xref: /openbmc/qemu/hw/misc/mps2-fpgaio.c (revision 1583a389885346208217e8170395624b3aa90480)
1 /*
2  * ARM MPS2 AN505 FPGAIO emulation
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Peter Maydell
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 or
9  *  (at your option) any later version.
10  */
11 
12 /* This is a model of the "FPGA system control and I/O" block found
13  * in the AN505 FPGA image for the MPS2 devboard.
14  * It is documented in AN505:
15  * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
16  */
17 
18 #include "qemu/osdep.h"
19 #include "qemu/log.h"
20 #include "qemu/module.h"
21 #include "qapi/error.h"
22 #include "trace.h"
23 #include "hw/sysbus.h"
24 #include "migration/vmstate.h"
25 #include "hw/registerfields.h"
26 #include "hw/misc/mps2-fpgaio.h"
27 #include "hw/qdev-properties.h"
28 #include "qemu/timer.h"
29 
30 REG32(LED0, 0)
31 REG32(BUTTON, 8)
32 REG32(CLK1HZ, 0x10)
33 REG32(CLK100HZ, 0x14)
34 REG32(COUNTER, 0x18)
35 REG32(PRESCALE, 0x1c)
36 REG32(PSCNTR, 0x20)
37 REG32(MISC, 0x4c)
38 
39 static uint32_t counter_from_tickoff(int64_t now, int64_t tick_offset, int frq)
40 {
41     return muldiv64(now - tick_offset, frq, NANOSECONDS_PER_SECOND);
42 }
43 
44 static int64_t tickoff_from_counter(int64_t now, uint32_t count, int frq)
45 {
46     return now - muldiv64(count, NANOSECONDS_PER_SECOND, frq);
47 }
48 
49 static void resync_counter(MPS2FPGAIO *s)
50 {
51     /*
52      * Update s->counter and s->pscntr to their true current values
53      * by calculating how many times PSCNTR has ticked since the
54      * last time we did a resync.
55      */
56     int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
57     int64_t elapsed = now - s->pscntr_sync_ticks;
58 
59     /*
60      * Round elapsed down to a whole number of PSCNTR ticks, so we don't
61      * lose time if we do multiple resyncs in a single tick.
62      */
63     uint64_t ticks = muldiv64(elapsed, s->prescale_clk, NANOSECONDS_PER_SECOND);
64 
65     /*
66      * Work out what PSCNTR and COUNTER have moved to. We assume that
67      * PSCNTR reloads from PRESCALE one tick-period after it hits zero,
68      * and that COUNTER increments at the same moment.
69      */
70     if (ticks == 0) {
71         /* We haven't ticked since the last time we were asked */
72         return;
73     } else if (ticks < s->pscntr) {
74         /* We haven't yet reached zero, just reduce the PSCNTR */
75         s->pscntr -= ticks;
76     } else {
77         if (s->prescale == 0) {
78             /*
79              * If the reload value is zero then the PSCNTR will stick
80              * at zero once it reaches it, and so we will increment
81              * COUNTER every tick after that.
82              */
83             s->counter += ticks - s->pscntr;
84             s->pscntr = 0;
85         } else {
86             /*
87              * This is the complicated bit. This ASCII art diagram gives an
88              * example with PRESCALE==5 PSCNTR==7:
89              *
90              * ticks  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14
91              * PSCNTR 7  6  5  4  3  2  1  0  5  4  3  2  1  0  5
92              * cinc                           1                 2
93              * y            0  1  2  3  4  5  6  7  8  9 10 11 12
94              * x            0  1  2  3  4  5  0  1  2  3  4  5  0
95              *
96              * where x = y % (s->prescale + 1)
97              * and so PSCNTR = s->prescale - x
98              * and COUNTER is incremented by y / (s->prescale + 1)
99              *
100              * The case where PSCNTR < PRESCALE works out the same,
101              * though we must be careful to calculate y as 64-bit unsigned
102              * for all parts of the expression.
103              * y < 0 is not possible because that implies ticks < s->pscntr.
104              */
105             uint64_t y = ticks - s->pscntr + s->prescale;
106             s->pscntr = s->prescale - (y % (s->prescale + 1));
107             s->counter += y / (s->prescale + 1);
108         }
109     }
110 
111     /*
112      * Only advance the sync time to the timestamp of the last PSCNTR tick,
113      * not all the way to 'now', so we don't lose time if we do multiple
114      * resyncs in a single tick.
115      */
116     s->pscntr_sync_ticks += muldiv64(ticks, NANOSECONDS_PER_SECOND,
117                                      s->prescale_clk);
118 }
119 
120 static uint64_t mps2_fpgaio_read(void *opaque, hwaddr offset, unsigned size)
121 {
122     MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
123     uint64_t r;
124     int64_t now;
125 
126     switch (offset) {
127     case A_LED0:
128         r = s->led0;
129         break;
130     case A_BUTTON:
131         /* User-pressable board buttons. We don't model that, so just return
132          * zeroes.
133          */
134         r = 0;
135         break;
136     case A_PRESCALE:
137         r = s->prescale;
138         break;
139     case A_MISC:
140         r = s->misc;
141         break;
142     case A_CLK1HZ:
143         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
144         r = counter_from_tickoff(now, s->clk1hz_tick_offset, 1);
145         break;
146     case A_CLK100HZ:
147         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
148         r = counter_from_tickoff(now, s->clk100hz_tick_offset, 100);
149         break;
150     case A_COUNTER:
151         resync_counter(s);
152         r = s->counter;
153         break;
154     case A_PSCNTR:
155         resync_counter(s);
156         r = s->pscntr;
157         break;
158     default:
159         qemu_log_mask(LOG_GUEST_ERROR,
160                       "MPS2 FPGAIO read: bad offset %x\n", (int) offset);
161         r = 0;
162         break;
163     }
164 
165     trace_mps2_fpgaio_read(offset, r, size);
166     return r;
167 }
168 
169 static void mps2_fpgaio_write(void *opaque, hwaddr offset, uint64_t value,
170                               unsigned size)
171 {
172     MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
173     int64_t now;
174 
175     trace_mps2_fpgaio_write(offset, value, size);
176 
177     switch (offset) {
178     case A_LED0:
179         /* LED bits [1:0] control board LEDs. We don't currently have
180          * a mechanism for displaying this graphically, so use a trace event.
181          */
182         trace_mps2_fpgaio_leds(value & 0x02 ? '*' : '.',
183                                value & 0x01 ? '*' : '.');
184         s->led0 = value & 0x3;
185         break;
186     case A_PRESCALE:
187         resync_counter(s);
188         s->prescale = value;
189         break;
190     case A_MISC:
191         /* These are control bits for some of the other devices on the
192          * board (SPI, CLCD, etc). We don't implement that yet, so just
193          * make the bits read as written.
194          */
195         qemu_log_mask(LOG_UNIMP,
196                       "MPS2 FPGAIO: MISC control bits unimplemented\n");
197         s->misc = value;
198         break;
199     case A_CLK1HZ:
200         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
201         s->clk1hz_tick_offset = tickoff_from_counter(now, value, 1);
202         break;
203     case A_CLK100HZ:
204         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
205         s->clk100hz_tick_offset = tickoff_from_counter(now, value, 100);
206         break;
207     case A_COUNTER:
208         resync_counter(s);
209         s->counter = value;
210         break;
211     case A_PSCNTR:
212         resync_counter(s);
213         s->pscntr = value;
214         break;
215     default:
216         qemu_log_mask(LOG_GUEST_ERROR,
217                       "MPS2 FPGAIO write: bad offset 0x%x\n", (int) offset);
218         break;
219     }
220 }
221 
222 static const MemoryRegionOps mps2_fpgaio_ops = {
223     .read = mps2_fpgaio_read,
224     .write = mps2_fpgaio_write,
225     .endianness = DEVICE_LITTLE_ENDIAN,
226 };
227 
228 static void mps2_fpgaio_reset(DeviceState *dev)
229 {
230     MPS2FPGAIO *s = MPS2_FPGAIO(dev);
231     int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
232 
233     trace_mps2_fpgaio_reset();
234     s->led0 = 0;
235     s->prescale = 0;
236     s->misc = 0;
237     s->clk1hz_tick_offset = tickoff_from_counter(now, 0, 1);
238     s->clk100hz_tick_offset = tickoff_from_counter(now, 0, 100);
239     s->counter = 0;
240     s->pscntr = 0;
241     s->pscntr_sync_ticks = now;
242 }
243 
244 static void mps2_fpgaio_init(Object *obj)
245 {
246     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
247     MPS2FPGAIO *s = MPS2_FPGAIO(obj);
248 
249     memory_region_init_io(&s->iomem, obj, &mps2_fpgaio_ops, s,
250                           "mps2-fpgaio", 0x1000);
251     sysbus_init_mmio(sbd, &s->iomem);
252 }
253 
254 static bool mps2_fpgaio_counters_needed(void *opaque)
255 {
256     /* Currently vmstate.c insists all subsections have a 'needed' function */
257     return true;
258 }
259 
260 static const VMStateDescription mps2_fpgaio_counters_vmstate = {
261     .name = "mps2-fpgaio/counters",
262     .version_id = 2,
263     .minimum_version_id = 2,
264     .needed = mps2_fpgaio_counters_needed,
265     .fields = (VMStateField[]) {
266         VMSTATE_INT64(clk1hz_tick_offset, MPS2FPGAIO),
267         VMSTATE_INT64(clk100hz_tick_offset, MPS2FPGAIO),
268         VMSTATE_UINT32(counter, MPS2FPGAIO),
269         VMSTATE_UINT32(pscntr, MPS2FPGAIO),
270         VMSTATE_INT64(pscntr_sync_ticks, MPS2FPGAIO),
271         VMSTATE_END_OF_LIST()
272     }
273 };
274 
275 static const VMStateDescription mps2_fpgaio_vmstate = {
276     .name = "mps2-fpgaio",
277     .version_id = 1,
278     .minimum_version_id = 1,
279     .fields = (VMStateField[]) {
280         VMSTATE_UINT32(led0, MPS2FPGAIO),
281         VMSTATE_UINT32(prescale, MPS2FPGAIO),
282         VMSTATE_UINT32(misc, MPS2FPGAIO),
283         VMSTATE_END_OF_LIST()
284     },
285     .subsections = (const VMStateDescription*[]) {
286         &mps2_fpgaio_counters_vmstate,
287         NULL
288     }
289 };
290 
291 static Property mps2_fpgaio_properties[] = {
292     /* Frequency of the prescale counter */
293     DEFINE_PROP_UINT32("prescale-clk", MPS2FPGAIO, prescale_clk, 20000000),
294     DEFINE_PROP_END_OF_LIST(),
295 };
296 
297 static void mps2_fpgaio_class_init(ObjectClass *klass, void *data)
298 {
299     DeviceClass *dc = DEVICE_CLASS(klass);
300 
301     dc->vmsd = &mps2_fpgaio_vmstate;
302     dc->reset = mps2_fpgaio_reset;
303     device_class_set_props(dc, mps2_fpgaio_properties);
304 }
305 
306 static const TypeInfo mps2_fpgaio_info = {
307     .name = TYPE_MPS2_FPGAIO,
308     .parent = TYPE_SYS_BUS_DEVICE,
309     .instance_size = sizeof(MPS2FPGAIO),
310     .instance_init = mps2_fpgaio_init,
311     .class_init = mps2_fpgaio_class_init,
312 };
313 
314 static void mps2_fpgaio_register_types(void)
315 {
316     type_register_static(&mps2_fpgaio_info);
317 }
318 
319 type_init(mps2_fpgaio_register_types);
320