xref: /openbmc/qemu/hw/intc/spapr_xive.c (revision f163e2707e9dc7229f790bc0450270408b442f17)
1 /*
2  * QEMU PowerPC sPAPR XIVE interrupt controller model
3  *
4  * Copyright (c) 2017-2018, IBM Corporation.
5  *
6  * This code is licensed under the GPL version 2 or later. See the
7  * COPYING file in the top-level directory.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "qapi/type-helpers.h"
15 #include "qemu/error-report.h"
16 #include "target/ppc/cpu.h"
17 #include "sysemu/cpus.h"
18 #include "sysemu/reset.h"
19 #include "migration/vmstate.h"
20 #include "monitor/monitor.h"
21 #include "hw/ppc/fdt.h"
22 #include "hw/ppc/spapr.h"
23 #include "hw/ppc/spapr_cpu_core.h"
24 #include "hw/ppc/spapr_xive.h"
25 #include "hw/ppc/xive.h"
26 #include "hw/ppc/xive_regs.h"
27 #include "hw/qdev-properties.h"
28 #include "trace.h"
29 
30 /*
31  * XIVE Virtualization Controller BAR and Thread Management BAR that we
32  * use for the ESB pages and the TIMA pages
33  */
34 #define SPAPR_XIVE_VC_BASE   0x0006010000000000ull
35 #define SPAPR_XIVE_TM_BASE   0x0006030203180000ull
36 
37 /*
38  * The allocation of VP blocks is a complex operation in OPAL and the
39  * VP identifiers have a relation with the number of HW chips, the
40  * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE
41  * controller model does not have the same constraints and can use a
42  * simple mapping scheme of the CPU vcpu_id
43  *
44  * These identifiers are never returned to the OS.
45  */
46 
47 #define SPAPR_XIVE_NVT_BASE 0x400
48 
49 /*
50  * sPAPR NVT and END indexing helpers
51  */
52 static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx)
53 {
54     return nvt_idx - SPAPR_XIVE_NVT_BASE;
55 }
56 
57 static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu,
58                                   uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
59 {
60     assert(cpu);
61 
62     if (out_nvt_blk) {
63         *out_nvt_blk = SPAPR_XIVE_BLOCK_ID;
64     }
65 
66     if (out_nvt_blk) {
67         *out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id;
68     }
69 }
70 
71 static int spapr_xive_target_to_nvt(uint32_t target,
72                                     uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
73 {
74     PowerPCCPU *cpu = spapr_find_cpu(target);
75 
76     if (!cpu) {
77         return -1;
78     }
79 
80     spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx);
81     return 0;
82 }
83 
84 /*
85  * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8
86  * priorities per CPU
87  */
88 int spapr_xive_end_to_target(uint8_t end_blk, uint32_t end_idx,
89                              uint32_t *out_server, uint8_t *out_prio)
90 {
91 
92     assert(end_blk == SPAPR_XIVE_BLOCK_ID);
93 
94     if (out_server) {
95         *out_server = end_idx >> 3;
96     }
97 
98     if (out_prio) {
99         *out_prio = end_idx & 0x7;
100     }
101     return 0;
102 }
103 
104 static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio,
105                                   uint8_t *out_end_blk, uint32_t *out_end_idx)
106 {
107     assert(cpu);
108 
109     if (out_end_blk) {
110         *out_end_blk = SPAPR_XIVE_BLOCK_ID;
111     }
112 
113     if (out_end_idx) {
114         *out_end_idx = (cpu->vcpu_id << 3) + prio;
115     }
116 }
117 
118 static int spapr_xive_target_to_end(uint32_t target, uint8_t prio,
119                                     uint8_t *out_end_blk, uint32_t *out_end_idx)
120 {
121     PowerPCCPU *cpu = spapr_find_cpu(target);
122 
123     if (!cpu) {
124         return -1;
125     }
126 
127     spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx);
128     return 0;
129 }
130 
131 /*
132  * On sPAPR machines, use a simplified output for the XIVE END
133  * structure dumping only the information related to the OS EQ.
134  */
135 static void spapr_xive_end_pic_print_info(SpaprXive *xive, XiveEND *end,
136                                           Monitor *mon)
137 {
138     uint64_t qaddr_base = xive_end_qaddr(end);
139     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
140     uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
141     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
142     uint32_t qentries = 1 << (qsize + 10);
143     uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
144     uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
145 
146     monitor_printf(mon, "%3d/%d % 6d/%5d @%"PRIx64" ^%d",
147                    spapr_xive_nvt_to_target(0, nvt),
148                    priority, qindex, qentries, qaddr_base, qgen);
149 
150     xive_end_queue_pic_print_info(end, 6, mon);
151 }
152 
153 /*
154  * kvm_irqchip_in_kernel() will cause the compiler to turn this
155  * info a nop if CONFIG_KVM isn't defined.
156  */
157 #define spapr_xive_in_kernel(xive) \
158     (kvm_irqchip_in_kernel() && (xive)->fd != -1)
159 
160 static void spapr_xive_pic_print_info(SpaprXive *xive, Monitor *mon)
161 {
162     XiveSource *xsrc = &xive->source;
163     int i;
164 
165     if (spapr_xive_in_kernel(xive)) {
166         Error *local_err = NULL;
167 
168         kvmppc_xive_synchronize_state(xive, &local_err);
169         if (local_err) {
170             error_report_err(local_err);
171             return;
172         }
173     }
174 
175     monitor_printf(mon, "  LISN         PQ    EISN     CPU/PRIO EQ\n");
176 
177     for (i = 0; i < xive->nr_irqs; i++) {
178         uint8_t pq = xive_source_esb_get(xsrc, i);
179         XiveEAS *eas = &xive->eat[i];
180 
181         if (!xive_eas_is_valid(eas)) {
182             continue;
183         }
184 
185         monitor_printf(mon, "  %08x %s %c%c%c %s %08x ", i,
186                        xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
187                        pq & XIVE_ESB_VAL_P ? 'P' : '-',
188                        pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
189                        xive_source_is_asserted(xsrc, i) ? 'A' : ' ',
190                        xive_eas_is_masked(eas) ? "M" : " ",
191                        (int) xive_get_field64(EAS_END_DATA, eas->w));
192 
193         if (!xive_eas_is_masked(eas)) {
194             uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
195             XiveEND *end;
196 
197             assert(end_idx < xive->nr_ends);
198             end = &xive->endt[end_idx];
199 
200             if (xive_end_is_valid(end)) {
201                 spapr_xive_end_pic_print_info(xive, end, mon);
202             }
203         }
204         monitor_printf(mon, "\n");
205     }
206 }
207 
208 void spapr_xive_mmio_set_enabled(SpaprXive *xive, bool enable)
209 {
210     memory_region_set_enabled(&xive->source.esb_mmio, enable);
211     memory_region_set_enabled(&xive->tm_mmio, enable);
212 
213     /* Disable the END ESBs until a guest OS makes use of them */
214     memory_region_set_enabled(&xive->end_source.esb_mmio, false);
215 }
216 
217 static void spapr_xive_tm_write(void *opaque, hwaddr offset,
218                           uint64_t value, unsigned size)
219 {
220     XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx;
221 
222     xive_tctx_tm_write(XIVE_PRESENTER(opaque), tctx, offset, value, size);
223 }
224 
225 static uint64_t spapr_xive_tm_read(void *opaque, hwaddr offset, unsigned size)
226 {
227     XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx;
228 
229     return xive_tctx_tm_read(XIVE_PRESENTER(opaque), tctx, offset, size);
230 }
231 
232 const MemoryRegionOps spapr_xive_tm_ops = {
233     .read = spapr_xive_tm_read,
234     .write = spapr_xive_tm_write,
235     .endianness = DEVICE_BIG_ENDIAN,
236     .valid = {
237         .min_access_size = 1,
238         .max_access_size = 8,
239     },
240     .impl = {
241         .min_access_size = 1,
242         .max_access_size = 8,
243     },
244 };
245 
246 static void spapr_xive_end_reset(XiveEND *end)
247 {
248     memset(end, 0, sizeof(*end));
249 
250     /* switch off the escalation and notification ESBs */
251     end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q);
252 }
253 
254 static void spapr_xive_reset(void *dev)
255 {
256     SpaprXive *xive = SPAPR_XIVE(dev);
257     int i;
258 
259     /*
260      * The XiveSource has its own reset handler, which mask off all
261      * IRQs (!P|Q)
262      */
263 
264     /* Mask all valid EASs in the IRQ number space. */
265     for (i = 0; i < xive->nr_irqs; i++) {
266         XiveEAS *eas = &xive->eat[i];
267         if (xive_eas_is_valid(eas)) {
268             eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED);
269         } else {
270             eas->w = 0;
271         }
272     }
273 
274     /* Clear all ENDs */
275     for (i = 0; i < xive->nr_ends; i++) {
276         spapr_xive_end_reset(&xive->endt[i]);
277     }
278 }
279 
280 static void spapr_xive_instance_init(Object *obj)
281 {
282     SpaprXive *xive = SPAPR_XIVE(obj);
283 
284     object_initialize_child(obj, "source", &xive->source, TYPE_XIVE_SOURCE);
285 
286     object_initialize_child(obj, "end_source", &xive->end_source,
287                             TYPE_XIVE_END_SOURCE);
288 
289     /* Not connected to the KVM XIVE device */
290     xive->fd = -1;
291 }
292 
293 static void spapr_xive_realize(DeviceState *dev, Error **errp)
294 {
295     SpaprXive *xive = SPAPR_XIVE(dev);
296     SpaprXiveClass *sxc = SPAPR_XIVE_GET_CLASS(xive);
297     XiveSource *xsrc = &xive->source;
298     XiveENDSource *end_xsrc = &xive->end_source;
299     Error *local_err = NULL;
300 
301     /* Set by spapr_irq_init() */
302     g_assert(xive->nr_irqs);
303     g_assert(xive->nr_ends);
304 
305     sxc->parent_realize(dev, &local_err);
306     if (local_err) {
307         error_propagate(errp, local_err);
308         return;
309     }
310 
311     /*
312      * Initialize the internal sources, for IPIs and virtual devices.
313      */
314     object_property_set_int(OBJECT(xsrc), "nr-irqs", xive->nr_irqs,
315                             &error_fatal);
316     object_property_set_link(OBJECT(xsrc), "xive", OBJECT(xive), &error_abort);
317     if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
318         return;
319     }
320 
321     /*
322      * Initialize the END ESB source
323      */
324     object_property_set_int(OBJECT(end_xsrc), "nr-ends", xive->nr_irqs,
325                             &error_fatal);
326     object_property_set_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
327                              &error_abort);
328     if (!qdev_realize(DEVICE(end_xsrc), NULL, errp)) {
329         return;
330     }
331 
332     /* Set the mapping address of the END ESB pages after the source ESBs */
333     xive->end_base = xive->vc_base + xive_source_esb_len(xsrc);
334 
335     /*
336      * Allocate the routing tables
337      */
338     xive->eat = g_new0(XiveEAS, xive->nr_irqs);
339     xive->endt = g_new0(XiveEND, xive->nr_ends);
340 
341     xive->nodename = g_strdup_printf("interrupt-controller@%" PRIx64,
342                            xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT));
343 
344     qemu_register_reset(spapr_xive_reset, dev);
345 
346     /* TIMA initialization */
347     memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &spapr_xive_tm_ops,
348                           xive, "xive.tima", 4ull << TM_SHIFT);
349 
350     /*
351      * Map all regions. These will be enabled or disabled at reset and
352      * can also be overridden by KVM memory regions if active
353      */
354     memory_region_add_subregion(get_system_memory(), xive->vc_base,
355                                 &xsrc->esb_mmio);
356     memory_region_add_subregion(get_system_memory(), xive->end_base,
357                                 &end_xsrc->esb_mmio);
358     memory_region_add_subregion(get_system_memory(), xive->tm_base,
359                                 &xive->tm_mmio);
360 }
361 
362 static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk,
363                               uint32_t eas_idx, XiveEAS *eas)
364 {
365     SpaprXive *xive = SPAPR_XIVE(xrtr);
366 
367     if (eas_idx >= xive->nr_irqs) {
368         return -1;
369     }
370 
371     *eas = xive->eat[eas_idx];
372     return 0;
373 }
374 
375 static int spapr_xive_get_end(XiveRouter *xrtr,
376                               uint8_t end_blk, uint32_t end_idx, XiveEND *end)
377 {
378     SpaprXive *xive = SPAPR_XIVE(xrtr);
379 
380     if (end_idx >= xive->nr_ends) {
381         return -1;
382     }
383 
384     memcpy(end, &xive->endt[end_idx], sizeof(XiveEND));
385     return 0;
386 }
387 
388 static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk,
389                                 uint32_t end_idx, XiveEND *end,
390                                 uint8_t word_number)
391 {
392     SpaprXive *xive = SPAPR_XIVE(xrtr);
393 
394     if (end_idx >= xive->nr_ends) {
395         return -1;
396     }
397 
398     memcpy(&xive->endt[end_idx], end, sizeof(XiveEND));
399     return 0;
400 }
401 
402 static int spapr_xive_get_nvt(XiveRouter *xrtr,
403                               uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt)
404 {
405     uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
406     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
407 
408     if (!cpu) {
409         /* TODO: should we assert() if we can find a NVT ? */
410         return -1;
411     }
412 
413     /*
414      * sPAPR does not maintain a NVT table. Return that the NVT is
415      * valid if we have found a matching CPU
416      */
417     nvt->w0 = cpu_to_be32(NVT_W0_VALID);
418     return 0;
419 }
420 
421 static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk,
422                                 uint32_t nvt_idx, XiveNVT *nvt,
423                                 uint8_t word_number)
424 {
425     /*
426      * We don't need to write back to the NVTs because the sPAPR
427      * machine should never hit a non-scheduled NVT. It should never
428      * get called.
429      */
430     g_assert_not_reached();
431 }
432 
433 static int spapr_xive_match_nvt(XivePresenter *xptr, uint8_t format,
434                                 uint8_t nvt_blk, uint32_t nvt_idx,
435                                 bool cam_ignore, uint8_t priority,
436                                 uint32_t logic_serv, XiveTCTXMatch *match)
437 {
438     CPUState *cs;
439     int count = 0;
440 
441     CPU_FOREACH(cs) {
442         PowerPCCPU *cpu = POWERPC_CPU(cs);
443         XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
444         int ring;
445 
446         /*
447          * Skip partially initialized vCPUs. This can happen when
448          * vCPUs are hotplugged.
449          */
450         if (!tctx) {
451             continue;
452         }
453 
454         /*
455          * Check the thread context CAM lines and record matches.
456          */
457         ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk, nvt_idx,
458                                          cam_ignore, logic_serv);
459         /*
460          * Save the matching thread interrupt context and follow on to
461          * check for duplicates which are invalid.
462          */
463         if (ring != -1) {
464             if (match->tctx) {
465                 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
466                               "context NVT %x/%x\n", nvt_blk, nvt_idx);
467                 return -1;
468             }
469 
470             match->ring = ring;
471             match->tctx = tctx;
472             count++;
473         }
474     }
475 
476     return count;
477 }
478 
479 static uint32_t spapr_xive_presenter_get_config(XivePresenter *xptr)
480 {
481     uint32_t cfg = 0;
482 
483     /*
484      * Let's claim GEN1 TIMA format. If running with KVM on P10, the
485      * correct answer is deep in the hardware and not accessible to
486      * us.  But it shouldn't matter as it only affects the presenter
487      * as seen by a guest OS.
488      */
489     cfg |= XIVE_PRESENTER_GEN1_TIMA_OS;
490 
491     return cfg;
492 }
493 
494 static uint8_t spapr_xive_get_block_id(XiveRouter *xrtr)
495 {
496     return SPAPR_XIVE_BLOCK_ID;
497 }
498 
499 static int spapr_xive_get_pq(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
500                              uint8_t *pq)
501 {
502     SpaprXive *xive = SPAPR_XIVE(xrtr);
503 
504     assert(SPAPR_XIVE_BLOCK_ID == blk);
505 
506     *pq = xive_source_esb_get(&xive->source, idx);
507     return 0;
508 }
509 
510 static int spapr_xive_set_pq(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
511                              uint8_t *pq)
512 {
513     SpaprXive *xive = SPAPR_XIVE(xrtr);
514 
515     assert(SPAPR_XIVE_BLOCK_ID == blk);
516 
517     *pq = xive_source_esb_set(&xive->source, idx, *pq);
518     return 0;
519 }
520 
521 
522 static const VMStateDescription vmstate_spapr_xive_end = {
523     .name = TYPE_SPAPR_XIVE "/end",
524     .version_id = 1,
525     .minimum_version_id = 1,
526     .fields = (const VMStateField []) {
527         VMSTATE_UINT32(w0, XiveEND),
528         VMSTATE_UINT32(w1, XiveEND),
529         VMSTATE_UINT32(w2, XiveEND),
530         VMSTATE_UINT32(w3, XiveEND),
531         VMSTATE_UINT32(w4, XiveEND),
532         VMSTATE_UINT32(w5, XiveEND),
533         VMSTATE_UINT32(w6, XiveEND),
534         VMSTATE_UINT32(w7, XiveEND),
535         VMSTATE_END_OF_LIST()
536     },
537 };
538 
539 static const VMStateDescription vmstate_spapr_xive_eas = {
540     .name = TYPE_SPAPR_XIVE "/eas",
541     .version_id = 1,
542     .minimum_version_id = 1,
543     .fields = (const VMStateField []) {
544         VMSTATE_UINT64(w, XiveEAS),
545         VMSTATE_END_OF_LIST()
546     },
547 };
548 
549 static int vmstate_spapr_xive_pre_save(void *opaque)
550 {
551     SpaprXive *xive = SPAPR_XIVE(opaque);
552 
553     if (spapr_xive_in_kernel(xive)) {
554         return kvmppc_xive_pre_save(xive);
555     }
556 
557     return 0;
558 }
559 
560 /*
561  * Called by the sPAPR IRQ backend 'post_load' method at the machine
562  * level.
563  */
564 static int spapr_xive_post_load(SpaprInterruptController *intc, int version_id)
565 {
566     SpaprXive *xive = SPAPR_XIVE(intc);
567 
568     if (spapr_xive_in_kernel(xive)) {
569         return kvmppc_xive_post_load(xive, version_id);
570     }
571 
572     return 0;
573 }
574 
575 static const VMStateDescription vmstate_spapr_xive = {
576     .name = TYPE_SPAPR_XIVE,
577     .version_id = 1,
578     .minimum_version_id = 1,
579     .pre_save = vmstate_spapr_xive_pre_save,
580     .post_load = NULL, /* handled at the machine level */
581     .fields = (const VMStateField[]) {
582         VMSTATE_UINT32_EQUAL(nr_irqs, SpaprXive, NULL),
583         VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, SpaprXive, nr_irqs,
584                                      vmstate_spapr_xive_eas, XiveEAS),
585         VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, SpaprXive, nr_ends,
586                                              vmstate_spapr_xive_end, XiveEND),
587         VMSTATE_END_OF_LIST()
588     },
589 };
590 
591 static int spapr_xive_claim_irq(SpaprInterruptController *intc, int lisn,
592                                 bool lsi, Error **errp)
593 {
594     SpaprXive *xive = SPAPR_XIVE(intc);
595     XiveSource *xsrc = &xive->source;
596 
597     assert(lisn < xive->nr_irqs);
598 
599     trace_spapr_xive_claim_irq(lisn, lsi);
600 
601     if (xive_eas_is_valid(&xive->eat[lisn])) {
602         error_setg(errp, "IRQ %d is not free", lisn);
603         return -EBUSY;
604     }
605 
606     /*
607      * Set default values when allocating an IRQ number
608      */
609     xive->eat[lisn].w |= cpu_to_be64(EAS_VALID | EAS_MASKED);
610     if (lsi) {
611         xive_source_irq_set_lsi(xsrc, lisn);
612     }
613 
614     if (spapr_xive_in_kernel(xive)) {
615         return kvmppc_xive_source_reset_one(xsrc, lisn, errp);
616     }
617 
618     return 0;
619 }
620 
621 static void spapr_xive_free_irq(SpaprInterruptController *intc, int lisn)
622 {
623     SpaprXive *xive = SPAPR_XIVE(intc);
624     assert(lisn < xive->nr_irqs);
625 
626     trace_spapr_xive_free_irq(lisn);
627 
628     xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID);
629 }
630 
631 static Property spapr_xive_properties[] = {
632     DEFINE_PROP_UINT32("nr-irqs", SpaprXive, nr_irqs, 0),
633     DEFINE_PROP_UINT32("nr-ends", SpaprXive, nr_ends, 0),
634     DEFINE_PROP_UINT64("vc-base", SpaprXive, vc_base, SPAPR_XIVE_VC_BASE),
635     DEFINE_PROP_UINT64("tm-base", SpaprXive, tm_base, SPAPR_XIVE_TM_BASE),
636     DEFINE_PROP_UINT8("hv-prio", SpaprXive, hv_prio, 7),
637     DEFINE_PROP_END_OF_LIST(),
638 };
639 
640 static int spapr_xive_cpu_intc_create(SpaprInterruptController *intc,
641                                       PowerPCCPU *cpu, Error **errp)
642 {
643     SpaprXive *xive = SPAPR_XIVE(intc);
644     Object *obj;
645     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
646 
647     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(xive), errp);
648     if (!obj) {
649         return -1;
650     }
651 
652     spapr_cpu->tctx = XIVE_TCTX(obj);
653     return 0;
654 }
655 
656 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t os_cam)
657 {
658     uint32_t qw1w2 = cpu_to_be32(TM_QW1W2_VO | os_cam);
659     memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
660 }
661 
662 static void spapr_xive_cpu_intc_reset(SpaprInterruptController *intc,
663                                      PowerPCCPU *cpu)
664 {
665     XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
666     uint8_t  nvt_blk;
667     uint32_t nvt_idx;
668 
669     xive_tctx_reset(tctx);
670 
671     /*
672      * When a Virtual Processor is scheduled to run on a HW thread,
673      * the hypervisor pushes its identifier in the OS CAM line.
674      * Emulate the same behavior under QEMU.
675      */
676     spapr_xive_cpu_to_nvt(cpu, &nvt_blk, &nvt_idx);
677 
678     xive_tctx_set_os_cam(tctx, xive_nvt_cam_line(nvt_blk, nvt_idx));
679 }
680 
681 static void spapr_xive_cpu_intc_destroy(SpaprInterruptController *intc,
682                                         PowerPCCPU *cpu)
683 {
684     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
685 
686     xive_tctx_destroy(spapr_cpu->tctx);
687     spapr_cpu->tctx = NULL;
688 }
689 
690 static void spapr_xive_set_irq(SpaprInterruptController *intc, int irq, int val)
691 {
692     SpaprXive *xive = SPAPR_XIVE(intc);
693 
694     trace_spapr_xive_set_irq(irq, val);
695 
696     if (spapr_xive_in_kernel(xive)) {
697         kvmppc_xive_source_set_irq(&xive->source, irq, val);
698     } else {
699         xive_source_set_irq(&xive->source, irq, val);
700     }
701 }
702 
703 static void spapr_xive_print_info(SpaprInterruptController *intc, Monitor *mon)
704 {
705     SpaprXive *xive = SPAPR_XIVE(intc);
706     CPUState *cs;
707     g_autoptr(GString) buf = g_string_new("");
708     g_autoptr(HumanReadableText) info = NULL;
709 
710     CPU_FOREACH(cs) {
711         PowerPCCPU *cpu = POWERPC_CPU(cs);
712 
713         xive_tctx_pic_print_info(spapr_cpu_state(cpu)->tctx, buf);
714     }
715     info = human_readable_text_from_str(buf);
716     monitor_puts(mon, info->human_readable_text);
717 
718     spapr_xive_pic_print_info(xive, mon);
719 }
720 
721 static void spapr_xive_dt(SpaprInterruptController *intc, uint32_t nr_servers,
722                           void *fdt, uint32_t phandle)
723 {
724     SpaprXive *xive = SPAPR_XIVE(intc);
725     int node;
726     uint64_t timas[2 * 2];
727     /* Interrupt number ranges for the IPIs */
728     uint32_t lisn_ranges[] = {
729         cpu_to_be32(SPAPR_IRQ_IPI),
730         cpu_to_be32(SPAPR_IRQ_IPI + nr_servers),
731     };
732     /*
733      * EQ size - the sizes of pages supported by the system 4K, 64K,
734      * 2M, 16M. We only advertise 64K for the moment.
735      */
736     uint32_t eq_sizes[] = {
737         cpu_to_be32(16), /* 64K */
738     };
739     /*
740      * QEMU/KVM only needs to define a single range to reserve the
741      * escalation priority. A priority bitmask would have been more
742      * appropriate.
743      */
744     uint32_t plat_res_int_priorities[] = {
745         cpu_to_be32(xive->hv_prio),    /* start */
746         cpu_to_be32(0xff - xive->hv_prio), /* count */
747     };
748 
749     /* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */
750     timas[0] = cpu_to_be64(xive->tm_base +
751                            XIVE_TM_USER_PAGE * (1ull << TM_SHIFT));
752     timas[1] = cpu_to_be64(1ull << TM_SHIFT);
753     timas[2] = cpu_to_be64(xive->tm_base +
754                            XIVE_TM_OS_PAGE * (1ull << TM_SHIFT));
755     timas[3] = cpu_to_be64(1ull << TM_SHIFT);
756 
757     _FDT(node = fdt_add_subnode(fdt, 0, xive->nodename));
758 
759     _FDT(fdt_setprop_string(fdt, node, "device_type", "power-ivpe"));
760     _FDT(fdt_setprop(fdt, node, "reg", timas, sizeof(timas)));
761 
762     _FDT(fdt_setprop_string(fdt, node, "compatible", "ibm,power-ivpe"));
763     _FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes", eq_sizes,
764                      sizeof(eq_sizes)));
765     _FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges", lisn_ranges,
766                      sizeof(lisn_ranges)));
767 
768     /* For Linux to link the LSIs to the interrupt controller. */
769     _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0));
770     _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2));
771 
772     /* For SLOF */
773     _FDT(fdt_setprop_cell(fdt, node, "linux,phandle", phandle));
774     _FDT(fdt_setprop_cell(fdt, node, "phandle", phandle));
775 
776     /*
777      * The "ibm,plat-res-int-priorities" property defines the priority
778      * ranges reserved by the hypervisor
779      */
780     _FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities",
781                      plat_res_int_priorities, sizeof(plat_res_int_priorities)));
782 }
783 
784 static int spapr_xive_activate(SpaprInterruptController *intc,
785                                uint32_t nr_servers, Error **errp)
786 {
787     SpaprXive *xive = SPAPR_XIVE(intc);
788 
789     if (kvm_enabled()) {
790         int rc = spapr_irq_init_kvm(kvmppc_xive_connect, intc, nr_servers,
791                                     errp);
792         if (rc < 0) {
793             return rc;
794         }
795     }
796 
797     /* Activate the XIVE MMIOs */
798     spapr_xive_mmio_set_enabled(xive, true);
799 
800     return 0;
801 }
802 
803 static void spapr_xive_deactivate(SpaprInterruptController *intc)
804 {
805     SpaprXive *xive = SPAPR_XIVE(intc);
806 
807     spapr_xive_mmio_set_enabled(xive, false);
808 
809     if (spapr_xive_in_kernel(xive)) {
810         kvmppc_xive_disconnect(intc);
811     }
812 }
813 
814 static bool spapr_xive_in_kernel_xptr(const XivePresenter *xptr)
815 {
816     return spapr_xive_in_kernel(SPAPR_XIVE(xptr));
817 }
818 
819 static void spapr_xive_class_init(ObjectClass *klass, void *data)
820 {
821     DeviceClass *dc = DEVICE_CLASS(klass);
822     XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
823     SpaprInterruptControllerClass *sicc = SPAPR_INTC_CLASS(klass);
824     XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass);
825     SpaprXiveClass *sxc = SPAPR_XIVE_CLASS(klass);
826 
827     dc->desc    = "sPAPR XIVE Interrupt Controller";
828     device_class_set_props(dc, spapr_xive_properties);
829     device_class_set_parent_realize(dc, spapr_xive_realize,
830                                     &sxc->parent_realize);
831     dc->vmsd    = &vmstate_spapr_xive;
832 
833     xrc->get_eas = spapr_xive_get_eas;
834     xrc->get_pq  = spapr_xive_get_pq;
835     xrc->set_pq  = spapr_xive_set_pq;
836     xrc->get_end = spapr_xive_get_end;
837     xrc->write_end = spapr_xive_write_end;
838     xrc->get_nvt = spapr_xive_get_nvt;
839     xrc->write_nvt = spapr_xive_write_nvt;
840     xrc->get_block_id = spapr_xive_get_block_id;
841 
842     sicc->activate = spapr_xive_activate;
843     sicc->deactivate = spapr_xive_deactivate;
844     sicc->cpu_intc_create = spapr_xive_cpu_intc_create;
845     sicc->cpu_intc_reset = spapr_xive_cpu_intc_reset;
846     sicc->cpu_intc_destroy = spapr_xive_cpu_intc_destroy;
847     sicc->claim_irq = spapr_xive_claim_irq;
848     sicc->free_irq = spapr_xive_free_irq;
849     sicc->set_irq = spapr_xive_set_irq;
850     sicc->print_info = spapr_xive_print_info;
851     sicc->dt = spapr_xive_dt;
852     sicc->post_load = spapr_xive_post_load;
853 
854     xpc->match_nvt  = spapr_xive_match_nvt;
855     xpc->get_config = spapr_xive_presenter_get_config;
856     xpc->in_kernel  = spapr_xive_in_kernel_xptr;
857 }
858 
859 static const TypeInfo spapr_xive_info = {
860     .name = TYPE_SPAPR_XIVE,
861     .parent = TYPE_XIVE_ROUTER,
862     .instance_init = spapr_xive_instance_init,
863     .instance_size = sizeof(SpaprXive),
864     .class_init = spapr_xive_class_init,
865     .class_size = sizeof(SpaprXiveClass),
866     .interfaces = (InterfaceInfo[]) {
867         { TYPE_SPAPR_INTC },
868         { }
869     },
870 };
871 
872 static void spapr_xive_register_types(void)
873 {
874     type_register_static(&spapr_xive_info);
875 }
876 
877 type_init(spapr_xive_register_types)
878 
879 /*
880  * XIVE hcalls
881  *
882  * The terminology used by the XIVE hcalls is the following :
883  *
884  *   TARGET vCPU number
885  *   EQ     Event Queue assigned by OS to receive event data
886  *   ESB    page for source interrupt management
887  *   LISN   Logical Interrupt Source Number identifying a source in the
888  *          machine
889  *   EISN   Effective Interrupt Source Number used by guest OS to
890  *          identify source in the guest
891  *
892  * The EAS, END, NVT structures are not exposed.
893  */
894 
895 /*
896  * On POWER9, the KVM XIVE device uses priority 7 for the escalation
897  * interrupts. So we only allow the guest to use priorities [0..6].
898  */
899 static bool spapr_xive_priority_is_reserved(SpaprXive *xive, uint8_t priority)
900 {
901     return priority >= xive->hv_prio;
902 }
903 
904 /*
905  * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical
906  * real address of the MMIO page through which the Event State Buffer
907  * entry associated with the value of the "lisn" parameter is managed.
908  *
909  * Parameters:
910  * Input
911  * - R4: "flags"
912  *         Bits 0-63 reserved
913  * - R5: "lisn" is per "interrupts", "interrupt-map", or
914  *       "ibm,xive-lisn-ranges" properties, or as returned by the
915  *       ibm,query-interrupt-source-number RTAS call, or as returned
916  *       by the H_ALLOCATE_VAS_WINDOW hcall
917  *
918  * Output
919  * - R4: "flags"
920  *         Bits 0-59: Reserved
921  *         Bit 60: H_INT_ESB must be used for Event State Buffer
922  *                 management
923  *         Bit 61: 1 == LSI  0 == MSI
924  *         Bit 62: the full function page supports trigger
925  *         Bit 63: Store EOI Supported
926  * - R5: Logical Real address of full function Event State Buffer
927  *       management page, -1 if H_INT_ESB hcall flag is set to 1.
928  * - R6: Logical Real Address of trigger only Event State Buffer
929  *       management page or -1.
930  * - R7: Power of 2 page size for the ESB management pages returned in
931  *       R5 and R6.
932  */
933 
934 #define SPAPR_XIVE_SRC_H_INT_ESB     PPC_BIT(60) /* ESB manage with H_INT_ESB */
935 #define SPAPR_XIVE_SRC_LSI           PPC_BIT(61) /* Virtual LSI type */
936 #define SPAPR_XIVE_SRC_TRIGGER       PPC_BIT(62) /* Trigger and management
937                                                     on same page */
938 #define SPAPR_XIVE_SRC_STORE_EOI     PPC_BIT(63) /* Store EOI support */
939 
940 static target_ulong h_int_get_source_info(PowerPCCPU *cpu,
941                                           SpaprMachineState *spapr,
942                                           target_ulong opcode,
943                                           target_ulong *args)
944 {
945     SpaprXive *xive = spapr->xive;
946     XiveSource *xsrc = &xive->source;
947     target_ulong flags  = args[0];
948     target_ulong lisn   = args[1];
949 
950     trace_spapr_xive_get_source_info(flags, lisn);
951 
952     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
953         return H_FUNCTION;
954     }
955 
956     if (flags) {
957         return H_PARAMETER;
958     }
959 
960     if (lisn >= xive->nr_irqs) {
961         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
962                       lisn);
963         return H_P2;
964     }
965 
966     if (!xive_eas_is_valid(&xive->eat[lisn])) {
967         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
968                       lisn);
969         return H_P2;
970     }
971 
972     /*
973      * All sources are emulated under the main XIVE object and share
974      * the same characteristics.
975      */
976     args[0] = 0;
977     if (!xive_source_esb_has_2page(xsrc)) {
978         args[0] |= SPAPR_XIVE_SRC_TRIGGER;
979     }
980     if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) {
981         args[0] |= SPAPR_XIVE_SRC_STORE_EOI;
982     }
983 
984     /*
985      * Force the use of the H_INT_ESB hcall in case of an LSI
986      * interrupt. This is necessary under KVM to re-trigger the
987      * interrupt if the level is still asserted
988      */
989     if (xive_source_irq_is_lsi(xsrc, lisn)) {
990         args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI;
991     }
992 
993     if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
994         args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn);
995     } else {
996         args[1] = -1;
997     }
998 
999     if (xive_source_esb_has_2page(xsrc) &&
1000         !(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
1001         args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn);
1002     } else {
1003         args[2] = -1;
1004     }
1005 
1006     if (xive_source_esb_has_2page(xsrc)) {
1007         args[3] = xsrc->esb_shift - 1;
1008     } else {
1009         args[3] = xsrc->esb_shift;
1010     }
1011 
1012     return H_SUCCESS;
1013 }
1014 
1015 /*
1016  * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical
1017  * Interrupt Source to a target. The Logical Interrupt Source is
1018  * designated with the "lisn" parameter and the target is designated
1019  * with the "target" and "priority" parameters.  Upon return from the
1020  * hcall(), no additional interrupts will be directed to the old EQ.
1021  *
1022  * Parameters:
1023  * Input:
1024  * - R4: "flags"
1025  *         Bits 0-61: Reserved
1026  *         Bit 62: set the "eisn" in the EAS
1027  *         Bit 63: masks the interrupt source in the hardware interrupt
1028  *       control structure. An interrupt masked by this mechanism will
1029  *       be dropped, but it's source state bits will still be
1030  *       set. There is no race-free way of unmasking and restoring the
1031  *       source. Thus this should only be used in interrupts that are
1032  *       also masked at the source, and only in cases where the
1033  *       interrupt is not meant to be used for a large amount of time
1034  *       because no valid target exists for it for example
1035  * - R5: "lisn" is per "interrupts", "interrupt-map", or
1036  *       "ibm,xive-lisn-ranges" properties, or as returned by the
1037  *       ibm,query-interrupt-source-number RTAS call, or as returned by
1038  *       the H_ALLOCATE_VAS_WINDOW hcall
1039  * - R6: "target" is per "ibm,ppc-interrupt-server#s" or
1040  *       "ibm,ppc-interrupt-gserver#s"
1041  * - R7: "priority" is a valid priority not in
1042  *       "ibm,plat-res-int-priorities"
1043  * - R8: "eisn" is the guest EISN associated with the "lisn"
1044  *
1045  * Output:
1046  * - None
1047  */
1048 
1049 #define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62)
1050 #define SPAPR_XIVE_SRC_MASK     PPC_BIT(63)
1051 
1052 static target_ulong h_int_set_source_config(PowerPCCPU *cpu,
1053                                             SpaprMachineState *spapr,
1054                                             target_ulong opcode,
1055                                             target_ulong *args)
1056 {
1057     SpaprXive *xive = spapr->xive;
1058     XiveEAS eas, new_eas;
1059     target_ulong flags    = args[0];
1060     target_ulong lisn     = args[1];
1061     target_ulong target   = args[2];
1062     target_ulong priority = args[3];
1063     target_ulong eisn     = args[4];
1064     uint8_t end_blk;
1065     uint32_t end_idx;
1066 
1067     trace_spapr_xive_set_source_config(flags, lisn, target, priority, eisn);
1068 
1069     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1070         return H_FUNCTION;
1071     }
1072 
1073     if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) {
1074         return H_PARAMETER;
1075     }
1076 
1077     if (lisn >= xive->nr_irqs) {
1078         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1079                       lisn);
1080         return H_P2;
1081     }
1082 
1083     eas = xive->eat[lisn];
1084     if (!xive_eas_is_valid(&eas)) {
1085         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1086                       lisn);
1087         return H_P2;
1088     }
1089 
1090     /* priority 0xff is used to reset the EAS */
1091     if (priority == 0xff) {
1092         new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED);
1093         goto out;
1094     }
1095 
1096     if (flags & SPAPR_XIVE_SRC_MASK) {
1097         new_eas.w = eas.w | cpu_to_be64(EAS_MASKED);
1098     } else {
1099         new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED);
1100     }
1101 
1102     if (spapr_xive_priority_is_reserved(xive, priority)) {
1103         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1104                       " is reserved\n", priority);
1105         return H_P4;
1106     }
1107 
1108     /*
1109      * Validate that "target" is part of the list of threads allocated
1110      * to the partition. For that, find the END corresponding to the
1111      * target.
1112      */
1113     if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1114         return H_P3;
1115     }
1116 
1117     new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk);
1118     new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx);
1119 
1120     if (flags & SPAPR_XIVE_SRC_SET_EISN) {
1121         new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn);
1122     }
1123 
1124     if (spapr_xive_in_kernel(xive)) {
1125         Error *local_err = NULL;
1126 
1127         kvmppc_xive_set_source_config(xive, lisn, &new_eas, &local_err);
1128         if (local_err) {
1129             error_report_err(local_err);
1130             return H_HARDWARE;
1131         }
1132     }
1133 
1134 out:
1135     xive->eat[lisn] = new_eas;
1136     return H_SUCCESS;
1137 }
1138 
1139 /*
1140  * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which
1141  * target/priority pair is assigned to the specified Logical Interrupt
1142  * Source.
1143  *
1144  * Parameters:
1145  * Input:
1146  * - R4: "flags"
1147  *         Bits 0-63 Reserved
1148  * - R5: "lisn" is per "interrupts", "interrupt-map", or
1149  *       "ibm,xive-lisn-ranges" properties, or as returned by the
1150  *       ibm,query-interrupt-source-number RTAS call, or as
1151  *       returned by the H_ALLOCATE_VAS_WINDOW hcall
1152  *
1153  * Output:
1154  * - R4: Target to which the specified Logical Interrupt Source is
1155  *       assigned
1156  * - R5: Priority to which the specified Logical Interrupt Source is
1157  *       assigned
1158  * - R6: EISN for the specified Logical Interrupt Source (this will be
1159  *       equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG)
1160  */
1161 static target_ulong h_int_get_source_config(PowerPCCPU *cpu,
1162                                             SpaprMachineState *spapr,
1163                                             target_ulong opcode,
1164                                             target_ulong *args)
1165 {
1166     SpaprXive *xive = spapr->xive;
1167     target_ulong flags = args[0];
1168     target_ulong lisn = args[1];
1169     XiveEAS eas;
1170     XiveEND *end;
1171     uint8_t nvt_blk;
1172     uint32_t end_idx, nvt_idx;
1173 
1174     trace_spapr_xive_get_source_config(flags, lisn);
1175 
1176     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1177         return H_FUNCTION;
1178     }
1179 
1180     if (flags) {
1181         return H_PARAMETER;
1182     }
1183 
1184     if (lisn >= xive->nr_irqs) {
1185         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1186                       lisn);
1187         return H_P2;
1188     }
1189 
1190     eas = xive->eat[lisn];
1191     if (!xive_eas_is_valid(&eas)) {
1192         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1193                       lisn);
1194         return H_P2;
1195     }
1196 
1197     /* EAS_END_BLOCK is unused on sPAPR */
1198     end_idx = xive_get_field64(EAS_END_INDEX, eas.w);
1199 
1200     assert(end_idx < xive->nr_ends);
1201     end = &xive->endt[end_idx];
1202 
1203     nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1204     nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1205     args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
1206 
1207     if (xive_eas_is_masked(&eas)) {
1208         args[1] = 0xff;
1209     } else {
1210         args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1211     }
1212 
1213     args[2] = xive_get_field64(EAS_END_DATA, eas.w);
1214 
1215     return H_SUCCESS;
1216 }
1217 
1218 /*
1219  * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real
1220  * address of the notification management page associated with the
1221  * specified target and priority.
1222  *
1223  * Parameters:
1224  * Input:
1225  * - R4: "flags"
1226  *         Bits 0-63 Reserved
1227  * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1228  *       "ibm,ppc-interrupt-gserver#s"
1229  * - R6: "priority" is a valid priority not in
1230  *       "ibm,plat-res-int-priorities"
1231  *
1232  * Output:
1233  * - R4: Logical real address of notification page
1234  * - R5: Power of 2 page size of the notification page
1235  */
1236 static target_ulong h_int_get_queue_info(PowerPCCPU *cpu,
1237                                          SpaprMachineState *spapr,
1238                                          target_ulong opcode,
1239                                          target_ulong *args)
1240 {
1241     SpaprXive *xive = spapr->xive;
1242     XiveENDSource *end_xsrc = &xive->end_source;
1243     target_ulong flags = args[0];
1244     target_ulong target = args[1];
1245     target_ulong priority = args[2];
1246     XiveEND *end;
1247     uint8_t end_blk;
1248     uint32_t end_idx;
1249 
1250     trace_spapr_xive_get_queue_info(flags, target, priority);
1251 
1252     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1253         return H_FUNCTION;
1254     }
1255 
1256     if (flags) {
1257         return H_PARAMETER;
1258     }
1259 
1260     /*
1261      * H_STATE should be returned if a H_INT_RESET is in progress.
1262      * This is not needed when running the emulation under QEMU
1263      */
1264 
1265     if (spapr_xive_priority_is_reserved(xive, priority)) {
1266         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1267                       " is reserved\n", priority);
1268         return H_P3;
1269     }
1270 
1271     /*
1272      * Validate that "target" is part of the list of threads allocated
1273      * to the partition. For that, find the END corresponding to the
1274      * target.
1275      */
1276     if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1277         return H_P2;
1278     }
1279 
1280     assert(end_idx < xive->nr_ends);
1281     end = &xive->endt[end_idx];
1282 
1283     args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx;
1284     if (xive_end_is_enqueue(end)) {
1285         args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1286     } else {
1287         args[1] = 0;
1288     }
1289 
1290     return H_SUCCESS;
1291 }
1292 
1293 /*
1294  * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for
1295  * a given "target" and "priority".  It is also used to set the
1296  * notification config associated with the EQ.  An EQ size of 0 is
1297  * used to reset the EQ config for a given target and priority. If
1298  * resetting the EQ config, the END associated with the given "target"
1299  * and "priority" will be changed to disable queueing.
1300  *
1301  * Upon return from the hcall(), no additional interrupts will be
1302  * directed to the old EQ (if one was set). The old EQ (if one was
1303  * set) should be investigated for interrupts that occurred prior to
1304  * or during the hcall().
1305  *
1306  * Parameters:
1307  * Input:
1308  * - R4: "flags"
1309  *         Bits 0-62: Reserved
1310  *         Bit 63: Unconditional Notify (n) per the XIVE spec
1311  * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1312  *       "ibm,ppc-interrupt-gserver#s"
1313  * - R6: "priority" is a valid priority not in
1314  *       "ibm,plat-res-int-priorities"
1315  * - R7: "eventQueue": The logical real address of the start of the EQ
1316  * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes"
1317  *
1318  * Output:
1319  * - None
1320  */
1321 
1322 #define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63)
1323 
1324 static target_ulong h_int_set_queue_config(PowerPCCPU *cpu,
1325                                            SpaprMachineState *spapr,
1326                                            target_ulong opcode,
1327                                            target_ulong *args)
1328 {
1329     SpaprXive *xive = spapr->xive;
1330     target_ulong flags = args[0];
1331     target_ulong target = args[1];
1332     target_ulong priority = args[2];
1333     target_ulong qpage = args[3];
1334     target_ulong qsize = args[4];
1335     XiveEND end;
1336     uint8_t end_blk, nvt_blk;
1337     uint32_t end_idx, nvt_idx;
1338 
1339     trace_spapr_xive_set_queue_config(flags, target, priority, qpage, qsize);
1340 
1341     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1342         return H_FUNCTION;
1343     }
1344 
1345     if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1346         return H_PARAMETER;
1347     }
1348 
1349     /*
1350      * H_STATE should be returned if a H_INT_RESET is in progress.
1351      * This is not needed when running the emulation under QEMU
1352      */
1353 
1354     if (spapr_xive_priority_is_reserved(xive, priority)) {
1355         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1356                       " is reserved\n", priority);
1357         return H_P3;
1358     }
1359 
1360     /*
1361      * Validate that "target" is part of the list of threads allocated
1362      * to the partition. For that, find the END corresponding to the
1363      * target.
1364      */
1365 
1366     if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1367         return H_P2;
1368     }
1369 
1370     assert(end_idx < xive->nr_ends);
1371     memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND));
1372 
1373     switch (qsize) {
1374     case 12:
1375     case 16:
1376     case 21:
1377     case 24:
1378         if (!QEMU_IS_ALIGNED(qpage, 1ul << qsize)) {
1379             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: EQ @0x%" HWADDR_PRIx
1380                           " is not naturally aligned with %" HWADDR_PRIx "\n",
1381                           qpage, (hwaddr)1 << qsize);
1382             return H_P4;
1383         }
1384         end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff);
1385         end.w3 = cpu_to_be32(qpage & 0xffffffff);
1386         end.w0 |= cpu_to_be32(END_W0_ENQUEUE);
1387         end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12);
1388         break;
1389     case 0:
1390         /* reset queue and disable queueing */
1391         spapr_xive_end_reset(&end);
1392         goto out;
1393 
1394     default:
1395         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n",
1396                       qsize);
1397         return H_P5;
1398     }
1399 
1400     if (qsize) {
1401         hwaddr plen = 1 << qsize;
1402         void *eq;
1403 
1404         /*
1405          * Validate the guest EQ. We should also check that the queue
1406          * has been zeroed by the OS.
1407          */
1408         eq = address_space_map(CPU(cpu)->as, qpage, &plen, true,
1409                                MEMTXATTRS_UNSPECIFIED);
1410         if (plen != 1 << qsize) {
1411             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%"
1412                           HWADDR_PRIx "\n", qpage);
1413             return H_P4;
1414         }
1415         address_space_unmap(CPU(cpu)->as, eq, plen, true, plen);
1416     }
1417 
1418     /* "target" should have been validated above */
1419     if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) {
1420         g_assert_not_reached();
1421     }
1422 
1423     /*
1424      * Ensure the priority and target are correctly set (they will not
1425      * be right after allocation)
1426      */
1427     end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) |
1428         xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx);
1429     end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority);
1430 
1431     if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1432         end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY);
1433     } else {
1434         end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY);
1435     }
1436 
1437     /*
1438      * The generation bit for the END starts at 1 and The END page
1439      * offset counter starts at 0.
1440      */
1441     end.w1 = cpu_to_be32(END_W1_GENERATION) |
1442         xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul);
1443     end.w0 |= cpu_to_be32(END_W0_VALID);
1444 
1445     /*
1446      * TODO: issue syncs required to ensure all in-flight interrupts
1447      * are complete on the old END
1448      */
1449 
1450 out:
1451     if (spapr_xive_in_kernel(xive)) {
1452         Error *local_err = NULL;
1453 
1454         kvmppc_xive_set_queue_config(xive, end_blk, end_idx, &end, &local_err);
1455         if (local_err) {
1456             error_report_err(local_err);
1457             return H_HARDWARE;
1458         }
1459     }
1460 
1461     /* Update END */
1462     memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND));
1463     return H_SUCCESS;
1464 }
1465 
1466 /*
1467  * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given
1468  * target and priority.
1469  *
1470  * Parameters:
1471  * Input:
1472  * - R4: "flags"
1473  *         Bits 0-62: Reserved
1474  *         Bit 63: Debug: Return debug data
1475  * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1476  *       "ibm,ppc-interrupt-gserver#s"
1477  * - R6: "priority" is a valid priority not in
1478  *       "ibm,plat-res-int-priorities"
1479  *
1480  * Output:
1481  * - R4: "flags":
1482  *       Bits 0-61: Reserved
1483  *       Bit 62: The value of Event Queue Generation Number (g) per
1484  *              the XIVE spec if "Debug" = 1
1485  *       Bit 63: The value of Unconditional Notify (n) per the XIVE spec
1486  * - R5: The logical real address of the start of the EQ
1487  * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes"
1488  * - R7: The value of Event Queue Offset Counter per XIVE spec
1489  *       if "Debug" = 1, else 0
1490  *
1491  */
1492 
1493 #define SPAPR_XIVE_END_DEBUG     PPC_BIT(63)
1494 
1495 static target_ulong h_int_get_queue_config(PowerPCCPU *cpu,
1496                                            SpaprMachineState *spapr,
1497                                            target_ulong opcode,
1498                                            target_ulong *args)
1499 {
1500     SpaprXive *xive = spapr->xive;
1501     target_ulong flags = args[0];
1502     target_ulong target = args[1];
1503     target_ulong priority = args[2];
1504     XiveEND *end;
1505     uint8_t end_blk;
1506     uint32_t end_idx;
1507 
1508     trace_spapr_xive_get_queue_config(flags, target, priority);
1509 
1510     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1511         return H_FUNCTION;
1512     }
1513 
1514     if (flags & ~SPAPR_XIVE_END_DEBUG) {
1515         return H_PARAMETER;
1516     }
1517 
1518     /*
1519      * H_STATE should be returned if a H_INT_RESET is in progress.
1520      * This is not needed when running the emulation under QEMU
1521      */
1522 
1523     if (spapr_xive_priority_is_reserved(xive, priority)) {
1524         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1525                       " is reserved\n", priority);
1526         return H_P3;
1527     }
1528 
1529     /*
1530      * Validate that "target" is part of the list of threads allocated
1531      * to the partition. For that, find the END corresponding to the
1532      * target.
1533      */
1534     if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1535         return H_P2;
1536     }
1537 
1538     assert(end_idx < xive->nr_ends);
1539     end = &xive->endt[end_idx];
1540 
1541     args[0] = 0;
1542     if (xive_end_is_notify(end)) {
1543         args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY;
1544     }
1545 
1546     if (xive_end_is_enqueue(end)) {
1547         args[1] = xive_end_qaddr(end);
1548         args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1549     } else {
1550         args[1] = 0;
1551         args[2] = 0;
1552     }
1553 
1554     if (spapr_xive_in_kernel(xive)) {
1555         Error *local_err = NULL;
1556 
1557         kvmppc_xive_get_queue_config(xive, end_blk, end_idx, end, &local_err);
1558         if (local_err) {
1559             error_report_err(local_err);
1560             return H_HARDWARE;
1561         }
1562     }
1563 
1564     /* TODO: do we need any locking on the END ? */
1565     if (flags & SPAPR_XIVE_END_DEBUG) {
1566         /* Load the event queue generation number into the return flags */
1567         args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62;
1568 
1569         /* Load R7 with the event queue offset counter */
1570         args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1571     } else {
1572         args[3] = 0;
1573     }
1574 
1575     return H_SUCCESS;
1576 }
1577 
1578 /*
1579  * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the
1580  * reporting cache line pair for the calling thread.  The reporting
1581  * cache lines will contain the OS interrupt context when the OS
1582  * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS
1583  * interrupt. The reporting cache lines can be reset by inputting -1
1584  * in "reportingLine".  Issuing the CI store byte without reporting
1585  * cache lines registered will result in the data not being accessible
1586  * to the OS.
1587  *
1588  * Parameters:
1589  * Input:
1590  * - R4: "flags"
1591  *         Bits 0-63: Reserved
1592  * - R5: "reportingLine": The logical real address of the reporting cache
1593  *       line pair
1594  *
1595  * Output:
1596  * - None
1597  */
1598 static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu,
1599                                                 SpaprMachineState *spapr,
1600                                                 target_ulong opcode,
1601                                                 target_ulong *args)
1602 {
1603     target_ulong flags   = args[0];
1604 
1605     trace_spapr_xive_set_os_reporting_line(flags);
1606 
1607     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1608         return H_FUNCTION;
1609     }
1610 
1611     /*
1612      * H_STATE should be returned if a H_INT_RESET is in progress.
1613      * This is not needed when running the emulation under QEMU
1614      */
1615 
1616     /* TODO: H_INT_SET_OS_REPORTING_LINE */
1617     return H_FUNCTION;
1618 }
1619 
1620 /*
1621  * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical
1622  * real address of the reporting cache line pair set for the input
1623  * "target".  If no reporting cache line pair has been set, -1 is
1624  * returned.
1625  *
1626  * Parameters:
1627  * Input:
1628  * - R4: "flags"
1629  *         Bits 0-63: Reserved
1630  * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1631  *       "ibm,ppc-interrupt-gserver#s"
1632  * - R6: "reportingLine": The logical real address of the reporting
1633  *        cache line pair
1634  *
1635  * Output:
1636  * - R4: The logical real address of the reporting line if set, else -1
1637  */
1638 static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu,
1639                                                 SpaprMachineState *spapr,
1640                                                 target_ulong opcode,
1641                                                 target_ulong *args)
1642 {
1643     target_ulong flags   = args[0];
1644 
1645     trace_spapr_xive_get_os_reporting_line(flags);
1646 
1647     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1648         return H_FUNCTION;
1649     }
1650 
1651     /*
1652      * H_STATE should be returned if a H_INT_RESET is in progress.
1653      * This is not needed when running the emulation under QEMU
1654      */
1655 
1656     /* TODO: H_INT_GET_OS_REPORTING_LINE */
1657     return H_FUNCTION;
1658 }
1659 
1660 /*
1661  * The H_INT_ESB hcall() is used to issue a load or store to the ESB
1662  * page for the input "lisn".  This hcall is only supported for LISNs
1663  * that have the ESB hcall flag set to 1 when returned from hcall()
1664  * H_INT_GET_SOURCE_INFO.
1665  *
1666  * Parameters:
1667  * Input:
1668  * - R4: "flags"
1669  *         Bits 0-62: Reserved
1670  *         bit 63: Store: Store=1, store operation, else load operation
1671  * - R5: "lisn" is per "interrupts", "interrupt-map", or
1672  *       "ibm,xive-lisn-ranges" properties, or as returned by the
1673  *       ibm,query-interrupt-source-number RTAS call, or as
1674  *       returned by the H_ALLOCATE_VAS_WINDOW hcall
1675  * - R6: "esbOffset" is the offset into the ESB page for the load or
1676  *       store operation
1677  * - R7: "storeData" is the data to write for a store operation
1678  *
1679  * Output:
1680  * - R4: The value of the load if load operation, else -1
1681  */
1682 
1683 #define SPAPR_XIVE_ESB_STORE PPC_BIT(63)
1684 
1685 static target_ulong h_int_esb(PowerPCCPU *cpu,
1686                               SpaprMachineState *spapr,
1687                               target_ulong opcode,
1688                               target_ulong *args)
1689 {
1690     SpaprXive *xive = spapr->xive;
1691     XiveEAS eas;
1692     target_ulong flags  = args[0];
1693     target_ulong lisn   = args[1];
1694     target_ulong offset = args[2];
1695     target_ulong data   = args[3];
1696     hwaddr mmio_addr;
1697     XiveSource *xsrc = &xive->source;
1698 
1699     trace_spapr_xive_esb(flags, lisn, offset, data);
1700 
1701     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1702         return H_FUNCTION;
1703     }
1704 
1705     if (flags & ~SPAPR_XIVE_ESB_STORE) {
1706         return H_PARAMETER;
1707     }
1708 
1709     if (lisn >= xive->nr_irqs) {
1710         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1711                       lisn);
1712         return H_P2;
1713     }
1714 
1715     eas = xive->eat[lisn];
1716     if (!xive_eas_is_valid(&eas)) {
1717         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1718                       lisn);
1719         return H_P2;
1720     }
1721 
1722     if (offset > (1ull << xsrc->esb_shift)) {
1723         return H_P3;
1724     }
1725 
1726     if (spapr_xive_in_kernel(xive)) {
1727         args[0] = kvmppc_xive_esb_rw(xsrc, lisn, offset, data,
1728                                      flags & SPAPR_XIVE_ESB_STORE);
1729     } else {
1730         mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset;
1731 
1732         if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8,
1733                           (flags & SPAPR_XIVE_ESB_STORE),
1734                           MEMTXATTRS_UNSPECIFIED)) {
1735             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%"
1736                           HWADDR_PRIx "\n", mmio_addr);
1737             return H_HARDWARE;
1738         }
1739         args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data;
1740     }
1741     return H_SUCCESS;
1742 }
1743 
1744 /*
1745  * The H_INT_SYNC hcall() is used to issue hardware syncs that will
1746  * ensure any in flight events for the input lisn are in the event
1747  * queue.
1748  *
1749  * Parameters:
1750  * Input:
1751  * - R4: "flags"
1752  *         Bits 0-63: Reserved
1753  * - R5: "lisn" is per "interrupts", "interrupt-map", or
1754  *       "ibm,xive-lisn-ranges" properties, or as returned by the
1755  *       ibm,query-interrupt-source-number RTAS call, or as
1756  *       returned by the H_ALLOCATE_VAS_WINDOW hcall
1757  *
1758  * Output:
1759  * - None
1760  */
1761 static target_ulong h_int_sync(PowerPCCPU *cpu,
1762                                SpaprMachineState *spapr,
1763                                target_ulong opcode,
1764                                target_ulong *args)
1765 {
1766     SpaprXive *xive = spapr->xive;
1767     XiveEAS eas;
1768     target_ulong flags = args[0];
1769     target_ulong lisn = args[1];
1770 
1771     trace_spapr_xive_sync(flags, lisn);
1772 
1773     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1774         return H_FUNCTION;
1775     }
1776 
1777     if (flags) {
1778         return H_PARAMETER;
1779     }
1780 
1781     if (lisn >= xive->nr_irqs) {
1782         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1783                       lisn);
1784         return H_P2;
1785     }
1786 
1787     eas = xive->eat[lisn];
1788     if (!xive_eas_is_valid(&eas)) {
1789         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1790                       lisn);
1791         return H_P2;
1792     }
1793 
1794     /*
1795      * H_STATE should be returned if a H_INT_RESET is in progress.
1796      * This is not needed when running the emulation under QEMU
1797      */
1798 
1799     /*
1800      * This is not real hardware. Nothing to be done unless when
1801      * under KVM
1802      */
1803 
1804     if (spapr_xive_in_kernel(xive)) {
1805         Error *local_err = NULL;
1806 
1807         kvmppc_xive_sync_source(xive, lisn, &local_err);
1808         if (local_err) {
1809             error_report_err(local_err);
1810             return H_HARDWARE;
1811         }
1812     }
1813     return H_SUCCESS;
1814 }
1815 
1816 /*
1817  * The H_INT_RESET hcall() is used to reset all of the partition's
1818  * interrupt exploitation structures to their initial state.  This
1819  * means losing all previously set interrupt state set via
1820  * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.
1821  *
1822  * Parameters:
1823  * Input:
1824  * - R4: "flags"
1825  *         Bits 0-63: Reserved
1826  *
1827  * Output:
1828  * - None
1829  */
1830 static target_ulong h_int_reset(PowerPCCPU *cpu,
1831                                 SpaprMachineState *spapr,
1832                                 target_ulong opcode,
1833                                 target_ulong *args)
1834 {
1835     SpaprXive *xive = spapr->xive;
1836     target_ulong flags   = args[0];
1837 
1838     trace_spapr_xive_reset(flags);
1839 
1840     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1841         return H_FUNCTION;
1842     }
1843 
1844     if (flags) {
1845         return H_PARAMETER;
1846     }
1847 
1848     device_cold_reset(DEVICE(xive));
1849 
1850     if (spapr_xive_in_kernel(xive)) {
1851         Error *local_err = NULL;
1852 
1853         kvmppc_xive_reset(xive, &local_err);
1854         if (local_err) {
1855             error_report_err(local_err);
1856             return H_HARDWARE;
1857         }
1858     }
1859     return H_SUCCESS;
1860 }
1861 
1862 void spapr_xive_hcall_init(SpaprMachineState *spapr)
1863 {
1864     spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info);
1865     spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config);
1866     spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config);
1867     spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info);
1868     spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config);
1869     spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config);
1870     spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE,
1871                              h_int_set_os_reporting_line);
1872     spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE,
1873                              h_int_get_os_reporting_line);
1874     spapr_register_hypercall(H_INT_ESB, h_int_esb);
1875     spapr_register_hypercall(H_INT_SYNC, h_int_sync);
1876     spapr_register_hypercall(H_INT_RESET, h_int_reset);
1877 }
1878