xref: /openbmc/qemu/hw/intc/spapr_xive_kvm.c (revision 70c04a7ca256894aa6442b536f3fd21f14277605)
1 /*
2  * QEMU PowerPC sPAPR XIVE interrupt controller model
3  *
4  * Copyright (c) 2017-2019, IBM Corporation.
5  *
6  * This code is licensed under the GPL version 2 or later. See the
7  * COPYING file in the top-level directory.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/error-report.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/kvm.h"
17 #include "sysemu/runstate.h"
18 #include "hw/ppc/spapr.h"
19 #include "hw/ppc/spapr_cpu_core.h"
20 #include "hw/ppc/spapr_xive.h"
21 #include "hw/ppc/xive.h"
22 #include "kvm_ppc.h"
23 
24 #include <sys/ioctl.h>
25 
26 /*
27  * Helpers for CPU hotplug
28  *
29  * TODO: make a common KVMEnabledCPU layer for XICS and XIVE
30  */
31 typedef struct KVMEnabledCPU {
32     unsigned long vcpu_id;
33     QLIST_ENTRY(KVMEnabledCPU) node;
34 } KVMEnabledCPU;
35 
36 static QLIST_HEAD(, KVMEnabledCPU)
37     kvm_enabled_cpus = QLIST_HEAD_INITIALIZER(&kvm_enabled_cpus);
38 
39 static bool kvm_cpu_is_enabled(CPUState *cs)
40 {
41     KVMEnabledCPU *enabled_cpu;
42     unsigned long vcpu_id = kvm_arch_vcpu_id(cs);
43 
44     QLIST_FOREACH(enabled_cpu, &kvm_enabled_cpus, node) {
45         if (enabled_cpu->vcpu_id == vcpu_id) {
46             return true;
47         }
48     }
49     return false;
50 }
51 
52 static void kvm_cpu_enable(CPUState *cs)
53 {
54     KVMEnabledCPU *enabled_cpu;
55     unsigned long vcpu_id = kvm_arch_vcpu_id(cs);
56 
57     enabled_cpu = g_malloc(sizeof(*enabled_cpu));
58     enabled_cpu->vcpu_id = vcpu_id;
59     QLIST_INSERT_HEAD(&kvm_enabled_cpus, enabled_cpu, node);
60 }
61 
62 static void kvm_cpu_disable_all(void)
63 {
64     KVMEnabledCPU *enabled_cpu, *next;
65 
66     QLIST_FOREACH_SAFE(enabled_cpu, &kvm_enabled_cpus, node, next) {
67         QLIST_REMOVE(enabled_cpu, node);
68         g_free(enabled_cpu);
69     }
70 }
71 
72 /*
73  * XIVE Thread Interrupt Management context (KVM)
74  */
75 
76 int kvmppc_xive_cpu_set_state(XiveTCTX *tctx, Error **errp)
77 {
78     SpaprXive *xive = SPAPR_XIVE(tctx->xptr);
79     uint64_t state[2];
80     int ret;
81 
82     assert(xive->fd != -1);
83 
84     /* word0 and word1 of the OS ring. */
85     state[0] = *((uint64_t *) &tctx->regs[TM_QW1_OS]);
86 
87     ret = kvm_set_one_reg(tctx->cs, KVM_REG_PPC_VP_STATE, state);
88     if (ret != 0) {
89         error_setg_errno(errp, -ret,
90                          "XIVE: could not restore KVM state of CPU %ld",
91                          kvm_arch_vcpu_id(tctx->cs));
92         return ret;
93     }
94 
95     return 0;
96 }
97 
98 int kvmppc_xive_cpu_get_state(XiveTCTX *tctx, Error **errp)
99 {
100     SpaprXive *xive = SPAPR_XIVE(tctx->xptr);
101     uint64_t state[2] = { 0 };
102     int ret;
103 
104     assert(xive->fd != -1);
105 
106     ret = kvm_get_one_reg(tctx->cs, KVM_REG_PPC_VP_STATE, state);
107     if (ret != 0) {
108         error_setg_errno(errp, -ret,
109                          "XIVE: could not capture KVM state of CPU %ld",
110                          kvm_arch_vcpu_id(tctx->cs));
111         return ret;
112     }
113 
114     /* word0 and word1 of the OS ring. */
115     *((uint64_t *) &tctx->regs[TM_QW1_OS]) = state[0];
116 
117     return 0;
118 }
119 
120 typedef struct {
121     XiveTCTX *tctx;
122     Error **errp;
123     int ret;
124 } XiveCpuGetState;
125 
126 static void kvmppc_xive_cpu_do_synchronize_state(CPUState *cpu,
127                                                  run_on_cpu_data arg)
128 {
129     XiveCpuGetState *s = arg.host_ptr;
130 
131     s->ret = kvmppc_xive_cpu_get_state(s->tctx, s->errp);
132 }
133 
134 int kvmppc_xive_cpu_synchronize_state(XiveTCTX *tctx, Error **errp)
135 {
136     XiveCpuGetState s = {
137         .tctx = tctx,
138         .errp = errp,
139     };
140 
141     /*
142      * Kick the vCPU to make sure they are available for the KVM ioctl.
143      */
144     run_on_cpu(tctx->cs, kvmppc_xive_cpu_do_synchronize_state,
145                RUN_ON_CPU_HOST_PTR(&s));
146 
147     return s.ret;
148 }
149 
150 int kvmppc_xive_cpu_connect(XiveTCTX *tctx, Error **errp)
151 {
152     ERRP_GUARD();
153     SpaprXive *xive = SPAPR_XIVE(tctx->xptr);
154     unsigned long vcpu_id;
155     int ret;
156 
157     assert(xive->fd != -1);
158 
159     /* Check if CPU was hot unplugged and replugged. */
160     if (kvm_cpu_is_enabled(tctx->cs)) {
161         return 0;
162     }
163 
164     vcpu_id = kvm_arch_vcpu_id(tctx->cs);
165 
166     ret = kvm_vcpu_enable_cap(tctx->cs, KVM_CAP_PPC_IRQ_XIVE, 0, xive->fd,
167                               vcpu_id, 0);
168     if (ret < 0) {
169         error_setg_errno(errp, -ret,
170                          "XIVE: unable to connect CPU%ld to KVM device",
171                          vcpu_id);
172         if (ret == -ENOSPC) {
173             error_append_hint(errp, "Try -smp maxcpus=N with N < %u\n",
174                               MACHINE(qdev_get_machine())->smp.max_cpus);
175         }
176         return ret;
177     }
178 
179     kvm_cpu_enable(tctx->cs);
180     return 0;
181 }
182 
183 /*
184  * XIVE Interrupt Source (KVM)
185  */
186 
187 int kvmppc_xive_set_source_config(SpaprXive *xive, uint32_t lisn, XiveEAS *eas,
188                                   Error **errp)
189 {
190     uint32_t end_idx;
191     uint32_t end_blk;
192     uint8_t priority;
193     uint32_t server;
194     bool masked;
195     uint32_t eisn;
196     uint64_t kvm_src;
197 
198     assert(xive_eas_is_valid(eas));
199 
200     end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
201     end_blk = xive_get_field64(EAS_END_BLOCK, eas->w);
202     eisn = xive_get_field64(EAS_END_DATA, eas->w);
203     masked = xive_eas_is_masked(eas);
204 
205     spapr_xive_end_to_target(end_blk, end_idx, &server, &priority);
206 
207     kvm_src = priority << KVM_XIVE_SOURCE_PRIORITY_SHIFT &
208         KVM_XIVE_SOURCE_PRIORITY_MASK;
209     kvm_src |= server << KVM_XIVE_SOURCE_SERVER_SHIFT &
210         KVM_XIVE_SOURCE_SERVER_MASK;
211     kvm_src |= ((uint64_t) masked << KVM_XIVE_SOURCE_MASKED_SHIFT) &
212         KVM_XIVE_SOURCE_MASKED_MASK;
213     kvm_src |= ((uint64_t)eisn << KVM_XIVE_SOURCE_EISN_SHIFT) &
214         KVM_XIVE_SOURCE_EISN_MASK;
215 
216     return kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_CONFIG, lisn,
217                              &kvm_src, true, errp);
218 }
219 
220 void kvmppc_xive_sync_source(SpaprXive *xive, uint32_t lisn, Error **errp)
221 {
222     kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_SYNC, lisn,
223                       NULL, true, errp);
224 }
225 
226 /*
227  * At reset, the interrupt sources are simply created and MASKED. We
228  * only need to inform the KVM XIVE device about their type: LSI or
229  * MSI.
230  */
231 int kvmppc_xive_source_reset_one(XiveSource *xsrc, int srcno, Error **errp)
232 {
233     SpaprXive *xive = SPAPR_XIVE(xsrc->xive);
234     uint64_t state = 0;
235 
236     assert(xive->fd != -1);
237 
238     if (xive_source_irq_is_lsi(xsrc, srcno)) {
239         state |= KVM_XIVE_LEVEL_SENSITIVE;
240         if (xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
241             state |= KVM_XIVE_LEVEL_ASSERTED;
242         }
243     }
244 
245     return kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE, srcno, &state,
246                              true, errp);
247 }
248 
249 static int kvmppc_xive_source_reset(XiveSource *xsrc, Error **errp)
250 {
251     SpaprXive *xive = SPAPR_XIVE(xsrc->xive);
252     int i;
253 
254     for (i = 0; i < xsrc->nr_irqs; i++) {
255         int ret;
256 
257         if (!xive_eas_is_valid(&xive->eat[i])) {
258             continue;
259         }
260 
261         ret = kvmppc_xive_source_reset_one(xsrc, i, errp);
262         if (ret < 0) {
263             return ret;
264         }
265     }
266 
267     return 0;
268 }
269 
270 /*
271  * This is used to perform the magic loads on the ESB pages, described
272  * in xive.h.
273  *
274  * Memory barriers should not be needed for loads (no store for now).
275  */
276 static uint64_t xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset,
277                             uint64_t data, bool write)
278 {
279     uint64_t *addr = xsrc->esb_mmap + xive_source_esb_mgmt(xsrc, srcno) +
280         offset;
281 
282     if (write) {
283         *addr = cpu_to_be64(data);
284         return -1;
285     } else {
286         /* Prevent the compiler from optimizing away the load */
287         volatile uint64_t value = be64_to_cpu(*addr);
288         return value;
289     }
290 }
291 
292 static uint8_t xive_esb_read(XiveSource *xsrc, int srcno, uint32_t offset)
293 {
294     return xive_esb_rw(xsrc, srcno, offset, 0, 0) & 0x3;
295 }
296 
297 static void xive_esb_trigger(XiveSource *xsrc, int srcno)
298 {
299     uint64_t *addr = xsrc->esb_mmap + xive_source_esb_page(xsrc, srcno);
300 
301     *addr = 0x0;
302 }
303 
304 uint64_t kvmppc_xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset,
305                             uint64_t data, bool write)
306 {
307     if (write) {
308         return xive_esb_rw(xsrc, srcno, offset, data, 1);
309     }
310 
311     /*
312      * Special Load EOI handling for LSI sources. Q bit is never set
313      * and the interrupt should be re-triggered if the level is still
314      * asserted.
315      */
316     if (xive_source_irq_is_lsi(xsrc, srcno) &&
317         offset == XIVE_ESB_LOAD_EOI) {
318         xive_esb_read(xsrc, srcno, XIVE_ESB_SET_PQ_00);
319         if (xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
320             xive_esb_trigger(xsrc, srcno);
321         }
322         return 0;
323     } else {
324         return xive_esb_rw(xsrc, srcno, offset, 0, 0);
325     }
326 }
327 
328 static void kvmppc_xive_source_get_state(XiveSource *xsrc)
329 {
330     SpaprXive *xive = SPAPR_XIVE(xsrc->xive);
331     int i;
332 
333     for (i = 0; i < xsrc->nr_irqs; i++) {
334         uint8_t pq;
335 
336         if (!xive_eas_is_valid(&xive->eat[i])) {
337             continue;
338         }
339 
340         /* Perform a load without side effect to retrieve the PQ bits */
341         pq = xive_esb_read(xsrc, i, XIVE_ESB_GET);
342 
343         /* and save PQ locally */
344         xive_source_esb_set(xsrc, i, pq);
345     }
346 }
347 
348 void kvmppc_xive_source_set_irq(void *opaque, int srcno, int val)
349 {
350     XiveSource *xsrc = opaque;
351 
352     if (!xive_source_irq_is_lsi(xsrc, srcno)) {
353         if (!val) {
354             return;
355         }
356     } else {
357         if (val) {
358             xsrc->status[srcno] |= XIVE_STATUS_ASSERTED;
359         } else {
360             xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED;
361         }
362     }
363 
364     xive_esb_trigger(xsrc, srcno);
365 }
366 
367 /*
368  * sPAPR XIVE interrupt controller (KVM)
369  */
370 int kvmppc_xive_get_queue_config(SpaprXive *xive, uint8_t end_blk,
371                                  uint32_t end_idx, XiveEND *end,
372                                  Error **errp)
373 {
374     struct kvm_ppc_xive_eq kvm_eq = { 0 };
375     uint64_t kvm_eq_idx;
376     uint8_t priority;
377     uint32_t server;
378     int ret;
379 
380     assert(xive_end_is_valid(end));
381 
382     /* Encode the tuple (server, prio) as a KVM EQ index */
383     spapr_xive_end_to_target(end_blk, end_idx, &server, &priority);
384 
385     kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT &
386             KVM_XIVE_EQ_PRIORITY_MASK;
387     kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT &
388         KVM_XIVE_EQ_SERVER_MASK;
389 
390     ret = kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx,
391                             &kvm_eq, false, errp);
392     if (ret < 0) {
393         return ret;
394     }
395 
396     /*
397      * The EQ index and toggle bit are updated by HW. These are the
398      * only fields from KVM we want to update QEMU with. The other END
399      * fields should already be in the QEMU END table.
400      */
401     end->w1 = xive_set_field32(END_W1_GENERATION, 0ul, kvm_eq.qtoggle) |
402         xive_set_field32(END_W1_PAGE_OFF, 0ul, kvm_eq.qindex);
403 
404     return 0;
405 }
406 
407 int kvmppc_xive_set_queue_config(SpaprXive *xive, uint8_t end_blk,
408                                  uint32_t end_idx, XiveEND *end,
409                                  Error **errp)
410 {
411     struct kvm_ppc_xive_eq kvm_eq = { 0 };
412     uint64_t kvm_eq_idx;
413     uint8_t priority;
414     uint32_t server;
415 
416     /*
417      * Build the KVM state from the local END structure.
418      */
419 
420     kvm_eq.flags = 0;
421     if (xive_get_field32(END_W0_UCOND_NOTIFY, end->w0)) {
422         kvm_eq.flags |= KVM_XIVE_EQ_ALWAYS_NOTIFY;
423     }
424 
425     /*
426      * If the hcall is disabling the EQ, set the size and page address
427      * to zero. When migrating, only valid ENDs are taken into
428      * account.
429      */
430     if (xive_end_is_valid(end)) {
431         kvm_eq.qshift = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
432         kvm_eq.qaddr  = xive_end_qaddr(end);
433         /*
434          * The EQ toggle bit and index should only be relevant when
435          * restoring the EQ state
436          */
437         kvm_eq.qtoggle = xive_get_field32(END_W1_GENERATION, end->w1);
438         kvm_eq.qindex  = xive_get_field32(END_W1_PAGE_OFF, end->w1);
439     } else {
440         kvm_eq.qshift = 0;
441         kvm_eq.qaddr  = 0;
442     }
443 
444     /* Encode the tuple (server, prio) as a KVM EQ index */
445     spapr_xive_end_to_target(end_blk, end_idx, &server, &priority);
446 
447     kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT &
448             KVM_XIVE_EQ_PRIORITY_MASK;
449     kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT &
450         KVM_XIVE_EQ_SERVER_MASK;
451 
452     return
453         kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx,
454                           &kvm_eq, true, errp);
455 }
456 
457 void kvmppc_xive_reset(SpaprXive *xive, Error **errp)
458 {
459     kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL, KVM_DEV_XIVE_RESET,
460                       NULL, true, errp);
461 }
462 
463 static int kvmppc_xive_get_queues(SpaprXive *xive, Error **errp)
464 {
465     int i;
466     int ret;
467 
468     for (i = 0; i < xive->nr_ends; i++) {
469         if (!xive_end_is_valid(&xive->endt[i])) {
470             continue;
471         }
472 
473         ret = kvmppc_xive_get_queue_config(xive, SPAPR_XIVE_BLOCK_ID, i,
474                                            &xive->endt[i], errp);
475         if (ret < 0) {
476             return ret;
477         }
478     }
479 
480     return 0;
481 }
482 
483 /*
484  * The primary goal of the XIVE VM change handler is to mark the EQ
485  * pages dirty when all XIVE event notifications have stopped.
486  *
487  * Whenever the VM is stopped, the VM change handler sets the source
488  * PQs to PENDING to stop the flow of events and to possibly catch a
489  * triggered interrupt occuring while the VM is stopped. The previous
490  * state is saved in anticipation of a migration. The XIVE controller
491  * is then synced through KVM to flush any in-flight event
492  * notification and stabilize the EQs.
493  *
494  * At this stage, we can mark the EQ page dirty and let a migration
495  * sequence transfer the EQ pages to the destination, which is done
496  * just after the stop state.
497  *
498  * The previous configuration of the sources is restored when the VM
499  * runs again. If an interrupt was queued while the VM was stopped,
500  * simply generate a trigger.
501  */
502 static void kvmppc_xive_change_state_handler(void *opaque, int running,
503                                              RunState state)
504 {
505     SpaprXive *xive = opaque;
506     XiveSource *xsrc = &xive->source;
507     Error *local_err = NULL;
508     int i;
509 
510     /*
511      * Restore the sources to their initial state. This is called when
512      * the VM resumes after a stop or a migration.
513      */
514     if (running) {
515         for (i = 0; i < xsrc->nr_irqs; i++) {
516             uint8_t pq;
517             uint8_t old_pq;
518 
519             if (!xive_eas_is_valid(&xive->eat[i])) {
520                 continue;
521             }
522 
523             pq = xive_source_esb_get(xsrc, i);
524             old_pq = xive_esb_read(xsrc, i, XIVE_ESB_SET_PQ_00 + (pq << 8));
525 
526             /*
527              * An interrupt was queued while the VM was stopped,
528              * generate a trigger.
529              */
530             if (pq == XIVE_ESB_RESET && old_pq == XIVE_ESB_QUEUED) {
531                 xive_esb_trigger(xsrc, i);
532             }
533         }
534 
535         return;
536     }
537 
538     /*
539      * Mask the sources, to stop the flow of event notifications, and
540      * save the PQs locally in the XiveSource object. The XiveSource
541      * state will be collected later on by its vmstate handler if a
542      * migration is in progress.
543      */
544     for (i = 0; i < xsrc->nr_irqs; i++) {
545         uint8_t pq;
546 
547         if (!xive_eas_is_valid(&xive->eat[i])) {
548             continue;
549         }
550 
551         pq = xive_esb_read(xsrc, i, XIVE_ESB_GET);
552 
553         /*
554          * PQ is set to PENDING to possibly catch a triggered
555          * interrupt occuring while the VM is stopped (hotplug event
556          * for instance) .
557          */
558         if (pq != XIVE_ESB_OFF) {
559             pq = xive_esb_read(xsrc, i, XIVE_ESB_SET_PQ_10);
560         }
561         xive_source_esb_set(xsrc, i, pq);
562     }
563 
564     /*
565      * Sync the XIVE controller in KVM, to flush in-flight event
566      * notification that should be enqueued in the EQs and mark the
567      * XIVE EQ pages dirty to collect all updates.
568      */
569     kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL,
570                       KVM_DEV_XIVE_EQ_SYNC, NULL, true, &local_err);
571     if (local_err) {
572         error_report_err(local_err);
573         return;
574     }
575 }
576 
577 void kvmppc_xive_synchronize_state(SpaprXive *xive, Error **errp)
578 {
579     assert(xive->fd != -1);
580 
581     /*
582      * When the VM is stopped, the sources are masked and the previous
583      * state is saved in anticipation of a migration. We should not
584      * synchronize the source state in that case else we will override
585      * the saved state.
586      */
587     if (runstate_is_running()) {
588         kvmppc_xive_source_get_state(&xive->source);
589     }
590 
591     /* EAT: there is no extra state to query from KVM */
592 
593     /* ENDT */
594     kvmppc_xive_get_queues(xive, errp);
595 }
596 
597 /*
598  * The SpaprXive 'pre_save' method is called by the vmstate handler of
599  * the SpaprXive model, after the XIVE controller is synced in the VM
600  * change handler.
601  */
602 int kvmppc_xive_pre_save(SpaprXive *xive)
603 {
604     Error *local_err = NULL;
605     int ret;
606 
607     assert(xive->fd != -1);
608 
609     /* EAT: there is no extra state to query from KVM */
610 
611     /* ENDT */
612     ret = kvmppc_xive_get_queues(xive, &local_err);
613     if (ret < 0) {
614         error_report_err(local_err);
615         return ret;
616     }
617 
618     return 0;
619 }
620 
621 /*
622  * The SpaprXive 'post_load' method is not called by a vmstate
623  * handler. It is called at the sPAPR machine level at the end of the
624  * migration sequence by the sPAPR IRQ backend 'post_load' method,
625  * when all XIVE states have been transferred and loaded.
626  */
627 int kvmppc_xive_post_load(SpaprXive *xive, int version_id)
628 {
629     Error *local_err = NULL;
630     CPUState *cs;
631     int i;
632     int ret;
633 
634     /* The KVM XIVE device should be in use */
635     assert(xive->fd != -1);
636 
637     /* Restore the ENDT first. The targetting depends on it. */
638     for (i = 0; i < xive->nr_ends; i++) {
639         if (!xive_end_is_valid(&xive->endt[i])) {
640             continue;
641         }
642 
643         ret = kvmppc_xive_set_queue_config(xive, SPAPR_XIVE_BLOCK_ID, i,
644                                            &xive->endt[i], &local_err);
645         if (ret < 0) {
646             goto fail;
647         }
648     }
649 
650     /* Restore the EAT */
651     for (i = 0; i < xive->nr_irqs; i++) {
652         if (!xive_eas_is_valid(&xive->eat[i])) {
653             continue;
654         }
655 
656         /*
657          * We can only restore the source config if the source has been
658          * previously set in KVM. Since we don't do that for all interrupts
659          * at reset time anymore, let's do it now.
660          */
661         ret = kvmppc_xive_source_reset_one(&xive->source, i, &local_err);
662         if (ret < 0) {
663             goto fail;
664         }
665 
666         ret = kvmppc_xive_set_source_config(xive, i, &xive->eat[i], &local_err);
667         if (ret < 0) {
668             goto fail;
669         }
670     }
671 
672     /*
673      * Restore the thread interrupt contexts of initial CPUs.
674      *
675      * The context of hotplugged CPUs is restored later, by the
676      * 'post_load' handler of the XiveTCTX model because they are not
677      * available at the time the SpaprXive 'post_load' method is
678      * called. We can not restore the context of all CPUs in the
679      * 'post_load' handler of XiveTCTX because the machine is not
680      * necessarily connected to the KVM device at that time.
681      */
682     CPU_FOREACH(cs) {
683         PowerPCCPU *cpu = POWERPC_CPU(cs);
684 
685         ret = kvmppc_xive_cpu_set_state(spapr_cpu_state(cpu)->tctx, &local_err);
686         if (ret < 0) {
687             goto fail;
688         }
689     }
690 
691     /* The source states will be restored when the machine starts running */
692     return 0;
693 
694 fail:
695     error_report_err(local_err);
696     return ret;
697 }
698 
699 /* Returns MAP_FAILED on error and sets errno */
700 static void *kvmppc_xive_mmap(SpaprXive *xive, int pgoff, size_t len,
701                               Error **errp)
702 {
703     void *addr;
704     uint32_t page_shift = 16; /* TODO: fix page_shift */
705 
706     addr = mmap(NULL, len, PROT_WRITE | PROT_READ, MAP_SHARED, xive->fd,
707                 pgoff << page_shift);
708     if (addr == MAP_FAILED) {
709         error_setg_errno(errp, errno, "XIVE: unable to set memory mapping");
710     }
711 
712     return addr;
713 }
714 
715 /*
716  * All the XIVE memory regions are now backed by mappings from the KVM
717  * XIVE device.
718  */
719 int kvmppc_xive_connect(SpaprInterruptController *intc, uint32_t nr_servers,
720                         Error **errp)
721 {
722     SpaprXive *xive = SPAPR_XIVE(intc);
723     XiveSource *xsrc = &xive->source;
724     size_t esb_len = xive_source_esb_len(xsrc);
725     size_t tima_len = 4ull << TM_SHIFT;
726     CPUState *cs;
727     int fd;
728     void *addr;
729     int ret;
730 
731     /*
732      * The KVM XIVE device already in use. This is the case when
733      * rebooting under the XIVE-only interrupt mode.
734      */
735     if (xive->fd != -1) {
736         return 0;
737     }
738 
739     if (!kvmppc_has_cap_xive()) {
740         error_setg(errp, "IRQ_XIVE capability must be present for KVM");
741         return -1;
742     }
743 
744     /* First, create the KVM XIVE device */
745     fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_XIVE, false);
746     if (fd < 0) {
747         error_setg_errno(errp, -fd, "XIVE: error creating KVM device");
748         return -1;
749     }
750     xive->fd = fd;
751 
752     /* Tell KVM about the # of VCPUs we may have */
753     if (kvm_device_check_attr(xive->fd, KVM_DEV_XIVE_GRP_CTRL,
754                               KVM_DEV_XIVE_NR_SERVERS)) {
755         ret = kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL,
756                                 KVM_DEV_XIVE_NR_SERVERS, &nr_servers, true,
757                                 errp);
758         if (ret < 0) {
759             goto fail;
760         }
761     }
762 
763     /*
764      * 1. Source ESB pages - KVM mapping
765      */
766     addr = kvmppc_xive_mmap(xive, KVM_XIVE_ESB_PAGE_OFFSET, esb_len, errp);
767     if (addr == MAP_FAILED) {
768         goto fail;
769     }
770     xsrc->esb_mmap = addr;
771 
772     memory_region_init_ram_device_ptr(&xsrc->esb_mmio_kvm, OBJECT(xsrc),
773                                       "xive.esb-kvm", esb_len, xsrc->esb_mmap);
774     memory_region_add_subregion_overlap(&xsrc->esb_mmio, 0,
775                                         &xsrc->esb_mmio_kvm, 1);
776 
777     /*
778      * 2. END ESB pages (No KVM support yet)
779      */
780 
781     /*
782      * 3. TIMA pages - KVM mapping
783      */
784     addr = kvmppc_xive_mmap(xive, KVM_XIVE_TIMA_PAGE_OFFSET, tima_len, errp);
785     if (addr == MAP_FAILED) {
786         goto fail;
787     }
788     xive->tm_mmap = addr;
789 
790     memory_region_init_ram_device_ptr(&xive->tm_mmio_kvm, OBJECT(xive),
791                                       "xive.tima", tima_len, xive->tm_mmap);
792     memory_region_add_subregion_overlap(&xive->tm_mmio, 0,
793                                         &xive->tm_mmio_kvm, 1);
794 
795     xive->change = qemu_add_vm_change_state_handler(
796         kvmppc_xive_change_state_handler, xive);
797 
798     /* Connect the presenters to the initial VCPUs of the machine */
799     CPU_FOREACH(cs) {
800         PowerPCCPU *cpu = POWERPC_CPU(cs);
801 
802         ret = kvmppc_xive_cpu_connect(spapr_cpu_state(cpu)->tctx, errp);
803         if (ret < 0) {
804             goto fail;
805         }
806     }
807 
808     /* Update the KVM sources */
809     ret = kvmppc_xive_source_reset(xsrc, errp);
810     if (ret < 0) {
811         goto fail;
812     }
813 
814     kvm_kernel_irqchip = true;
815     kvm_msi_via_irqfd_allowed = true;
816     kvm_gsi_direct_mapping = true;
817     return 0;
818 
819 fail:
820     kvmppc_xive_disconnect(intc);
821     return -1;
822 }
823 
824 void kvmppc_xive_disconnect(SpaprInterruptController *intc)
825 {
826     SpaprXive *xive = SPAPR_XIVE(intc);
827     XiveSource *xsrc;
828     size_t esb_len;
829 
830     assert(xive->fd != -1);
831 
832     /* Clear the KVM mapping */
833     xsrc = &xive->source;
834     esb_len = xive_source_esb_len(xsrc);
835 
836     if (xsrc->esb_mmap) {
837         memory_region_del_subregion(&xsrc->esb_mmio, &xsrc->esb_mmio_kvm);
838         object_unparent(OBJECT(&xsrc->esb_mmio_kvm));
839         munmap(xsrc->esb_mmap, esb_len);
840         xsrc->esb_mmap = NULL;
841     }
842 
843     if (xive->tm_mmap) {
844         memory_region_del_subregion(&xive->tm_mmio, &xive->tm_mmio_kvm);
845         object_unparent(OBJECT(&xive->tm_mmio_kvm));
846         munmap(xive->tm_mmap, 4ull << TM_SHIFT);
847         xive->tm_mmap = NULL;
848     }
849 
850     /*
851      * When the KVM device fd is closed, the KVM device is destroyed
852      * and removed from the list of devices of the VM. The VCPU
853      * presenters are also detached from the device.
854      */
855     close(xive->fd);
856     xive->fd = -1;
857 
858     kvm_kernel_irqchip = false;
859     kvm_msi_via_irqfd_allowed = false;
860     kvm_gsi_direct_mapping = false;
861 
862     /* Clear the local list of presenter (hotplug) */
863     kvm_cpu_disable_all();
864 
865     /* VM Change state handler is not needed anymore */
866     if (xive->change) {
867         qemu_del_vm_change_state_handler(xive->change);
868         xive->change = NULL;
869     }
870 }
871