1 /* 2 * QEMU educational PCI device 3 * 4 * Copyright (c) 2012-2015 Jiri Slaby 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/units.h" 27 #include "hw/pci/pci.h" 28 #include "hw/hw.h" 29 #include "hw/pci/msi.h" 30 #include "qemu/timer.h" 31 #include "qom/object.h" 32 #include "qemu/main-loop.h" /* iothread mutex */ 33 #include "qemu/module.h" 34 #include "qapi/visitor.h" 35 36 #define TYPE_PCI_EDU_DEVICE "edu" 37 typedef struct EduState EduState; 38 DECLARE_INSTANCE_CHECKER(EduState, EDU, 39 TYPE_PCI_EDU_DEVICE) 40 41 #define FACT_IRQ 0x00000001 42 #define DMA_IRQ 0x00000100 43 44 #define DMA_START 0x40000 45 #define DMA_SIZE 4096 46 47 struct EduState { 48 PCIDevice pdev; 49 MemoryRegion mmio; 50 51 QemuThread thread; 52 QemuMutex thr_mutex; 53 QemuCond thr_cond; 54 bool stopping; 55 56 uint32_t addr4; 57 uint32_t fact; 58 #define EDU_STATUS_COMPUTING 0x01 59 #define EDU_STATUS_IRQFACT 0x80 60 uint32_t status; 61 62 uint32_t irq_status; 63 64 #define EDU_DMA_RUN 0x1 65 #define EDU_DMA_DIR(cmd) (((cmd) & 0x2) >> 1) 66 # define EDU_DMA_FROM_PCI 0 67 # define EDU_DMA_TO_PCI 1 68 #define EDU_DMA_IRQ 0x4 69 struct dma_state { 70 dma_addr_t src; 71 dma_addr_t dst; 72 dma_addr_t cnt; 73 dma_addr_t cmd; 74 } dma; 75 QEMUTimer dma_timer; 76 char dma_buf[DMA_SIZE]; 77 uint64_t dma_mask; 78 }; 79 80 static bool edu_msi_enabled(EduState *edu) 81 { 82 return msi_enabled(&edu->pdev); 83 } 84 85 static void edu_raise_irq(EduState *edu, uint32_t val) 86 { 87 edu->irq_status |= val; 88 if (edu->irq_status) { 89 if (edu_msi_enabled(edu)) { 90 msi_notify(&edu->pdev, 0); 91 } else { 92 pci_set_irq(&edu->pdev, 1); 93 } 94 } 95 } 96 97 static void edu_lower_irq(EduState *edu, uint32_t val) 98 { 99 edu->irq_status &= ~val; 100 101 if (!edu->irq_status && !edu_msi_enabled(edu)) { 102 pci_set_irq(&edu->pdev, 0); 103 } 104 } 105 106 static void edu_check_range(uint64_t xfer_start, uint64_t xfer_size, 107 uint64_t dma_start, uint64_t dma_size) 108 { 109 uint64_t xfer_end = xfer_start + xfer_size; 110 uint64_t dma_end = dma_start + dma_size; 111 112 /* 113 * 1. ensure we aren't overflowing 114 * 2. ensure that xfer is within dma address range 115 */ 116 if (dma_end >= dma_start && xfer_end >= xfer_start && 117 xfer_start >= dma_start && xfer_end <= dma_end) { 118 return; 119 } 120 121 hw_error("EDU: DMA range 0x%016"PRIx64"-0x%016"PRIx64 122 " out of bounds (0x%016"PRIx64"-0x%016"PRIx64")!", 123 xfer_start, xfer_end - 1, dma_start, dma_end - 1); 124 } 125 126 static dma_addr_t edu_clamp_addr(const EduState *edu, dma_addr_t addr) 127 { 128 dma_addr_t res = addr & edu->dma_mask; 129 130 if (addr != res) { 131 printf("EDU: clamping DMA %#.16"PRIx64" to %#.16"PRIx64"!\n", addr, res); 132 } 133 134 return res; 135 } 136 137 static void edu_dma_timer(void *opaque) 138 { 139 EduState *edu = opaque; 140 bool raise_irq = false; 141 142 if (!(edu->dma.cmd & EDU_DMA_RUN)) { 143 return; 144 } 145 146 if (EDU_DMA_DIR(edu->dma.cmd) == EDU_DMA_FROM_PCI) { 147 uint64_t dst = edu->dma.dst; 148 edu_check_range(dst, edu->dma.cnt, DMA_START, DMA_SIZE); 149 dst -= DMA_START; 150 pci_dma_read(&edu->pdev, edu_clamp_addr(edu, edu->dma.src), 151 edu->dma_buf + dst, edu->dma.cnt); 152 } else { 153 uint64_t src = edu->dma.src; 154 edu_check_range(src, edu->dma.cnt, DMA_START, DMA_SIZE); 155 src -= DMA_START; 156 pci_dma_write(&edu->pdev, edu_clamp_addr(edu, edu->dma.dst), 157 edu->dma_buf + src, edu->dma.cnt); 158 } 159 160 edu->dma.cmd &= ~EDU_DMA_RUN; 161 if (edu->dma.cmd & EDU_DMA_IRQ) { 162 raise_irq = true; 163 } 164 165 if (raise_irq) { 166 edu_raise_irq(edu, DMA_IRQ); 167 } 168 } 169 170 static void dma_rw(EduState *edu, bool write, dma_addr_t *val, dma_addr_t *dma, 171 bool timer) 172 { 173 if (write && (edu->dma.cmd & EDU_DMA_RUN)) { 174 return; 175 } 176 177 if (write) { 178 *dma = *val; 179 } else { 180 *val = *dma; 181 } 182 183 if (timer) { 184 timer_mod(&edu->dma_timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 100); 185 } 186 } 187 188 static uint64_t edu_mmio_read(void *opaque, hwaddr addr, unsigned size) 189 { 190 EduState *edu = opaque; 191 uint64_t val = ~0ULL; 192 193 if (addr < 0x80 && size != 4) { 194 return val; 195 } 196 197 if (addr >= 0x80 && size != 4 && size != 8) { 198 return val; 199 } 200 201 switch (addr) { 202 case 0x00: 203 val = 0x010000edu; 204 break; 205 case 0x04: 206 val = edu->addr4; 207 break; 208 case 0x08: 209 qemu_mutex_lock(&edu->thr_mutex); 210 val = edu->fact; 211 qemu_mutex_unlock(&edu->thr_mutex); 212 break; 213 case 0x20: 214 val = qatomic_read(&edu->status); 215 break; 216 case 0x24: 217 val = edu->irq_status; 218 break; 219 case 0x80: 220 dma_rw(edu, false, &val, &edu->dma.src, false); 221 break; 222 case 0x88: 223 dma_rw(edu, false, &val, &edu->dma.dst, false); 224 break; 225 case 0x90: 226 dma_rw(edu, false, &val, &edu->dma.cnt, false); 227 break; 228 case 0x98: 229 dma_rw(edu, false, &val, &edu->dma.cmd, false); 230 break; 231 } 232 233 return val; 234 } 235 236 static void edu_mmio_write(void *opaque, hwaddr addr, uint64_t val, 237 unsigned size) 238 { 239 EduState *edu = opaque; 240 241 if (addr < 0x80 && size != 4) { 242 return; 243 } 244 245 if (addr >= 0x80 && size != 4 && size != 8) { 246 return; 247 } 248 249 switch (addr) { 250 case 0x04: 251 edu->addr4 = ~val; 252 break; 253 case 0x08: 254 if (qatomic_read(&edu->status) & EDU_STATUS_COMPUTING) { 255 break; 256 } 257 /* EDU_STATUS_COMPUTING cannot go 0->1 concurrently, because it is only 258 * set in this function and it is under the iothread mutex. 259 */ 260 qemu_mutex_lock(&edu->thr_mutex); 261 edu->fact = val; 262 qatomic_or(&edu->status, EDU_STATUS_COMPUTING); 263 qemu_cond_signal(&edu->thr_cond); 264 qemu_mutex_unlock(&edu->thr_mutex); 265 break; 266 case 0x20: 267 if (val & EDU_STATUS_IRQFACT) { 268 qatomic_or(&edu->status, EDU_STATUS_IRQFACT); 269 /* Order check of the COMPUTING flag after setting IRQFACT. */ 270 smp_mb__after_rmw(); 271 } else { 272 qatomic_and(&edu->status, ~EDU_STATUS_IRQFACT); 273 } 274 break; 275 case 0x60: 276 edu_raise_irq(edu, val); 277 break; 278 case 0x64: 279 edu_lower_irq(edu, val); 280 break; 281 case 0x80: 282 dma_rw(edu, true, &val, &edu->dma.src, false); 283 break; 284 case 0x88: 285 dma_rw(edu, true, &val, &edu->dma.dst, false); 286 break; 287 case 0x90: 288 dma_rw(edu, true, &val, &edu->dma.cnt, false); 289 break; 290 case 0x98: 291 if (!(val & EDU_DMA_RUN)) { 292 break; 293 } 294 dma_rw(edu, true, &val, &edu->dma.cmd, true); 295 break; 296 } 297 } 298 299 static const MemoryRegionOps edu_mmio_ops = { 300 .read = edu_mmio_read, 301 .write = edu_mmio_write, 302 .endianness = DEVICE_NATIVE_ENDIAN, 303 .valid = { 304 .min_access_size = 4, 305 .max_access_size = 8, 306 }, 307 .impl = { 308 .min_access_size = 4, 309 .max_access_size = 8, 310 }, 311 312 }; 313 314 /* 315 * We purposely use a thread, so that users are forced to wait for the status 316 * register. 317 */ 318 static void *edu_fact_thread(void *opaque) 319 { 320 EduState *edu = opaque; 321 322 while (1) { 323 uint32_t val, ret = 1; 324 325 qemu_mutex_lock(&edu->thr_mutex); 326 while ((qatomic_read(&edu->status) & EDU_STATUS_COMPUTING) == 0 && 327 !edu->stopping) { 328 qemu_cond_wait(&edu->thr_cond, &edu->thr_mutex); 329 } 330 331 if (edu->stopping) { 332 qemu_mutex_unlock(&edu->thr_mutex); 333 break; 334 } 335 336 val = edu->fact; 337 qemu_mutex_unlock(&edu->thr_mutex); 338 339 while (val > 0) { 340 ret *= val--; 341 } 342 343 /* 344 * We should sleep for a random period here, so that students are 345 * forced to check the status properly. 346 */ 347 348 qemu_mutex_lock(&edu->thr_mutex); 349 edu->fact = ret; 350 qemu_mutex_unlock(&edu->thr_mutex); 351 qatomic_and(&edu->status, ~EDU_STATUS_COMPUTING); 352 353 /* Clear COMPUTING flag before checking IRQFACT. */ 354 smp_mb__after_rmw(); 355 356 if (qatomic_read(&edu->status) & EDU_STATUS_IRQFACT) { 357 bql_lock(); 358 edu_raise_irq(edu, FACT_IRQ); 359 bql_unlock(); 360 } 361 } 362 363 return NULL; 364 } 365 366 static void pci_edu_realize(PCIDevice *pdev, Error **errp) 367 { 368 EduState *edu = EDU(pdev); 369 uint8_t *pci_conf = pdev->config; 370 371 pci_config_set_interrupt_pin(pci_conf, 1); 372 373 if (msi_init(pdev, 0, 1, true, false, errp)) { 374 return; 375 } 376 377 timer_init_ms(&edu->dma_timer, QEMU_CLOCK_VIRTUAL, edu_dma_timer, edu); 378 379 qemu_mutex_init(&edu->thr_mutex); 380 qemu_cond_init(&edu->thr_cond); 381 qemu_thread_create(&edu->thread, "edu", edu_fact_thread, 382 edu, QEMU_THREAD_JOINABLE); 383 384 memory_region_init_io(&edu->mmio, OBJECT(edu), &edu_mmio_ops, edu, 385 "edu-mmio", 1 * MiB); 386 pci_register_bar(pdev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &edu->mmio); 387 } 388 389 static void pci_edu_uninit(PCIDevice *pdev) 390 { 391 EduState *edu = EDU(pdev); 392 393 qemu_mutex_lock(&edu->thr_mutex); 394 edu->stopping = true; 395 qemu_mutex_unlock(&edu->thr_mutex); 396 qemu_cond_signal(&edu->thr_cond); 397 qemu_thread_join(&edu->thread); 398 399 qemu_cond_destroy(&edu->thr_cond); 400 qemu_mutex_destroy(&edu->thr_mutex); 401 402 timer_del(&edu->dma_timer); 403 msi_uninit(pdev); 404 } 405 406 static void edu_instance_init(Object *obj) 407 { 408 EduState *edu = EDU(obj); 409 410 edu->dma_mask = (1UL << 28) - 1; 411 object_property_add_uint64_ptr(obj, "dma_mask", 412 &edu->dma_mask, OBJ_PROP_FLAG_READWRITE); 413 } 414 415 static void edu_class_init(ObjectClass *class, void *data) 416 { 417 DeviceClass *dc = DEVICE_CLASS(class); 418 PCIDeviceClass *k = PCI_DEVICE_CLASS(class); 419 420 k->realize = pci_edu_realize; 421 k->exit = pci_edu_uninit; 422 k->vendor_id = PCI_VENDOR_ID_QEMU; 423 k->device_id = 0x11e8; 424 k->revision = 0x10; 425 k->class_id = PCI_CLASS_OTHERS; 426 set_bit(DEVICE_CATEGORY_MISC, dc->categories); 427 } 428 429 static void pci_edu_register_types(void) 430 { 431 static InterfaceInfo interfaces[] = { 432 { INTERFACE_CONVENTIONAL_PCI_DEVICE }, 433 { }, 434 }; 435 static const TypeInfo edu_info = { 436 .name = TYPE_PCI_EDU_DEVICE, 437 .parent = TYPE_PCI_DEVICE, 438 .instance_size = sizeof(EduState), 439 .instance_init = edu_instance_init, 440 .class_init = edu_class_init, 441 .interfaces = interfaces, 442 }; 443 444 type_register_static(&edu_info); 445 } 446 type_init(pci_edu_register_types) 447