xref: /openbmc/qemu/hw/misc/imx6_src.c (revision c5a5839856119a3644dcc0775a046ed0ee3081c3)
1 /*
2  * IMX6 System Reset Controller
3  *
4  * Copyright (c) 2015 Jean-Christophe Dubois <jcd@tribudubois.net>
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #include "qemu/osdep.h"
12 #include "hw/misc/imx6_src.h"
13 #include "migration/vmstate.h"
14 #include "qemu/bitops.h"
15 #include "qemu/log.h"
16 #include "qemu/main-loop.h"
17 #include "qemu/module.h"
18 #include "arm-powerctl.h"
19 #include "hw/core/cpu.h"
20 
21 #ifndef DEBUG_IMX6_SRC
22 #define DEBUG_IMX6_SRC 0
23 #endif
24 
25 #define DPRINTF(fmt, args...) \
26     do { \
27         if (DEBUG_IMX6_SRC) { \
28             fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX6_SRC, \
29                                              __func__, ##args); \
30         } \
31     } while (0)
32 
33 static const char *imx6_src_reg_name(uint32_t reg)
34 {
35     static char unknown[20];
36 
37     switch (reg) {
38     case SRC_SCR:
39         return "SRC_SCR";
40     case SRC_SBMR1:
41         return "SRC_SBMR1";
42     case SRC_SRSR:
43         return "SRC_SRSR";
44     case SRC_SISR:
45         return "SRC_SISR";
46     case SRC_SIMR:
47         return "SRC_SIMR";
48     case SRC_SBMR2:
49         return "SRC_SBMR2";
50     case SRC_GPR1:
51         return "SRC_GPR1";
52     case SRC_GPR2:
53         return "SRC_GPR2";
54     case SRC_GPR3:
55         return "SRC_GPR3";
56     case SRC_GPR4:
57         return "SRC_GPR4";
58     case SRC_GPR5:
59         return "SRC_GPR5";
60     case SRC_GPR6:
61         return "SRC_GPR6";
62     case SRC_GPR7:
63         return "SRC_GPR7";
64     case SRC_GPR8:
65         return "SRC_GPR8";
66     case SRC_GPR9:
67         return "SRC_GPR9";
68     case SRC_GPR10:
69         return "SRC_GPR10";
70     default:
71         sprintf(unknown, "%d ?", reg);
72         return unknown;
73     }
74 }
75 
76 static const VMStateDescription vmstate_imx6_src = {
77     .name = TYPE_IMX6_SRC,
78     .version_id = 1,
79     .minimum_version_id = 1,
80     .fields = (VMStateField[]) {
81         VMSTATE_UINT32_ARRAY(regs, IMX6SRCState, SRC_MAX),
82         VMSTATE_END_OF_LIST()
83     },
84 };
85 
86 static void imx6_src_reset(DeviceState *dev)
87 {
88     IMX6SRCState *s = IMX6_SRC(dev);
89 
90     DPRINTF("\n");
91 
92     memset(s->regs, 0, sizeof(s->regs));
93 
94     /* Set reset values */
95     s->regs[SRC_SCR] = 0x521;
96     s->regs[SRC_SRSR] = 0x1;
97     s->regs[SRC_SIMR] = 0x1F;
98 }
99 
100 static uint64_t imx6_src_read(void *opaque, hwaddr offset, unsigned size)
101 {
102     uint32_t value = 0;
103     IMX6SRCState *s = (IMX6SRCState *)opaque;
104     uint32_t index = offset >> 2;
105 
106     if (index < SRC_MAX) {
107         value = s->regs[index];
108     } else {
109         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
110                       HWADDR_PRIx "\n", TYPE_IMX6_SRC, __func__, offset);
111 
112     }
113 
114     DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx6_src_reg_name(index), value);
115 
116     return value;
117 }
118 
119 
120 /* The reset is asynchronous so we need to defer clearing the reset
121  * bit until the work is completed.
122  */
123 
124 struct SRCSCRResetInfo {
125     IMX6SRCState *s;
126     int reset_bit;
127 };
128 
129 static void imx6_clear_reset_bit(CPUState *cpu, run_on_cpu_data data)
130 {
131     struct SRCSCRResetInfo *ri = data.host_ptr;
132     IMX6SRCState *s = ri->s;
133 
134     assert(qemu_mutex_iothread_locked());
135 
136     s->regs[SRC_SCR] = deposit32(s->regs[SRC_SCR], ri->reset_bit, 1, 0);
137     DPRINTF("reg[%s] <= 0x%" PRIx32 "\n",
138             imx6_src_reg_name(SRC_SCR), s->regs[SRC_SCR]);
139 
140     g_free(ri);
141 }
142 
143 static void imx6_defer_clear_reset_bit(int cpuid,
144                                        IMX6SRCState *s,
145                                        unsigned long reset_shift)
146 {
147     struct SRCSCRResetInfo *ri;
148     CPUState *cpu = arm_get_cpu_by_id(cpuid);
149 
150     if (!cpu) {
151         return;
152     }
153 
154     ri = g_malloc(sizeof(struct SRCSCRResetInfo));
155     ri->s = s;
156     ri->reset_bit = reset_shift;
157 
158     async_run_on_cpu(cpu, imx6_clear_reset_bit, RUN_ON_CPU_HOST_PTR(ri));
159 }
160 
161 
162 static void imx6_src_write(void *opaque, hwaddr offset, uint64_t value,
163                            unsigned size)
164 {
165     IMX6SRCState *s = (IMX6SRCState *)opaque;
166     uint32_t index = offset >> 2;
167     unsigned long change_mask;
168     unsigned long current_value = value;
169 
170     if (index >=  SRC_MAX) {
171         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
172                       HWADDR_PRIx "\n", TYPE_IMX6_SRC, __func__, offset);
173         return;
174     }
175 
176     DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_src_reg_name(index),
177             (uint32_t)current_value);
178 
179     change_mask = s->regs[index] ^ (uint32_t)current_value;
180 
181     switch (index) {
182     case SRC_SCR:
183         /*
184          * On real hardware when the system reset controller starts a
185          * secondary CPU it runs through some boot ROM code which reads
186          * the SRC_GPRX registers controlling the start address and branches
187          * to it.
188          * Here we are taking a short cut and branching directly to the
189          * requested address (we don't want to run the boot ROM code inside
190          * QEMU)
191          */
192         if (EXTRACT(change_mask, CORE3_ENABLE)) {
193             if (EXTRACT(current_value, CORE3_ENABLE)) {
194                 /* CORE 3 is brought up */
195                 arm_set_cpu_on(3, s->regs[SRC_GPR7], s->regs[SRC_GPR8],
196                                3, false);
197             } else {
198                 /* CORE 3 is shut down */
199                 arm_set_cpu_off(3);
200             }
201             /* We clear the reset bits as the processor changed state */
202             imx6_defer_clear_reset_bit(3, s, CORE3_RST_SHIFT);
203             clear_bit(CORE3_RST_SHIFT, &change_mask);
204         }
205         if (EXTRACT(change_mask, CORE2_ENABLE)) {
206             if (EXTRACT(current_value, CORE2_ENABLE)) {
207                 /* CORE 2 is brought up */
208                 arm_set_cpu_on(2, s->regs[SRC_GPR5], s->regs[SRC_GPR6],
209                                3, false);
210             } else {
211                 /* CORE 2 is shut down */
212                 arm_set_cpu_off(2);
213             }
214             /* We clear the reset bits as the processor changed state */
215             imx6_defer_clear_reset_bit(2, s, CORE2_RST_SHIFT);
216             clear_bit(CORE2_RST_SHIFT, &change_mask);
217         }
218         if (EXTRACT(change_mask, CORE1_ENABLE)) {
219             if (EXTRACT(current_value, CORE1_ENABLE)) {
220                 /* CORE 1 is brought up */
221                 arm_set_cpu_on(1, s->regs[SRC_GPR3], s->regs[SRC_GPR4],
222                                3, false);
223             } else {
224                 /* CORE 1 is shut down */
225                 arm_set_cpu_off(1);
226             }
227             /* We clear the reset bits as the processor changed state */
228             imx6_defer_clear_reset_bit(1, s, CORE1_RST_SHIFT);
229             clear_bit(CORE1_RST_SHIFT, &change_mask);
230         }
231         if (EXTRACT(change_mask, CORE0_RST)) {
232             arm_reset_cpu(0);
233             imx6_defer_clear_reset_bit(0, s, CORE0_RST_SHIFT);
234         }
235         if (EXTRACT(change_mask, CORE1_RST)) {
236             arm_reset_cpu(1);
237             imx6_defer_clear_reset_bit(1, s, CORE1_RST_SHIFT);
238         }
239         if (EXTRACT(change_mask, CORE2_RST)) {
240             arm_reset_cpu(2);
241             imx6_defer_clear_reset_bit(2, s, CORE2_RST_SHIFT);
242         }
243         if (EXTRACT(change_mask, CORE3_RST)) {
244             arm_reset_cpu(3);
245             imx6_defer_clear_reset_bit(3, s, CORE3_RST_SHIFT);
246         }
247         if (EXTRACT(change_mask, SW_IPU2_RST)) {
248             /* We pretend the IPU2 is reset */
249             clear_bit(SW_IPU2_RST_SHIFT, &current_value);
250         }
251         if (EXTRACT(change_mask, SW_IPU1_RST)) {
252             /* We pretend the IPU1 is reset */
253             clear_bit(SW_IPU1_RST_SHIFT, &current_value);
254         }
255         s->regs[index] = current_value;
256         break;
257     default:
258         s->regs[index] = current_value;
259         break;
260     }
261 }
262 
263 static const struct MemoryRegionOps imx6_src_ops = {
264     .read = imx6_src_read,
265     .write = imx6_src_write,
266     .endianness = DEVICE_NATIVE_ENDIAN,
267     .valid = {
268         /*
269          * Our device would not work correctly if the guest was doing
270          * unaligned access. This might not be a limitation on the real
271          * device but in practice there is no reason for a guest to access
272          * this device unaligned.
273          */
274         .min_access_size = 4,
275         .max_access_size = 4,
276         .unaligned = false,
277     },
278 };
279 
280 static void imx6_src_realize(DeviceState *dev, Error **errp)
281 {
282     IMX6SRCState *s = IMX6_SRC(dev);
283 
284     memory_region_init_io(&s->iomem, OBJECT(dev), &imx6_src_ops, s,
285                           TYPE_IMX6_SRC, 0x1000);
286     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
287 }
288 
289 static void imx6_src_class_init(ObjectClass *klass, void *data)
290 {
291     DeviceClass *dc = DEVICE_CLASS(klass);
292 
293     dc->realize = imx6_src_realize;
294     dc->reset = imx6_src_reset;
295     dc->vmsd = &vmstate_imx6_src;
296     dc->desc = "i.MX6 System Reset Controller";
297 }
298 
299 static const TypeInfo imx6_src_info = {
300     .name          = TYPE_IMX6_SRC,
301     .parent        = TYPE_SYS_BUS_DEVICE,
302     .instance_size = sizeof(IMX6SRCState),
303     .class_init    = imx6_src_class_init,
304 };
305 
306 static void imx6_src_register_types(void)
307 {
308     type_register_static(&imx6_src_info);
309 }
310 
311 type_init(imx6_src_register_types)
312