xref: /openbmc/qemu/hw/misc/iotkit-sysctl.c (revision efd4d93b530807921b1940e13990c561530618d3)
1 /*
2  * ARM IoTKit system control element
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Peter Maydell
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 or
9  *  (at your option) any later version.
10  */
11 
12 /*
13  * This is a model of the "system control element" which is part of the
14  * Arm IoTKit and documented in
15  * http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
16  * Specifically, it implements the "system control register" blocks.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "qemu/bitops.h"
21 #include "qemu/log.h"
22 #include "qemu/module.h"
23 #include "sysemu/runstate.h"
24 #include "trace.h"
25 #include "qapi/error.h"
26 #include "hw/sysbus.h"
27 #include "migration/vmstate.h"
28 #include "hw/registerfields.h"
29 #include "hw/misc/iotkit-sysctl.h"
30 #include "hw/qdev-properties.h"
31 #include "target/arm/arm-powerctl.h"
32 #include "target/arm/cpu.h"
33 
34 REG32(SECDBGSTAT, 0x0)
35 REG32(SECDBGSET, 0x4)
36 REG32(SECDBGCLR, 0x8)
37 REG32(SCSECCTRL, 0xc)
38 REG32(FCLK_DIV, 0x10)
39 REG32(SYSCLK_DIV, 0x14)
40 REG32(CLOCK_FORCE, 0x18)
41 REG32(RESET_SYNDROME, 0x100)
42 REG32(RESET_MASK, 0x104)
43 REG32(SWRESET, 0x108)
44     FIELD(SWRESET, SWRESETREQ, 9, 1)
45 REG32(GRETREG, 0x10c)
46 REG32(INITSVTOR0, 0x110)
47 REG32(INITSVTOR1, 0x114)
48 REG32(CPUWAIT, 0x118)
49 REG32(NMI_ENABLE, 0x11c) /* BUSWAIT in IoTKit */
50 REG32(WICCTRL, 0x120)
51 REG32(EWCTRL, 0x124)
52 REG32(PDCM_PD_SYS_SENSE, 0x200)
53 REG32(PDCM_PD_SRAM0_SENSE, 0x20c)
54 REG32(PDCM_PD_SRAM1_SENSE, 0x210)
55 REG32(PDCM_PD_SRAM2_SENSE, 0x214)
56 REG32(PDCM_PD_SRAM3_SENSE, 0x218)
57 REG32(PID4, 0xfd0)
58 REG32(PID5, 0xfd4)
59 REG32(PID6, 0xfd8)
60 REG32(PID7, 0xfdc)
61 REG32(PID0, 0xfe0)
62 REG32(PID1, 0xfe4)
63 REG32(PID2, 0xfe8)
64 REG32(PID3, 0xfec)
65 REG32(CID0, 0xff0)
66 REG32(CID1, 0xff4)
67 REG32(CID2, 0xff8)
68 REG32(CID3, 0xffc)
69 
70 /* PID/CID values */
71 static const int sysctl_id[] = {
72     0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
73     0x54, 0xb8, 0x0b, 0x00, /* PID0..PID3 */
74     0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
75 };
76 
77 /*
78  * Set the initial secure vector table offset address for the core.
79  * This will take effect when the CPU next resets.
80  */
81 static void set_init_vtor(uint64_t cpuid, uint32_t vtor)
82 {
83     Object *cpuobj = OBJECT(arm_get_cpu_by_id(cpuid));
84 
85     if (cpuobj) {
86         if (object_property_find(cpuobj, "init-svtor")) {
87             object_property_set_uint(cpuobj, "init-svtor", vtor, &error_abort);
88         }
89     }
90 }
91 
92 static uint64_t iotkit_sysctl_read(void *opaque, hwaddr offset,
93                                     unsigned size)
94 {
95     IoTKitSysCtl *s = IOTKIT_SYSCTL(opaque);
96     uint64_t r;
97 
98     switch (offset) {
99     case A_SECDBGSTAT:
100         r = s->secure_debug;
101         break;
102     case A_SCSECCTRL:
103         if (!s->is_sse200) {
104             goto bad_offset;
105         }
106         r = s->scsecctrl;
107         break;
108     case A_FCLK_DIV:
109         if (!s->is_sse200) {
110             goto bad_offset;
111         }
112         r = s->fclk_div;
113         break;
114     case A_SYSCLK_DIV:
115         if (!s->is_sse200) {
116             goto bad_offset;
117         }
118         r = s->sysclk_div;
119         break;
120     case A_CLOCK_FORCE:
121         if (!s->is_sse200) {
122             goto bad_offset;
123         }
124         r = s->clock_force;
125         break;
126     case A_RESET_SYNDROME:
127         r = s->reset_syndrome;
128         break;
129     case A_RESET_MASK:
130         r = s->reset_mask;
131         break;
132     case A_GRETREG:
133         r = s->gretreg;
134         break;
135     case A_INITSVTOR0:
136         r = s->initsvtor0;
137         break;
138     case A_INITSVTOR1:
139         if (!s->is_sse200) {
140             goto bad_offset;
141         }
142         r = s->initsvtor1;
143         break;
144     case A_CPUWAIT:
145         r = s->cpuwait;
146         break;
147     case A_NMI_ENABLE:
148         /* In IoTKit this is named BUSWAIT but is marked reserved, R/O, zero */
149         if (!s->is_sse200) {
150             r = 0;
151             break;
152         }
153         r = s->nmi_enable;
154         break;
155     case A_WICCTRL:
156         r = s->wicctrl;
157         break;
158     case A_EWCTRL:
159         if (!s->is_sse200) {
160             goto bad_offset;
161         }
162         r = s->ewctrl;
163         break;
164     case A_PDCM_PD_SYS_SENSE:
165         if (!s->is_sse200) {
166             goto bad_offset;
167         }
168         r = s->pdcm_pd_sys_sense;
169         break;
170     case A_PDCM_PD_SRAM0_SENSE:
171         if (!s->is_sse200) {
172             goto bad_offset;
173         }
174         r = s->pdcm_pd_sram0_sense;
175         break;
176     case A_PDCM_PD_SRAM1_SENSE:
177         if (!s->is_sse200) {
178             goto bad_offset;
179         }
180         r = s->pdcm_pd_sram1_sense;
181         break;
182     case A_PDCM_PD_SRAM2_SENSE:
183         if (!s->is_sse200) {
184             goto bad_offset;
185         }
186         r = s->pdcm_pd_sram2_sense;
187         break;
188     case A_PDCM_PD_SRAM3_SENSE:
189         if (!s->is_sse200) {
190             goto bad_offset;
191         }
192         r = s->pdcm_pd_sram3_sense;
193         break;
194     case A_PID4 ... A_CID3:
195         r = sysctl_id[(offset - A_PID4) / 4];
196         break;
197     case A_SECDBGSET:
198     case A_SECDBGCLR:
199     case A_SWRESET:
200         qemu_log_mask(LOG_GUEST_ERROR,
201                       "IoTKit SysCtl read: read of WO offset %x\n",
202                       (int)offset);
203         r = 0;
204         break;
205     default:
206     bad_offset:
207         qemu_log_mask(LOG_GUEST_ERROR,
208                       "IoTKit SysCtl read: bad offset %x\n", (int)offset);
209         r = 0;
210         break;
211     }
212     trace_iotkit_sysctl_read(offset, r, size);
213     return r;
214 }
215 
216 static void iotkit_sysctl_write(void *opaque, hwaddr offset,
217                                  uint64_t value, unsigned size)
218 {
219     IoTKitSysCtl *s = IOTKIT_SYSCTL(opaque);
220 
221     trace_iotkit_sysctl_write(offset, value, size);
222 
223     /*
224      * Most of the state here has to do with control of reset and
225      * similar kinds of power up -- for instance the guest can ask
226      * what the reason for the last reset was, or forbid reset for
227      * some causes (like the non-secure watchdog). Most of this is
228      * not relevant to QEMU, which doesn't really model anything other
229      * than a full power-on reset.
230      * We just model the registers as reads-as-written.
231      */
232 
233     switch (offset) {
234     case A_RESET_SYNDROME:
235         qemu_log_mask(LOG_UNIMP,
236                       "IoTKit SysCtl RESET_SYNDROME unimplemented\n");
237         s->reset_syndrome = value;
238         break;
239     case A_RESET_MASK:
240         qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl RESET_MASK unimplemented\n");
241         s->reset_mask = value;
242         break;
243     case A_GRETREG:
244         /*
245          * General retention register, which is only reset by a power-on
246          * reset. Technically this implementation is complete, since
247          * QEMU only supports power-on resets...
248          */
249         s->gretreg = value;
250         break;
251     case A_INITSVTOR0:
252         s->initsvtor0 = value;
253         set_init_vtor(0, s->initsvtor0);
254         break;
255     case A_CPUWAIT:
256         if ((s->cpuwait & 1) && !(value & 1)) {
257             /* Powering up CPU 0 */
258             arm_set_cpu_on_and_reset(0);
259         }
260         if ((s->cpuwait & 2) && !(value & 2)) {
261             /* Powering up CPU 1 */
262             arm_set_cpu_on_and_reset(1);
263         }
264         s->cpuwait = value;
265         break;
266     case A_WICCTRL:
267         qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl WICCTRL unimplemented\n");
268         s->wicctrl = value;
269         break;
270     case A_SECDBGSET:
271         /* write-1-to-set */
272         qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl SECDBGSET unimplemented\n");
273         s->secure_debug |= value;
274         break;
275     case A_SECDBGCLR:
276         /* write-1-to-clear */
277         s->secure_debug &= ~value;
278         break;
279     case A_SWRESET:
280         /* One w/o bit to request a reset; all other bits reserved */
281         if (value & R_SWRESET_SWRESETREQ_MASK) {
282             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
283         }
284         break;
285     case A_SCSECCTRL:
286         if (!s->is_sse200) {
287             goto bad_offset;
288         }
289         qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl SCSECCTRL unimplemented\n");
290         s->scsecctrl = value;
291         break;
292     case A_FCLK_DIV:
293         if (!s->is_sse200) {
294             goto bad_offset;
295         }
296         qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl FCLK_DIV unimplemented\n");
297         s->fclk_div = value;
298         break;
299     case A_SYSCLK_DIV:
300         if (!s->is_sse200) {
301             goto bad_offset;
302         }
303         qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl SYSCLK_DIV unimplemented\n");
304         s->sysclk_div = value;
305         break;
306     case A_CLOCK_FORCE:
307         if (!s->is_sse200) {
308             goto bad_offset;
309         }
310         qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl CLOCK_FORCE unimplemented\n");
311         s->clock_force = value;
312         break;
313     case A_INITSVTOR1:
314         if (!s->is_sse200) {
315             goto bad_offset;
316         }
317         s->initsvtor1 = value;
318         set_init_vtor(1, s->initsvtor1);
319         break;
320     case A_EWCTRL:
321         if (!s->is_sse200) {
322             goto bad_offset;
323         }
324         qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl EWCTRL unimplemented\n");
325         s->ewctrl = value;
326         break;
327     case A_PDCM_PD_SYS_SENSE:
328         if (!s->is_sse200) {
329             goto bad_offset;
330         }
331         qemu_log_mask(LOG_UNIMP,
332                       "IoTKit SysCtl PDCM_PD_SYS_SENSE unimplemented\n");
333         s->pdcm_pd_sys_sense = value;
334         break;
335     case A_PDCM_PD_SRAM0_SENSE:
336         if (!s->is_sse200) {
337             goto bad_offset;
338         }
339         qemu_log_mask(LOG_UNIMP,
340                       "IoTKit SysCtl PDCM_PD_SRAM0_SENSE unimplemented\n");
341         s->pdcm_pd_sram0_sense = value;
342         break;
343     case A_PDCM_PD_SRAM1_SENSE:
344         if (!s->is_sse200) {
345             goto bad_offset;
346         }
347         qemu_log_mask(LOG_UNIMP,
348                       "IoTKit SysCtl PDCM_PD_SRAM1_SENSE unimplemented\n");
349         s->pdcm_pd_sram1_sense = value;
350         break;
351     case A_PDCM_PD_SRAM2_SENSE:
352         if (!s->is_sse200) {
353             goto bad_offset;
354         }
355         qemu_log_mask(LOG_UNIMP,
356                       "IoTKit SysCtl PDCM_PD_SRAM2_SENSE unimplemented\n");
357         s->pdcm_pd_sram2_sense = value;
358         break;
359     case A_PDCM_PD_SRAM3_SENSE:
360         if (!s->is_sse200) {
361             goto bad_offset;
362         }
363         qemu_log_mask(LOG_UNIMP,
364                       "IoTKit SysCtl PDCM_PD_SRAM3_SENSE unimplemented\n");
365         s->pdcm_pd_sram3_sense = value;
366         break;
367     case A_NMI_ENABLE:
368         /* In IoTKit this is BUSWAIT: reserved, R/O, zero */
369         if (!s->is_sse200) {
370             goto ro_offset;
371         }
372         qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl NMI_ENABLE unimplemented\n");
373         s->nmi_enable = value;
374         break;
375     case A_SECDBGSTAT:
376     case A_PID4 ... A_CID3:
377     ro_offset:
378         qemu_log_mask(LOG_GUEST_ERROR,
379                       "IoTKit SysCtl write: write of RO offset %x\n",
380                       (int)offset);
381         break;
382     default:
383     bad_offset:
384         qemu_log_mask(LOG_GUEST_ERROR,
385                       "IoTKit SysCtl write: bad offset %x\n", (int)offset);
386         break;
387     }
388 }
389 
390 static const MemoryRegionOps iotkit_sysctl_ops = {
391     .read = iotkit_sysctl_read,
392     .write = iotkit_sysctl_write,
393     .endianness = DEVICE_LITTLE_ENDIAN,
394     /* byte/halfword accesses are just zero-padded on reads and writes */
395     .impl.min_access_size = 4,
396     .impl.max_access_size = 4,
397     .valid.min_access_size = 1,
398     .valid.max_access_size = 4,
399 };
400 
401 static void iotkit_sysctl_reset(DeviceState *dev)
402 {
403     IoTKitSysCtl *s = IOTKIT_SYSCTL(dev);
404 
405     trace_iotkit_sysctl_reset();
406     s->secure_debug = 0;
407     s->reset_syndrome = 1;
408     s->reset_mask = 0;
409     s->gretreg = 0;
410     s->initsvtor0 = s->initsvtor0_rst;
411     s->initsvtor1 = s->initsvtor1_rst;
412     s->cpuwait = s->cpuwait_rst;
413     s->wicctrl = 0;
414     s->scsecctrl = 0;
415     s->fclk_div = 0;
416     s->sysclk_div = 0;
417     s->clock_force = 0;
418     s->nmi_enable = 0;
419     s->ewctrl = 0;
420     s->pdcm_pd_sys_sense = 0x7f;
421     s->pdcm_pd_sram0_sense = 0;
422     s->pdcm_pd_sram1_sense = 0;
423     s->pdcm_pd_sram2_sense = 0;
424     s->pdcm_pd_sram3_sense = 0;
425 }
426 
427 static void iotkit_sysctl_init(Object *obj)
428 {
429     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
430     IoTKitSysCtl *s = IOTKIT_SYSCTL(obj);
431 
432     memory_region_init_io(&s->iomem, obj, &iotkit_sysctl_ops,
433                           s, "iotkit-sysctl", 0x1000);
434     sysbus_init_mmio(sbd, &s->iomem);
435 }
436 
437 static void iotkit_sysctl_realize(DeviceState *dev, Error **errp)
438 {
439     IoTKitSysCtl *s = IOTKIT_SYSCTL(dev);
440 
441     /* The top 4 bits of the SYS_VERSION register tell us if we're an SSE-200 */
442     if (extract32(s->sys_version, 28, 4) == 2) {
443         s->is_sse200 = true;
444     }
445 }
446 
447 static bool sse200_needed(void *opaque)
448 {
449     IoTKitSysCtl *s = IOTKIT_SYSCTL(opaque);
450 
451     return s->is_sse200;
452 }
453 
454 static const VMStateDescription iotkit_sysctl_sse200_vmstate = {
455     .name = "iotkit-sysctl/sse-200",
456     .version_id = 1,
457     .minimum_version_id = 1,
458     .needed = sse200_needed,
459     .fields = (VMStateField[]) {
460         VMSTATE_UINT32(scsecctrl, IoTKitSysCtl),
461         VMSTATE_UINT32(fclk_div, IoTKitSysCtl),
462         VMSTATE_UINT32(sysclk_div, IoTKitSysCtl),
463         VMSTATE_UINT32(clock_force, IoTKitSysCtl),
464         VMSTATE_UINT32(initsvtor1, IoTKitSysCtl),
465         VMSTATE_UINT32(nmi_enable, IoTKitSysCtl),
466         VMSTATE_UINT32(pdcm_pd_sys_sense, IoTKitSysCtl),
467         VMSTATE_UINT32(pdcm_pd_sram0_sense, IoTKitSysCtl),
468         VMSTATE_UINT32(pdcm_pd_sram1_sense, IoTKitSysCtl),
469         VMSTATE_UINT32(pdcm_pd_sram2_sense, IoTKitSysCtl),
470         VMSTATE_UINT32(pdcm_pd_sram3_sense, IoTKitSysCtl),
471         VMSTATE_END_OF_LIST()
472     }
473 };
474 
475 static const VMStateDescription iotkit_sysctl_vmstate = {
476     .name = "iotkit-sysctl",
477     .version_id = 1,
478     .minimum_version_id = 1,
479     .fields = (VMStateField[]) {
480         VMSTATE_UINT32(secure_debug, IoTKitSysCtl),
481         VMSTATE_UINT32(reset_syndrome, IoTKitSysCtl),
482         VMSTATE_UINT32(reset_mask, IoTKitSysCtl),
483         VMSTATE_UINT32(gretreg, IoTKitSysCtl),
484         VMSTATE_UINT32(initsvtor0, IoTKitSysCtl),
485         VMSTATE_UINT32(cpuwait, IoTKitSysCtl),
486         VMSTATE_UINT32(wicctrl, IoTKitSysCtl),
487         VMSTATE_END_OF_LIST()
488     },
489     .subsections = (const VMStateDescription*[]) {
490         &iotkit_sysctl_sse200_vmstate,
491         NULL
492     }
493 };
494 
495 static Property iotkit_sysctl_props[] = {
496     DEFINE_PROP_UINT32("SYS_VERSION", IoTKitSysCtl, sys_version, 0),
497     DEFINE_PROP_UINT32("CPUWAIT_RST", IoTKitSysCtl, cpuwait_rst, 0),
498     DEFINE_PROP_UINT32("INITSVTOR0_RST", IoTKitSysCtl, initsvtor0_rst,
499                        0x10000000),
500     DEFINE_PROP_UINT32("INITSVTOR1_RST", IoTKitSysCtl, initsvtor1_rst,
501                        0x10000000),
502     DEFINE_PROP_END_OF_LIST()
503 };
504 
505 static void iotkit_sysctl_class_init(ObjectClass *klass, void *data)
506 {
507     DeviceClass *dc = DEVICE_CLASS(klass);
508 
509     dc->vmsd = &iotkit_sysctl_vmstate;
510     dc->reset = iotkit_sysctl_reset;
511     device_class_set_props(dc, iotkit_sysctl_props);
512     dc->realize = iotkit_sysctl_realize;
513 }
514 
515 static const TypeInfo iotkit_sysctl_info = {
516     .name = TYPE_IOTKIT_SYSCTL,
517     .parent = TYPE_SYS_BUS_DEVICE,
518     .instance_size = sizeof(IoTKitSysCtl),
519     .instance_init = iotkit_sysctl_init,
520     .class_init = iotkit_sysctl_class_init,
521 };
522 
523 static void iotkit_sysctl_register_types(void)
524 {
525     type_register_static(&iotkit_sysctl_info);
526 }
527 
528 type_init(iotkit_sysctl_register_types);
529