current_source));
64 
65     src_freq = clock_get_hz(current_source);
66     /* TODO: can we simply detect if the config changed so that we reduce log spam ? */
67     trace_stm32l4x5_rcc_mux_update(mux->id, mux->src, src_freq,
68                                    mux->multiplier, mux->divider);
69 }
70 
71 static void clock_mux_src_update(void *opaque, ClockEvent event)
72 {
73     RccClockMuxState **backref = opaque;
74     RccClockMuxState *s = *backref;
75     /*
76      * The backref value is equal to:
77      * s->backref + (sizeof(RccClockMuxState *) * update_src).
78      * By subtracting we can get back the index of the updated clock.
79      */
80     const uint32_t update_src = backref - s->backref;
81     /* Only update if the clock that was updated is the current source */
82     if (update_src == s->src) {
83         clock_mux_update(s, false);
84     }
85 }
86 
87 static void clock_mux_init(Object *obj)
88 {
89     RccClockMuxState *s = RCC_CLOCK_MUX(obj);
90     size_t i;
91 
92     for (i = 0; i < RCC_NUM_CLOCK_MUX_SRC; i++) {
93         char *name = g_strdup_printf("srcs[%zu]", i);
94         s->backref[i] = s;
95         s->srcs[i] = qdev_init_clock_in(DEVICE(s), name,
96                                         clock_mux_src_update,
97                                         &s->backref[i],
98                                         ClockUpdate);
99         g_free(name);
100     }
101 
102     s->out = qdev_init_clock_out(DEVICE(s), "out");
103 }
104 
105 static void clock_mux_reset_enter(Object *obj, ResetType type)
106 {
107     RccClockMuxState *s = RCC_CLOCK_MUX(obj);
108     set_clock_mux_init_info(s, s->id);
109 }
110 
111 static void clock_mux_reset_hold(Object *obj)
112 {
113     RccClockMuxState *s = RCC_CLOCK_MUX(obj);
114     clock_mux_update(s, true);
115 }
116 
117 static void clock_mux_reset_exit(Object *obj)
118 {
119     RccClockMuxState *s = RCC_CLOCK_MUX(obj);
120     clock_mux_update(s, false);
121 }
122 
123 static const VMStateDescription clock_mux_vmstate = {
124     .name = TYPE_RCC_CLOCK_MUX,
125     .version_id = 1,
126     .minimum_version_id = 1,
127     .fields = (VMStateField[]) {
128         VMSTATE_UINT32(id, RccClockMuxState),
129         VMSTATE_ARRAY_CLOCK(srcs, RccClockMuxState,
130                             RCC_NUM_CLOCK_MUX_SRC),
131         VMSTATE_BOOL(enabled, RccClockMuxState),
132         VMSTATE_UINT32(src, RccClockMuxState),
133         VMSTATE_UINT32(multiplier, RccClockMuxState),
134         VMSTATE_UINT32(divider, RccClockMuxState),
135         VMSTATE_END_OF_LIST()
136     }
137 };
138 
139 static void clock_mux_class_init(ObjectClass *klass, void *data)
140 {
141     DeviceClass *dc = DEVICE_CLASS(klass);
142     ResettableClass *rc = RESETTABLE_CLASS(klass);
143 
144     rc->phases.enter = clock_mux_reset_enter;
145     rc->phases.hold = clock_mux_reset_hold;
146     rc->phases.exit = clock_mux_reset_exit;
147     dc->vmsd = &clock_mux_vmstate;
148 }
149 
150 static void clock_mux_set_enable(RccClockMuxState *mux, bool enabled)
151 {
152     if (mux->enabled == enabled) {
153         return;
154     }
155 
156     if (enabled) {
157         trace_stm32l4x5_rcc_mux_enable(mux->id);
158     } else {
159         trace_stm32l4x5_rcc_mux_disable(mux->id);
160     }
161 
162     mux->enabled = enabled;
163     clock_mux_update(mux, false);
164 }
165 
166 static void clock_mux_set_factor(RccClockMuxState *mux,
167                                  uint32_t multiplier, uint32_t divider)
168 {
169     if (mux->multiplier == multiplier && mux->divider == divider) {
170         return;
171     }
172     trace_stm32l4x5_rcc_mux_set_factor(mux->id,
173         mux->multiplier, multiplier, mux->divider, divider);
174 
175     mux->multiplier = multiplier;
176     mux->divider = divider;
177     clock_mux_update(mux, false);
178 }
179 
180 static void clock_mux_set_source(RccClockMuxState *mux, RccClockMuxSource src)
181 {
182     if (mux->src == src) {
183         return;
184     }
185 
186     trace_stm32l4x5_rcc_mux_set_src(mux->id, mux->src, src);
187     mux->src = src;
188     clock_mux_update(mux, false);
189 }
190 
191 /*
192  * Acknowledge and propagate changes in a PLL frequency.
193  * `bypass_source` allows to bypass the period of the current source and just
194  * consider it equal to 0. This is useful during the hold phase of reset.
195  */
196 static void pll_update(RccPllState *pll, bool bypass_source)
197 {
198     uint64_t vco_freq, old_channel_freq, channel_freq;
199     int i;
200 
201     /* The common PLLM factor is handled by the PLL mux */
202     vco_freq = muldiv64(clock_get_hz(pll->in), pll->vco_multiplier, 1);
203 
204     for (i = 0; i < RCC_NUM_CHANNEL_PLL_OUT; i++) {
205         if (!pll->channel_exists[i]) {
206             continue;
207         }
208 
209         old_channel_freq = clock_get_hz(pll->channels[i]);
210         if (bypass_source ||
211             !pll->enabled ||
212             !pll->channel_enabled[i] ||
213             !pll->channel_divider[i]) {
214             channel_freq = 0;
215         } else {
216             channel_freq = muldiv64(vco_freq,
217                                     1,
218                                     pll->channel_divider[i]);
219         }
220 
221         /* No change, early continue to avoid log spam and useless propagation */
222         if (old_channel_freq == channel_freq) {
223             continue;
224         }
225 
226         clock_update_hz(pll->channels[i], channel_freq);
227         trace_stm32l4x5_rcc_pll_update(pll->id, i, vco_freq,
228             old_channel_freq, channel_freq);
229     }
230 }
231 
232 static void pll_src_update(void *opaque, ClockEvent event)
233 {
234     RccPllState *s = opaque;
235     pll_update(s, false);
236 }
237 
238 static void pll_init(Object *obj)
239 {
240     RccPllState *s = RCC_PLL(obj);
241     size_t i;
242 
243     s->in = qdev_init_clock_in(DEVICE(s), "in",
244                                pll_src_update, s, ClockUpdate);
245 
246     const char *names[] = {
247         "out-p", "out-q", "out-r",
248     };
249 
250     for (i = 0; i < RCC_NUM_CHANNEL_PLL_OUT; i++) {
251         s->channels[i] = qdev_init_clock_out(DEVICE(s), names[i]);
252     }
253 }
254 
255 static void pll_reset_enter(Object *obj, ResetType type)
256 {
257     RccPllState *s = RCC_PLL(obj);
258     set_pll_init_info(s, s->id);
259 }
260 
261 static void pll_reset_hold(Object *obj)
262 {
263     RccPllState *s = RCC_PLL(obj);
264     pll_update(s, true);
265 }
266 
267 static void pll_reset_exit(Object *obj)
268 {
269     RccPllState *s = RCC_PLL(obj);
270     pll_update(s, false);
271 }
272 
273 static const VMStateDescription pll_vmstate = {
274     .name = TYPE_RCC_PLL,
275     .version_id = 1,
276     .minimum_version_id = 1,
277     .fields = (VMStateField[]) {
278         VMSTATE_UINT32(id, RccPllState),
279         VMSTATE_CLOCK(in, RccPllState),
280         VMSTATE_ARRAY_CLOCK(channels, RccPllState,
281                             RCC_NUM_CHANNEL_PLL_OUT),
282         VMSTATE_BOOL(enabled, RccPllState),
283         VMSTATE_UINT32(vco_multiplier, RccPllState),
284         VMSTATE_BOOL_ARRAY(channel_enabled, RccPllState, RCC_NUM_CHANNEL_PLL_OUT),
285         VMSTATE_BOOL_ARRAY(channel_exists, RccPllState, RCC_NUM_CHANNEL_PLL_OUT),
286         VMSTATE_UINT32_ARRAY(channel_divider, RccPllState, RCC_NUM_CHANNEL_PLL_OUT),
287         VMSTATE_END_OF_LIST()
288     }
289 };
290 
291 static void pll_class_init(ObjectClass *klass, void *data)
292 {
293     DeviceClass *dc = DEVICE_CLASS(klass);
294     ResettableClass *rc = RESETTABLE_CLASS(klass);
295 
296     rc->phases.enter = pll_reset_enter;
297     rc->phases.hold = pll_reset_hold;
298     rc->phases.exit = pll_reset_exit;
299     dc->vmsd = &pll_vmstate;
300 }
301 
302 static void pll_set_vco_multiplier(RccPllState *pll, uint32_t vco_multiplier)
303 {
304     if (pll->vco_multiplier == vco_multiplier) {
305         return;
306     }
307 
308     if (vco_multiplier < 8 || vco_multiplier > 86) {
309         qemu_log_mask(LOG_GUEST_ERROR,
310             "%s: VCO multiplier is out of bound (%u) for PLL %u\n",
311             __func__, vco_multiplier, pll->id);
312         return;
313     }
314 
315     trace_stm32l4x5_rcc_pll_set_vco_multiplier(pll->id,
316         pll->vco_multiplier, vco_multiplier);
317 
318     pll->vco_multiplier = vco_multiplier;
319     pll_update(pll, false);
320 }
321 
322 static void pll_set_enable(RccPllState *pll, bool enabled)
323 {
324     if (pll->enabled == enabled) {
325         return;
326     }
327 
328     pll->enabled = enabled;
329     pll_update(pll, false);
330 }
331 
332 static void pll_set_channel_enable(RccPllState *pll,
333                                    PllCommonChannels channel,
334                                    bool enabled)
335 {
336     if (pll->channel_enabled[channel] == enabled) {
337         return;
338     }
339 
340     if (enabled) {
341         trace_stm32l4x5_rcc_pll_channel_enable(pll->id, channel);
342     } else {
343         trace_stm32l4x5_rcc_pll_channel_disable(pll->id, channel);
344     }
345 
346     pll->channel_enabled[channel] = enabled;
347     pll_update(pll, false);
348 }
349 
350 static void pll_set_channel_divider(RccPllState *pll,
351                                     PllCommonChannels channel,
352                                     uint32_t divider)
353 {
354     if (pll->channel_divider[channel] == divider) {
355         return;
356     }
357 
358     trace_stm32l4x5_rcc_pll_set_channel_divider(pll->id,
359         channel, pll->channel_divider[channel], divider);
360 
361     pll->channel_divider[channel] = divider;
362     pll_update(pll, false);
363 }
364 
365 static void rcc_update_irq(Stm32l4x5RccState *s)
366 {
367     /*
368      * TODO: Handle LSECSSF and CSSF flags when the CSS is implemented.
369      */
370     if (s->cifr & CIFR_IRQ_MASK) {
371         qemu_irq_raise(s->irq);
372     } else {
373         qemu_irq_lower(s->irq);
374     }
375 }
376 
377 static void rcc_update_msi(Stm32l4x5RccState *s, uint32_t previous_value)
378 {
379     uint32_t val;
380 
381     static const uint32_t msirange[] = {
382         100000, 200000, 400000, 800000, 1000000, 2000000,
383         4000000, 8000000, 16000000, 24000000, 32000000, 48000000
384     };
385     /* MSIRANGE and MSIRGSEL */
386     val = extract32(s->cr, R_CR_MSIRGSEL_SHIFT, R_CR_MSIRGSEL_LENGTH);
387     if (val) {
388         /* MSIRGSEL is set, use the MSIRANGE field */
389         val = extract32(s->cr, R_CR_MSIRANGE_SHIFT, R_CR_MSIRANGE_LENGTH);
390     } else {
391         /* MSIRGSEL is not set, use the MSISRANGE field */
392         val = extract32(s->csr, R_CSR_MSISRANGE_SHIFT, R_CSR_MSISRANGE_LENGTH);
393     }
394 
395     if (val < ARRAY_SIZE(msirange)) {
396         clock_update_hz(s->msi_rc, msirange[val]);
397     } else {
398         /*
399          * There is a hardware write protection if the value is out of bound.
400          * Restore the previous value.
401          */
402         s->cr = (s->cr & ~R_CSR_MSISRANGE_MASK) |
403                 (previous_value & R_CSR_MSISRANGE_MASK);
404     }
405 }
406 
407 /*
408  * TODO: Add write-protection for all registers:
409  * DONE: CR
410  */
411 
412 static void rcc_update_cr_register(Stm32l4x5RccState *s, uint32_t previous_value)
413 {
414     int val;
415     const RccClockMuxSource current_pll_src =
416         CLOCK_MUX_INIT_INFO[RCC_CLOCK_MUX_PLL_INPUT].src_mapping[
417             s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT].src];
418 
419     /* PLLSAI2ON and update PLLSAI2RDY */
420     val = FIELD_EX32(s->cr, CR, PLLSAI2ON);
421     pll_set_enable(&s->plls[RCC_PLL_PLLSAI2], val);
422     s->cr = (s->cr & ~R_CR_PLLSAI2RDY_MASK) |
423             (val << R_CR_PLLSAI2RDY_SHIFT);
424     if (s->cier & R_CIER_PLLSAI2RDYIE_MASK) {
425         s->cifr |= R_CIFR_PLLSAI2RDYF_MASK;
426     }
427 
428     /* PLLSAI1ON and update PLLSAI1RDY */
429     val = FIELD_EX32(s->cr, CR, PLLSAI1ON);
430     pll_set_enable(&s->plls[RCC_PLL_PLLSAI1], val);
431     s->cr = (s->cr & ~R_CR_PLLSAI1RDY_MASK) |
432             (val << R_CR_PLLSAI1RDY_SHIFT);
433     if (s->cier & R_CIER_PLLSAI1RDYIE_MASK) {
434         s->cifr |= R_CIFR_PLLSAI1RDYF_MASK;
435     }
436 
437     /*
438      * PLLON and update PLLRDY
439      * PLLON cannot be reset if the PLL clock is used as the system clock.
440      */
441     val = FIELD_EX32(s->cr, CR, PLLON);
442     if (FIELD_EX32(s->cfgr, CFGR, SWS) != 0b11) {
443         pll_set_enable(&s->plls[RCC_PLL_PLL], val);
444         s->cr = (s->cr & ~R_CR_PLLRDY_MASK) |
445                 (val << R_CR_PLLRDY_SHIFT);
446         if (s->cier & R_CIER_PLLRDYIE_MASK) {
447             s->cifr |= R_CIFR_PLLRDYF_MASK;
448         }
449     } else {
450         s->cr |= R_CR_PLLON_MASK;
451     }
452 
453     /* CSSON: TODO */
454     /* HSEBYP: TODO */
455 
456     /*
457      * HSEON and update HSERDY.
458      * HSEON cannot be reset if the HSE oscillator is used directly or
459      * indirectly as the system clock.
460      */
461     val = FIELD_EX32(s->cr, CR, HSEON);
462     if (FIELD_EX32(s->cfgr, CFGR, SWS) != 0b10 &&
463         current_pll_src != RCC_CLOCK_MUX_SRC_HSE) {
464         s->cr = (s->cr & ~R_CR_HSERDY_MASK) |
465                 (val << R_CR_HSERDY_SHIFT);
466         if (val) {
467             clock_update_hz(s->hse, s->hse_frequency);
468             if (s->cier & R_CIER_HSERDYIE_MASK) {
469                 s->cifr |= R_CIFR_HSERDYF_MASK;
470             }
471         } else {
472             clock_update(s->hse, 0);
473         }
474     } else {
475         s->cr |= R_CR_HSEON_MASK;
476     }
477 
478     /* HSIAFS: TODO*/
479     /* HSIKERON: TODO*/
480 
481     /*
482      * HSION and update HSIRDY
483      * HSION is set by hardware if the HSI16 is used directly
484      * or indirectly as system clock.
485      */
486     if (FIELD_EX32(s->cfgr, CFGR, SWS) == 0b01 ||
487         current_pll_src == RCC_CLOCK_MUX_SRC_HSI) {
488         s->cr |= (R_CR_HSION_MASK | R_CR_HSIRDY_MASK);
489         clock_update_hz(s->hsi16_rc, HSI_FRQ);
490         if (s->cier & R_CIER_HSIRDYIE_MASK) {
491             s->cifr |= R_CIFR_HSIRDYF_MASK;
492         }
493     } else {
494         val = FIELD_EX32(s->cr, CR, HSION);
495         if (val) {
496             clock_update_hz(s->hsi16_rc, HSI_FRQ);
497             s->cr |= R_CR_HSIRDY_MASK;
498             if (s->cier & R_CIER_HSIRDYIE_MASK) {
499                 s->cifr |= R_CIFR_HSIRDYF_MASK;
500             }
501         } else {
502             clock_update(s->hsi16_rc, 0);
503             s->cr &= ~R_CR_HSIRDY_MASK;
504         }
505     }
506 
507     /* MSIPLLEN: TODO */
508 
509     /*
510      * MSION and update MSIRDY
511      * Set by hardware when used directly or indirectly as system clock.
512      */
513     if (FIELD_EX32(s->cfgr, CFGR, SWS) == 0b00 ||
514         current_pll_src == RCC_CLOCK_MUX_SRC_MSI) {
515             s->cr |= (R_CR_MSION_MASK | R_CR_MSIRDY_MASK);
516             if (!(previous_value & R_CR_MSION_MASK) && (s->cier & R_CIER_MSIRDYIE_MASK)) {
517                 s->cifr |= R_CIFR_MSIRDYF_MASK;
518             }
519             rcc_update_msi(s, previous_value);
520     } else {
521         val = FIELD_EX32(s->cr, CR, MSION);
522         if (val) {
523             s->cr |= R_CR_MSIRDY_MASK;
524             rcc_update_msi(s, previous_value);
525             if (s->cier & R_CIER_MSIRDYIE_MASK) {
526                 s->cifr |= R_CIFR_MSIRDYF_MASK;
527             }
528         } else {
529             s->cr &= ~R_CR_MSIRDY_MASK;
530             clock_update(s->msi_rc, 0);
531         }
532     }
533     rcc_update_irq(s);
534 }
535 
536 static void rcc_update_cfgr_register(Stm32l4x5RccState *s)
537 {
538     uint32_t val;
539     /* MCOPRE */
540     val = FIELD_EX32(s->cfgr, CFGR, MCOPRE);
541     assert(val <= 0b100);
542     clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_MCO],
543                          1, 1 << val);
544 
545     /* MCOSEL */
546     val = FIELD_EX32(s->cfgr, CFGR, MCOSEL);
547     assert(val <= 0b111);
548     if (val == 0) {
549         clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_MCO], false);
550     } else {
551         clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_MCO], true);
552         clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_MCO],
553                              val - 1);
554     }
555 
556     /* STOPWUCK */
557     /* TODO */
558 
559     /* PPRE2 */
560     val = FIELD_EX32(s->cfgr, CFGR, PPRE2);
561     if (val < 0b100) {
562         clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PCLK2],
563                              1, 1);
564     } else {
565         clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PCLK2],
566                              1, 1 << (val - 0b11));
567     }
568 
569     /* PPRE1 */
570     val = FIELD_EX32(s->cfgr, CFGR, PPRE1);
571     if (val < 0b100) {
572         clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PCLK1],
573                              1, 1);
574     } else {
575         clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PCLK1],
576                              1, 1 << (val - 0b11));
577     }
578 
579     /* HPRE */
580     val = FIELD_EX32(s->cfgr, CFGR, HPRE);
581     if (val < 0b1000) {
582         clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_HCLK],
583                              1, 1);
584     } else {
585         clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_HCLK],
586                              1, 1 << (val - 0b111));
587     }
588 
589     /* Update SWS */
590     val = FIELD_EX32(s->cfgr, CFGR, SW);
591     clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_SYSCLK],
592                          val);
593     s->cfgr &= ~R_CFGR_SWS_MASK;
594     s->cfgr |= val << R_CFGR_SWS_SHIFT;
595 }
596 
597 static void rcc_update_ahb1enr(Stm32l4x5RccState *s)
598 {
599     #define AHB1ENR_SET_ENABLE(_peripheral_name) \
600         clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
601             FIELD_EX32(s->ahb1enr, AHB1ENR, _peripheral_name##EN))
602 
603     /* DMA2DEN: reserved for STM32L475xx */
604     AHB1ENR_SET_ENABLE(TSC);
605     AHB1ENR_SET_ENABLE(CRC);
606     AHB1ENR_SET_ENABLE(FLASH);
607     AHB1ENR_SET_ENABLE(DMA2);
608     AHB1ENR_SET_ENABLE(DMA1);
609 
610     #undef AHB1ENR_SET_ENABLE
611 }
612 
613 static void rcc_update_ahb2enr(Stm32l4x5RccState *s)
614 {
615     #define AHB2ENR_SET_ENABLE(_peripheral_name) \
616         clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
617             FIELD_EX32(s->ahb2enr, AHB2ENR, _peripheral_name##EN))
618 
619     AHB2ENR_SET_ENABLE(RNG);
620     /* HASHEN: reserved for STM32L475xx */
621     AHB2ENR_SET_ENABLE(AES);
622     /* DCMIEN: reserved for STM32L475xx */
623     AHB2ENR_SET_ENABLE(ADC);
624     AHB2ENR_SET_ENABLE(OTGFS);
625     /* GPIOIEN: reserved for STM32L475xx */
626     AHB2ENR_SET_ENABLE(GPIOA);
627     AHB2ENR_SET_ENABLE(GPIOB);
628     AHB2ENR_SET_ENABLE(GPIOC);
629     AHB2ENR_SET_ENABLE(GPIOD);
630     AHB2ENR_SET_ENABLE(GPIOE);
631     AHB2ENR_SET_ENABLE(GPIOF);
632     AHB2ENR_SET_ENABLE(GPIOG);
633     AHB2ENR_SET_ENABLE(GPIOH);
634 
635     #undef AHB2ENR_SET_ENABLE
636 }
637 
638 static void rcc_update_ahb3enr(Stm32l4x5RccState *s)
639 {
640     #define AHB3ENR_SET_ENABLE(_peripheral_name) \
641         clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
642             FIELD_EX32(s->ahb3enr, AHB3ENR, _peripheral_name##EN))
643 
644     AHB3ENR_SET_ENABLE(QSPI);
645     AHB3ENR_SET_ENABLE(FMC);
646 
647     #undef AHB3ENR_SET_ENABLE
648 }
649 
650 static void rcc_update_apb1enr(Stm32l4x5RccState *s)
651 {
652     #define APB1ENR1_SET_ENABLE(_peripheral_name) \
653         clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
654             FIELD_EX32(s->apb1enr1, APB1ENR1, _peripheral_name##EN))
655     #define APB1ENR2_SET_ENABLE(_peripheral_name) \
656         clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
657             FIELD_EX32(s->apb1enr2, APB1ENR2, _peripheral_name##EN))
658 
659     /* APB1ENR1 */
660     APB1ENR1_SET_ENABLE(LPTIM1);
661     APB1ENR1_SET_ENABLE(OPAMP);
662     APB1ENR1_SET_ENABLE(DAC1);
663     APB1ENR1_SET_ENABLE(PWR);
664     /* CAN2: reserved for STM32L4x5 */
665     APB1ENR1_SET_ENABLE(CAN1);
666     /* CRSEN: reserved for STM32L4x5 */
667     APB1ENR1_SET_ENABLE(I2C3);
668     APB1ENR1_SET_ENABLE(I2C2);
669     APB1ENR1_SET_ENABLE(I2C1);
670     APB1ENR1_SET_ENABLE(UART5);
671     APB1ENR1_SET_ENABLE(UART4);
672     APB1ENR1_SET_ENABLE(USART3);
673     APB1ENR1_SET_ENABLE(USART2);
674     APB1ENR1_SET_ENABLE(SPI3);
675     APB1ENR1_SET_ENABLE(SPI2);
676     APB1ENR1_SET_ENABLE(WWDG);
677     /* RTCAPB: reserved for STM32L4x5 */
678     APB1ENR1_SET_ENABLE(LCD);
679     APB1ENR1_SET_ENABLE(TIM7);
680     APB1ENR1_SET_ENABLE(TIM6);
681     APB1ENR1_SET_ENABLE(TIM5);
682     APB1ENR1_SET_ENABLE(TIM4);
683     APB1ENR1_SET_ENABLE(TIM3);
684     APB1ENR1_SET_ENABLE(TIM2);
685 
686     /* APB1ENR2 */
687     APB1ENR2_SET_ENABLE(LPTIM2);
688     APB1ENR2_SET_ENABLE(SWPMI1);
689     /* I2C4EN: reserved for STM32L4x5 */
690     APB1ENR2_SET_ENABLE(LPUART1);
691 
692     #undef APB1ENR1_SET_ENABLE
693     #undef APB1ENR2_SET_ENABLE
694 }
695 
696 static void rcc_update_apb2enr(Stm32l4x5RccState *s)
697 {
698     #define APB2ENR_SET_ENABLE(_peripheral_name) \
699         clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
700             FIELD_EX32(s->apb2enr, APB2ENR, _peripheral_name##EN))
701 
702     APB2ENR_SET_ENABLE(DFSDM1);
703     APB2ENR_SET_ENABLE(SAI2);
704     APB2ENR_SET_ENABLE(SAI1);
705     APB2ENR_SET_ENABLE(TIM17);
706     APB2ENR_SET_ENABLE(TIM16);
707     APB2ENR_SET_ENABLE(TIM15);
708     APB2ENR_SET_ENABLE(USART1);
709     APB2ENR_SET_ENABLE(TIM8);
710     APB2ENR_SET_ENABLE(SPI1);
711     APB2ENR_SET_ENABLE(TIM1);
712     APB2ENR_SET_ENABLE(SDMMC1);
713     APB2ENR_SET_ENABLE(FW);
714     APB2ENR_SET_ENABLE(SYSCFG);
715 
716     #undef APB2ENR_SET_ENABLE
717 }
718 
719 /*
720  * The 3 PLLs share the same register layout
721  * so we can use the same function for all of them
722  * Note: no frequency bounds checking is done here.
723  */
724 static void rcc_update_pllsaixcfgr(Stm32l4x5RccState *s, RccPll pll_id)
725 {
726     uint32_t reg, val;
727     switch (pll_id) {
728     case RCC_PLL_PLL:
729         reg = s->pllcfgr;
730         break;
731     case RCC_PLL_PLLSAI1:
732         reg = s->pllsai1cfgr;
733         break;
734     case RCC_PLL_PLLSAI2:
735         reg = s->pllsai2cfgr;
736         break;
737     default:
738         qemu_log_mask(LOG_GUEST_ERROR,
739                       "%s: Invalid PLL ID: %u\n", __func__, pll_id);
740         return;
741     }
742 
743     /* PLLPDIV */
744     val = FIELD_EX32(reg, PLLCFGR, PLLPDIV);
745     /* 1 is a reserved value */
746     if (val == 0) {
747         /* Get PLLP value */
748         val = FIELD_EX32(reg, PLLCFGR, PLLP);
749         pll_set_channel_divider(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_P,
750             (val ? 17 : 7));
751     } else if (val > 1) {
752         pll_set_channel_divider(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_P,
753             val);
754     }
755 
756 
757     /* PLLR */
758     val = FIELD_EX32(reg, PLLCFGR, PLLR);
759     pll_set_channel_divider(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_R,
760         2 * (val + 1));
761 
762     /* PLLREN */
763     val = FIELD_EX32(reg, PLLCFGR, PLLREN);
764     pll_set_channel_enable(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_R, val);
765 
766     /* PLLQ */
767     val = FIELD_EX32(reg, PLLCFGR, PLLQ);
768     pll_set_channel_divider(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_Q,
769         2 * (val + 1));
770 
771     /* PLLQEN */
772     val = FIELD_EX32(reg, PLLCFGR, PLLQEN);
773     pll_set_channel_enable(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_Q, val);
774 
775     /* PLLPEN */
776     val = FIELD_EX32(reg, PLLCFGR, PLLPEN);
777     pll_set_channel_enable(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_P, val);
778 
779     /* PLLN */
780     val = FIELD_EX32(reg, PLLCFGR, PLLN);
781     pll_set_vco_multiplier(&s->plls[pll_id], val);
782 }
783 
784 static void rcc_update_pllcfgr(Stm32l4x5RccState *s)
785 {
786     int val;
787 
788     /* Use common layout */
789     rcc_update_pllsaixcfgr(s, RCC_PLL_PLL);
790 
791     /* Fetch specific fields for pllcfgr */
792 
793     /* PLLM */
794     val = FIELD_EX32(s->pllcfgr, PLLCFGR, PLLM);
795     clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT], 1, (val + 1));
796 
797     /* PLLSRC */
798     val = FIELD_EX32(s->pllcfgr, PLLCFGR, PLLSRC);
799     if (val == 0) {
800         clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT], false);
801     } else {
802         clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT], val - 1);
803         clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT], true);
804     }
805 }
806 
807 static void rcc_update_ccipr(Stm32l4x5RccState *s)
808 {
809     #define CCIPR_SET_SOURCE(_peripheral_name) \
810         clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
811             FIELD_EX32(s->ccipr, CCIPR, _peripheral_name##SEL))
812 
813     CCIPR_SET_SOURCE(DFSDM1);
814     CCIPR_SET_SOURCE(SWPMI1);
815     CCIPR_SET_SOURCE(ADC);
816     CCIPR_SET_SOURCE(CLK48);
817     CCIPR_SET_SOURCE(SAI2);
818     CCIPR_SET_SOURCE(SAI1);
819     CCIPR_SET_SOURCE(LPTIM2);
820     CCIPR_SET_SOURCE(LPTIM1);
821     CCIPR_SET_SOURCE(I2C3);
822     CCIPR_SET_SOURCE(I2C2);
823     CCIPR_SET_SOURCE(I2C1);
824     CCIPR_SET_SOURCE(LPUART1);
825     CCIPR_SET_SOURCE(UART5);
826     CCIPR_SET_SOURCE(UART4);
827     CCIPR_SET_SOURCE(USART3);
828     CCIPR_SET_SOURCE(USART2);
829     CCIPR_SET_SOURCE(USART1);
830 
831     #undef CCIPR_SET_SOURCE
832 }
833 
834 static void rcc_update_bdcr(Stm32l4x5RccState *s)
835 {
836     int val;
837 
838     /* LSCOSEL */
839     val = FIELD_EX32(s->bdcr, BDCR, LSCOSEL);
840     clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_LSCO], val);
841 
842     val = FIELD_EX32(s->bdcr, BDCR, LSCOEN);
843     clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_LSCO], val);
844 
845     /* BDRST */
846     /*
847      * The documentation is not clear if the RTCEN flag disables the RTC and
848      * the LCD common mux or if it only affects the RTC.
849      * As the LCDEN flag exists, we assume here that it only affects the RTC.
850      */
851     val = FIELD_EX32(s->bdcr, BDCR, RTCEN);
852     clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_RTC], val);
853     /* LCD and RTC share the same clock */
854     val = FIELD_EX32(s->bdcr, BDCR, RTCSEL);
855     clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_LCD_AND_RTC_COMMON], val);
856 
857     /* LSECSSON */
858     /* LSEDRV[1:0] */
859     /* LSEBYP */
860 
861     /* LSEON: Update LSERDY at the same time */
862     val = FIELD_EX32(s->bdcr, BDCR, LSEON);
863     if (val) {
864         clock_update_hz(s->lse_crystal, LSE_FRQ);
865         s->bdcr |= R_BDCR_LSERDY_MASK;
866         if (s->cier & R_CIER_LSERDYIE_MASK) {
867             s->cifr |= R_CIFR_LSERDYF_MASK;
868         }
869     } else {
870         clock_update(s->lse_crystal, 0);
871         s->bdcr &= ~R_BDCR_LSERDY_MASK;
872     }
873 
874     rcc_update_irq(s);
875 }
876 
877 static void rcc_update_csr(Stm32l4x5RccState *s)
878 {
879     int val;
880 
881     /* Reset flags: Not implemented */
882     /* MSISRANGE: Not implemented after reset */
883 
884     /* LSION: Update LSIRDY at the same time */
885     val = FIELD_EX32(s->csr, CSR, LSION);
886     if (val) {
887         clock_update_hz(s->lsi_rc, LSI_FRQ);
888         s->csr |= R_CSR_LSIRDY_MASK;
889         if (s->cier & R_CIER_LSIRDYIE_MASK) {
890             s->cifr |= R_CIFR_LSIRDYF_MASK;
891         }
892     } else {
893         /*
894          * TODO: Handle when the LSI is set independently of LSION.
895          * E.g. when the LSI is set by the RTC.
896          * See the reference manual for more details.
897          */
898         clock_update(s->lsi_rc, 0);
899         s->csr &= ~R_CSR_LSIRDY_MASK;
900     }
901 
902     rcc_update_irq(s);
903 }
904 
905 static void stm32l4x5_rcc_reset_hold(Object *obj)
906 {
907     Stm32l4x5RccState *s = STM32L4X5_RCC(obj);
908     s->cr = 0x00000063;
909     /*
910      * Factory-programmed calibration data
911      * From the reference manual: 0x10XX 00XX
912      * Value taken from a real card.
913      */
914     s->icscr = 0x106E0082;
915     s->cfgr = 0x0;
916     s->pllcfgr = 0x00001000;
917     s->pllsai1cfgr = 0x00001000;
918     s->pllsai2cfgr = 0x00001000;
919     s->cier = 0x0;
920     s->cifr = 0x0;
921     s->ahb1rstr = 0x0;
922     s->ahb2rstr = 0x0;
923     s->ahb3rstr = 0x0;
924     s->apb1rstr1 = 0x0;
925     s->apb1rstr2 = 0x0;
926     s->apb2rstr = 0x0;
927     s->ahb1enr = 0x00000100;
928     s->ahb2enr = 0x0;
929     s->ahb3enr = 0x0;
930     s->apb1enr1 = 0x0;
931     s->apb1enr2 = 0x0;
932     s->apb2enr = 0x0;
933     s->ahb1smenr = 0x00011303;
934     s->ahb2smenr = 0x000532FF;
935     s->ahb3smenr =  0x00000101;
936     s->apb1smenr1 = 0xF2FECA3F;
937     s->apb1smenr2 = 0x00000025;
938     s->apb2smenr = 0x01677C01;
939     s->ccipr = 0x0;
940     s->bdcr = 0x0;
941     s->csr = 0x0C000600;
942 }
943 
944 static uint64_t stm32l4x5_rcc_read(void *opaque, hwaddr addr,
945                                      unsigned int size)
946 {
947     Stm32l4x5RccState *s = opaque;
948     uint64_t retvalue = 0;
949 
950     switch (addr) {
951     case A_CR:
952         retvalue = s->cr;
953         break;
954     case A_ICSCR:
955         retvalue = s->icscr;
956         break;
957     case A_CFGR:
958         retvalue = s->cfgr;
959         break;
960     case A_PLLCFGR:
961         retvalue = s->pllcfgr;
962         break;
963     case A_PLLSAI1CFGR:
964         retvalue = s->pllsai1cfgr;
965         break;
966     case A_PLLSAI2CFGR:
967         retvalue = s->pllsai2cfgr;
968         break;
969     case A_CIER:
970         retvalue = s->cier;
971         break;
972     case A_CIFR:
973         retvalue = s->cifr;
974         break;
975     case A_CICR:
976         /* CICR is write only, return the reset value = 0 */
977         break;
978     case A_AHB1RSTR:
979         retvalue = s->ahb1rstr;
980         break;
981     case A_AHB2RSTR:
982         retvalue = s->ahb2rstr;
983         break;
984     case A_AHB3RSTR:
985         retvalue = s->ahb3rstr;
986         break;
987     case A_APB1RSTR1:
988         retvalue = s->apb1rstr1;
989         break;
990     case A_APB1RSTR2:
991         retvalue = s->apb1rstr2;
992         break;
993     case A_APB2RSTR:
994         retvalue = s->apb2rstr;
995         break;
996     case A_AHB1ENR:
997         retvalue = s->ahb1enr;
998         break;
999     case A_AHB2ENR:
1000         retvalue = s->ahb2enr;
1001         break;
1002     case A_AHB3ENR:
1003         retvalue = s->ahb3enr;
1004         break;
1005     case A_APB1ENR1:
1006         retvalue = s->apb1enr1;
1007         break;
1008     case A_APB1ENR2:
1009         retvalue = s->apb1enr2;
1010         break;
1011     case A_APB2ENR:
1012         retvalue = s->apb2enr;
1013         break;
1014     case A_AHB1SMENR:
1015         retvalue = s->ahb1smenr;
1016         break;
1017     case A_AHB2SMENR:
1018         retvalue = s->ahb2smenr;
1019         break;
1020     case A_AHB3SMENR:
1021         retvalue = s->ahb3smenr;
1022         break;
1023     case A_APB1SMENR1:
1024         retvalue = s->apb1smenr1;
1025         break;
1026     case A_APB1SMENR2:
1027         retvalue = s->apb1smenr2;
1028         break;
1029     case A_APB2SMENR:
1030         retvalue = s->apb2smenr;
1031         break;
1032     case A_CCIPR:
1033         retvalue = s->ccipr;
1034         break;
1035     case A_BDCR:
1036         retvalue = s->bdcr;
1037         break;
1038     case A_CSR:
1039         retvalue = s->csr;
1040         break;
1041     default:
1042         qemu_log_mask(LOG_GUEST_ERROR,
1043                       "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr);
1044         break;
1045     }
1046 
1047     trace_stm32l4x5_rcc_read(addr, retvalue);
1048 
1049     return retvalue;
1050 }
1051 
1052 static void stm32l4x5_rcc_write(void *opaque, hwaddr addr,
1053                                   uint64_t val64, unsigned int size)
1054 {
1055     Stm32l4x5RccState *s = opaque;
1056     uint32_t previous_value = 0;
1057     const uint32_t value = val64;
1058 
1059     trace_stm32l4x5_rcc_write(addr, value);
1060 
1061     switch (addr) {
1062     case A_CR:
1063         previous_value = s->cr;
1064         s->cr = (s->cr & CR_READ_SET_MASK) |
1065                 (value & (CR_READ_SET_MASK | ~CR_READ_ONLY_MASK));
1066         rcc_update_cr_register(s, previous_value);
1067         break;
1068     case A_ICSCR:
1069         s->icscr = value & ~ICSCR_READ_ONLY_MASK;
1070         qemu_log_mask(LOG_UNIMP,
1071                 "%s: Side-effects not implemented for ICSCR\n", __func__);
1072         break;
1073     case A_CFGR:
1074         s->cfgr = value & ~CFGR_READ_ONLY_MASK;
1075         rcc_update_cfgr_register(s);
1076         break;
1077     case A_PLLCFGR:
1078         s->pllcfgr = value;
1079         rcc_update_pllcfgr(s);
1080         break;
1081     case A_PLLSAI1CFGR:
1082         s->pllsai1cfgr = value;
1083         rcc_update_pllsaixcfgr(s, RCC_PLL_PLLSAI1);
1084         break;
1085     case A_PLLSAI2CFGR:
1086         s->pllsai2cfgr = value;
1087         rcc_update_pllsaixcfgr(s, RCC_PLL_PLLSAI2);
1088         break;
1089     case A_CIER:
1090         s->cier = value;
1091         qemu_log_mask(LOG_UNIMP,
1092                 "%s: Side-effects not implemented for CIER\n", __func__);
1093         break;
1094     case A_CIFR:
1095         qemu_log_mask(LOG_GUEST_ERROR,
1096             "%s: Write attempt into read-only register (CIFR) 0x%"PRIx32"\n",
1097             __func__, value);
1098         break;
1099     case A_CICR:
1100         /* Clear interrupt flags by writing a 1 to the CICR register */
1101         s->cifr &= ~value;
1102         rcc_update_irq(s);
1103         break;
1104     /* Reset behaviors are not implemented */
1105     case A_AHB1RSTR:
1106         s->ahb1rstr = value;
1107         qemu_log_mask(LOG_UNIMP,
1108                 "%s: Side-effects not implemented for AHB1RSTR\n", __func__);
1109         break;
1110     case A_AHB2RSTR:
1111         s->ahb2rstr = value;
1112         qemu_log_mask(LOG_UNIMP,
1113                 "%s: Side-effects not implemented for AHB2RSTR\n", __func__);
1114         break;
1115     case A_AHB3RSTR:
1116         s->ahb3rstr = value;
1117         qemu_log_mask(LOG_UNIMP,
1118                 "%s: Side-effects not implemented for AHB3RSTR\n", __func__);
1119         break;
1120     case A_APB1RSTR1:
1121         s->apb1rstr1 = value;
1122         qemu_log_mask(LOG_UNIMP,
1123                 "%s: Side-effects not implemented for APB1RSTR1\n", __func__);
1124         break;
1125     case A_APB1RSTR2:
1126         s->apb1rstr2 = value;
1127         qemu_log_mask(LOG_UNIMP,
1128                 "%s: Side-effects not implemented for APB1RSTR2\n", __func__);
1129         break;
1130     case A_APB2RSTR:
1131         s->apb2rstr = value;
1132         qemu_log_mask(LOG_UNIMP,
1133                 "%s: Side-effects not implemented for APB2RSTR\n", __func__);
1134         break;
1135     case A_AHB1ENR:
1136         s->ahb1enr = value;
1137         rcc_update_ahb1enr(s);
1138         break;
1139     case A_AHB2ENR:
1140         s->ahb2enr = value;
1141         rcc_update_ahb2enr(s);
1142         break;
1143     case A_AHB3ENR:
1144         s->ahb3enr = value;
1145         rcc_update_ahb3enr(s);
1146         break;
1147     case A_APB1ENR1:
1148         s->apb1enr1 = value;
1149         rcc_update_apb1enr(s);
1150         break;
1151     case A_APB1ENR2:
1152         s->apb1enr2 = value;
1153         rcc_update_apb1enr(s);
1154         break;
1155     case A_APB2ENR:
1156         s->apb2enr = (s->apb2enr & APB2ENR_READ_SET_MASK) | value;
1157         rcc_update_apb2enr(s);
1158         break;
1159     /* Behaviors for Sleep and Stop modes are not implemented */
1160     case A_AHB1SMENR:
1161         s->ahb1smenr = value;
1162         qemu_log_mask(LOG_UNIMP,
1163                 "%s: Side-effects not implemented for AHB1SMENR\n", __func__);
1164         break;
1165     case A_AHB2SMENR:
1166         s->ahb2smenr = value;
1167         qemu_log_mask(LOG_UNIMP,
1168                 "%s: Side-effects not implemented for AHB2SMENR\n", __func__);
1169         break;
1170     case A_AHB3SMENR:
1171         s->ahb3smenr = value;
1172         qemu_log_mask(LOG_UNIMP,
1173                 "%s: Side-effects not implemented for AHB3SMENR\n", __func__);
1174         break;
1175     case A_APB1SMENR1:
1176         s->apb1smenr1 = value;
1177         qemu_log_mask(LOG_UNIMP,
1178                 "%s: Side-effects not implemented for APB1SMENR1\n", __func__);
1179         break;
1180     case A_APB1SMENR2:
1181         s->apb1smenr2 = value;
1182         qemu_log_mask(LOG_UNIMP,
1183                 "%s: Side-effects not implemented for APB1SMENR2\n", __func__);
1184         break;
1185     case A_APB2SMENR:
1186         s->apb2smenr = value;
1187         qemu_log_mask(LOG_UNIMP,
1188                 "%s: Side-effects not implemented for APB2SMENR\n", __func__);
1189         break;
1190     case A_CCIPR:
1191         s->ccipr = value;
1192         rcc_update_ccipr(s);
1193         break;
1194     case A_BDCR:
1195         s->bdcr = value & ~BDCR_READ_ONLY_MASK;
1196         rcc_update_bdcr(s);
1197         break;
1198     case A_CSR:
1199         s->csr = value & ~CSR_READ_ONLY_MASK;
1200         rcc_update_csr(s);
1201         break;
1202     default:
1203         qemu_log_mask(LOG_GUEST_ERROR,
1204                       "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr);
1205     }
1206 }
1207 
1208 static const MemoryRegionOps stm32l4x5_rcc_ops = {
1209     .read = stm32l4x5_rcc_read,
1210     .write = stm32l4x5_rcc_write,
1211     .endianness = DEVICE_NATIVE_ENDIAN,
1212     .valid = {
1213         .max_access_size = 4,
1214         .min_access_size = 4,
1215         .unaligned = false
1216     },
1217     .impl = {
1218         .max_access_size = 4,
1219         .min_access_size = 4,
1220         .unaligned = false
1221     },
1222 };
1223 
1224 static const ClockPortInitArray stm32l4x5_rcc_clocks = {
1225     QDEV_CLOCK_IN(Stm32l4x5RccState, hsi16_rc, NULL, 0),
1226     QDEV_CLOCK_IN(Stm32l4x5RccState, msi_rc, NULL, 0),
1227     QDEV_CLOCK_IN(Stm32l4x5RccState, hse, NULL, 0),
1228     QDEV_CLOCK_IN(Stm32l4x5RccState, lsi_rc, NULL, 0),
1229     QDEV_CLOCK_IN(Stm32l4x5RccState, lse_crystal, NULL, 0),
1230     QDEV_CLOCK_IN(Stm32l4x5RccState, sai1_extclk, NULL, 0),
1231     QDEV_CLOCK_IN(Stm32l4x5RccState, sai2_extclk, NULL, 0),
1232     QDEV_CLOCK_END
1233 };
1234 
1235 
1236 static void stm32l4x5_rcc_init(Object *obj)
1237 {
1238     Stm32l4x5RccState *s = STM32L4X5_RCC(obj);
1239     size_t i;
1240 
1241     sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->irq);
1242 
1243     memory_region_init_io(&s->mmio, obj, &stm32l4x5_rcc_ops, s,
1244                           TYPE_STM32L4X5_RCC, 0x400);
1245     sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio);
1246 
1247     qdev_init_clocks(DEVICE(s), stm32l4x5_rcc_clocks);
1248 
1249     for (i = 0; i < RCC_NUM_PLL; i++) {
1250         object_initialize_child(obj, PLL_INIT_INFO[i].name,
1251                                 &s->plls[i], TYPE_RCC_PLL);
1252         set_pll_init_info(&s->plls[i], i);
1253     }
1254 
1255     for (i = 0; i < RCC_NUM_CLOCK_MUX; i++) {
1256         char *alias;
1257 
1258         object_initialize_child(obj, CLOCK_MUX_INIT_INFO[i].name,
1259                                 &s->clock_muxes[i],
1260                                 TYPE_RCC_CLOCK_MUX);
1261         set_clock_mux_init_info(&s->clock_muxes[i], i);
1262 
1263         if (!CLOCK_MUX_INIT_INFO[i].hidden) {
1264             /* Expose muxes output as RCC outputs */
1265             alias = g_strdup_printf("%s-out", CLOCK_MUX_INIT_INFO[i].name);
1266             qdev_alias_clock(DEVICE(&s->clock_muxes[i]), "out", DEVICE(obj), alias);
1267             g_free(alias);
1268         }
1269     }
1270 
1271     s->gnd = clock_new(obj, "gnd");
1272 }
1273 
1274 static void connect_mux_sources(Stm32l4x5RccState *s,
1275                                 RccClockMuxState *mux,
1276                                 const RccClockMuxSource *clk_mapping)
1277 {
1278     size_t i;
1279 
1280     Clock * const CLK_SRC_MAPPING[] = {
1281         [RCC_CLOCK_MUX_SRC_GND] = s->gnd,
1282         [RCC_CLOCK_MUX_SRC_HSI] = s->hsi16_rc,
1283         [RCC_CLOCK_MUX_SRC_HSE] = s->hse,
1284         [RCC_CLOCK_MUX_SRC_MSI] = s->msi_rc,
1285         [RCC_CLOCK_MUX_SRC_LSI] = s->lsi_rc,
1286         [RCC_CLOCK_MUX_SRC_LSE] = s->lse_crystal,
1287         [RCC_CLOCK_MUX_SRC_SAI1_EXTCLK] = s->sai1_extclk,
1288         [RCC_CLOCK_MUX_SRC_SAI2_EXTCLK] = s->sai2_extclk,
1289         [RCC_CLOCK_MUX_SRC_PLL] =
1290             s->plls[RCC_PLL_PLL].channels[RCC_PLL_CHANNEL_PLLCLK],
1291         [RCC_CLOCK_MUX_SRC_PLLSAI1] =
1292             s->plls[RCC_PLL_PLLSAI1].channels[RCC_PLLSAI1_CHANNEL_PLLSAI1CLK],
1293         [RCC_CLOCK_MUX_SRC_PLLSAI2] =
1294             s->plls[RCC_PLL_PLLSAI2].channels[RCC_PLLSAI2_CHANNEL_PLLSAI2CLK],
1295         [RCC_CLOCK_MUX_SRC_PLLSAI3] =
1296             s->plls[RCC_PLL_PLL].channels[RCC_PLL_CHANNEL_PLLSAI3CLK],
1297         [RCC_CLOCK_MUX_SRC_PLL48M1] =
1298             s->plls[RCC_PLL_PLL].channels[RCC_PLL_CHANNEL_PLL48M1CLK],
1299         [RCC_CLOCK_MUX_SRC_PLL48M2] =
1300             s->plls[RCC_PLL_PLLSAI1].channels[RCC_PLLSAI1_CHANNEL_PLL48M2CLK],
1301         [RCC_CLOCK_MUX_SRC_PLLADC1] =
1302             s->plls[RCC_PLL_PLLSAI1].channels[RCC_PLLSAI1_CHANNEL_PLLADC1CLK],
1303         [RCC_CLOCK_MUX_SRC_PLLADC2] =
1304             s->plls[RCC_PLL_PLLSAI2] .channels[RCC_PLLSAI2_CHANNEL_PLLADC2CLK],
1305         [RCC_CLOCK_MUX_SRC_SYSCLK] = s->clock_muxes[RCC_CLOCK_MUX_SYSCLK].out,
1306         [RCC_CLOCK_MUX_SRC_HCLK] = s->clock_muxes[RCC_CLOCK_MUX_HCLK].out,
1307         [RCC_CLOCK_MUX_SRC_PCLK1] = s->clock_muxes[RCC_CLOCK_MUX_PCLK1].out,
1308         [RCC_CLOCK_MUX_SRC_PCLK2] = s->clock_muxes[RCC_CLOCK_MUX_PCLK2].out,
1309         [RCC_CLOCK_MUX_SRC_HSE_OVER_32] = s->clock_muxes[RCC_CLOCK_MUX_HSE_OVER_32].out,
1310         [RCC_CLOCK_MUX_SRC_LCD_AND_RTC_COMMON] =
1311             s->clock_muxes[RCC_CLOCK_MUX_LCD_AND_RTC_COMMON].out,
1312     };
1313 
1314     assert(ARRAY_SIZE(CLK_SRC_MAPPING) == RCC_CLOCK_MUX_SRC_NUMBER);
1315 
1316     for (i = 0; i < RCC_NUM_CLOCK_MUX_SRC; i++) {
1317         RccClockMuxSource mapping = clk_mapping[i];
1318         clock_set_source(mux->srcs[i], CLK_SRC_MAPPING[mapping]);
1319     }
1320 }
1321 
1322 
1323 static const VMStateDescription vmstate_stm32l4x5_rcc = {
1324     .name = TYPE_STM32L4X5_RCC,
1325     .version_id = 1,
1326     .minimum_version_id = 1,
1327     .fields = (VMStateField[]) {
1328         VMSTATE_UINT32(cr, Stm32l4x5RccState),
1329         VMSTATE_UINT32(icscr, Stm32l4x5RccState),
1330         VMSTATE_UINT32(cfgr, Stm32l4x5RccState),
1331         VMSTATE_UINT32(pllcfgr, Stm32l4x5RccState),
1332         VMSTATE_UINT32(pllsai1cfgr, Stm32l4x5RccState),
1333         VMSTATE_UINT32(pllsai2cfgr, Stm32l4x5RccState),
1334         VMSTATE_UINT32(cier, Stm32l4x5RccState),
1335         VMSTATE_UINT32(cifr, Stm32l4x5RccState),
1336         VMSTATE_UINT32(ahb1rstr, Stm32l4x5RccState),
1337         VMSTATE_UINT32(ahb2rstr, Stm32l4x5RccState),
1338         VMSTATE_UINT32(ahb3rstr, Stm32l4x5RccState),
1339         VMSTATE_UINT32(apb1rstr1, Stm32l4x5RccState),
1340         VMSTATE_UINT32(apb1rstr2, Stm32l4x5RccState),
1341         VMSTATE_UINT32(apb2rstr, Stm32l4x5RccState),
1342         VMSTATE_UINT32(ahb1enr, Stm32l4x5RccState),
1343         VMSTATE_UINT32(ahb2enr, Stm32l4x5RccState),
1344         VMSTATE_UINT32(ahb3enr, Stm32l4x5RccState),
1345         VMSTATE_UINT32(apb1enr1, Stm32l4x5RccState),
1346         VMSTATE_UINT32(apb1enr2, Stm32l4x5RccState),
1347         VMSTATE_UINT32(apb2enr, Stm32l4x5RccState),
1348         VMSTATE_UINT32(ahb1smenr, Stm32l4x5RccState),
1349         VMSTATE_UINT32(ahb2smenr, Stm32l4x5RccState),
1350         VMSTATE_UINT32(ahb3smenr, Stm32l4x5RccState),
1351         VMSTATE_UINT32(apb1smenr1, Stm32l4x5RccState),
1352         VMSTATE_UINT32(apb1smenr2, Stm32l4x5RccState),
1353         VMSTATE_UINT32(apb2smenr, Stm32l4x5RccState),
1354         VMSTATE_UINT32(ccipr, Stm32l4x5RccState),
1355         VMSTATE_UINT32(bdcr, Stm32l4x5RccState),
1356         VMSTATE_UINT32(csr, Stm32l4x5RccState),
1357         VMSTATE_CLOCK(hsi16_rc, Stm32l4x5RccState),
1358         VMSTATE_CLOCK(msi_rc, Stm32l4x5RccState),
1359         VMSTATE_CLOCK(hse, Stm32l4x5RccState),
1360         VMSTATE_CLOCK(lsi_rc, Stm32l4x5RccState),
1361         VMSTATE_CLOCK(lse_crystal, Stm32l4x5RccState),
1362         VMSTATE_CLOCK(sai1_extclk, Stm32l4x5RccState),
1363         VMSTATE_CLOCK(sai2_extclk, Stm32l4x5RccState),
1364         VMSTATE_END_OF_LIST()
1365     }
1366 };
1367 
1368 
1369 static void stm32l4x5_rcc_realize(DeviceState *dev, Error **errp)
1370 {
1371     Stm32l4x5RccState *s = STM32L4X5_RCC(dev);
1372     size_t i;
1373 
1374     if (s->hse_frequency <  4000000ULL ||
1375         s->hse_frequency > 48000000ULL) {
1376             error_setg(errp,
1377                 "HSE frequency is outside of the allowed [4-48]Mhz range: %" PRIx64 "",
1378                 s->hse_frequency);
1379             return;
1380         }
1381 
1382     for (i = 0; i < RCC_NUM_PLL; i++) {
1383         RccPllState *pll = &s->plls[i];
1384 
1385         clock_set_source(pll->in, s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT].out);
1386 
1387         if (!qdev_realize(DEVICE(pll), NULL, errp)) {
1388             return;
1389         }
1390     }
1391 
1392     for (i = 0; i < RCC_NUM_CLOCK_MUX; i++) {
1393         RccClockMuxState *clock_mux = &s->clock_muxes[i];
1394 
1395         connect_mux_sources(s, clock_mux, CLOCK_MUX_INIT_INFO[i].src_mapping);
1396 
1397         if (!qdev_realize(DEVICE(clock_mux), NULL, errp)) {
1398             return;
1399         }
1400     }
1401 
1402     /*
1403      * Start clocks after everything is connected
1404      * to propagate the frequencies along the tree.
1405      */
1406     clock_update_hz(s->msi_rc, MSI_DEFAULT_FRQ);
1407     clock_update_hz(s->sai1_extclk, s->sai1_extclk_frequency);
1408     clock_update_hz(s->sai2_extclk, s->sai2_extclk_frequency);
1409     clock_update(s->gnd, 0);
1410 }
1411 
1412 static Property stm32l4x5_rcc_properties[] = {
1413     DEFINE_PROP_UINT64("hse_frequency", Stm32l4x5RccState,
1414         hse_frequency, HSE_DEFAULT_FRQ),
1415     DEFINE_PROP_UINT64("sai1_extclk_frequency", Stm32l4x5RccState,
1416         sai1_extclk_frequency, 0),
1417     DEFINE_PROP_UINT64("sai2_extclk_frequency", Stm32l4x5RccState,
1418         sai2_extclk_frequency, 0),
1419     DEFINE_PROP_END_OF_LIST(),
1420 };
1421 
1422 static void stm32l4x5_rcc_class_init(ObjectClass *klass, void *data)
1423 {
1424     DeviceClass *dc = DEVICE_CLASS(klass);
1425     ResettableClass *rc = RESETTABLE_CLASS(klass);
1426 
1427     assert(ARRAY_SIZE(CLOCK_MUX_INIT_INFO) == RCC_NUM_CLOCK_MUX);
1428 
1429     rc->phases.hold = stm32l4x5_rcc_reset_hold;
1430     device_class_set_props(dc, stm32l4x5_rcc_properties);
1431     dc->realize = stm32l4x5_rcc_realize;
1432     dc->vmsd = &vmstate_stm32l4x5_rcc;
1433 }
1434 
1435 static const TypeInfo stm32l4x5_rcc_types[] = {
1436     {
1437         .name           = TYPE_STM32L4X5_RCC,
1438         .parent         = TYPE_SYS_BUS_DEVICE,
1439         .instance_size  = sizeof(Stm32l4x5RccState),
1440         .instance_init  = stm32l4x5_rcc_init,
1441         .class_init     = stm32l4x5_rcc_class_init,
1442     }, {
1443         .name = TYPE_RCC_CLOCK_MUX,
1444         .parent = TYPE_DEVICE,
1445         .instance_size = sizeof(RccClockMuxState),
1446         .instance_init = clock_mux_init,
1447         .class_init = clock_mux_class_init,
1448     }, {
1449         .name = TYPE_RCC_PLL,
1450         .parent = TYPE_DEVICE,
1451         .instance_size = sizeof(RccPllState),
1452         .instance_init = pll_init,
1453         .class_init = pll_class_init,
1454     }
1455 };
1456 
1457 DEFINE_TYPES(stm32l4x5_rcc_types)
1458