xref: /openbmc/qemu/hw/misc/edu.c (revision 200280af0e19bfaeb9431eb0ee1ee2d8bf8d3a0a)
1 /*
2  * QEMU educational PCI device
3  *
4  * Copyright (c) 2012-2015 Jiri Slaby
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/pci/pci.h"
28 #include "hw/pci/msi.h"
29 #include "qemu/timer.h"
30 #include "qemu/main-loop.h" /* iothread mutex */
31 #include "qapi/visitor.h"
32 
33 #define TYPE_PCI_EDU_DEVICE "edu"
34 #define EDU(obj)        OBJECT_CHECK(EduState, obj, TYPE_PCI_EDU_DEVICE)
35 
36 #define FACT_IRQ        0x00000001
37 #define DMA_IRQ         0x00000100
38 
39 #define DMA_START       0x40000
40 #define DMA_SIZE        4096
41 
42 typedef struct {
43     PCIDevice pdev;
44     MemoryRegion mmio;
45 
46     QemuThread thread;
47     QemuMutex thr_mutex;
48     QemuCond thr_cond;
49     bool stopping;
50 
51     uint32_t addr4;
52     uint32_t fact;
53 #define EDU_STATUS_COMPUTING    0x01
54 #define EDU_STATUS_IRQFACT      0x80
55     uint32_t status;
56 
57     uint32_t irq_status;
58 
59 #define EDU_DMA_RUN             0x1
60 #define EDU_DMA_DIR(cmd)        (((cmd) & 0x2) >> 1)
61 # define EDU_DMA_FROM_PCI       0
62 # define EDU_DMA_TO_PCI         1
63 #define EDU_DMA_IRQ             0x4
64     struct dma_state {
65         dma_addr_t src;
66         dma_addr_t dst;
67         dma_addr_t cnt;
68         dma_addr_t cmd;
69     } dma;
70     QEMUTimer dma_timer;
71     char dma_buf[DMA_SIZE];
72     uint64_t dma_mask;
73 } EduState;
74 
75 static bool edu_msi_enabled(EduState *edu)
76 {
77     return msi_enabled(&edu->pdev);
78 }
79 
80 static void edu_raise_irq(EduState *edu, uint32_t val)
81 {
82     edu->irq_status |= val;
83     if (edu->irq_status) {
84         if (edu_msi_enabled(edu)) {
85             msi_notify(&edu->pdev, 0);
86         } else {
87             pci_set_irq(&edu->pdev, 1);
88         }
89     }
90 }
91 
92 static void edu_lower_irq(EduState *edu, uint32_t val)
93 {
94     edu->irq_status &= ~val;
95 
96     if (!edu->irq_status && !edu_msi_enabled(edu)) {
97         pci_set_irq(&edu->pdev, 0);
98     }
99 }
100 
101 static bool within(uint32_t addr, uint32_t start, uint32_t end)
102 {
103     return start <= addr && addr < end;
104 }
105 
106 static void edu_check_range(uint32_t addr, uint32_t size1, uint32_t start,
107                 uint32_t size2)
108 {
109     uint32_t end1 = addr + size1;
110     uint32_t end2 = start + size2;
111 
112     if (within(addr, start, end2) &&
113             end1 > addr && within(end1, start, end2)) {
114         return;
115     }
116 
117     hw_error("EDU: DMA range 0x%.8x-0x%.8x out of bounds (0x%.8x-0x%.8x)!",
118             addr, end1 - 1, start, end2 - 1);
119 }
120 
121 static dma_addr_t edu_clamp_addr(const EduState *edu, dma_addr_t addr)
122 {
123     dma_addr_t res = addr & edu->dma_mask;
124 
125     if (addr != res) {
126         printf("EDU: clamping DMA %#.16"PRIx64" to %#.16"PRIx64"!\n", addr, res);
127     }
128 
129     return res;
130 }
131 
132 static void edu_dma_timer(void *opaque)
133 {
134     EduState *edu = opaque;
135     bool raise_irq = false;
136 
137     if (!(edu->dma.cmd & EDU_DMA_RUN)) {
138         return;
139     }
140 
141     if (EDU_DMA_DIR(edu->dma.cmd) == EDU_DMA_FROM_PCI) {
142         uint32_t dst = edu->dma.dst;
143         edu_check_range(dst, edu->dma.cnt, DMA_START, DMA_SIZE);
144         dst -= DMA_START;
145         pci_dma_read(&edu->pdev, edu_clamp_addr(edu, edu->dma.src),
146                 edu->dma_buf + dst, edu->dma.cnt);
147     } else {
148         uint32_t src = edu->dma.src;
149         edu_check_range(src, edu->dma.cnt, DMA_START, DMA_SIZE);
150         src -= DMA_START;
151         pci_dma_write(&edu->pdev, edu_clamp_addr(edu, edu->dma.dst),
152                 edu->dma_buf + src, edu->dma.cnt);
153     }
154 
155     edu->dma.cmd &= ~EDU_DMA_RUN;
156     if (edu->dma.cmd & EDU_DMA_IRQ) {
157         raise_irq = true;
158     }
159 
160     if (raise_irq) {
161         edu_raise_irq(edu, DMA_IRQ);
162     }
163 }
164 
165 static void dma_rw(EduState *edu, bool write, dma_addr_t *val, dma_addr_t *dma,
166                 bool timer)
167 {
168     if (write && (edu->dma.cmd & EDU_DMA_RUN)) {
169         return;
170     }
171 
172     if (write) {
173         *dma = *val;
174     } else {
175         *val = *dma;
176     }
177 
178     if (timer) {
179         timer_mod(&edu->dma_timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 100);
180     }
181 }
182 
183 static uint64_t edu_mmio_read(void *opaque, hwaddr addr, unsigned size)
184 {
185     EduState *edu = opaque;
186     uint64_t val = ~0ULL;
187 
188     if (size != 4) {
189         return val;
190     }
191 
192     switch (addr) {
193     case 0x00:
194         val = 0x010000edu;
195         break;
196     case 0x04:
197         val = edu->addr4;
198         break;
199     case 0x08:
200         qemu_mutex_lock(&edu->thr_mutex);
201         val = edu->fact;
202         qemu_mutex_unlock(&edu->thr_mutex);
203         break;
204     case 0x20:
205         val = atomic_read(&edu->status);
206         break;
207     case 0x24:
208         val = edu->irq_status;
209         break;
210     case 0x80:
211         dma_rw(edu, false, &val, &edu->dma.src, false);
212         break;
213     case 0x88:
214         dma_rw(edu, false, &val, &edu->dma.dst, false);
215         break;
216     case 0x90:
217         dma_rw(edu, false, &val, &edu->dma.cnt, false);
218         break;
219     case 0x98:
220         dma_rw(edu, false, &val, &edu->dma.cmd, false);
221         break;
222     }
223 
224     return val;
225 }
226 
227 static void edu_mmio_write(void *opaque, hwaddr addr, uint64_t val,
228                 unsigned size)
229 {
230     EduState *edu = opaque;
231 
232     if (addr < 0x80 && size != 4) {
233         return;
234     }
235 
236     if (addr >= 0x80 && size != 4 && size != 8) {
237         return;
238     }
239 
240     switch (addr) {
241     case 0x04:
242         edu->addr4 = ~val;
243         break;
244     case 0x08:
245         if (atomic_read(&edu->status) & EDU_STATUS_COMPUTING) {
246             break;
247         }
248         /* EDU_STATUS_COMPUTING cannot go 0->1 concurrently, because it is only
249          * set in this function and it is under the iothread mutex.
250          */
251         qemu_mutex_lock(&edu->thr_mutex);
252         edu->fact = val;
253         atomic_or(&edu->status, EDU_STATUS_COMPUTING);
254         qemu_cond_signal(&edu->thr_cond);
255         qemu_mutex_unlock(&edu->thr_mutex);
256         break;
257     case 0x20:
258         if (val & EDU_STATUS_IRQFACT) {
259             atomic_or(&edu->status, EDU_STATUS_IRQFACT);
260         } else {
261             atomic_and(&edu->status, ~EDU_STATUS_IRQFACT);
262         }
263         break;
264     case 0x60:
265         edu_raise_irq(edu, val);
266         break;
267     case 0x64:
268         edu_lower_irq(edu, val);
269         break;
270     case 0x80:
271         dma_rw(edu, true, &val, &edu->dma.src, false);
272         break;
273     case 0x88:
274         dma_rw(edu, true, &val, &edu->dma.dst, false);
275         break;
276     case 0x90:
277         dma_rw(edu, true, &val, &edu->dma.cnt, false);
278         break;
279     case 0x98:
280         if (!(val & EDU_DMA_RUN)) {
281             break;
282         }
283         dma_rw(edu, true, &val, &edu->dma.cmd, true);
284         break;
285     }
286 }
287 
288 static const MemoryRegionOps edu_mmio_ops = {
289     .read = edu_mmio_read,
290     .write = edu_mmio_write,
291     .endianness = DEVICE_NATIVE_ENDIAN,
292 };
293 
294 /*
295  * We purposely use a thread, so that users are forced to wait for the status
296  * register.
297  */
298 static void *edu_fact_thread(void *opaque)
299 {
300     EduState *edu = opaque;
301 
302     while (1) {
303         uint32_t val, ret = 1;
304 
305         qemu_mutex_lock(&edu->thr_mutex);
306         while ((atomic_read(&edu->status) & EDU_STATUS_COMPUTING) == 0 &&
307                         !edu->stopping) {
308             qemu_cond_wait(&edu->thr_cond, &edu->thr_mutex);
309         }
310 
311         if (edu->stopping) {
312             qemu_mutex_unlock(&edu->thr_mutex);
313             break;
314         }
315 
316         val = edu->fact;
317         qemu_mutex_unlock(&edu->thr_mutex);
318 
319         while (val > 0) {
320             ret *= val--;
321         }
322 
323         /*
324          * We should sleep for a random period here, so that students are
325          * forced to check the status properly.
326          */
327 
328         qemu_mutex_lock(&edu->thr_mutex);
329         edu->fact = ret;
330         qemu_mutex_unlock(&edu->thr_mutex);
331         atomic_and(&edu->status, ~EDU_STATUS_COMPUTING);
332 
333         if (atomic_read(&edu->status) & EDU_STATUS_IRQFACT) {
334             qemu_mutex_lock_iothread();
335             edu_raise_irq(edu, FACT_IRQ);
336             qemu_mutex_unlock_iothread();
337         }
338     }
339 
340     return NULL;
341 }
342 
343 static void pci_edu_realize(PCIDevice *pdev, Error **errp)
344 {
345     EduState *edu = EDU(pdev);
346     uint8_t *pci_conf = pdev->config;
347 
348     pci_config_set_interrupt_pin(pci_conf, 1);
349 
350     if (msi_init(pdev, 0, 1, true, false, errp)) {
351         return;
352     }
353 
354     timer_init_ms(&edu->dma_timer, QEMU_CLOCK_VIRTUAL, edu_dma_timer, edu);
355 
356     qemu_mutex_init(&edu->thr_mutex);
357     qemu_cond_init(&edu->thr_cond);
358     qemu_thread_create(&edu->thread, "edu", edu_fact_thread,
359                        edu, QEMU_THREAD_JOINABLE);
360 
361     memory_region_init_io(&edu->mmio, OBJECT(edu), &edu_mmio_ops, edu,
362                     "edu-mmio", 1 * MiB);
363     pci_register_bar(pdev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &edu->mmio);
364 }
365 
366 static void pci_edu_uninit(PCIDevice *pdev)
367 {
368     EduState *edu = EDU(pdev);
369 
370     qemu_mutex_lock(&edu->thr_mutex);
371     edu->stopping = true;
372     qemu_mutex_unlock(&edu->thr_mutex);
373     qemu_cond_signal(&edu->thr_cond);
374     qemu_thread_join(&edu->thread);
375 
376     qemu_cond_destroy(&edu->thr_cond);
377     qemu_mutex_destroy(&edu->thr_mutex);
378 
379     timer_del(&edu->dma_timer);
380     msi_uninit(pdev);
381 }
382 
383 static void edu_obj_uint64(Object *obj, Visitor *v, const char *name,
384                            void *opaque, Error **errp)
385 {
386     uint64_t *val = opaque;
387 
388     visit_type_uint64(v, name, val, errp);
389 }
390 
391 static void edu_instance_init(Object *obj)
392 {
393     EduState *edu = EDU(obj);
394 
395     edu->dma_mask = (1UL << 28) - 1;
396     object_property_add(obj, "dma_mask", "uint64", edu_obj_uint64,
397                     edu_obj_uint64, NULL, &edu->dma_mask, NULL);
398 }
399 
400 static void edu_class_init(ObjectClass *class, void *data)
401 {
402     DeviceClass *dc = DEVICE_CLASS(class);
403     PCIDeviceClass *k = PCI_DEVICE_CLASS(class);
404 
405     k->realize = pci_edu_realize;
406     k->exit = pci_edu_uninit;
407     k->vendor_id = PCI_VENDOR_ID_QEMU;
408     k->device_id = 0x11e8;
409     k->revision = 0x10;
410     k->class_id = PCI_CLASS_OTHERS;
411     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
412 }
413 
414 static void pci_edu_register_types(void)
415 {
416     static InterfaceInfo interfaces[] = {
417         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
418         { },
419     };
420     static const TypeInfo edu_info = {
421         .name          = TYPE_PCI_EDU_DEVICE,
422         .parent        = TYPE_PCI_DEVICE,
423         .instance_size = sizeof(EduState),
424         .instance_init = edu_instance_init,
425         .class_init    = edu_class_init,
426         .interfaces = interfaces,
427     };
428 
429     type_register_static(&edu_info);
430 }
431 type_init(pci_edu_register_types)
432