xref: /openbmc/qemu/hw/mips/malta.c (revision e32aaa5a19e24233180042f84a0235a209de71cc)
1 /*
2  * QEMU Malta board support
3  *
4  * Copyright (c) 2006 Aurelien Jarno
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qemu/bitops.h"
28 #include "qemu-common.h"
29 #include "qemu/datadir.h"
30 #include "hw/clock.h"
31 #include "hw/southbridge/piix.h"
32 #include "hw/isa/superio.h"
33 #include "hw/char/serial.h"
34 #include "net/net.h"
35 #include "hw/boards.h"
36 #include "hw/i2c/smbus_eeprom.h"
37 #include "hw/block/flash.h"
38 #include "hw/mips/mips.h"
39 #include "hw/mips/cpudevs.h"
40 #include "hw/pci/pci.h"
41 #include "qemu/log.h"
42 #include "hw/mips/bios.h"
43 #include "hw/ide.h"
44 #include "hw/irq.h"
45 #include "hw/loader.h"
46 #include "elf.h"
47 #include "qom/object.h"
48 #include "hw/sysbus.h"             /* SysBusDevice */
49 #include "qemu/host-utils.h"
50 #include "sysemu/qtest.h"
51 #include "sysemu/reset.h"
52 #include "sysemu/runstate.h"
53 #include "qapi/error.h"
54 #include "qemu/error-report.h"
55 #include "hw/misc/empty_slot.h"
56 #include "sysemu/kvm.h"
57 #include "semihosting/semihost.h"
58 #include "hw/mips/cps.h"
59 #include "hw/qdev-clock.h"
60 
61 #define ENVP_PADDR          0x2000
62 #define ENVP_VADDR          cpu_mips_phys_to_kseg0(NULL, ENVP_PADDR)
63 #define ENVP_NB_ENTRIES     16
64 #define ENVP_ENTRY_SIZE     256
65 
66 /* Hardware addresses */
67 #define FLASH_ADDRESS       0x1e000000ULL
68 #define FPGA_ADDRESS        0x1f000000ULL
69 #define RESET_ADDRESS       0x1fc00000ULL
70 
71 #define FLASH_SIZE          0x400000
72 
73 #define MAX_IDE_BUS         2
74 
75 typedef struct {
76     MemoryRegion iomem;
77     MemoryRegion iomem_lo; /* 0 - 0x900 */
78     MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
79     uint32_t leds;
80     uint32_t brk;
81     uint32_t gpout;
82     uint32_t i2cin;
83     uint32_t i2coe;
84     uint32_t i2cout;
85     uint32_t i2csel;
86     CharBackend display;
87     char display_text[9];
88     SerialMM *uart;
89     bool display_inited;
90 } MaltaFPGAState;
91 
92 #define TYPE_MIPS_MALTA "mips-malta"
93 OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA)
94 
95 struct MaltaState {
96     SysBusDevice parent_obj;
97 
98     Clock *cpuclk;
99     MIPSCPSState cps;
100 };
101 
102 static struct _loaderparams {
103     int ram_size, ram_low_size;
104     const char *kernel_filename;
105     const char *kernel_cmdline;
106     const char *initrd_filename;
107 } loaderparams;
108 
109 /* Malta FPGA */
110 static void malta_fpga_update_display(void *opaque)
111 {
112     char leds_text[9];
113     int i;
114     MaltaFPGAState *s = opaque;
115 
116     for (i = 7 ; i >= 0 ; i--) {
117         if (s->leds & (1 << i)) {
118             leds_text[i] = '#';
119         } else {
120             leds_text[i] = ' ';
121         }
122     }
123     leds_text[8] = '\0';
124 
125     qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
126                        leds_text);
127     qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
128                        s->display_text);
129 }
130 
131 /*
132  * EEPROM 24C01 / 24C02 emulation.
133  *
134  * Emulation for serial EEPROMs:
135  * 24C01 - 1024 bit (128 x 8)
136  * 24C02 - 2048 bit (256 x 8)
137  *
138  * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
139  */
140 
141 #if defined(DEBUG)
142 #  define logout(fmt, ...) \
143           fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
144 #else
145 #  define logout(fmt, ...) ((void)0)
146 #endif
147 
148 struct _eeprom24c0x_t {
149   uint8_t tick;
150   uint8_t address;
151   uint8_t command;
152   uint8_t ack;
153   uint8_t scl;
154   uint8_t sda;
155   uint8_t data;
156   /* uint16_t size; */
157   uint8_t contents[256];
158 };
159 
160 typedef struct _eeprom24c0x_t eeprom24c0x_t;
161 
162 static eeprom24c0x_t spd_eeprom = {
163     .contents = {
164         /* 00000000: */
165         0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
166         /* 00000008: */
167         0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
168         /* 00000010: */
169         0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
170         /* 00000018: */
171         0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
172         /* 00000020: */
173         0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
174         /* 00000028: */
175         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
176         /* 00000030: */
177         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
178         /* 00000038: */
179         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
180         /* 00000040: */
181         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
182         /* 00000048: */
183         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
184         /* 00000050: */
185         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
186         /* 00000058: */
187         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
188         /* 00000060: */
189         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
190         /* 00000068: */
191         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
192         /* 00000070: */
193         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
194         /* 00000078: */
195         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
196     },
197 };
198 
199 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
200 {
201     enum { SDR = 0x4, DDR2 = 0x8 } type;
202     uint8_t *spd = spd_eeprom.contents;
203     uint8_t nbanks = 0;
204     uint16_t density = 0;
205     int i;
206 
207     /* work in terms of MB */
208     ram_size /= MiB;
209 
210     while ((ram_size >= 4) && (nbanks <= 2)) {
211         int sz_log2 = MIN(31 - clz32(ram_size), 14);
212         nbanks++;
213         density |= 1 << (sz_log2 - 2);
214         ram_size -= 1 << sz_log2;
215     }
216 
217     /* split to 2 banks if possible */
218     if ((nbanks == 1) && (density > 1)) {
219         nbanks++;
220         density >>= 1;
221     }
222 
223     if (density & 0xff00) {
224         density = (density & 0xe0) | ((density >> 8) & 0x1f);
225         type = DDR2;
226     } else if (!(density & 0x1f)) {
227         type = DDR2;
228     } else {
229         type = SDR;
230     }
231 
232     if (ram_size) {
233         warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
234                     " of SDRAM", ram_size);
235     }
236 
237     /* fill in SPD memory information */
238     spd[2] = type;
239     spd[5] = nbanks;
240     spd[31] = density;
241 
242     /* checksum */
243     spd[63] = 0;
244     for (i = 0; i < 63; i++) {
245         spd[63] += spd[i];
246     }
247 
248     /* copy for SMBUS */
249     memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
250 }
251 
252 static void generate_eeprom_serial(uint8_t *eeprom)
253 {
254     int i, pos = 0;
255     uint8_t mac[6] = { 0x00 };
256     uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
257 
258     /* version */
259     eeprom[pos++] = 0x01;
260 
261     /* count */
262     eeprom[pos++] = 0x02;
263 
264     /* MAC address */
265     eeprom[pos++] = 0x01; /* MAC */
266     eeprom[pos++] = 0x06; /* length */
267     memcpy(&eeprom[pos], mac, sizeof(mac));
268     pos += sizeof(mac);
269 
270     /* serial number */
271     eeprom[pos++] = 0x02; /* serial */
272     eeprom[pos++] = 0x05; /* length */
273     memcpy(&eeprom[pos], sn, sizeof(sn));
274     pos += sizeof(sn);
275 
276     /* checksum */
277     eeprom[pos] = 0;
278     for (i = 0; i < pos; i++) {
279         eeprom[pos] += eeprom[i];
280     }
281 }
282 
283 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
284 {
285     logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
286         eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
287     return eeprom->sda;
288 }
289 
290 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
291 {
292     if (eeprom->scl && scl && (eeprom->sda != sda)) {
293         logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
294                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
295                 sda ? "stop" : "start");
296         if (!sda) {
297             eeprom->tick = 1;
298             eeprom->command = 0;
299         }
300     } else if (eeprom->tick == 0 && !eeprom->ack) {
301         /* Waiting for start. */
302         logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
303                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
304     } else if (!eeprom->scl && scl) {
305         logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
306                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
307         if (eeprom->ack) {
308             logout("\ti2c ack bit = 0\n");
309             sda = 0;
310             eeprom->ack = 0;
311         } else if (eeprom->sda == sda) {
312             uint8_t bit = (sda != 0);
313             logout("\ti2c bit = %d\n", bit);
314             if (eeprom->tick < 9) {
315                 eeprom->command <<= 1;
316                 eeprom->command += bit;
317                 eeprom->tick++;
318                 if (eeprom->tick == 9) {
319                     logout("\tcommand 0x%04x, %s\n", eeprom->command,
320                            bit ? "read" : "write");
321                     eeprom->ack = 1;
322                 }
323             } else if (eeprom->tick < 17) {
324                 if (eeprom->command & 1) {
325                     sda = ((eeprom->data & 0x80) != 0);
326                 }
327                 eeprom->address <<= 1;
328                 eeprom->address += bit;
329                 eeprom->tick++;
330                 eeprom->data <<= 1;
331                 if (eeprom->tick == 17) {
332                     eeprom->data = eeprom->contents[eeprom->address];
333                     logout("\taddress 0x%04x, data 0x%02x\n",
334                            eeprom->address, eeprom->data);
335                     eeprom->ack = 1;
336                     eeprom->tick = 0;
337                 }
338             } else if (eeprom->tick >= 17) {
339                 sda = 0;
340             }
341         } else {
342             logout("\tsda changed with raising scl\n");
343         }
344     } else {
345         logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
346                scl, eeprom->sda, sda);
347     }
348     eeprom->scl = scl;
349     eeprom->sda = sda;
350 }
351 
352 static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
353                                 unsigned size)
354 {
355     MaltaFPGAState *s = opaque;
356     uint32_t val = 0;
357     uint32_t saddr;
358 
359     saddr = (addr & 0xfffff);
360 
361     switch (saddr) {
362 
363     /* SWITCH Register */
364     case 0x00200:
365         val = 0x00000000;
366         break;
367 
368     /* STATUS Register */
369     case 0x00208:
370 #ifdef TARGET_WORDS_BIGENDIAN
371         val = 0x00000012;
372 #else
373         val = 0x00000010;
374 #endif
375         break;
376 
377     /* JMPRS Register */
378     case 0x00210:
379         val = 0x00;
380         break;
381 
382     /* LEDBAR Register */
383     case 0x00408:
384         val = s->leds;
385         break;
386 
387     /* BRKRES Register */
388     case 0x00508:
389         val = s->brk;
390         break;
391 
392     /* UART Registers are handled directly by the serial device */
393 
394     /* GPOUT Register */
395     case 0x00a00:
396         val = s->gpout;
397         break;
398 
399     /* XXX: implement a real I2C controller */
400 
401     /* GPINP Register */
402     case 0x00a08:
403         /* IN = OUT until a real I2C control is implemented */
404         if (s->i2csel) {
405             val = s->i2cout;
406         } else {
407             val = 0x00;
408         }
409         break;
410 
411     /* I2CINP Register */
412     case 0x00b00:
413         val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
414         break;
415 
416     /* I2COE Register */
417     case 0x00b08:
418         val = s->i2coe;
419         break;
420 
421     /* I2COUT Register */
422     case 0x00b10:
423         val = s->i2cout;
424         break;
425 
426     /* I2CSEL Register */
427     case 0x00b18:
428         val = s->i2csel;
429         break;
430 
431     default:
432         qemu_log_mask(LOG_GUEST_ERROR,
433                       "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n",
434                       addr);
435         break;
436     }
437     return val;
438 }
439 
440 static void malta_fpga_write(void *opaque, hwaddr addr,
441                              uint64_t val, unsigned size)
442 {
443     MaltaFPGAState *s = opaque;
444     uint32_t saddr;
445 
446     saddr = (addr & 0xfffff);
447 
448     switch (saddr) {
449 
450     /* SWITCH Register */
451     case 0x00200:
452         break;
453 
454     /* JMPRS Register */
455     case 0x00210:
456         break;
457 
458     /* LEDBAR Register */
459     case 0x00408:
460         s->leds = val & 0xff;
461         malta_fpga_update_display(s);
462         break;
463 
464     /* ASCIIWORD Register */
465     case 0x00410:
466         snprintf(s->display_text, 9, "%08X", (uint32_t)val);
467         malta_fpga_update_display(s);
468         break;
469 
470     /* ASCIIPOS0 to ASCIIPOS7 Registers */
471     case 0x00418:
472     case 0x00420:
473     case 0x00428:
474     case 0x00430:
475     case 0x00438:
476     case 0x00440:
477     case 0x00448:
478     case 0x00450:
479         s->display_text[(saddr - 0x00418) >> 3] = (char) val;
480         malta_fpga_update_display(s);
481         break;
482 
483     /* SOFTRES Register */
484     case 0x00500:
485         if (val == 0x42) {
486             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
487         }
488         break;
489 
490     /* BRKRES Register */
491     case 0x00508:
492         s->brk = val & 0xff;
493         break;
494 
495     /* UART Registers are handled directly by the serial device */
496 
497     /* GPOUT Register */
498     case 0x00a00:
499         s->gpout = val & 0xff;
500         break;
501 
502     /* I2COE Register */
503     case 0x00b08:
504         s->i2coe = val & 0x03;
505         break;
506 
507     /* I2COUT Register */
508     case 0x00b10:
509         eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
510         s->i2cout = val;
511         break;
512 
513     /* I2CSEL Register */
514     case 0x00b18:
515         s->i2csel = val & 0x01;
516         break;
517 
518     default:
519         qemu_log_mask(LOG_GUEST_ERROR,
520                       "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n",
521                       addr);
522         break;
523     }
524 }
525 
526 static const MemoryRegionOps malta_fpga_ops = {
527     .read = malta_fpga_read,
528     .write = malta_fpga_write,
529     .endianness = DEVICE_NATIVE_ENDIAN,
530 };
531 
532 static void malta_fpga_reset(void *opaque)
533 {
534     MaltaFPGAState *s = opaque;
535 
536     s->leds   = 0x00;
537     s->brk    = 0x0a;
538     s->gpout  = 0x00;
539     s->i2cin  = 0x3;
540     s->i2coe  = 0x0;
541     s->i2cout = 0x3;
542     s->i2csel = 0x1;
543 
544     s->display_text[8] = '\0';
545     snprintf(s->display_text, 9, "        ");
546 }
547 
548 static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event)
549 {
550     MaltaFPGAState *s = opaque;
551 
552     if (event == CHR_EVENT_OPENED && !s->display_inited) {
553         qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
554         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
555         qemu_chr_fe_printf(&s->display, "+        +\r\n");
556         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
557         qemu_chr_fe_printf(&s->display, "\n");
558         qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
559         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
560         qemu_chr_fe_printf(&s->display, "+        +\r\n");
561         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
562         s->display_inited = true;
563     }
564 }
565 
566 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
567          hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
568 {
569     MaltaFPGAState *s;
570     Chardev *chr;
571 
572     s = g_new0(MaltaFPGAState, 1);
573 
574     memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
575                           "malta-fpga", 0x100000);
576     memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
577                              &s->iomem, 0, 0x900);
578     memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
579                              &s->iomem, 0xa00, 0x100000 - 0xa00);
580 
581     memory_region_add_subregion(address_space, base, &s->iomem_lo);
582     memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
583 
584     chr = qemu_chr_new("fpga", "vc:320x200", NULL);
585     qemu_chr_fe_init(&s->display, chr, NULL);
586     qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
587                              malta_fgpa_display_event, NULL, s, NULL, true);
588 
589     s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
590                              230400, uart_chr, DEVICE_NATIVE_ENDIAN);
591 
592     malta_fpga_reset(s);
593     qemu_register_reset(malta_fpga_reset, s);
594 
595     return s;
596 }
597 
598 /* Network support */
599 static void network_init(PCIBus *pci_bus)
600 {
601     int i;
602 
603     for (i = 0; i < nb_nics; i++) {
604         NICInfo *nd = &nd_table[i];
605         const char *default_devaddr = NULL;
606 
607         if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
608             /* The malta board has a PCNet card using PCI SLOT 11 */
609             default_devaddr = "0b";
610 
611         pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
612     }
613 }
614 
615 static void write_bootloader_nanomips(uint8_t *base, uint64_t run_addr,
616                                       uint64_t kernel_entry)
617 {
618     uint16_t *p;
619 
620     /* Small bootloader */
621     p = (uint16_t *)base;
622 
623 #define NM_HI1(VAL) (((VAL) >> 16) & 0x1f)
624 #define NM_HI2(VAL) \
625           (((VAL) & 0xf000) | (((VAL) >> 19) & 0xffc) | (((VAL) >> 31) & 0x1))
626 #define NM_LO(VAL)  ((VAL) & 0xfff)
627 
628     stw_p(p++, 0x2800); stw_p(p++, 0x001c);
629                                 /* bc to_here */
630     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
631                                 /* nop */
632     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
633                                 /* nop */
634     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
635                                 /* nop */
636     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
637                                 /* nop */
638     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
639                                 /* nop */
640     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
641                                 /* nop */
642     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
643                                 /* nop */
644 
645     /* to_here: */
646     if (semihosting_get_argc()) {
647         /* Preserve a0 content as arguments have been passed    */
648         stw_p(p++, 0x8000); stw_p(p++, 0xc000);
649                                 /* nop                          */
650     } else {
651         stw_p(p++, 0x0080); stw_p(p++, 0x0002);
652                                 /* li a0,2                      */
653     }
654 
655     stw_p(p++, 0xe3a0 | NM_HI1(ENVP_VADDR - 64));
656 
657     stw_p(p++, NM_HI2(ENVP_VADDR - 64));
658                                 /* lui sp,%hi(ENVP_VADDR - 64)   */
659 
660     stw_p(p++, 0x83bd); stw_p(p++, NM_LO(ENVP_VADDR - 64));
661                                 /* ori sp,sp,%lo(ENVP_VADDR - 64) */
662 
663     stw_p(p++, 0xe0a0 | NM_HI1(ENVP_VADDR));
664 
665     stw_p(p++, NM_HI2(ENVP_VADDR));
666                                 /* lui a1,%hi(ENVP_VADDR)        */
667 
668     stw_p(p++, 0x80a5); stw_p(p++, NM_LO(ENVP_VADDR));
669                                 /* ori a1,a1,%lo(ENVP_VADDR)     */
670 
671     stw_p(p++, 0xe0c0 | NM_HI1(ENVP_VADDR + 8));
672 
673     stw_p(p++, NM_HI2(ENVP_VADDR + 8));
674                                 /* lui a2,%hi(ENVP_VADDR + 8)    */
675 
676     stw_p(p++, 0x80c6); stw_p(p++, NM_LO(ENVP_VADDR + 8));
677                                 /* ori a2,a2,%lo(ENVP_VADDR + 8) */
678 
679     stw_p(p++, 0xe0e0 | NM_HI1(loaderparams.ram_low_size));
680 
681     stw_p(p++, NM_HI2(loaderparams.ram_low_size));
682                                 /* lui a3,%hi(loaderparams.ram_low_size) */
683 
684     stw_p(p++, 0x80e7); stw_p(p++, NM_LO(loaderparams.ram_low_size));
685                                 /* ori a3,a3,%lo(loaderparams.ram_low_size) */
686 
687     /*
688      * Load BAR registers as done by YAMON:
689      *
690      *  - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
691      *  - set up PCI0 MEM0 at 0x10000000, size 0x8000000
692      *  - set up PCI0 MEM1 at 0x18200000, size 0xbe00000
693      *
694      */
695     stw_p(p++, 0xe040); stw_p(p++, 0x0681);
696                                 /* lui t1, %hi(0xb4000000)      */
697 
698 #ifdef TARGET_WORDS_BIGENDIAN
699 
700     stw_p(p++, 0xe020); stw_p(p++, 0x0be1);
701                                 /* lui t0, %hi(0xdf000000)      */
702 
703     /* 0x68 corresponds to GT_ISD (from hw/mips/gt64xxx_pci.c)  */
704     stw_p(p++, 0x8422); stw_p(p++, 0x9068);
705                                 /* sw t0, 0x68(t1)              */
706 
707     stw_p(p++, 0xe040); stw_p(p++, 0x077d);
708                                 /* lui t1, %hi(0xbbe00000)      */
709 
710     stw_p(p++, 0xe020); stw_p(p++, 0x0801);
711                                 /* lui t0, %hi(0xc0000000)      */
712 
713     /* 0x48 corresponds to GT_PCI0IOLD                          */
714     stw_p(p++, 0x8422); stw_p(p++, 0x9048);
715                                 /* sw t0, 0x48(t1)              */
716 
717     stw_p(p++, 0xe020); stw_p(p++, 0x0800);
718                                 /* lui t0, %hi(0x40000000)      */
719 
720     /* 0x50 corresponds to GT_PCI0IOHD                          */
721     stw_p(p++, 0x8422); stw_p(p++, 0x9050);
722                                 /* sw t0, 0x50(t1)              */
723 
724     stw_p(p++, 0xe020); stw_p(p++, 0x0001);
725                                 /* lui t0, %hi(0x80000000)      */
726 
727     /* 0x58 corresponds to GT_PCI0M0LD                          */
728     stw_p(p++, 0x8422); stw_p(p++, 0x9058);
729                                 /* sw t0, 0x58(t1)              */
730 
731     stw_p(p++, 0xe020); stw_p(p++, 0x07e0);
732                                 /* lui t0, %hi(0x3f000000)      */
733 
734     /* 0x60 corresponds to GT_PCI0M0HD                          */
735     stw_p(p++, 0x8422); stw_p(p++, 0x9060);
736                                 /* sw t0, 0x60(t1)              */
737 
738     stw_p(p++, 0xe020); stw_p(p++, 0x0821);
739                                 /* lui t0, %hi(0xc1000000)      */
740 
741     /* 0x80 corresponds to GT_PCI0M1LD                          */
742     stw_p(p++, 0x8422); stw_p(p++, 0x9080);
743                                 /* sw t0, 0x80(t1)              */
744 
745     stw_p(p++, 0xe020); stw_p(p++, 0x0bc0);
746                                 /* lui t0, %hi(0x5e000000)      */
747 
748 #else
749 
750     stw_p(p++, 0x0020); stw_p(p++, 0x00df);
751                                 /* addiu[32] t0, $0, 0xdf       */
752 
753     /* 0x68 corresponds to GT_ISD                               */
754     stw_p(p++, 0x8422); stw_p(p++, 0x9068);
755                                 /* sw t0, 0x68(t1)              */
756 
757     /* Use kseg2 remapped address 0x1be00000                    */
758     stw_p(p++, 0xe040); stw_p(p++, 0x077d);
759                                 /* lui t1, %hi(0xbbe00000)      */
760 
761     stw_p(p++, 0x0020); stw_p(p++, 0x00c0);
762                                 /* addiu[32] t0, $0, 0xc0       */
763 
764     /* 0x48 corresponds to GT_PCI0IOLD                          */
765     stw_p(p++, 0x8422); stw_p(p++, 0x9048);
766                                 /* sw t0, 0x48(t1)              */
767 
768     stw_p(p++, 0x0020); stw_p(p++, 0x0040);
769                                 /* addiu[32] t0, $0, 0x40       */
770 
771     /* 0x50 corresponds to GT_PCI0IOHD                          */
772     stw_p(p++, 0x8422); stw_p(p++, 0x9050);
773                                 /* sw t0, 0x50(t1)              */
774 
775     stw_p(p++, 0x0020); stw_p(p++, 0x0080);
776                                 /* addiu[32] t0, $0, 0x80       */
777 
778     /* 0x58 corresponds to GT_PCI0M0LD                          */
779     stw_p(p++, 0x8422); stw_p(p++, 0x9058);
780                                 /* sw t0, 0x58(t1)              */
781 
782     stw_p(p++, 0x0020); stw_p(p++, 0x003f);
783                                 /* addiu[32] t0, $0, 0x3f       */
784 
785     /* 0x60 corresponds to GT_PCI0M0HD                          */
786     stw_p(p++, 0x8422); stw_p(p++, 0x9060);
787                                 /* sw t0, 0x60(t1)              */
788 
789     stw_p(p++, 0x0020); stw_p(p++, 0x00c1);
790                                 /* addiu[32] t0, $0, 0xc1       */
791 
792     /* 0x80 corresponds to GT_PCI0M1LD                          */
793     stw_p(p++, 0x8422); stw_p(p++, 0x9080);
794                                 /* sw t0, 0x80(t1)              */
795 
796     stw_p(p++, 0x0020); stw_p(p++, 0x005e);
797                                 /* addiu[32] t0, $0, 0x5e       */
798 
799 #endif
800 
801     /* 0x88 corresponds to GT_PCI0M1HD                          */
802     stw_p(p++, 0x8422); stw_p(p++, 0x9088);
803                                 /* sw t0, 0x88(t1)              */
804 
805     stw_p(p++, 0xe320 | NM_HI1(kernel_entry));
806 
807     stw_p(p++, NM_HI2(kernel_entry));
808                                 /* lui t9,%hi(kernel_entry)     */
809 
810     stw_p(p++, 0x8339); stw_p(p++, NM_LO(kernel_entry));
811                                 /* ori t9,t9,%lo(kernel_entry)  */
812 
813     stw_p(p++, 0x4bf9); stw_p(p++, 0x0000);
814                                 /* jalrc   t8                   */
815 }
816 
817 /*
818  * ROM and pseudo bootloader
819  *
820  * The following code implements a very very simple bootloader. It first
821  * loads the registers a0 to a3 to the values expected by the OS, and
822  * then jump at the kernel address.
823  *
824  * The bootloader should pass the locations of the kernel arguments and
825  * environment variables tables. Those tables contain the 32-bit address
826  * of NULL terminated strings. The environment variables table should be
827  * terminated by a NULL address.
828  *
829  * For a simpler implementation, the number of kernel arguments is fixed
830  * to two (the name of the kernel and the command line), and the two
831  * tables are actually the same one.
832  *
833  * The registers a0 to a3 should contain the following values:
834  *   a0 - number of kernel arguments
835  *   a1 - 32-bit address of the kernel arguments table
836  *   a2 - 32-bit address of the environment variables table
837  *   a3 - RAM size in bytes
838  */
839 static void write_bootloader(uint8_t *base, uint64_t run_addr,
840                              uint64_t kernel_entry)
841 {
842     uint32_t *p;
843 
844     /* Small bootloader */
845     p = (uint32_t *)base;
846 
847     stl_p(p++, 0x08000000 |                  /* j 0x1fc00580 */
848                  ((run_addr + 0x580) & 0x0fffffff) >> 2);
849     stl_p(p++, 0x00000000);                  /* nop */
850 
851     /* YAMON service vector */
852     stl_p(base + 0x500, run_addr + 0x0580);  /* start: */
853     stl_p(base + 0x504, run_addr + 0x083c);  /* print_count: */
854     stl_p(base + 0x520, run_addr + 0x0580);  /* start: */
855     stl_p(base + 0x52c, run_addr + 0x0800);  /* flush_cache: */
856     stl_p(base + 0x534, run_addr + 0x0808);  /* print: */
857     stl_p(base + 0x538, run_addr + 0x0800);  /* reg_cpu_isr: */
858     stl_p(base + 0x53c, run_addr + 0x0800);  /* unred_cpu_isr: */
859     stl_p(base + 0x540, run_addr + 0x0800);  /* reg_ic_isr: */
860     stl_p(base + 0x544, run_addr + 0x0800);  /* unred_ic_isr: */
861     stl_p(base + 0x548, run_addr + 0x0800);  /* reg_esr: */
862     stl_p(base + 0x54c, run_addr + 0x0800);  /* unreg_esr: */
863     stl_p(base + 0x550, run_addr + 0x0800);  /* getchar: */
864     stl_p(base + 0x554, run_addr + 0x0800);  /* syscon_read: */
865 
866 
867     /* Second part of the bootloader */
868     p = (uint32_t *) (base + 0x580);
869 
870     if (semihosting_get_argc()) {
871         /* Preserve a0 content as arguments have been passed */
872         stl_p(p++, 0x00000000);              /* nop */
873     } else {
874         stl_p(p++, 0x24040002);              /* addiu a0, zero, 2 */
875     }
876 
877     /* lui sp, high(ENVP_VADDR) */
878     stl_p(p++, 0x3c1d0000 | (((ENVP_VADDR - 64) >> 16) & 0xffff));
879     /* ori sp, sp, low(ENVP_VADDR) */
880     stl_p(p++, 0x37bd0000 | ((ENVP_VADDR - 64) & 0xffff));
881     /* lui a1, high(ENVP_VADDR) */
882     stl_p(p++, 0x3c050000 | ((ENVP_VADDR >> 16) & 0xffff));
883     /* ori a1, a1, low(ENVP_VADDR) */
884     stl_p(p++, 0x34a50000 | (ENVP_VADDR & 0xffff));
885     /* lui a2, high(ENVP_VADDR + 8) */
886     stl_p(p++, 0x3c060000 | (((ENVP_VADDR + 8) >> 16) & 0xffff));
887     /* ori a2, a2, low(ENVP_VADDR + 8) */
888     stl_p(p++, 0x34c60000 | ((ENVP_VADDR + 8) & 0xffff));
889     /* lui a3, high(ram_low_size) */
890     stl_p(p++, 0x3c070000 | (loaderparams.ram_low_size >> 16));
891     /* ori a3, a3, low(ram_low_size) */
892     stl_p(p++, 0x34e70000 | (loaderparams.ram_low_size & 0xffff));
893 
894     /* Load BAR registers as done by YAMON */
895     stl_p(p++, 0x3c09b400);                  /* lui t1, 0xb400 */
896 
897 #ifdef TARGET_WORDS_BIGENDIAN
898     stl_p(p++, 0x3c08df00);                  /* lui t0, 0xdf00 */
899 #else
900     stl_p(p++, 0x340800df);                  /* ori t0, r0, 0x00df */
901 #endif
902     stl_p(p++, 0xad280068);                  /* sw t0, 0x0068(t1) */
903 
904     stl_p(p++, 0x3c09bbe0);                  /* lui t1, 0xbbe0 */
905 
906 #ifdef TARGET_WORDS_BIGENDIAN
907     stl_p(p++, 0x3c08c000);                  /* lui t0, 0xc000 */
908 #else
909     stl_p(p++, 0x340800c0);                  /* ori t0, r0, 0x00c0 */
910 #endif
911     stl_p(p++, 0xad280048);                  /* sw t0, 0x0048(t1) */
912 #ifdef TARGET_WORDS_BIGENDIAN
913     stl_p(p++, 0x3c084000);                  /* lui t0, 0x4000 */
914 #else
915     stl_p(p++, 0x34080040);                  /* ori t0, r0, 0x0040 */
916 #endif
917     stl_p(p++, 0xad280050);                  /* sw t0, 0x0050(t1) */
918 
919 #ifdef TARGET_WORDS_BIGENDIAN
920     stl_p(p++, 0x3c088000);                  /* lui t0, 0x8000 */
921 #else
922     stl_p(p++, 0x34080080);                  /* ori t0, r0, 0x0080 */
923 #endif
924     stl_p(p++, 0xad280058);                  /* sw t0, 0x0058(t1) */
925 #ifdef TARGET_WORDS_BIGENDIAN
926     stl_p(p++, 0x3c083f00);                  /* lui t0, 0x3f00 */
927 #else
928     stl_p(p++, 0x3408003f);                  /* ori t0, r0, 0x003f */
929 #endif
930     stl_p(p++, 0xad280060);                  /* sw t0, 0x0060(t1) */
931 
932 #ifdef TARGET_WORDS_BIGENDIAN
933     stl_p(p++, 0x3c08c100);                  /* lui t0, 0xc100 */
934 #else
935     stl_p(p++, 0x340800c1);                  /* ori t0, r0, 0x00c1 */
936 #endif
937     stl_p(p++, 0xad280080);                  /* sw t0, 0x0080(t1) */
938 #ifdef TARGET_WORDS_BIGENDIAN
939     stl_p(p++, 0x3c085e00);                  /* lui t0, 0x5e00 */
940 #else
941     stl_p(p++, 0x3408005e);                  /* ori t0, r0, 0x005e */
942 #endif
943     stl_p(p++, 0xad280088);                  /* sw t0, 0x0088(t1) */
944 
945     /* Jump to kernel code */
946     stl_p(p++, 0x3c1f0000 |
947           ((kernel_entry >> 16) & 0xffff));  /* lui ra, high(kernel_entry) */
948     stl_p(p++, 0x37ff0000 |
949           (kernel_entry & 0xffff));          /* ori ra, ra, low(kernel_entry) */
950     stl_p(p++, 0x03e00009);                  /* jalr ra */
951     stl_p(p++, 0x00000000);                  /* nop */
952 
953     /* YAMON subroutines */
954     p = (uint32_t *) (base + 0x800);
955     stl_p(p++, 0x03e00009);                  /* jalr ra */
956     stl_p(p++, 0x24020000);                  /* li v0,0 */
957     /* 808 YAMON print */
958     stl_p(p++, 0x03e06821);                  /* move t5,ra */
959     stl_p(p++, 0x00805821);                  /* move t3,a0 */
960     stl_p(p++, 0x00a05021);                  /* move t2,a1 */
961     stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
962     stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
963     stl_p(p++, 0x10800005);                  /* beqz a0,834 */
964     stl_p(p++, 0x00000000);                  /* nop */
965     stl_p(p++, 0x0ff0021c);                  /* jal 870 */
966     stl_p(p++, 0x00000000);                  /* nop */
967     stl_p(p++, 0x1000fff9);                  /* b 814 */
968     stl_p(p++, 0x00000000);                  /* nop */
969     stl_p(p++, 0x01a00009);                  /* jalr t5 */
970     stl_p(p++, 0x01602021);                  /* move a0,t3 */
971     /* 0x83c YAMON print_count */
972     stl_p(p++, 0x03e06821);                  /* move t5,ra */
973     stl_p(p++, 0x00805821);                  /* move t3,a0 */
974     stl_p(p++, 0x00a05021);                  /* move t2,a1 */
975     stl_p(p++, 0x00c06021);                  /* move t4,a2 */
976     stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
977     stl_p(p++, 0x0ff0021c);                  /* jal 870 */
978     stl_p(p++, 0x00000000);                  /* nop */
979     stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
980     stl_p(p++, 0x258cffff);                  /* addiu t4,t4,-1 */
981     stl_p(p++, 0x1580fffa);                  /* bnez t4,84c */
982     stl_p(p++, 0x00000000);                  /* nop */
983     stl_p(p++, 0x01a00009);                  /* jalr t5 */
984     stl_p(p++, 0x01602021);                  /* move a0,t3 */
985     /* 0x870 */
986     stl_p(p++, 0x3c08b800);                  /* lui t0,0xb400 */
987     stl_p(p++, 0x350803f8);                  /* ori t0,t0,0x3f8 */
988     stl_p(p++, 0x91090005);                  /* lbu t1,5(t0) */
989     stl_p(p++, 0x00000000);                  /* nop */
990     stl_p(p++, 0x31290040);                  /* andi t1,t1,0x40 */
991     stl_p(p++, 0x1120fffc);                  /* beqz t1,878 <outch+0x8> */
992     stl_p(p++, 0x00000000);                  /* nop */
993     stl_p(p++, 0x03e00009);                  /* jalr ra */
994     stl_p(p++, 0xa1040000);                  /* sb a0,0(t0) */
995 
996 }
997 
998 static void G_GNUC_PRINTF(3, 4) prom_set(uint32_t *prom_buf, int index,
999                                         const char *string, ...)
1000 {
1001     va_list ap;
1002     uint32_t table_addr;
1003 
1004     if (index >= ENVP_NB_ENTRIES) {
1005         return;
1006     }
1007 
1008     if (string == NULL) {
1009         prom_buf[index] = 0;
1010         return;
1011     }
1012 
1013     table_addr = sizeof(uint32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
1014     prom_buf[index] = tswap32(ENVP_VADDR + table_addr);
1015 
1016     va_start(ap, string);
1017     vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
1018     va_end(ap);
1019 }
1020 
1021 /* Kernel */
1022 static uint64_t load_kernel(void)
1023 {
1024     uint64_t kernel_entry, kernel_high, initrd_size;
1025     long kernel_size;
1026     ram_addr_t initrd_offset;
1027     int big_endian;
1028     uint32_t *prom_buf;
1029     long prom_size;
1030     int prom_index = 0;
1031     uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);
1032 
1033 #ifdef TARGET_WORDS_BIGENDIAN
1034     big_endian = 1;
1035 #else
1036     big_endian = 0;
1037 #endif
1038 
1039     kernel_size = load_elf(loaderparams.kernel_filename, NULL,
1040                            cpu_mips_kseg0_to_phys, NULL,
1041                            &kernel_entry, NULL,
1042                            &kernel_high, NULL, big_endian, EM_MIPS,
1043                            1, 0);
1044     if (kernel_size < 0) {
1045         error_report("could not load kernel '%s': %s",
1046                      loaderparams.kernel_filename,
1047                      load_elf_strerror(kernel_size));
1048         exit(1);
1049     }
1050 
1051     /* Check where the kernel has been linked */
1052     if (kernel_entry & 0x80000000ll) {
1053         if (kvm_enabled()) {
1054             error_report("KVM guest kernels must be linked in useg. "
1055                          "Did you forget to enable CONFIG_KVM_GUEST?");
1056             exit(1);
1057         }
1058 
1059         xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
1060     } else {
1061         /* if kernel entry is in useg it is probably a KVM T&E kernel */
1062         mips_um_ksegs_enable();
1063 
1064         xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
1065     }
1066 
1067     /* load initrd */
1068     initrd_size = 0;
1069     initrd_offset = 0;
1070     if (loaderparams.initrd_filename) {
1071         initrd_size = get_image_size(loaderparams.initrd_filename);
1072         if (initrd_size > 0) {
1073             /*
1074              * The kernel allocates the bootmap memory in the low memory after
1075              * the initrd.  It takes at most 128kiB for 2GB RAM and 4kiB
1076              * pages.
1077              */
1078             initrd_offset = ROUND_UP(loaderparams.ram_low_size
1079                                      - (initrd_size + 128 * KiB),
1080                                      INITRD_PAGE_SIZE);
1081             if (kernel_high >= initrd_offset) {
1082                 error_report("memory too small for initial ram disk '%s'",
1083                              loaderparams.initrd_filename);
1084                 exit(1);
1085             }
1086             initrd_size = load_image_targphys(loaderparams.initrd_filename,
1087                                               initrd_offset,
1088                                               loaderparams.ram_size - initrd_offset);
1089         }
1090         if (initrd_size == (target_ulong) -1) {
1091             error_report("could not load initial ram disk '%s'",
1092                          loaderparams.initrd_filename);
1093             exit(1);
1094         }
1095     }
1096 
1097     /* Setup prom parameters. */
1098     prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
1099     prom_buf = g_malloc(prom_size);
1100 
1101     prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
1102     if (initrd_size > 0) {
1103         prom_set(prom_buf, prom_index++,
1104                  "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s",
1105                  xlate_to_kseg0(NULL, initrd_offset),
1106                  initrd_size, loaderparams.kernel_cmdline);
1107     } else {
1108         prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
1109     }
1110 
1111     prom_set(prom_buf, prom_index++, "memsize");
1112     prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
1113 
1114     prom_set(prom_buf, prom_index++, "ememsize");
1115     prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
1116 
1117     prom_set(prom_buf, prom_index++, "modetty0");
1118     prom_set(prom_buf, prom_index++, "38400n8r");
1119     prom_set(prom_buf, prom_index++, NULL);
1120 
1121     rom_add_blob_fixed("prom", prom_buf, prom_size, ENVP_PADDR);
1122 
1123     g_free(prom_buf);
1124     return kernel_entry;
1125 }
1126 
1127 static void malta_mips_config(MIPSCPU *cpu)
1128 {
1129     MachineState *ms = MACHINE(qdev_get_machine());
1130     unsigned int smp_cpus = ms->smp.cpus;
1131     CPUMIPSState *env = &cpu->env;
1132     CPUState *cs = CPU(cpu);
1133 
1134     if (ase_mt_available(env)) {
1135         env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
1136                                            CP0MVPC0_PTC, 8,
1137                                            smp_cpus * cs->nr_threads - 1);
1138         env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
1139                                            CP0MVPC0_PVPE, 4, smp_cpus - 1);
1140     }
1141 }
1142 
1143 static void main_cpu_reset(void *opaque)
1144 {
1145     MIPSCPU *cpu = opaque;
1146     CPUMIPSState *env = &cpu->env;
1147 
1148     cpu_reset(CPU(cpu));
1149 
1150     /*
1151      * The bootloader does not need to be rewritten as it is located in a
1152      * read only location. The kernel location and the arguments table
1153      * location does not change.
1154      */
1155     if (loaderparams.kernel_filename) {
1156         env->CP0_Status &= ~(1 << CP0St_ERL);
1157     }
1158 
1159     malta_mips_config(cpu);
1160 
1161     if (kvm_enabled()) {
1162         /* Start running from the bootloader we wrote to end of RAM */
1163         env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size;
1164     }
1165 }
1166 
1167 static void create_cpu_without_cps(MachineState *ms, MaltaState *s,
1168                                    qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1169 {
1170     CPUMIPSState *env;
1171     MIPSCPU *cpu;
1172     int i;
1173 
1174     for (i = 0; i < ms->smp.cpus; i++) {
1175         cpu = mips_cpu_create_with_clock(ms->cpu_type, s->cpuclk);
1176 
1177         /* Init internal devices */
1178         cpu_mips_irq_init_cpu(cpu);
1179         cpu_mips_clock_init(cpu);
1180         qemu_register_reset(main_cpu_reset, cpu);
1181     }
1182 
1183     cpu = MIPS_CPU(first_cpu);
1184     env = &cpu->env;
1185     *i8259_irq = env->irq[2];
1186     *cbus_irq = env->irq[4];
1187 }
1188 
1189 static void create_cps(MachineState *ms, MaltaState *s,
1190                        qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1191 {
1192     object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS);
1193     object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type,
1194                             &error_fatal);
1195     object_property_set_int(OBJECT(&s->cps), "num-vp", ms->smp.cpus,
1196                             &error_fatal);
1197     qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", s->cpuclk);
1198     sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
1199 
1200     sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
1201 
1202     *i8259_irq = get_cps_irq(&s->cps, 3);
1203     *cbus_irq = NULL;
1204 }
1205 
1206 static void mips_create_cpu(MachineState *ms, MaltaState *s,
1207                             qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1208 {
1209     if ((ms->smp.cpus > 1) && cpu_type_supports_cps_smp(ms->cpu_type)) {
1210         create_cps(ms, s, cbus_irq, i8259_irq);
1211     } else {
1212         create_cpu_without_cps(ms, s, cbus_irq, i8259_irq);
1213     }
1214 }
1215 
1216 static
1217 void mips_malta_init(MachineState *machine)
1218 {
1219     ram_addr_t ram_size = machine->ram_size;
1220     ram_addr_t ram_low_size;
1221     const char *kernel_filename = machine->kernel_filename;
1222     const char *kernel_cmdline = machine->kernel_cmdline;
1223     const char *initrd_filename = machine->initrd_filename;
1224     char *filename;
1225     PFlashCFI01 *fl;
1226     MemoryRegion *system_memory = get_system_memory();
1227     MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
1228     MemoryRegion *ram_low_postio;
1229     MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
1230     const size_t smbus_eeprom_size = 8 * 256;
1231     uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
1232     uint64_t kernel_entry, bootloader_run_addr;
1233     PCIBus *pci_bus;
1234     ISABus *isa_bus;
1235     qemu_irq cbus_irq, i8259_irq;
1236     I2CBus *smbus;
1237     DriveInfo *dinfo;
1238     int fl_idx = 0;
1239     int be;
1240     MaltaState *s;
1241     DeviceState *dev;
1242 
1243     s = MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA));
1244     sysbus_realize_and_unref(SYS_BUS_DEVICE(s), &error_fatal);
1245 
1246     /* create CPU */
1247     mips_create_cpu(machine, s, &cbus_irq, &i8259_irq);
1248 
1249     /* allocate RAM */
1250     if (ram_size > 2 * GiB) {
1251         error_report("Too much memory for this machine: %" PRId64 "MB,"
1252                      " maximum 2048MB", ram_size / MiB);
1253         exit(1);
1254     }
1255 
1256     /* register RAM at high address where it is undisturbed by IO */
1257     memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
1258 
1259     /* alias for pre IO hole access */
1260     memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
1261                              machine->ram, 0, MIN(ram_size, 256 * MiB));
1262     memory_region_add_subregion(system_memory, 0, ram_low_preio);
1263 
1264     /* alias for post IO hole access, if there is enough RAM */
1265     if (ram_size > 512 * MiB) {
1266         ram_low_postio = g_new(MemoryRegion, 1);
1267         memory_region_init_alias(ram_low_postio, NULL,
1268                                  "mips_malta_low_postio.ram",
1269                                  machine->ram, 512 * MiB,
1270                                  ram_size - 512 * MiB);
1271         memory_region_add_subregion(system_memory, 512 * MiB,
1272                                     ram_low_postio);
1273     }
1274 
1275 #ifdef TARGET_WORDS_BIGENDIAN
1276     be = 1;
1277 #else
1278     be = 0;
1279 #endif
1280 
1281     /* FPGA */
1282 
1283     /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1284     malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
1285 
1286     /* Load firmware in flash / BIOS. */
1287     dinfo = drive_get(IF_PFLASH, 0, fl_idx);
1288     fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios",
1289                                FLASH_SIZE,
1290                                dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
1291                                65536,
1292                                4, 0x0000, 0x0000, 0x0000, 0x0000, be);
1293     bios = pflash_cfi01_get_memory(fl);
1294     fl_idx++;
1295     if (kernel_filename) {
1296         ram_low_size = MIN(ram_size, 256 * MiB);
1297         /* For KVM we reserve 1MB of RAM for running bootloader */
1298         if (kvm_enabled()) {
1299             ram_low_size -= 0x100000;
1300             bootloader_run_addr = cpu_mips_kvm_um_phys_to_kseg0(NULL, ram_low_size);
1301         } else {
1302             bootloader_run_addr = cpu_mips_phys_to_kseg0(NULL, RESET_ADDRESS);
1303         }
1304 
1305         /* Write a small bootloader to the flash location. */
1306         loaderparams.ram_size = ram_size;
1307         loaderparams.ram_low_size = ram_low_size;
1308         loaderparams.kernel_filename = kernel_filename;
1309         loaderparams.kernel_cmdline = kernel_cmdline;
1310         loaderparams.initrd_filename = initrd_filename;
1311         kernel_entry = load_kernel();
1312 
1313         if (!cpu_type_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) {
1314             write_bootloader(memory_region_get_ram_ptr(bios),
1315                              bootloader_run_addr, kernel_entry);
1316         } else {
1317             write_bootloader_nanomips(memory_region_get_ram_ptr(bios),
1318                                       bootloader_run_addr, kernel_entry);
1319         }
1320         if (kvm_enabled()) {
1321             /* Write the bootloader code @ the end of RAM, 1MB reserved */
1322             write_bootloader(memory_region_get_ram_ptr(ram_low_preio) +
1323                                     ram_low_size,
1324                              bootloader_run_addr, kernel_entry);
1325         }
1326     } else {
1327         target_long bios_size = FLASH_SIZE;
1328         /* The flash region isn't executable from a KVM guest */
1329         if (kvm_enabled()) {
1330             error_report("KVM enabled but no -kernel argument was specified. "
1331                          "Booting from flash is not supported with KVM.");
1332             exit(1);
1333         }
1334         /* Load firmware from flash. */
1335         if (!dinfo) {
1336             /* Load a BIOS image. */
1337             filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
1338                                       machine->firmware ?: BIOS_FILENAME);
1339             if (filename) {
1340                 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
1341                                                 BIOS_SIZE);
1342                 g_free(filename);
1343             } else {
1344                 bios_size = -1;
1345             }
1346             if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
1347                 machine->firmware && !qtest_enabled()) {
1348                 error_report("Could not load MIPS bios '%s'", machine->firmware);
1349                 exit(1);
1350             }
1351         }
1352         /*
1353          * In little endian mode the 32bit words in the bios are swapped,
1354          * a neat trick which allows bi-endian firmware.
1355          */
1356 #ifndef TARGET_WORDS_BIGENDIAN
1357         {
1358             uint32_t *end, *addr;
1359             const size_t swapsize = MIN(bios_size, 0x3e0000);
1360             addr = rom_ptr(FLASH_ADDRESS, swapsize);
1361             if (!addr) {
1362                 addr = memory_region_get_ram_ptr(bios);
1363             }
1364             end = (void *)addr + swapsize;
1365             while (addr < end) {
1366                 bswap32s(addr);
1367                 addr++;
1368             }
1369         }
1370 #endif
1371     }
1372 
1373     /*
1374      * Map the BIOS at a 2nd physical location, as on the real board.
1375      * Copy it so that we can patch in the MIPS revision, which cannot be
1376      * handled by an overlapping region as the resulting ROM code subpage
1377      * regions are not executable.
1378      */
1379     memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
1380                            &error_fatal);
1381     if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
1382                   FLASH_ADDRESS, BIOS_SIZE)) {
1383         memcpy(memory_region_get_ram_ptr(bios_copy),
1384                memory_region_get_ram_ptr(bios), BIOS_SIZE);
1385     }
1386     memory_region_set_readonly(bios_copy, true);
1387     memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
1388 
1389     /* Board ID = 0x420 (Malta Board with CoreLV) */
1390     stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
1391 
1392     /* Northbridge */
1393     dev = sysbus_create_simple("gt64120", -1, NULL);
1394     pci_bus = PCI_BUS(qdev_get_child_bus(dev, "pci"));
1395     /*
1396      * The whole address space decoded by the GT-64120A doesn't generate
1397      * exception when accessing invalid memory. Create an empty slot to
1398      * emulate this feature.
1399      */
1400     empty_slot_init("GT64120", 0, 0x20000000);
1401 
1402     /* Southbridge */
1403     dev = piix4_create(pci_bus, &isa_bus, &smbus);
1404 
1405     /* Interrupt controller */
1406     qdev_connect_gpio_out_named(dev, "intr", 0, i8259_irq);
1407 
1408     /* generate SPD EEPROM data */
1409     generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
1410     generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
1411     smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
1412     g_free(smbus_eeprom_buf);
1413 
1414     /* Super I/O: SMS FDC37M817 */
1415     isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
1416 
1417     /* Network card */
1418     network_init(pci_bus);
1419 
1420     /* Optional PCI video card */
1421     pci_vga_init(pci_bus);
1422 }
1423 
1424 static void mips_malta_instance_init(Object *obj)
1425 {
1426     MaltaState *s = MIPS_MALTA(obj);
1427 
1428     s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
1429     clock_set_hz(s->cpuclk, 320000000); /* 320 MHz */
1430 }
1431 
1432 static const TypeInfo mips_malta_device = {
1433     .name          = TYPE_MIPS_MALTA,
1434     .parent        = TYPE_SYS_BUS_DEVICE,
1435     .instance_size = sizeof(MaltaState),
1436     .instance_init = mips_malta_instance_init,
1437 };
1438 
1439 static void mips_malta_machine_init(MachineClass *mc)
1440 {
1441     mc->desc = "MIPS Malta Core LV";
1442     mc->init = mips_malta_init;
1443     mc->block_default_type = IF_IDE;
1444     mc->max_cpus = 16;
1445     mc->is_default = true;
1446 #ifdef TARGET_MIPS64
1447     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
1448 #else
1449     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
1450 #endif
1451     mc->default_ram_id = "mips_malta.ram";
1452 }
1453 
1454 DEFINE_MACHINE("malta", mips_malta_machine_init)
1455 
1456 static void mips_malta_register_types(void)
1457 {
1458     type_register_static(&mips_malta_device);
1459 }
1460 
1461 type_init(mips_malta_register_types)
1462