xref: /openbmc/qemu/hw/mips/malta.c (revision e6a19a6477407e57b4deb61aaa497a14d7db9626)
1 /*
2  * QEMU Malta board support
3  *
4  * Copyright (c) 2006 Aurelien Jarno
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qemu/bitops.h"
28 #include "qemu/datadir.h"
29 #include "qemu/guest-random.h"
30 #include "hw/clock.h"
31 #include "hw/southbridge/piix.h"
32 #include "hw/isa/superio.h"
33 #include "hw/char/serial.h"
34 #include "net/net.h"
35 #include "hw/boards.h"
36 #include "hw/i2c/smbus_eeprom.h"
37 #include "hw/block/flash.h"
38 #include "hw/mips/mips.h"
39 #include "hw/mips/bootloader.h"
40 #include "hw/mips/cpudevs.h"
41 #include "hw/pci/pci.h"
42 #include "hw/pci/pci_bus.h"
43 #include "qemu/log.h"
44 #include "hw/mips/bios.h"
45 #include "hw/ide/pci.h"
46 #include "hw/irq.h"
47 #include "hw/loader.h"
48 #include "elf.h"
49 #include "qom/object.h"
50 #include "hw/sysbus.h"             /* SysBusDevice */
51 #include "qemu/host-utils.h"
52 #include "sysemu/qtest.h"
53 #include "sysemu/reset.h"
54 #include "sysemu/runstate.h"
55 #include "qapi/error.h"
56 #include "qemu/error-report.h"
57 #include "sysemu/kvm.h"
58 #include "semihosting/semihost.h"
59 #include "hw/mips/cps.h"
60 #include "hw/qdev-clock.h"
61 #include "target/mips/internal.h"
62 #include "trace.h"
63 
64 #define ENVP_PADDR          0x2000
65 #define ENVP_VADDR          cpu_mips_phys_to_kseg0(NULL, ENVP_PADDR)
66 #define ENVP_NB_ENTRIES     16
67 #define ENVP_ENTRY_SIZE     256
68 
69 /* Hardware addresses */
70 #define FLASH_ADDRESS       0x1e000000ULL
71 #define FPGA_ADDRESS        0x1f000000ULL
72 #define RESET_ADDRESS       0x1fc00000ULL
73 
74 #define FLASH_SIZE          0x400000
75 
76 #define PIIX4_PCI_DEVFN     PCI_DEVFN(10, 0)
77 
78 typedef struct {
79     MemoryRegion iomem;
80     MemoryRegion iomem_lo; /* 0 - 0x900 */
81     MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
82     uint32_t leds;
83     uint32_t brk;
84     uint32_t gpout;
85     uint32_t i2cin;
86     uint32_t i2coe;
87     uint32_t i2cout;
88     uint32_t i2csel;
89     CharBackend display;
90     char display_text[9];
91     SerialMM *uart;
92     bool display_inited;
93 } MaltaFPGAState;
94 
95 #define TYPE_MIPS_MALTA "mips-malta"
96 OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA)
97 
98 struct MaltaState {
99     SysBusDevice parent_obj;
100 
101     Clock *cpuclk;
102     MIPSCPSState cps;
103 };
104 
105 static struct _loaderparams {
106     int ram_size, ram_low_size;
107     const char *kernel_filename;
108     const char *kernel_cmdline;
109     const char *initrd_filename;
110 } loaderparams;
111 
112 /* Malta FPGA */
113 static void malta_fpga_update_display_leds(MaltaFPGAState *s)
114 {
115     char leds_text[9];
116     int i;
117 
118     for (i = 7 ; i >= 0 ; i--) {
119         if (s->leds & (1 << i)) {
120             leds_text[i] = '#';
121         } else {
122             leds_text[i] = ' ';
123         }
124     }
125     leds_text[8] = '\0';
126 
127     trace_malta_fpga_leds(leds_text);
128     qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
129                        leds_text);
130 }
131 
132 static void malta_fpga_update_display_ascii(MaltaFPGAState *s)
133 {
134     trace_malta_fpga_display(s->display_text);
135     qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
136                        s->display_text);
137 }
138 
139 /*
140  * EEPROM 24C01 / 24C02 emulation.
141  *
142  * Emulation for serial EEPROMs:
143  * 24C01 - 1024 bit (128 x 8)
144  * 24C02 - 2048 bit (256 x 8)
145  *
146  * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
147  */
148 
149 #if defined(DEBUG)
150 #  define logout(fmt, ...) \
151           fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
152 #else
153 #  define logout(fmt, ...) ((void)0)
154 #endif
155 
156 struct _eeprom24c0x_t {
157   uint8_t tick;
158   uint8_t address;
159   uint8_t command;
160   uint8_t ack;
161   uint8_t scl;
162   uint8_t sda;
163   uint8_t data;
164   /* uint16_t size; */
165   uint8_t contents[256];
166 };
167 
168 typedef struct _eeprom24c0x_t eeprom24c0x_t;
169 
170 static eeprom24c0x_t spd_eeprom = {
171     .contents = {
172         /* 00000000: */
173         0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
174         /* 00000008: */
175         0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
176         /* 00000010: */
177         0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
178         /* 00000018: */
179         0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
180         /* 00000020: */
181         0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
182         /* 00000028: */
183         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
184         /* 00000030: */
185         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
186         /* 00000038: */
187         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
188         /* 00000040: */
189         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
190         /* 00000048: */
191         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
192         /* 00000050: */
193         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
194         /* 00000058: */
195         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
196         /* 00000060: */
197         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
198         /* 00000068: */
199         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
200         /* 00000070: */
201         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
202         /* 00000078: */
203         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
204     },
205 };
206 
207 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
208 {
209     enum { SDR = 0x4, DDR2 = 0x8 } type;
210     uint8_t *spd = spd_eeprom.contents;
211     uint8_t nbanks = 0;
212     uint16_t density = 0;
213     int i;
214 
215     /* work in terms of MB */
216     ram_size /= MiB;
217 
218     while ((ram_size >= 4) && (nbanks <= 2)) {
219         int sz_log2 = MIN(31 - clz32(ram_size), 14);
220         nbanks++;
221         density |= 1 << (sz_log2 - 2);
222         ram_size -= 1 << sz_log2;
223     }
224 
225     /* split to 2 banks if possible */
226     if ((nbanks == 1) && (density > 1)) {
227         nbanks++;
228         density >>= 1;
229     }
230 
231     if (density & 0xff00) {
232         density = (density & 0xe0) | ((density >> 8) & 0x1f);
233         type = DDR2;
234     } else if (!(density & 0x1f)) {
235         type = DDR2;
236     } else {
237         type = SDR;
238     }
239 
240     if (ram_size) {
241         warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
242                     " of SDRAM", ram_size);
243     }
244 
245     /* fill in SPD memory information */
246     spd[2] = type;
247     spd[5] = nbanks;
248     spd[31] = density;
249 
250     /* checksum */
251     spd[63] = 0;
252     for (i = 0; i < 63; i++) {
253         spd[63] += spd[i];
254     }
255 
256     /* copy for SMBUS */
257     memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
258 }
259 
260 static void generate_eeprom_serial(uint8_t *eeprom)
261 {
262     int i, pos = 0;
263     uint8_t mac[6] = { 0x00 };
264     uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
265 
266     /* version */
267     eeprom[pos++] = 0x01;
268 
269     /* count */
270     eeprom[pos++] = 0x02;
271 
272     /* MAC address */
273     eeprom[pos++] = 0x01; /* MAC */
274     eeprom[pos++] = 0x06; /* length */
275     memcpy(&eeprom[pos], mac, sizeof(mac));
276     pos += sizeof(mac);
277 
278     /* serial number */
279     eeprom[pos++] = 0x02; /* serial */
280     eeprom[pos++] = 0x05; /* length */
281     memcpy(&eeprom[pos], sn, sizeof(sn));
282     pos += sizeof(sn);
283 
284     /* checksum */
285     eeprom[pos] = 0;
286     for (i = 0; i < pos; i++) {
287         eeprom[pos] += eeprom[i];
288     }
289 }
290 
291 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
292 {
293     logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
294         eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
295     return eeprom->sda;
296 }
297 
298 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
299 {
300     if (eeprom->scl && scl && (eeprom->sda != sda)) {
301         logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
302                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
303                 sda ? "stop" : "start");
304         if (!sda) {
305             eeprom->tick = 1;
306             eeprom->command = 0;
307         }
308     } else if (eeprom->tick == 0 && !eeprom->ack) {
309         /* Waiting for start. */
310         logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
311                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
312     } else if (!eeprom->scl && scl) {
313         logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
314                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
315         if (eeprom->ack) {
316             logout("\ti2c ack bit = 0\n");
317             sda = 0;
318             eeprom->ack = 0;
319         } else if (eeprom->sda == sda) {
320             uint8_t bit = (sda != 0);
321             logout("\ti2c bit = %d\n", bit);
322             if (eeprom->tick < 9) {
323                 eeprom->command <<= 1;
324                 eeprom->command += bit;
325                 eeprom->tick++;
326                 if (eeprom->tick == 9) {
327                     logout("\tcommand 0x%04x, %s\n", eeprom->command,
328                            bit ? "read" : "write");
329                     eeprom->ack = 1;
330                 }
331             } else if (eeprom->tick < 17) {
332                 if (eeprom->command & 1) {
333                     sda = ((eeprom->data & 0x80) != 0);
334                 }
335                 eeprom->address <<= 1;
336                 eeprom->address += bit;
337                 eeprom->tick++;
338                 eeprom->data <<= 1;
339                 if (eeprom->tick == 17) {
340                     eeprom->data = eeprom->contents[eeprom->address];
341                     logout("\taddress 0x%04x, data 0x%02x\n",
342                            eeprom->address, eeprom->data);
343                     eeprom->ack = 1;
344                     eeprom->tick = 0;
345                 }
346             } else if (eeprom->tick >= 17) {
347                 sda = 0;
348             }
349         } else {
350             logout("\tsda changed with raising scl\n");
351         }
352     } else {
353         logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
354                scl, eeprom->sda, sda);
355     }
356     eeprom->scl = scl;
357     eeprom->sda = sda;
358 }
359 
360 static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
361                                 unsigned size)
362 {
363     MaltaFPGAState *s = opaque;
364     uint32_t val = 0;
365     uint32_t saddr;
366 
367     saddr = (addr & 0xfffff);
368 
369     switch (saddr) {
370 
371     /* SWITCH Register */
372     case 0x00200:
373         val = 0x00000000;
374         break;
375 
376     /* STATUS Register */
377     case 0x00208:
378 #if TARGET_BIG_ENDIAN
379         val = 0x00000012;
380 #else
381         val = 0x00000010;
382 #endif
383         break;
384 
385     /* JMPRS Register */
386     case 0x00210:
387         val = 0x00;
388         break;
389 
390     /* LEDBAR Register */
391     case 0x00408:
392         val = s->leds;
393         break;
394 
395     /* BRKRES Register */
396     case 0x00508:
397         val = s->brk;
398         break;
399 
400     /* UART Registers are handled directly by the serial device */
401 
402     /* GPOUT Register */
403     case 0x00a00:
404         val = s->gpout;
405         break;
406 
407     /* XXX: implement a real I2C controller */
408 
409     /* GPINP Register */
410     case 0x00a08:
411         /* IN = OUT until a real I2C control is implemented */
412         if (s->i2csel) {
413             val = s->i2cout;
414         } else {
415             val = 0x00;
416         }
417         break;
418 
419     /* I2CINP Register */
420     case 0x00b00:
421         val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
422         break;
423 
424     /* I2COE Register */
425     case 0x00b08:
426         val = s->i2coe;
427         break;
428 
429     /* I2COUT Register */
430     case 0x00b10:
431         val = s->i2cout;
432         break;
433 
434     /* I2CSEL Register */
435     case 0x00b18:
436         val = s->i2csel;
437         break;
438 
439     default:
440         qemu_log_mask(LOG_GUEST_ERROR,
441                       "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n",
442                       addr);
443         break;
444     }
445     return val;
446 }
447 
448 static void malta_fpga_write(void *opaque, hwaddr addr,
449                              uint64_t val, unsigned size)
450 {
451     MaltaFPGAState *s = opaque;
452     uint32_t saddr;
453 
454     saddr = (addr & 0xfffff);
455 
456     switch (saddr) {
457 
458     /* SWITCH Register */
459     case 0x00200:
460         break;
461 
462     /* JMPRS Register */
463     case 0x00210:
464         break;
465 
466     /* LEDBAR Register */
467     case 0x00408:
468         s->leds = val & 0xff;
469         malta_fpga_update_display_leds(s);
470         break;
471 
472     /* ASCIIWORD Register */
473     case 0x00410:
474         snprintf(s->display_text, 9, "%08X", (uint32_t)val);
475         malta_fpga_update_display_ascii(s);
476         break;
477 
478     /* ASCIIPOS0 to ASCIIPOS7 Registers */
479     case 0x00418:
480     case 0x00420:
481     case 0x00428:
482     case 0x00430:
483     case 0x00438:
484     case 0x00440:
485     case 0x00448:
486     case 0x00450:
487         s->display_text[(saddr - 0x00418) >> 3] = (char) val;
488         malta_fpga_update_display_ascii(s);
489         break;
490 
491     /* SOFTRES Register */
492     case 0x00500:
493         if (val == 0x42) {
494             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
495         }
496         break;
497 
498     /* BRKRES Register */
499     case 0x00508:
500         s->brk = val & 0xff;
501         break;
502 
503     /* UART Registers are handled directly by the serial device */
504 
505     /* GPOUT Register */
506     case 0x00a00:
507         s->gpout = val & 0xff;
508         break;
509 
510     /* I2COE Register */
511     case 0x00b08:
512         s->i2coe = val & 0x03;
513         break;
514 
515     /* I2COUT Register */
516     case 0x00b10:
517         eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
518         s->i2cout = val;
519         break;
520 
521     /* I2CSEL Register */
522     case 0x00b18:
523         s->i2csel = val & 0x01;
524         break;
525 
526     default:
527         qemu_log_mask(LOG_GUEST_ERROR,
528                       "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n",
529                       addr);
530         break;
531     }
532 }
533 
534 static const MemoryRegionOps malta_fpga_ops = {
535     .read = malta_fpga_read,
536     .write = malta_fpga_write,
537     .endianness = DEVICE_NATIVE_ENDIAN,
538 };
539 
540 static void malta_fpga_reset(void *opaque)
541 {
542     MaltaFPGAState *s = opaque;
543 
544     s->leds   = 0x00;
545     s->brk    = 0x0a;
546     s->gpout  = 0x00;
547     s->i2cin  = 0x3;
548     s->i2coe  = 0x0;
549     s->i2cout = 0x3;
550     s->i2csel = 0x1;
551 
552     s->display_text[8] = '\0';
553     snprintf(s->display_text, 9, "        ");
554 }
555 
556 static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event)
557 {
558     MaltaFPGAState *s = opaque;
559 
560     if (event == CHR_EVENT_OPENED && !s->display_inited) {
561         qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
562         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
563         qemu_chr_fe_printf(&s->display, "+        +\r\n");
564         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
565         qemu_chr_fe_printf(&s->display, "\n");
566         qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
567         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
568         qemu_chr_fe_printf(&s->display, "+        +\r\n");
569         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
570         s->display_inited = true;
571     }
572 }
573 
574 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
575          hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
576 {
577     MaltaFPGAState *s;
578     Chardev *chr;
579 
580     s = g_new0(MaltaFPGAState, 1);
581 
582     memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
583                           "malta-fpga", 0x100000);
584     memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
585                              &s->iomem, 0, 0x900);
586     memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
587                              &s->iomem, 0xa00, 0x100000 - 0xa00);
588 
589     memory_region_add_subregion(address_space, base, &s->iomem_lo);
590     memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
591 
592     chr = qemu_chr_new("fpga", "vc:320x200", NULL);
593     qemu_chr_fe_init(&s->display, chr, NULL);
594     qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
595                              malta_fgpa_display_event, NULL, s, NULL, true);
596 
597     s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
598                              230400, uart_chr, DEVICE_NATIVE_ENDIAN);
599 
600     malta_fpga_reset(s);
601     qemu_register_reset(malta_fpga_reset, s);
602 
603     return s;
604 }
605 
606 /* Network support */
607 static void network_init(PCIBus *pci_bus)
608 {
609     int i;
610 
611     for (i = 0; i < nb_nics; i++) {
612         NICInfo *nd = &nd_table[i];
613         const char *default_devaddr = NULL;
614 
615         if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
616             /* The malta board has a PCNet card using PCI SLOT 11 */
617             default_devaddr = "0b";
618 
619         pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
620     }
621 }
622 
623 static void bl_setup_gt64120_jump_kernel(void **p, uint64_t run_addr,
624                                          uint64_t kernel_entry)
625 {
626     static const char pci_pins_cfg[PCI_NUM_PINS] = {
627         10, 10, 11, 11 /* PIIX IRQRC[A:D] */
628     };
629 
630     /* Bus endianness is always reversed */
631 #if TARGET_BIG_ENDIAN
632 #define cpu_to_gt32(x) (x)
633 #else
634 #define cpu_to_gt32(x) bswap32(x)
635 #endif
636 
637     /* setup MEM-to-PCI0 mapping as done by YAMON */
638 
639     /* move GT64120 registers from 0x14000000 to 0x1be00000 */
640     bl_gen_write_u32(p, /* GT_ISD */
641                      cpu_mips_phys_to_kseg1(NULL, 0x14000000 + 0x68),
642                      cpu_to_gt32(0x1be00000 << 3));
643 
644     /* setup PCI0 io window to 0x18000000-0x181fffff */
645     bl_gen_write_u32(p, /* GT_PCI0IOLD */
646                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x48),
647                      cpu_to_gt32(0x18000000 << 3));
648     bl_gen_write_u32(p, /* GT_PCI0IOHD */
649                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x50),
650                      cpu_to_gt32(0x08000000 << 3));
651 
652     /* setup PCI0 mem windows */
653     bl_gen_write_u32(p, /* GT_PCI0M0LD */
654                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x58),
655                      cpu_to_gt32(0x10000000 << 3));
656     bl_gen_write_u32(p, /* GT_PCI0M0HD */
657                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x60),
658                      cpu_to_gt32(0x07e00000 << 3));
659     bl_gen_write_u32(p, /* GT_PCI0M1LD */
660                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x80),
661                      cpu_to_gt32(0x18200000 << 3));
662     bl_gen_write_u32(p, /* GT_PCI0M1HD */
663                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x88),
664                      cpu_to_gt32(0x0bc00000 << 3));
665 
666 #undef cpu_to_gt32
667 
668     /*
669      * The PIIX ISA bridge is on PCI bus 0 dev 10 func 0.
670      * Load the PIIX IRQC[A:D] routing config address, then
671      * write routing configuration to the config data register.
672      */
673     bl_gen_write_u32(p, /* GT_PCI0_CFGADDR */
674                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0xcf8),
675                      tswap32((1 << 31) /* ConfigEn */
676                              | PCI_BUILD_BDF(0, PIIX4_PCI_DEVFN) << 8
677                              | PIIX_PIRQCA));
678     bl_gen_write_u32(p, /* GT_PCI0_CFGDATA */
679                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0xcfc),
680                      tswap32(ldl_be_p(pci_pins_cfg)));
681 
682     bl_gen_jump_kernel(p,
683                        true, ENVP_VADDR - 64,
684                        /*
685                         * If semihosting is used, arguments have already
686                         * been passed, so we preserve $a0.
687                         */
688                        !semihosting_get_argc(), 2,
689                        true, ENVP_VADDR,
690                        true, ENVP_VADDR + 8,
691                        true, loaderparams.ram_low_size,
692                        kernel_entry);
693 }
694 
695 static void write_bootloader_nanomips(uint8_t *base, uint64_t run_addr,
696                                       uint64_t kernel_entry)
697 {
698     uint16_t *p;
699 
700     /* Small bootloader */
701     p = (uint16_t *)base;
702 
703     stw_p(p++, 0x2800); stw_p(p++, 0x001c);
704                                 /* bc to_here */
705     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
706                                 /* nop */
707     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
708                                 /* nop */
709     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
710                                 /* nop */
711     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
712                                 /* nop */
713     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
714                                 /* nop */
715     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
716                                 /* nop */
717     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
718                                 /* nop */
719 
720     /* to_here: */
721 
722     bl_setup_gt64120_jump_kernel((void **)&p, run_addr, kernel_entry);
723 }
724 
725 /*
726  * ROM and pseudo bootloader
727  *
728  * The following code implements a very very simple bootloader. It first
729  * loads the registers a0 to a3 to the values expected by the OS, and
730  * then jump at the kernel address.
731  *
732  * The bootloader should pass the locations of the kernel arguments and
733  * environment variables tables. Those tables contain the 32-bit address
734  * of NULL terminated strings. The environment variables table should be
735  * terminated by a NULL address.
736  *
737  * For a simpler implementation, the number of kernel arguments is fixed
738  * to two (the name of the kernel and the command line), and the two
739  * tables are actually the same one.
740  *
741  * The registers a0 to a3 should contain the following values:
742  *   a0 - number of kernel arguments
743  *   a1 - 32-bit address of the kernel arguments table
744  *   a2 - 32-bit address of the environment variables table
745  *   a3 - RAM size in bytes
746  */
747 static void write_bootloader(uint8_t *base, uint64_t run_addr,
748                              uint64_t kernel_entry)
749 {
750     uint32_t *p;
751 
752     /* Small bootloader */
753     p = (uint32_t *)base;
754 
755     stl_p(p++, 0x08000000 |                  /* j 0x1fc00580 */
756                  ((run_addr + 0x580) & 0x0fffffff) >> 2);
757     stl_p(p++, 0x00000000);                  /* nop */
758 
759     /* YAMON service vector */
760     stl_p(base + 0x500, run_addr + 0x0580);  /* start: */
761     stl_p(base + 0x504, run_addr + 0x083c);  /* print_count: */
762     stl_p(base + 0x520, run_addr + 0x0580);  /* start: */
763     stl_p(base + 0x52c, run_addr + 0x0800);  /* flush_cache: */
764     stl_p(base + 0x534, run_addr + 0x0808);  /* print: */
765     stl_p(base + 0x538, run_addr + 0x0800);  /* reg_cpu_isr: */
766     stl_p(base + 0x53c, run_addr + 0x0800);  /* unred_cpu_isr: */
767     stl_p(base + 0x540, run_addr + 0x0800);  /* reg_ic_isr: */
768     stl_p(base + 0x544, run_addr + 0x0800);  /* unred_ic_isr: */
769     stl_p(base + 0x548, run_addr + 0x0800);  /* reg_esr: */
770     stl_p(base + 0x54c, run_addr + 0x0800);  /* unreg_esr: */
771     stl_p(base + 0x550, run_addr + 0x0800);  /* getchar: */
772     stl_p(base + 0x554, run_addr + 0x0800);  /* syscon_read: */
773 
774 
775     /* Second part of the bootloader */
776     p = (uint32_t *) (base + 0x580);
777 
778     /*
779      * Load BAR registers as done by YAMON:
780      *
781      *  - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
782      *  - set up PCI0 MEM0 at 0x10000000, size 0x7e00000
783      *  - set up PCI0 MEM1 at 0x18200000, size 0xbc00000
784      *
785      */
786 
787     bl_setup_gt64120_jump_kernel((void **)&p, run_addr, kernel_entry);
788 
789     /* YAMON subroutines */
790     p = (uint32_t *) (base + 0x800);
791     stl_p(p++, 0x03e00009);                  /* jalr ra */
792     stl_p(p++, 0x24020000);                  /* li v0,0 */
793     /* 808 YAMON print */
794     stl_p(p++, 0x03e06821);                  /* move t5,ra */
795     stl_p(p++, 0x00805821);                  /* move t3,a0 */
796     stl_p(p++, 0x00a05021);                  /* move t2,a1 */
797     stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
798     stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
799     stl_p(p++, 0x10800005);                  /* beqz a0,834 */
800     stl_p(p++, 0x00000000);                  /* nop */
801     stl_p(p++, 0x0ff0021c);                  /* jal 870 */
802     stl_p(p++, 0x00000000);                  /* nop */
803     stl_p(p++, 0x1000fff9);                  /* b 814 */
804     stl_p(p++, 0x00000000);                  /* nop */
805     stl_p(p++, 0x01a00009);                  /* jalr t5 */
806     stl_p(p++, 0x01602021);                  /* move a0,t3 */
807     /* 0x83c YAMON print_count */
808     stl_p(p++, 0x03e06821);                  /* move t5,ra */
809     stl_p(p++, 0x00805821);                  /* move t3,a0 */
810     stl_p(p++, 0x00a05021);                  /* move t2,a1 */
811     stl_p(p++, 0x00c06021);                  /* move t4,a2 */
812     stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
813     stl_p(p++, 0x0ff0021c);                  /* jal 870 */
814     stl_p(p++, 0x00000000);                  /* nop */
815     stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
816     stl_p(p++, 0x258cffff);                  /* addiu t4,t4,-1 */
817     stl_p(p++, 0x1580fffa);                  /* bnez t4,84c */
818     stl_p(p++, 0x00000000);                  /* nop */
819     stl_p(p++, 0x01a00009);                  /* jalr t5 */
820     stl_p(p++, 0x01602021);                  /* move a0,t3 */
821     /* 0x870 */
822     stl_p(p++, 0x3c08b800);                  /* lui t0,0xb400 */
823     stl_p(p++, 0x350803f8);                  /* ori t0,t0,0x3f8 */
824     stl_p(p++, 0x91090005);                  /* lbu t1,5(t0) */
825     stl_p(p++, 0x00000000);                  /* nop */
826     stl_p(p++, 0x31290040);                  /* andi t1,t1,0x40 */
827     stl_p(p++, 0x1120fffc);                  /* beqz t1,878 <outch+0x8> */
828     stl_p(p++, 0x00000000);                  /* nop */
829     stl_p(p++, 0x03e00009);                  /* jalr ra */
830     stl_p(p++, 0xa1040000);                  /* sb a0,0(t0) */
831 }
832 
833 static void G_GNUC_PRINTF(3, 4) prom_set(uint32_t *prom_buf, int index,
834                                         const char *string, ...)
835 {
836     va_list ap;
837     uint32_t table_addr;
838 
839     if (index >= ENVP_NB_ENTRIES) {
840         return;
841     }
842 
843     if (string == NULL) {
844         prom_buf[index] = 0;
845         return;
846     }
847 
848     table_addr = sizeof(uint32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
849     prom_buf[index] = tswap32(ENVP_VADDR + table_addr);
850 
851     va_start(ap, string);
852     vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
853     va_end(ap);
854 }
855 
856 static void reinitialize_rng_seed(void *opaque)
857 {
858     char *rng_seed_hex = opaque;
859     uint8_t rng_seed[32];
860 
861     qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
862     for (size_t i = 0; i < sizeof(rng_seed); ++i) {
863         sprintf(rng_seed_hex + i * 2, "%02x", rng_seed[i]);
864     }
865 }
866 
867 /* Kernel */
868 static uint64_t load_kernel(void)
869 {
870     uint64_t kernel_entry, kernel_high, initrd_size;
871     long kernel_size;
872     ram_addr_t initrd_offset;
873     uint32_t *prom_buf;
874     long prom_size;
875     int prom_index = 0;
876     uint8_t rng_seed[32];
877     char rng_seed_hex[sizeof(rng_seed) * 2 + 1];
878     size_t rng_seed_prom_offset;
879 
880     kernel_size = load_elf(loaderparams.kernel_filename, NULL,
881                            cpu_mips_kseg0_to_phys, NULL,
882                            &kernel_entry, NULL,
883                            &kernel_high, NULL, TARGET_BIG_ENDIAN, EM_MIPS,
884                            1, 0);
885     if (kernel_size < 0) {
886         error_report("could not load kernel '%s': %s",
887                      loaderparams.kernel_filename,
888                      load_elf_strerror(kernel_size));
889         exit(1);
890     }
891 
892     /* Check where the kernel has been linked */
893     if (kernel_entry <= USEG_LIMIT) {
894         error_report("Trap-and-Emul kernels (Linux CONFIG_KVM_GUEST)"
895                      " are not supported");
896         exit(1);
897     }
898 
899     /* load initrd */
900     initrd_size = 0;
901     initrd_offset = 0;
902     if (loaderparams.initrd_filename) {
903         initrd_size = get_image_size(loaderparams.initrd_filename);
904         if (initrd_size > 0) {
905             /*
906              * The kernel allocates the bootmap memory in the low memory after
907              * the initrd.  It takes at most 128kiB for 2GB RAM and 4kiB
908              * pages.
909              */
910             initrd_offset = ROUND_UP(loaderparams.ram_low_size
911                                      - (initrd_size + 128 * KiB),
912                                      INITRD_PAGE_SIZE);
913             if (kernel_high >= initrd_offset) {
914                 error_report("memory too small for initial ram disk '%s'",
915                              loaderparams.initrd_filename);
916                 exit(1);
917             }
918             initrd_size = load_image_targphys(loaderparams.initrd_filename,
919                                               initrd_offset,
920                                               loaderparams.ram_size - initrd_offset);
921         }
922         if (initrd_size == (target_ulong) -1) {
923             error_report("could not load initial ram disk '%s'",
924                          loaderparams.initrd_filename);
925             exit(1);
926         }
927     }
928 
929     /* Setup prom parameters. */
930     prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
931     prom_buf = g_malloc(prom_size);
932 
933     prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
934     if (initrd_size > 0) {
935         prom_set(prom_buf, prom_index++,
936                  "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s",
937                  cpu_mips_phys_to_kseg0(NULL, initrd_offset),
938                  initrd_size, loaderparams.kernel_cmdline);
939     } else {
940         prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
941     }
942 
943     prom_set(prom_buf, prom_index++, "memsize");
944     prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
945 
946     prom_set(prom_buf, prom_index++, "ememsize");
947     prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
948 
949     prom_set(prom_buf, prom_index++, "modetty0");
950     prom_set(prom_buf, prom_index++, "38400n8r");
951 
952     qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
953     for (size_t i = 0; i < sizeof(rng_seed); ++i) {
954         sprintf(rng_seed_hex + i * 2, "%02x", rng_seed[i]);
955     }
956     prom_set(prom_buf, prom_index++, "rngseed");
957     rng_seed_prom_offset = prom_index * ENVP_ENTRY_SIZE +
958                            sizeof(uint32_t) * ENVP_NB_ENTRIES;
959     prom_set(prom_buf, prom_index++, "%s", rng_seed_hex);
960 
961     prom_set(prom_buf, prom_index++, NULL);
962 
963     rom_add_blob_fixed("prom", prom_buf, prom_size, ENVP_PADDR);
964     qemu_register_reset_nosnapshotload(reinitialize_rng_seed,
965             rom_ptr(ENVP_PADDR, prom_size) + rng_seed_prom_offset);
966 
967     g_free(prom_buf);
968     return kernel_entry;
969 }
970 
971 static void malta_mips_config(MIPSCPU *cpu)
972 {
973     MachineState *ms = MACHINE(qdev_get_machine());
974     unsigned int smp_cpus = ms->smp.cpus;
975     CPUMIPSState *env = &cpu->env;
976     CPUState *cs = CPU(cpu);
977 
978     if (ase_mt_available(env)) {
979         env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
980                                            CP0MVPC0_PTC, 8,
981                                            smp_cpus * cs->nr_threads - 1);
982         env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
983                                            CP0MVPC0_PVPE, 4, smp_cpus - 1);
984     }
985 }
986 
987 static int malta_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
988 {
989     int slot;
990 
991     slot = PCI_SLOT(pci_dev->devfn);
992 
993     switch (slot) {
994     /* PIIX4 USB */
995     case 10:
996         return 3;
997     /* AMD 79C973 Ethernet */
998     case 11:
999         return 1;
1000     /* Crystal 4281 Sound */
1001     case 12:
1002         return 2;
1003     /* PCI slot 1 to 4 */
1004     case 18 ... 21:
1005         return ((slot - 18) + irq_num) & 0x03;
1006     /* Unknown device, don't do any translation */
1007     default:
1008         return irq_num;
1009     }
1010 }
1011 
1012 static void main_cpu_reset(void *opaque)
1013 {
1014     MIPSCPU *cpu = opaque;
1015     CPUMIPSState *env = &cpu->env;
1016 
1017     cpu_reset(CPU(cpu));
1018 
1019     /*
1020      * The bootloader does not need to be rewritten as it is located in a
1021      * read only location. The kernel location and the arguments table
1022      * location does not change.
1023      */
1024     if (loaderparams.kernel_filename) {
1025         env->CP0_Status &= ~(1 << CP0St_ERL);
1026     }
1027 
1028     malta_mips_config(cpu);
1029 }
1030 
1031 static void create_cpu_without_cps(MachineState *ms, MaltaState *s,
1032                                    qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1033 {
1034     CPUMIPSState *env;
1035     MIPSCPU *cpu;
1036     int i;
1037 
1038     for (i = 0; i < ms->smp.cpus; i++) {
1039         cpu = mips_cpu_create_with_clock(ms->cpu_type, s->cpuclk);
1040 
1041         /* Init internal devices */
1042         cpu_mips_irq_init_cpu(cpu);
1043         cpu_mips_clock_init(cpu);
1044         qemu_register_reset(main_cpu_reset, cpu);
1045     }
1046 
1047     cpu = MIPS_CPU(first_cpu);
1048     env = &cpu->env;
1049     *i8259_irq = env->irq[2];
1050     *cbus_irq = env->irq[4];
1051 }
1052 
1053 static void create_cps(MachineState *ms, MaltaState *s,
1054                        qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1055 {
1056     object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS);
1057     object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type,
1058                             &error_fatal);
1059     object_property_set_uint(OBJECT(&s->cps), "num-vp", ms->smp.cpus,
1060                             &error_fatal);
1061     qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", s->cpuclk);
1062     sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
1063 
1064     sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
1065 
1066     *i8259_irq = get_cps_irq(&s->cps, 3);
1067     *cbus_irq = NULL;
1068 }
1069 
1070 static void mips_create_cpu(MachineState *ms, MaltaState *s,
1071                             qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1072 {
1073     if ((ms->smp.cpus > 1) && cpu_type_supports_cps_smp(ms->cpu_type)) {
1074         create_cps(ms, s, cbus_irq, i8259_irq);
1075     } else {
1076         create_cpu_without_cps(ms, s, cbus_irq, i8259_irq);
1077     }
1078 }
1079 
1080 static
1081 void mips_malta_init(MachineState *machine)
1082 {
1083     ram_addr_t ram_size = machine->ram_size;
1084     ram_addr_t ram_low_size;
1085     const char *kernel_filename = machine->kernel_filename;
1086     const char *kernel_cmdline = machine->kernel_cmdline;
1087     const char *initrd_filename = machine->initrd_filename;
1088     char *filename;
1089     PFlashCFI01 *fl;
1090     MemoryRegion *system_memory = get_system_memory();
1091     MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
1092     MemoryRegion *ram_low_postio;
1093     MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
1094     const size_t smbus_eeprom_size = 8 * 256;
1095     uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
1096     uint64_t kernel_entry, bootloader_run_addr;
1097     PCIBus *pci_bus;
1098     ISABus *isa_bus;
1099     qemu_irq cbus_irq, i8259_irq;
1100     I2CBus *smbus;
1101     DriveInfo *dinfo;
1102     int fl_idx = 0;
1103     MaltaState *s;
1104     PCIDevice *piix4;
1105     DeviceState *dev;
1106 
1107     s = MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA));
1108     sysbus_realize_and_unref(SYS_BUS_DEVICE(s), &error_fatal);
1109 
1110     /* create CPU */
1111     mips_create_cpu(machine, s, &cbus_irq, &i8259_irq);
1112 
1113     /* allocate RAM */
1114     if (ram_size > 2 * GiB) {
1115         error_report("Too much memory for this machine: %" PRId64 "MB,"
1116                      " maximum 2048MB", ram_size / MiB);
1117         exit(1);
1118     }
1119 
1120     /* register RAM at high address where it is undisturbed by IO */
1121     memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
1122 
1123     /* alias for pre IO hole access */
1124     memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
1125                              machine->ram, 0, MIN(ram_size, 256 * MiB));
1126     memory_region_add_subregion(system_memory, 0, ram_low_preio);
1127 
1128     /* alias for post IO hole access, if there is enough RAM */
1129     if (ram_size > 512 * MiB) {
1130         ram_low_postio = g_new(MemoryRegion, 1);
1131         memory_region_init_alias(ram_low_postio, NULL,
1132                                  "mips_malta_low_postio.ram",
1133                                  machine->ram, 512 * MiB,
1134                                  ram_size - 512 * MiB);
1135         memory_region_add_subregion(system_memory, 512 * MiB,
1136                                     ram_low_postio);
1137     }
1138 
1139     /* FPGA */
1140 
1141     /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1142     malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
1143 
1144     /* Load firmware in flash / BIOS. */
1145     dinfo = drive_get(IF_PFLASH, 0, fl_idx);
1146     fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios",
1147                                FLASH_SIZE,
1148                                dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
1149                                65536,
1150                                4, 0x0000, 0x0000, 0x0000, 0x0000,
1151                                TARGET_BIG_ENDIAN);
1152     bios = pflash_cfi01_get_memory(fl);
1153     fl_idx++;
1154     if (kernel_filename) {
1155         ram_low_size = MIN(ram_size, 256 * MiB);
1156         bootloader_run_addr = cpu_mips_phys_to_kseg0(NULL, RESET_ADDRESS);
1157 
1158         /* Write a small bootloader to the flash location. */
1159         loaderparams.ram_size = ram_size;
1160         loaderparams.ram_low_size = ram_low_size;
1161         loaderparams.kernel_filename = kernel_filename;
1162         loaderparams.kernel_cmdline = kernel_cmdline;
1163         loaderparams.initrd_filename = initrd_filename;
1164         kernel_entry = load_kernel();
1165 
1166         if (!cpu_type_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) {
1167             write_bootloader(memory_region_get_ram_ptr(bios),
1168                              bootloader_run_addr, kernel_entry);
1169         } else {
1170             write_bootloader_nanomips(memory_region_get_ram_ptr(bios),
1171                                       bootloader_run_addr, kernel_entry);
1172         }
1173     } else {
1174         target_long bios_size = FLASH_SIZE;
1175         /* Load firmware from flash. */
1176         if (!dinfo) {
1177             /* Load a BIOS image. */
1178             filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
1179                                       machine->firmware ?: BIOS_FILENAME);
1180             if (filename) {
1181                 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
1182                                                 BIOS_SIZE);
1183                 g_free(filename);
1184             } else {
1185                 bios_size = -1;
1186             }
1187             if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
1188                 machine->firmware && !qtest_enabled()) {
1189                 error_report("Could not load MIPS bios '%s'", machine->firmware);
1190                 exit(1);
1191             }
1192         }
1193         /*
1194          * In little endian mode the 32bit words in the bios are swapped,
1195          * a neat trick which allows bi-endian firmware.
1196          */
1197 #if !TARGET_BIG_ENDIAN
1198         {
1199             uint32_t *end, *addr;
1200             const size_t swapsize = MIN(bios_size, 0x3e0000);
1201             addr = rom_ptr(FLASH_ADDRESS, swapsize);
1202             if (!addr) {
1203                 addr = memory_region_get_ram_ptr(bios);
1204             }
1205             end = (void *)addr + swapsize;
1206             while (addr < end) {
1207                 bswap32s(addr);
1208                 addr++;
1209             }
1210         }
1211 #endif
1212     }
1213 
1214     /*
1215      * Map the BIOS at a 2nd physical location, as on the real board.
1216      * Copy it so that we can patch in the MIPS revision, which cannot be
1217      * handled by an overlapping region as the resulting ROM code subpage
1218      * regions are not executable.
1219      */
1220     memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
1221                            &error_fatal);
1222     if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
1223                   FLASH_ADDRESS, BIOS_SIZE)) {
1224         memcpy(memory_region_get_ram_ptr(bios_copy),
1225                memory_region_get_ram_ptr(bios), BIOS_SIZE);
1226     }
1227     memory_region_set_readonly(bios_copy, true);
1228     memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
1229 
1230     /* Board ID = 0x420 (Malta Board with CoreLV) */
1231     stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
1232 
1233     /* Northbridge */
1234     dev = qdev_new("gt64120");
1235     qdev_prop_set_bit(dev, "cpu-little-endian", !TARGET_BIG_ENDIAN);
1236     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1237     pci_bus = PCI_BUS(qdev_get_child_bus(dev, "pci"));
1238     pci_bus_map_irqs(pci_bus, malta_pci_slot_get_pirq);
1239 
1240     /* Southbridge */
1241     piix4 = pci_create_simple_multifunction(pci_bus, PIIX4_PCI_DEVFN,
1242                                             TYPE_PIIX4_PCI_DEVICE);
1243     isa_bus = ISA_BUS(qdev_get_child_bus(DEVICE(piix4), "isa.0"));
1244 
1245     dev = DEVICE(object_resolve_path_component(OBJECT(piix4), "ide"));
1246     pci_ide_create_devs(PCI_DEVICE(dev));
1247 
1248     /* Interrupt controller */
1249     qdev_connect_gpio_out_named(DEVICE(piix4), "intr", 0, i8259_irq);
1250 
1251     /* generate SPD EEPROM data */
1252     dev = DEVICE(object_resolve_path_component(OBJECT(piix4), "pm"));
1253     smbus = I2C_BUS(qdev_get_child_bus(dev, "i2c"));
1254     generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
1255     generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
1256     smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
1257     g_free(smbus_eeprom_buf);
1258 
1259     /* Super I/O: SMS FDC37M817 */
1260     isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
1261 
1262     /* Network card */
1263     network_init(pci_bus);
1264 
1265     /* Optional PCI video card */
1266     pci_vga_init(pci_bus);
1267 }
1268 
1269 static void mips_malta_instance_init(Object *obj)
1270 {
1271     MaltaState *s = MIPS_MALTA(obj);
1272 
1273     s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
1274     clock_set_hz(s->cpuclk, 320000000); /* 320 MHz */
1275 }
1276 
1277 static const TypeInfo mips_malta_device = {
1278     .name          = TYPE_MIPS_MALTA,
1279     .parent        = TYPE_SYS_BUS_DEVICE,
1280     .instance_size = sizeof(MaltaState),
1281     .instance_init = mips_malta_instance_init,
1282 };
1283 
1284 GlobalProperty malta_compat[] = {
1285     { "PIIX4_PM", "memory-hotplug-support", "off" },
1286     { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
1287     { "PIIX4_PM", "acpi-root-pci-hotplug", "off" },
1288     { "PIIX4_PM", "x-not-migrate-acpi-index", "true" },
1289 };
1290 const size_t malta_compat_len = G_N_ELEMENTS(malta_compat);
1291 
1292 static void mips_malta_machine_init(MachineClass *mc)
1293 {
1294     mc->desc = "MIPS Malta Core LV";
1295     mc->init = mips_malta_init;
1296     mc->block_default_type = IF_IDE;
1297     mc->max_cpus = 16;
1298     mc->is_default = true;
1299 #ifdef TARGET_MIPS64
1300     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
1301 #else
1302     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
1303 #endif
1304     mc->default_ram_id = "mips_malta.ram";
1305     compat_props_add(mc->compat_props, malta_compat, malta_compat_len);
1306 }
1307 
1308 DEFINE_MACHINE("malta", mips_malta_machine_init)
1309 
1310 static void mips_malta_register_types(void)
1311 {
1312     type_register_static(&mips_malta_device);
1313 }
1314 
1315 type_init(mips_malta_register_types)
1316