xref: /openbmc/qemu/hw/misc/edu.c (revision 3e64d7d7b8761107c39cc03da2d031d1d6f6912a)
1 /*
2  * QEMU educational PCI device
3  *
4  * Copyright (c) 2012-2015 Jiri Slaby
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/pci/pci.h"
28 #include "hw/hw.h"
29 #include "hw/pci/msi.h"
30 #include "qemu/timer.h"
31 #include "qom/object.h"
32 #include "qemu/main-loop.h" /* iothread mutex */
33 #include "qemu/module.h"
34 #include "qapi/visitor.h"
35 
36 #define TYPE_PCI_EDU_DEVICE "edu"
37 typedef struct EduState EduState;
38 DECLARE_INSTANCE_CHECKER(EduState, EDU,
39                          TYPE_PCI_EDU_DEVICE)
40 
41 #define FACT_IRQ        0x00000001
42 #define DMA_IRQ         0x00000100
43 
44 #define DMA_START       0x40000
45 #define DMA_SIZE        4096
46 
47 struct EduState {
48     PCIDevice pdev;
49     MemoryRegion mmio;
50 
51     QemuThread thread;
52     QemuMutex thr_mutex;
53     QemuCond thr_cond;
54     bool stopping;
55 
56     uint32_t addr4;
57     uint32_t fact;
58 #define EDU_STATUS_COMPUTING    0x01
59 #define EDU_STATUS_IRQFACT      0x80
60     uint32_t status;
61 
62     uint32_t irq_status;
63 
64 #define EDU_DMA_RUN             0x1
65 #define EDU_DMA_DIR(cmd)        (((cmd) & 0x2) >> 1)
66 # define EDU_DMA_FROM_PCI       0
67 # define EDU_DMA_TO_PCI         1
68 #define EDU_DMA_IRQ             0x4
69     struct dma_state {
70         dma_addr_t src;
71         dma_addr_t dst;
72         dma_addr_t cnt;
73         dma_addr_t cmd;
74     } dma;
75     QEMUTimer dma_timer;
76     char dma_buf[DMA_SIZE];
77     uint64_t dma_mask;
78 };
79 
80 static bool edu_msi_enabled(EduState *edu)
81 {
82     return msi_enabled(&edu->pdev);
83 }
84 
85 static void edu_raise_irq(EduState *edu, uint32_t val)
86 {
87     edu->irq_status |= val;
88     if (edu->irq_status) {
89         if (edu_msi_enabled(edu)) {
90             msi_notify(&edu->pdev, 0);
91         } else {
92             pci_set_irq(&edu->pdev, 1);
93         }
94     }
95 }
96 
97 static void edu_lower_irq(EduState *edu, uint32_t val)
98 {
99     edu->irq_status &= ~val;
100 
101     if (!edu->irq_status && !edu_msi_enabled(edu)) {
102         pci_set_irq(&edu->pdev, 0);
103     }
104 }
105 
106 static void edu_check_range(uint64_t xfer_start, uint64_t xfer_size,
107                 uint64_t dma_start, uint64_t dma_size)
108 {
109     uint64_t xfer_end = xfer_start + xfer_size;
110     uint64_t dma_end = dma_start + dma_size;
111 
112     /*
113      * 1. ensure we aren't overflowing
114      * 2. ensure that xfer is within dma address range
115      */
116     if (dma_end >= dma_start && xfer_end >= xfer_start &&
117         xfer_start >= dma_start && xfer_end <= dma_end) {
118         return;
119     }
120 
121     hw_error("EDU: DMA range 0x%016"PRIx64"-0x%016"PRIx64
122              " out of bounds (0x%016"PRIx64"-0x%016"PRIx64")!",
123             xfer_start, xfer_end - 1, dma_start, dma_end - 1);
124 }
125 
126 static dma_addr_t edu_clamp_addr(const EduState *edu, dma_addr_t addr)
127 {
128     dma_addr_t res = addr & edu->dma_mask;
129 
130     if (addr != res) {
131         printf("EDU: clamping DMA %#.16"PRIx64" to %#.16"PRIx64"!\n", addr, res);
132     }
133 
134     return res;
135 }
136 
137 static void edu_dma_timer(void *opaque)
138 {
139     EduState *edu = opaque;
140     bool raise_irq = false;
141 
142     if (!(edu->dma.cmd & EDU_DMA_RUN)) {
143         return;
144     }
145 
146     if (EDU_DMA_DIR(edu->dma.cmd) == EDU_DMA_FROM_PCI) {
147         uint64_t dst = edu->dma.dst;
148         edu_check_range(dst, edu->dma.cnt, DMA_START, DMA_SIZE);
149         dst -= DMA_START;
150         pci_dma_read(&edu->pdev, edu_clamp_addr(edu, edu->dma.src),
151                 edu->dma_buf + dst, edu->dma.cnt);
152     } else {
153         uint64_t src = edu->dma.src;
154         edu_check_range(src, edu->dma.cnt, DMA_START, DMA_SIZE);
155         src -= DMA_START;
156         pci_dma_write(&edu->pdev, edu_clamp_addr(edu, edu->dma.dst),
157                 edu->dma_buf + src, edu->dma.cnt);
158     }
159 
160     edu->dma.cmd &= ~EDU_DMA_RUN;
161     if (edu->dma.cmd & EDU_DMA_IRQ) {
162         raise_irq = true;
163     }
164 
165     if (raise_irq) {
166         edu_raise_irq(edu, DMA_IRQ);
167     }
168 }
169 
170 static void dma_rw(EduState *edu, bool write, dma_addr_t *val, dma_addr_t *dma,
171                 bool timer)
172 {
173     if (write && (edu->dma.cmd & EDU_DMA_RUN)) {
174         return;
175     }
176 
177     if (write) {
178         *dma = *val;
179     } else {
180         *val = *dma;
181     }
182 
183     if (timer) {
184         timer_mod(&edu->dma_timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 100);
185     }
186 }
187 
188 static uint64_t edu_mmio_read(void *opaque, hwaddr addr, unsigned size)
189 {
190     EduState *edu = opaque;
191     uint64_t val = ~0ULL;
192 
193     if (addr < 0x80 && size != 4) {
194         return val;
195     }
196 
197     if (addr >= 0x80 && size != 4 && size != 8) {
198         return val;
199     }
200 
201     switch (addr) {
202     case 0x00:
203         val = 0x010000edu;
204         break;
205     case 0x04:
206         val = edu->addr4;
207         break;
208     case 0x08:
209         qemu_mutex_lock(&edu->thr_mutex);
210         val = edu->fact;
211         qemu_mutex_unlock(&edu->thr_mutex);
212         break;
213     case 0x20:
214         val = qatomic_read(&edu->status);
215         break;
216     case 0x24:
217         val = edu->irq_status;
218         break;
219     case 0x80:
220         dma_rw(edu, false, &val, &edu->dma.src, false);
221         break;
222     case 0x88:
223         dma_rw(edu, false, &val, &edu->dma.dst, false);
224         break;
225     case 0x90:
226         dma_rw(edu, false, &val, &edu->dma.cnt, false);
227         break;
228     case 0x98:
229         dma_rw(edu, false, &val, &edu->dma.cmd, false);
230         break;
231     }
232 
233     return val;
234 }
235 
236 static void edu_mmio_write(void *opaque, hwaddr addr, uint64_t val,
237                 unsigned size)
238 {
239     EduState *edu = opaque;
240 
241     if (addr < 0x80 && size != 4) {
242         return;
243     }
244 
245     if (addr >= 0x80 && size != 4 && size != 8) {
246         return;
247     }
248 
249     switch (addr) {
250     case 0x04:
251         edu->addr4 = ~val;
252         break;
253     case 0x08:
254         if (qatomic_read(&edu->status) & EDU_STATUS_COMPUTING) {
255             break;
256         }
257         /* EDU_STATUS_COMPUTING cannot go 0->1 concurrently, because it is only
258          * set in this function and it is under the iothread mutex.
259          */
260         qemu_mutex_lock(&edu->thr_mutex);
261         edu->fact = val;
262         qatomic_or(&edu->status, EDU_STATUS_COMPUTING);
263         qemu_cond_signal(&edu->thr_cond);
264         qemu_mutex_unlock(&edu->thr_mutex);
265         break;
266     case 0x20:
267         if (val & EDU_STATUS_IRQFACT) {
268             qatomic_or(&edu->status, EDU_STATUS_IRQFACT);
269             /* Order check of the COMPUTING flag after setting IRQFACT.  */
270             smp_mb__after_rmw();
271         } else {
272             qatomic_and(&edu->status, ~EDU_STATUS_IRQFACT);
273         }
274         break;
275     case 0x60:
276         edu_raise_irq(edu, val);
277         break;
278     case 0x64:
279         edu_lower_irq(edu, val);
280         break;
281     case 0x80:
282         dma_rw(edu, true, &val, &edu->dma.src, false);
283         break;
284     case 0x88:
285         dma_rw(edu, true, &val, &edu->dma.dst, false);
286         break;
287     case 0x90:
288         dma_rw(edu, true, &val, &edu->dma.cnt, false);
289         break;
290     case 0x98:
291         if (!(val & EDU_DMA_RUN)) {
292             break;
293         }
294         dma_rw(edu, true, &val, &edu->dma.cmd, true);
295         break;
296     }
297 }
298 
299 static const MemoryRegionOps edu_mmio_ops = {
300     .read = edu_mmio_read,
301     .write = edu_mmio_write,
302     .endianness = DEVICE_NATIVE_ENDIAN,
303     .valid = {
304         .min_access_size = 4,
305         .max_access_size = 8,
306     },
307     .impl = {
308         .min_access_size = 4,
309         .max_access_size = 8,
310     },
311 
312 };
313 
314 /*
315  * We purposely use a thread, so that users are forced to wait for the status
316  * register.
317  */
318 static void *edu_fact_thread(void *opaque)
319 {
320     EduState *edu = opaque;
321 
322     while (1) {
323         uint32_t val, ret = 1;
324 
325         qemu_mutex_lock(&edu->thr_mutex);
326         while ((qatomic_read(&edu->status) & EDU_STATUS_COMPUTING) == 0 &&
327                         !edu->stopping) {
328             qemu_cond_wait(&edu->thr_cond, &edu->thr_mutex);
329         }
330 
331         if (edu->stopping) {
332             qemu_mutex_unlock(&edu->thr_mutex);
333             break;
334         }
335 
336         val = edu->fact;
337         qemu_mutex_unlock(&edu->thr_mutex);
338 
339         while (val > 0) {
340             ret *= val--;
341         }
342 
343         /*
344          * We should sleep for a random period here, so that students are
345          * forced to check the status properly.
346          */
347 
348         qemu_mutex_lock(&edu->thr_mutex);
349         edu->fact = ret;
350         qemu_mutex_unlock(&edu->thr_mutex);
351         qatomic_and(&edu->status, ~EDU_STATUS_COMPUTING);
352 
353         /* Clear COMPUTING flag before checking IRQFACT.  */
354         smp_mb__after_rmw();
355 
356         if (qatomic_read(&edu->status) & EDU_STATUS_IRQFACT) {
357             bql_lock();
358             edu_raise_irq(edu, FACT_IRQ);
359             bql_unlock();
360         }
361     }
362 
363     return NULL;
364 }
365 
366 static void pci_edu_realize(PCIDevice *pdev, Error **errp)
367 {
368     EduState *edu = EDU(pdev);
369     uint8_t *pci_conf = pdev->config;
370 
371     pci_config_set_interrupt_pin(pci_conf, 1);
372 
373     if (msi_init(pdev, 0, 1, true, false, errp)) {
374         return;
375     }
376 
377     timer_init_ms(&edu->dma_timer, QEMU_CLOCK_VIRTUAL, edu_dma_timer, edu);
378 
379     qemu_mutex_init(&edu->thr_mutex);
380     qemu_cond_init(&edu->thr_cond);
381     qemu_thread_create(&edu->thread, "edu", edu_fact_thread,
382                        edu, QEMU_THREAD_JOINABLE);
383 
384     memory_region_init_io(&edu->mmio, OBJECT(edu), &edu_mmio_ops, edu,
385                     "edu-mmio", 1 * MiB);
386     pci_register_bar(pdev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &edu->mmio);
387 }
388 
389 static void pci_edu_uninit(PCIDevice *pdev)
390 {
391     EduState *edu = EDU(pdev);
392 
393     qemu_mutex_lock(&edu->thr_mutex);
394     edu->stopping = true;
395     qemu_mutex_unlock(&edu->thr_mutex);
396     qemu_cond_signal(&edu->thr_cond);
397     qemu_thread_join(&edu->thread);
398 
399     qemu_cond_destroy(&edu->thr_cond);
400     qemu_mutex_destroy(&edu->thr_mutex);
401 
402     timer_del(&edu->dma_timer);
403     msi_uninit(pdev);
404 }
405 
406 static void edu_instance_init(Object *obj)
407 {
408     EduState *edu = EDU(obj);
409 
410     edu->dma_mask = (1UL << 28) - 1;
411     object_property_add_uint64_ptr(obj, "dma_mask",
412                                    &edu->dma_mask, OBJ_PROP_FLAG_READWRITE);
413 }
414 
415 static void edu_class_init(ObjectClass *class, void *data)
416 {
417     DeviceClass *dc = DEVICE_CLASS(class);
418     PCIDeviceClass *k = PCI_DEVICE_CLASS(class);
419 
420     k->realize = pci_edu_realize;
421     k->exit = pci_edu_uninit;
422     k->vendor_id = PCI_VENDOR_ID_QEMU;
423     k->device_id = 0x11e8;
424     k->revision = 0x10;
425     k->class_id = PCI_CLASS_OTHERS;
426     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
427 }
428 
429 static void pci_edu_register_types(void)
430 {
431     static InterfaceInfo interfaces[] = {
432         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
433         { },
434     };
435     static const TypeInfo edu_info = {
436         .name          = TYPE_PCI_EDU_DEVICE,
437         .parent        = TYPE_PCI_DEVICE,
438         .instance_size = sizeof(EduState),
439         .instance_init = edu_instance_init,
440         .class_init    = edu_class_init,
441         .interfaces = interfaces,
442     };
443 
444     type_register_static(&edu_info);
445 }
446 type_init(pci_edu_register_types)
447