xref: /openbmc/qemu/hw/intc/spapr_xive.c (revision 4d62448c1c74629ec7a1a19920770cbfb13861de)
1 /*
2  * QEMU PowerPC sPAPR XIVE interrupt controller model
3  *
4  * Copyright (c) 2017-2018, IBM Corporation.
5  *
6  * This code is licensed under the GPL version 2 or later. See the
7  * COPYING file in the top-level directory.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "qapi/type-helpers.h"
15 #include "qemu/error-report.h"
16 #include "target/ppc/cpu.h"
17 #include "sysemu/cpus.h"
18 #include "sysemu/reset.h"
19 #include "migration/vmstate.h"
20 #include "monitor/monitor.h"
21 #include "hw/ppc/fdt.h"
22 #include "hw/ppc/spapr.h"
23 #include "hw/ppc/spapr_cpu_core.h"
24 #include "hw/ppc/spapr_xive.h"
25 #include "hw/ppc/xive.h"
26 #include "hw/ppc/xive_regs.h"
27 #include "hw/qdev-properties.h"
28 #include "trace.h"
29 
30 /*
31  * XIVE Virtualization Controller BAR and Thread Management BAR that we
32  * use for the ESB pages and the TIMA pages
33  */
34 #define SPAPR_XIVE_VC_BASE   0x0006010000000000ull
35 #define SPAPR_XIVE_TM_BASE   0x0006030203180000ull
36 
37 /*
38  * The allocation of VP blocks is a complex operation in OPAL and the
39  * VP identifiers have a relation with the number of HW chips, the
40  * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE
41  * controller model does not have the same constraints and can use a
42  * simple mapping scheme of the CPU vcpu_id
43  *
44  * These identifiers are never returned to the OS.
45  */
46 
47 #define SPAPR_XIVE_NVT_BASE 0x400
48 
49 /*
50  * sPAPR NVT and END indexing helpers
51  */
52 static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx)
53 {
54     return nvt_idx - SPAPR_XIVE_NVT_BASE;
55 }
56 
57 static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu,
58                                   uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
59 {
60     assert(cpu);
61 
62     if (out_nvt_blk) {
63         *out_nvt_blk = SPAPR_XIVE_BLOCK_ID;
64     }
65 
66     if (out_nvt_blk) {
67         *out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id;
68     }
69 }
70 
71 static int spapr_xive_target_to_nvt(uint32_t target,
72                                     uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
73 {
74     PowerPCCPU *cpu = spapr_find_cpu(target);
75 
76     if (!cpu) {
77         return -1;
78     }
79 
80     spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx);
81     return 0;
82 }
83 
84 /*
85  * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8
86  * priorities per CPU
87  */
88 int spapr_xive_end_to_target(uint8_t end_blk, uint32_t end_idx,
89                              uint32_t *out_server, uint8_t *out_prio)
90 {
91 
92     assert(end_blk == SPAPR_XIVE_BLOCK_ID);
93 
94     if (out_server) {
95         *out_server = end_idx >> 3;
96     }
97 
98     if (out_prio) {
99         *out_prio = end_idx & 0x7;
100     }
101     return 0;
102 }
103 
104 static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio,
105                                   uint8_t *out_end_blk, uint32_t *out_end_idx)
106 {
107     assert(cpu);
108 
109     if (out_end_blk) {
110         *out_end_blk = SPAPR_XIVE_BLOCK_ID;
111     }
112 
113     if (out_end_idx) {
114         *out_end_idx = (cpu->vcpu_id << 3) + prio;
115     }
116 }
117 
118 static int spapr_xive_target_to_end(uint32_t target, uint8_t prio,
119                                     uint8_t *out_end_blk, uint32_t *out_end_idx)
120 {
121     PowerPCCPU *cpu = spapr_find_cpu(target);
122 
123     if (!cpu) {
124         return -1;
125     }
126 
127     spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx);
128     return 0;
129 }
130 
131 /*
132  * On sPAPR machines, use a simplified output for the XIVE END
133  * structure dumping only the information related to the OS EQ.
134  */
135 static void spapr_xive_end_pic_print_info(SpaprXive *xive, XiveEND *end,
136                                           GString *buf)
137 {
138     uint64_t qaddr_base = xive_end_qaddr(end);
139     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
140     uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
141     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
142     uint32_t qentries = 1 << (qsize + 10);
143     uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
144     uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
145 
146     g_string_append_printf(buf, "%3d/%d % 6d/%5d @%"PRIx64" ^%d",
147                            spapr_xive_nvt_to_target(0, nvt),
148                            priority, qindex, qentries, qaddr_base, qgen);
149 
150     xive_end_queue_pic_print_info(end, 6, buf);
151 }
152 
153 /*
154  * kvm_irqchip_in_kernel() will cause the compiler to turn this
155  * info a nop if CONFIG_KVM isn't defined.
156  */
157 #define spapr_xive_in_kernel(xive) \
158     (kvm_irqchip_in_kernel() && (xive)->fd != -1)
159 
160 static void spapr_xive_pic_print_info(SpaprXive *xive, GString *buf)
161 {
162     XiveSource *xsrc = &xive->source;
163     int i;
164 
165     if (spapr_xive_in_kernel(xive)) {
166         Error *local_err = NULL;
167 
168         kvmppc_xive_synchronize_state(xive, &local_err);
169         if (local_err) {
170             error_report_err(local_err);
171             return;
172         }
173     }
174 
175     g_string_append_printf(buf, "  LISN         PQ    EISN     CPU/PRIO EQ\n");
176 
177     for (i = 0; i < xive->nr_irqs; i++) {
178         uint8_t pq = xive_source_esb_get(xsrc, i);
179         XiveEAS *eas = &xive->eat[i];
180 
181         if (!xive_eas_is_valid(eas)) {
182             continue;
183         }
184 
185         g_string_append_printf(buf, "  %08x %s %c%c%c %s %08x ", i,
186                                xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
187                                pq & XIVE_ESB_VAL_P ? 'P' : '-',
188                                pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
189                                xive_source_is_asserted(xsrc, i) ? 'A' : ' ',
190                                xive_eas_is_masked(eas) ? "M" : " ",
191                                (int) xive_get_field64(EAS_END_DATA, eas->w));
192 
193         if (!xive_eas_is_masked(eas)) {
194             uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
195             XiveEND *end;
196 
197             assert(end_idx < xive->nr_ends);
198             end = &xive->endt[end_idx];
199 
200             if (xive_end_is_valid(end)) {
201                 spapr_xive_end_pic_print_info(xive, end, buf);
202             }
203 
204         }
205         g_string_append_c(buf, '\n');
206     }
207 }
208 
209 void spapr_xive_mmio_set_enabled(SpaprXive *xive, bool enable)
210 {
211     memory_region_set_enabled(&xive->source.esb_mmio, enable);
212     memory_region_set_enabled(&xive->tm_mmio, enable);
213 
214     /* Disable the END ESBs until a guest OS makes use of them */
215     memory_region_set_enabled(&xive->end_source.esb_mmio, false);
216 }
217 
218 static void spapr_xive_tm_write(void *opaque, hwaddr offset,
219                           uint64_t value, unsigned size)
220 {
221     XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx;
222 
223     xive_tctx_tm_write(XIVE_PRESENTER(opaque), tctx, offset, value, size);
224 }
225 
226 static uint64_t spapr_xive_tm_read(void *opaque, hwaddr offset, unsigned size)
227 {
228     XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx;
229 
230     return xive_tctx_tm_read(XIVE_PRESENTER(opaque), tctx, offset, size);
231 }
232 
233 const MemoryRegionOps spapr_xive_tm_ops = {
234     .read = spapr_xive_tm_read,
235     .write = spapr_xive_tm_write,
236     .endianness = DEVICE_BIG_ENDIAN,
237     .valid = {
238         .min_access_size = 1,
239         .max_access_size = 8,
240     },
241     .impl = {
242         .min_access_size = 1,
243         .max_access_size = 8,
244     },
245 };
246 
247 static void spapr_xive_end_reset(XiveEND *end)
248 {
249     memset(end, 0, sizeof(*end));
250 
251     /* switch off the escalation and notification ESBs */
252     end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q);
253 }
254 
255 static void spapr_xive_reset(void *dev)
256 {
257     SpaprXive *xive = SPAPR_XIVE(dev);
258     int i;
259 
260     /*
261      * The XiveSource has its own reset handler, which mask off all
262      * IRQs (!P|Q)
263      */
264 
265     /* Mask all valid EASs in the IRQ number space. */
266     for (i = 0; i < xive->nr_irqs; i++) {
267         XiveEAS *eas = &xive->eat[i];
268         if (xive_eas_is_valid(eas)) {
269             eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED);
270         } else {
271             eas->w = 0;
272         }
273     }
274 
275     /* Clear all ENDs */
276     for (i = 0; i < xive->nr_ends; i++) {
277         spapr_xive_end_reset(&xive->endt[i]);
278     }
279 }
280 
281 static void spapr_xive_instance_init(Object *obj)
282 {
283     SpaprXive *xive = SPAPR_XIVE(obj);
284 
285     object_initialize_child(obj, "source", &xive->source, TYPE_XIVE_SOURCE);
286 
287     object_initialize_child(obj, "end_source", &xive->end_source,
288                             TYPE_XIVE_END_SOURCE);
289 
290     /* Not connected to the KVM XIVE device */
291     xive->fd = -1;
292 }
293 
294 static void spapr_xive_realize(DeviceState *dev, Error **errp)
295 {
296     SpaprXive *xive = SPAPR_XIVE(dev);
297     SpaprXiveClass *sxc = SPAPR_XIVE_GET_CLASS(xive);
298     XiveSource *xsrc = &xive->source;
299     XiveENDSource *end_xsrc = &xive->end_source;
300     Error *local_err = NULL;
301 
302     /* Set by spapr_irq_init() */
303     g_assert(xive->nr_irqs);
304     g_assert(xive->nr_ends);
305 
306     sxc->parent_realize(dev, &local_err);
307     if (local_err) {
308         error_propagate(errp, local_err);
309         return;
310     }
311 
312     /*
313      * Initialize the internal sources, for IPIs and virtual devices.
314      */
315     object_property_set_int(OBJECT(xsrc), "nr-irqs", xive->nr_irqs,
316                             &error_fatal);
317     object_property_set_link(OBJECT(xsrc), "xive", OBJECT(xive), &error_abort);
318     if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
319         return;
320     }
321 
322     /*
323      * Initialize the END ESB source
324      */
325     object_property_set_int(OBJECT(end_xsrc), "nr-ends", xive->nr_irqs,
326                             &error_fatal);
327     object_property_set_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
328                              &error_abort);
329     if (!qdev_realize(DEVICE(end_xsrc), NULL, errp)) {
330         return;
331     }
332 
333     /* Set the mapping address of the END ESB pages after the source ESBs */
334     xive->end_base = xive->vc_base + xive_source_esb_len(xsrc);
335 
336     /*
337      * Allocate the routing tables
338      */
339     xive->eat = g_new0(XiveEAS, xive->nr_irqs);
340     xive->endt = g_new0(XiveEND, xive->nr_ends);
341 
342     xive->nodename = g_strdup_printf("interrupt-controller@%" PRIx64,
343                            xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT));
344 
345     qemu_register_reset(spapr_xive_reset, dev);
346 
347     /* TIMA initialization */
348     memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &spapr_xive_tm_ops,
349                           xive, "xive.tima", 4ull << TM_SHIFT);
350 
351     /*
352      * Map all regions. These will be enabled or disabled at reset and
353      * can also be overridden by KVM memory regions if active
354      */
355     memory_region_add_subregion(get_system_memory(), xive->vc_base,
356                                 &xsrc->esb_mmio);
357     memory_region_add_subregion(get_system_memory(), xive->end_base,
358                                 &end_xsrc->esb_mmio);
359     memory_region_add_subregion(get_system_memory(), xive->tm_base,
360                                 &xive->tm_mmio);
361 }
362 
363 static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk,
364                               uint32_t eas_idx, XiveEAS *eas)
365 {
366     SpaprXive *xive = SPAPR_XIVE(xrtr);
367 
368     if (eas_idx >= xive->nr_irqs) {
369         return -1;
370     }
371 
372     *eas = xive->eat[eas_idx];
373     return 0;
374 }
375 
376 static int spapr_xive_get_end(XiveRouter *xrtr,
377                               uint8_t end_blk, uint32_t end_idx, XiveEND *end)
378 {
379     SpaprXive *xive = SPAPR_XIVE(xrtr);
380 
381     if (end_idx >= xive->nr_ends) {
382         return -1;
383     }
384 
385     memcpy(end, &xive->endt[end_idx], sizeof(XiveEND));
386     return 0;
387 }
388 
389 static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk,
390                                 uint32_t end_idx, XiveEND *end,
391                                 uint8_t word_number)
392 {
393     SpaprXive *xive = SPAPR_XIVE(xrtr);
394 
395     if (end_idx >= xive->nr_ends) {
396         return -1;
397     }
398 
399     memcpy(&xive->endt[end_idx], end, sizeof(XiveEND));
400     return 0;
401 }
402 
403 static int spapr_xive_get_nvt(XiveRouter *xrtr,
404                               uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt)
405 {
406     uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
407     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
408 
409     if (!cpu) {
410         /* TODO: should we assert() if we can find a NVT ? */
411         return -1;
412     }
413 
414     /*
415      * sPAPR does not maintain a NVT table. Return that the NVT is
416      * valid if we have found a matching CPU
417      */
418     nvt->w0 = cpu_to_be32(NVT_W0_VALID);
419     return 0;
420 }
421 
422 static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk,
423                                 uint32_t nvt_idx, XiveNVT *nvt,
424                                 uint8_t word_number)
425 {
426     /*
427      * We don't need to write back to the NVTs because the sPAPR
428      * machine should never hit a non-scheduled NVT. It should never
429      * get called.
430      */
431     g_assert_not_reached();
432 }
433 
434 static int spapr_xive_match_nvt(XivePresenter *xptr, uint8_t format,
435                                 uint8_t nvt_blk, uint32_t nvt_idx,
436                                 bool cam_ignore, uint8_t priority,
437                                 uint32_t logic_serv, XiveTCTXMatch *match)
438 {
439     CPUState *cs;
440     int count = 0;
441 
442     CPU_FOREACH(cs) {
443         PowerPCCPU *cpu = POWERPC_CPU(cs);
444         XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
445         int ring;
446 
447         /*
448          * Skip partially initialized vCPUs. This can happen when
449          * vCPUs are hotplugged.
450          */
451         if (!tctx) {
452             continue;
453         }
454 
455         /*
456          * Check the thread context CAM lines and record matches.
457          */
458         ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk, nvt_idx,
459                                          cam_ignore, logic_serv);
460         /*
461          * Save the matching thread interrupt context and follow on to
462          * check for duplicates which are invalid.
463          */
464         if (ring != -1) {
465             if (match->tctx) {
466                 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
467                               "context NVT %x/%x\n", nvt_blk, nvt_idx);
468                 return -1;
469             }
470 
471             match->ring = ring;
472             match->tctx = tctx;
473             count++;
474         }
475     }
476 
477     return count;
478 }
479 
480 static uint32_t spapr_xive_presenter_get_config(XivePresenter *xptr)
481 {
482     uint32_t cfg = 0;
483 
484     /*
485      * Let's claim GEN1 TIMA format. If running with KVM on P10, the
486      * correct answer is deep in the hardware and not accessible to
487      * us.  But it shouldn't matter as it only affects the presenter
488      * as seen by a guest OS.
489      */
490     cfg |= XIVE_PRESENTER_GEN1_TIMA_OS;
491 
492     return cfg;
493 }
494 
495 static uint8_t spapr_xive_get_block_id(XiveRouter *xrtr)
496 {
497     return SPAPR_XIVE_BLOCK_ID;
498 }
499 
500 static int spapr_xive_get_pq(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
501                              uint8_t *pq)
502 {
503     SpaprXive *xive = SPAPR_XIVE(xrtr);
504 
505     assert(SPAPR_XIVE_BLOCK_ID == blk);
506 
507     *pq = xive_source_esb_get(&xive->source, idx);
508     return 0;
509 }
510 
511 static int spapr_xive_set_pq(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
512                              uint8_t *pq)
513 {
514     SpaprXive *xive = SPAPR_XIVE(xrtr);
515 
516     assert(SPAPR_XIVE_BLOCK_ID == blk);
517 
518     *pq = xive_source_esb_set(&xive->source, idx, *pq);
519     return 0;
520 }
521 
522 
523 static const VMStateDescription vmstate_spapr_xive_end = {
524     .name = TYPE_SPAPR_XIVE "/end",
525     .version_id = 1,
526     .minimum_version_id = 1,
527     .fields = (const VMStateField []) {
528         VMSTATE_UINT32(w0, XiveEND),
529         VMSTATE_UINT32(w1, XiveEND),
530         VMSTATE_UINT32(w2, XiveEND),
531         VMSTATE_UINT32(w3, XiveEND),
532         VMSTATE_UINT32(w4, XiveEND),
533         VMSTATE_UINT32(w5, XiveEND),
534         VMSTATE_UINT32(w6, XiveEND),
535         VMSTATE_UINT32(w7, XiveEND),
536         VMSTATE_END_OF_LIST()
537     },
538 };
539 
540 static const VMStateDescription vmstate_spapr_xive_eas = {
541     .name = TYPE_SPAPR_XIVE "/eas",
542     .version_id = 1,
543     .minimum_version_id = 1,
544     .fields = (const VMStateField []) {
545         VMSTATE_UINT64(w, XiveEAS),
546         VMSTATE_END_OF_LIST()
547     },
548 };
549 
550 static int vmstate_spapr_xive_pre_save(void *opaque)
551 {
552     SpaprXive *xive = SPAPR_XIVE(opaque);
553 
554     if (spapr_xive_in_kernel(xive)) {
555         return kvmppc_xive_pre_save(xive);
556     }
557 
558     return 0;
559 }
560 
561 /*
562  * Called by the sPAPR IRQ backend 'post_load' method at the machine
563  * level.
564  */
565 static int spapr_xive_post_load(SpaprInterruptController *intc, int version_id)
566 {
567     SpaprXive *xive = SPAPR_XIVE(intc);
568 
569     if (spapr_xive_in_kernel(xive)) {
570         return kvmppc_xive_post_load(xive, version_id);
571     }
572 
573     return 0;
574 }
575 
576 static const VMStateDescription vmstate_spapr_xive = {
577     .name = TYPE_SPAPR_XIVE,
578     .version_id = 1,
579     .minimum_version_id = 1,
580     .pre_save = vmstate_spapr_xive_pre_save,
581     .post_load = NULL, /* handled at the machine level */
582     .fields = (const VMStateField[]) {
583         VMSTATE_UINT32_EQUAL(nr_irqs, SpaprXive, NULL),
584         VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, SpaprXive, nr_irqs,
585                                      vmstate_spapr_xive_eas, XiveEAS),
586         VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, SpaprXive, nr_ends,
587                                              vmstate_spapr_xive_end, XiveEND),
588         VMSTATE_END_OF_LIST()
589     },
590 };
591 
592 static int spapr_xive_claim_irq(SpaprInterruptController *intc, int lisn,
593                                 bool lsi, Error **errp)
594 {
595     SpaprXive *xive = SPAPR_XIVE(intc);
596     XiveSource *xsrc = &xive->source;
597 
598     assert(lisn < xive->nr_irqs);
599 
600     trace_spapr_xive_claim_irq(lisn, lsi);
601 
602     if (xive_eas_is_valid(&xive->eat[lisn])) {
603         error_setg(errp, "IRQ %d is not free", lisn);
604         return -EBUSY;
605     }
606 
607     /*
608      * Set default values when allocating an IRQ number
609      */
610     xive->eat[lisn].w |= cpu_to_be64(EAS_VALID | EAS_MASKED);
611     if (lsi) {
612         xive_source_irq_set_lsi(xsrc, lisn);
613     }
614 
615     if (spapr_xive_in_kernel(xive)) {
616         return kvmppc_xive_source_reset_one(xsrc, lisn, errp);
617     }
618 
619     return 0;
620 }
621 
622 static void spapr_xive_free_irq(SpaprInterruptController *intc, int lisn)
623 {
624     SpaprXive *xive = SPAPR_XIVE(intc);
625     assert(lisn < xive->nr_irqs);
626 
627     trace_spapr_xive_free_irq(lisn);
628 
629     xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID);
630 }
631 
632 static Property spapr_xive_properties[] = {
633     DEFINE_PROP_UINT32("nr-irqs", SpaprXive, nr_irqs, 0),
634     DEFINE_PROP_UINT32("nr-ends", SpaprXive, nr_ends, 0),
635     DEFINE_PROP_UINT64("vc-base", SpaprXive, vc_base, SPAPR_XIVE_VC_BASE),
636     DEFINE_PROP_UINT64("tm-base", SpaprXive, tm_base, SPAPR_XIVE_TM_BASE),
637     DEFINE_PROP_UINT8("hv-prio", SpaprXive, hv_prio, 7),
638     DEFINE_PROP_END_OF_LIST(),
639 };
640 
641 static int spapr_xive_cpu_intc_create(SpaprInterruptController *intc,
642                                       PowerPCCPU *cpu, Error **errp)
643 {
644     SpaprXive *xive = SPAPR_XIVE(intc);
645     Object *obj;
646     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
647 
648     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(xive), errp);
649     if (!obj) {
650         return -1;
651     }
652 
653     spapr_cpu->tctx = XIVE_TCTX(obj);
654     return 0;
655 }
656 
657 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t os_cam)
658 {
659     uint32_t qw1w2 = cpu_to_be32(TM_QW1W2_VO | os_cam);
660     memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
661 }
662 
663 static void spapr_xive_cpu_intc_reset(SpaprInterruptController *intc,
664                                      PowerPCCPU *cpu)
665 {
666     XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
667     uint8_t  nvt_blk;
668     uint32_t nvt_idx;
669 
670     xive_tctx_reset(tctx);
671 
672     /*
673      * When a Virtual Processor is scheduled to run on a HW thread,
674      * the hypervisor pushes its identifier in the OS CAM line.
675      * Emulate the same behavior under QEMU.
676      */
677     spapr_xive_cpu_to_nvt(cpu, &nvt_blk, &nvt_idx);
678 
679     xive_tctx_set_os_cam(tctx, xive_nvt_cam_line(nvt_blk, nvt_idx));
680 }
681 
682 static void spapr_xive_cpu_intc_destroy(SpaprInterruptController *intc,
683                                         PowerPCCPU *cpu)
684 {
685     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
686 
687     xive_tctx_destroy(spapr_cpu->tctx);
688     spapr_cpu->tctx = NULL;
689 }
690 
691 static void spapr_xive_set_irq(SpaprInterruptController *intc, int irq, int val)
692 {
693     SpaprXive *xive = SPAPR_XIVE(intc);
694 
695     trace_spapr_xive_set_irq(irq, val);
696 
697     if (spapr_xive_in_kernel(xive)) {
698         kvmppc_xive_source_set_irq(&xive->source, irq, val);
699     } else {
700         xive_source_set_irq(&xive->source, irq, val);
701     }
702 }
703 
704 static void spapr_xive_print_info(SpaprInterruptController *intc, Monitor *mon)
705 {
706     SpaprXive *xive = SPAPR_XIVE(intc);
707     CPUState *cs;
708     g_autoptr(GString) buf = g_string_new("");
709     g_autoptr(HumanReadableText) info = NULL;
710 
711     CPU_FOREACH(cs) {
712         PowerPCCPU *cpu = POWERPC_CPU(cs);
713 
714         xive_tctx_pic_print_info(spapr_cpu_state(cpu)->tctx, buf);
715     }
716     spapr_xive_pic_print_info(xive, buf);
717 
718     info = human_readable_text_from_str(buf);
719     monitor_puts(mon, info->human_readable_text);
720 }
721 
722 static void spapr_xive_dt(SpaprInterruptController *intc, uint32_t nr_servers,
723                           void *fdt, uint32_t phandle)
724 {
725     SpaprXive *xive = SPAPR_XIVE(intc);
726     int node;
727     uint64_t timas[2 * 2];
728     /* Interrupt number ranges for the IPIs */
729     uint32_t lisn_ranges[] = {
730         cpu_to_be32(SPAPR_IRQ_IPI),
731         cpu_to_be32(SPAPR_IRQ_IPI + nr_servers),
732     };
733     /*
734      * EQ size - the sizes of pages supported by the system 4K, 64K,
735      * 2M, 16M. We only advertise 64K for the moment.
736      */
737     uint32_t eq_sizes[] = {
738         cpu_to_be32(16), /* 64K */
739     };
740     /*
741      * QEMU/KVM only needs to define a single range to reserve the
742      * escalation priority. A priority bitmask would have been more
743      * appropriate.
744      */
745     uint32_t plat_res_int_priorities[] = {
746         cpu_to_be32(xive->hv_prio),    /* start */
747         cpu_to_be32(0xff - xive->hv_prio), /* count */
748     };
749 
750     /* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */
751     timas[0] = cpu_to_be64(xive->tm_base +
752                            XIVE_TM_USER_PAGE * (1ull << TM_SHIFT));
753     timas[1] = cpu_to_be64(1ull << TM_SHIFT);
754     timas[2] = cpu_to_be64(xive->tm_base +
755                            XIVE_TM_OS_PAGE * (1ull << TM_SHIFT));
756     timas[3] = cpu_to_be64(1ull << TM_SHIFT);
757 
758     _FDT(node = fdt_add_subnode(fdt, 0, xive->nodename));
759 
760     _FDT(fdt_setprop_string(fdt, node, "device_type", "power-ivpe"));
761     _FDT(fdt_setprop(fdt, node, "reg", timas, sizeof(timas)));
762 
763     _FDT(fdt_setprop_string(fdt, node, "compatible", "ibm,power-ivpe"));
764     _FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes", eq_sizes,
765                      sizeof(eq_sizes)));
766     _FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges", lisn_ranges,
767                      sizeof(lisn_ranges)));
768 
769     /* For Linux to link the LSIs to the interrupt controller. */
770     _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0));
771     _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2));
772 
773     /* For SLOF */
774     _FDT(fdt_setprop_cell(fdt, node, "linux,phandle", phandle));
775     _FDT(fdt_setprop_cell(fdt, node, "phandle", phandle));
776 
777     /*
778      * The "ibm,plat-res-int-priorities" property defines the priority
779      * ranges reserved by the hypervisor
780      */
781     _FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities",
782                      plat_res_int_priorities, sizeof(plat_res_int_priorities)));
783 }
784 
785 static int spapr_xive_activate(SpaprInterruptController *intc,
786                                uint32_t nr_servers, Error **errp)
787 {
788     SpaprXive *xive = SPAPR_XIVE(intc);
789 
790     if (kvm_enabled()) {
791         int rc = spapr_irq_init_kvm(kvmppc_xive_connect, intc, nr_servers,
792                                     errp);
793         if (rc < 0) {
794             return rc;
795         }
796     }
797 
798     /* Activate the XIVE MMIOs */
799     spapr_xive_mmio_set_enabled(xive, true);
800 
801     return 0;
802 }
803 
804 static void spapr_xive_deactivate(SpaprInterruptController *intc)
805 {
806     SpaprXive *xive = SPAPR_XIVE(intc);
807 
808     spapr_xive_mmio_set_enabled(xive, false);
809 
810     if (spapr_xive_in_kernel(xive)) {
811         kvmppc_xive_disconnect(intc);
812     }
813 }
814 
815 static bool spapr_xive_in_kernel_xptr(const XivePresenter *xptr)
816 {
817     return spapr_xive_in_kernel(SPAPR_XIVE(xptr));
818 }
819 
820 static void spapr_xive_class_init(ObjectClass *klass, void *data)
821 {
822     DeviceClass *dc = DEVICE_CLASS(klass);
823     XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
824     SpaprInterruptControllerClass *sicc = SPAPR_INTC_CLASS(klass);
825     XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass);
826     SpaprXiveClass *sxc = SPAPR_XIVE_CLASS(klass);
827 
828     dc->desc    = "sPAPR XIVE Interrupt Controller";
829     device_class_set_props(dc, spapr_xive_properties);
830     device_class_set_parent_realize(dc, spapr_xive_realize,
831                                     &sxc->parent_realize);
832     dc->vmsd    = &vmstate_spapr_xive;
833 
834     xrc->get_eas = spapr_xive_get_eas;
835     xrc->get_pq  = spapr_xive_get_pq;
836     xrc->set_pq  = spapr_xive_set_pq;
837     xrc->get_end = spapr_xive_get_end;
838     xrc->write_end = spapr_xive_write_end;
839     xrc->get_nvt = spapr_xive_get_nvt;
840     xrc->write_nvt = spapr_xive_write_nvt;
841     xrc->get_block_id = spapr_xive_get_block_id;
842 
843     sicc->activate = spapr_xive_activate;
844     sicc->deactivate = spapr_xive_deactivate;
845     sicc->cpu_intc_create = spapr_xive_cpu_intc_create;
846     sicc->cpu_intc_reset = spapr_xive_cpu_intc_reset;
847     sicc->cpu_intc_destroy = spapr_xive_cpu_intc_destroy;
848     sicc->claim_irq = spapr_xive_claim_irq;
849     sicc->free_irq = spapr_xive_free_irq;
850     sicc->set_irq = spapr_xive_set_irq;
851     sicc->print_info = spapr_xive_print_info;
852     sicc->dt = spapr_xive_dt;
853     sicc->post_load = spapr_xive_post_load;
854 
855     xpc->match_nvt  = spapr_xive_match_nvt;
856     xpc->get_config = spapr_xive_presenter_get_config;
857     xpc->in_kernel  = spapr_xive_in_kernel_xptr;
858 }
859 
860 static const TypeInfo spapr_xive_info = {
861     .name = TYPE_SPAPR_XIVE,
862     .parent = TYPE_XIVE_ROUTER,
863     .instance_init = spapr_xive_instance_init,
864     .instance_size = sizeof(SpaprXive),
865     .class_init = spapr_xive_class_init,
866     .class_size = sizeof(SpaprXiveClass),
867     .interfaces = (InterfaceInfo[]) {
868         { TYPE_SPAPR_INTC },
869         { }
870     },
871 };
872 
873 static void spapr_xive_register_types(void)
874 {
875     type_register_static(&spapr_xive_info);
876 }
877 
878 type_init(spapr_xive_register_types)
879 
880 /*
881  * XIVE hcalls
882  *
883  * The terminology used by the XIVE hcalls is the following :
884  *
885  *   TARGET vCPU number
886  *   EQ     Event Queue assigned by OS to receive event data
887  *   ESB    page for source interrupt management
888  *   LISN   Logical Interrupt Source Number identifying a source in the
889  *          machine
890  *   EISN   Effective Interrupt Source Number used by guest OS to
891  *          identify source in the guest
892  *
893  * The EAS, END, NVT structures are not exposed.
894  */
895 
896 /*
897  * On POWER9, the KVM XIVE device uses priority 7 for the escalation
898  * interrupts. So we only allow the guest to use priorities [0..6].
899  */
900 static bool spapr_xive_priority_is_reserved(SpaprXive *xive, uint8_t priority)
901 {
902     return priority >= xive->hv_prio;
903 }
904 
905 /*
906  * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical
907  * real address of the MMIO page through which the Event State Buffer
908  * entry associated with the value of the "lisn" parameter is managed.
909  *
910  * Parameters:
911  * Input
912  * - R4: "flags"
913  *         Bits 0-63 reserved
914  * - R5: "lisn" is per "interrupts", "interrupt-map", or
915  *       "ibm,xive-lisn-ranges" properties, or as returned by the
916  *       ibm,query-interrupt-source-number RTAS call, or as returned
917  *       by the H_ALLOCATE_VAS_WINDOW hcall
918  *
919  * Output
920  * - R4: "flags"
921  *         Bits 0-59: Reserved
922  *         Bit 60: H_INT_ESB must be used for Event State Buffer
923  *                 management
924  *         Bit 61: 1 == LSI  0 == MSI
925  *         Bit 62: the full function page supports trigger
926  *         Bit 63: Store EOI Supported
927  * - R5: Logical Real address of full function Event State Buffer
928  *       management page, -1 if H_INT_ESB hcall flag is set to 1.
929  * - R6: Logical Real Address of trigger only Event State Buffer
930  *       management page or -1.
931  * - R7: Power of 2 page size for the ESB management pages returned in
932  *       R5 and R6.
933  */
934 
935 #define SPAPR_XIVE_SRC_H_INT_ESB     PPC_BIT(60) /* ESB manage with H_INT_ESB */
936 #define SPAPR_XIVE_SRC_LSI           PPC_BIT(61) /* Virtual LSI type */
937 #define SPAPR_XIVE_SRC_TRIGGER       PPC_BIT(62) /* Trigger and management
938                                                     on same page */
939 #define SPAPR_XIVE_SRC_STORE_EOI     PPC_BIT(63) /* Store EOI support */
940 
941 static target_ulong h_int_get_source_info(PowerPCCPU *cpu,
942                                           SpaprMachineState *spapr,
943                                           target_ulong opcode,
944                                           target_ulong *args)
945 {
946     SpaprXive *xive = spapr->xive;
947     XiveSource *xsrc = &xive->source;
948     target_ulong flags  = args[0];
949     target_ulong lisn   = args[1];
950 
951     trace_spapr_xive_get_source_info(flags, lisn);
952 
953     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
954         return H_FUNCTION;
955     }
956 
957     if (flags) {
958         return H_PARAMETER;
959     }
960 
961     if (lisn >= xive->nr_irqs) {
962         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
963                       lisn);
964         return H_P2;
965     }
966 
967     if (!xive_eas_is_valid(&xive->eat[lisn])) {
968         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
969                       lisn);
970         return H_P2;
971     }
972 
973     /*
974      * All sources are emulated under the main XIVE object and share
975      * the same characteristics.
976      */
977     args[0] = 0;
978     if (!xive_source_esb_has_2page(xsrc)) {
979         args[0] |= SPAPR_XIVE_SRC_TRIGGER;
980     }
981     if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) {
982         args[0] |= SPAPR_XIVE_SRC_STORE_EOI;
983     }
984 
985     /*
986      * Force the use of the H_INT_ESB hcall in case of an LSI
987      * interrupt. This is necessary under KVM to re-trigger the
988      * interrupt if the level is still asserted
989      */
990     if (xive_source_irq_is_lsi(xsrc, lisn)) {
991         args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI;
992     }
993 
994     if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
995         args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn);
996     } else {
997         args[1] = -1;
998     }
999 
1000     if (xive_source_esb_has_2page(xsrc) &&
1001         !(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
1002         args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn);
1003     } else {
1004         args[2] = -1;
1005     }
1006 
1007     if (xive_source_esb_has_2page(xsrc)) {
1008         args[3] = xsrc->esb_shift - 1;
1009     } else {
1010         args[3] = xsrc->esb_shift;
1011     }
1012 
1013     return H_SUCCESS;
1014 }
1015 
1016 /*
1017  * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical
1018  * Interrupt Source to a target. The Logical Interrupt Source is
1019  * designated with the "lisn" parameter and the target is designated
1020  * with the "target" and "priority" parameters.  Upon return from the
1021  * hcall(), no additional interrupts will be directed to the old EQ.
1022  *
1023  * Parameters:
1024  * Input:
1025  * - R4: "flags"
1026  *         Bits 0-61: Reserved
1027  *         Bit 62: set the "eisn" in the EAS
1028  *         Bit 63: masks the interrupt source in the hardware interrupt
1029  *       control structure. An interrupt masked by this mechanism will
1030  *       be dropped, but it's source state bits will still be
1031  *       set. There is no race-free way of unmasking and restoring the
1032  *       source. Thus this should only be used in interrupts that are
1033  *       also masked at the source, and only in cases where the
1034  *       interrupt is not meant to be used for a large amount of time
1035  *       because no valid target exists for it for example
1036  * - R5: "lisn" is per "interrupts", "interrupt-map", or
1037  *       "ibm,xive-lisn-ranges" properties, or as returned by the
1038  *       ibm,query-interrupt-source-number RTAS call, or as returned by
1039  *       the H_ALLOCATE_VAS_WINDOW hcall
1040  * - R6: "target" is per "ibm,ppc-interrupt-server#s" or
1041  *       "ibm,ppc-interrupt-gserver#s"
1042  * - R7: "priority" is a valid priority not in
1043  *       "ibm,plat-res-int-priorities"
1044  * - R8: "eisn" is the guest EISN associated with the "lisn"
1045  *
1046  * Output:
1047  * - None
1048  */
1049 
1050 #define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62)
1051 #define SPAPR_XIVE_SRC_MASK     PPC_BIT(63)
1052 
1053 static target_ulong h_int_set_source_config(PowerPCCPU *cpu,
1054                                             SpaprMachineState *spapr,
1055                                             target_ulong opcode,
1056                                             target_ulong *args)
1057 {
1058     SpaprXive *xive = spapr->xive;
1059     XiveEAS eas, new_eas;
1060     target_ulong flags    = args[0];
1061     target_ulong lisn     = args[1];
1062     target_ulong target   = args[2];
1063     target_ulong priority = args[3];
1064     target_ulong eisn     = args[4];
1065     uint8_t end_blk;
1066     uint32_t end_idx;
1067 
1068     trace_spapr_xive_set_source_config(flags, lisn, target, priority, eisn);
1069 
1070     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1071         return H_FUNCTION;
1072     }
1073 
1074     if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) {
1075         return H_PARAMETER;
1076     }
1077 
1078     if (lisn >= xive->nr_irqs) {
1079         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1080                       lisn);
1081         return H_P2;
1082     }
1083 
1084     eas = xive->eat[lisn];
1085     if (!xive_eas_is_valid(&eas)) {
1086         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1087                       lisn);
1088         return H_P2;
1089     }
1090 
1091     /* priority 0xff is used to reset the EAS */
1092     if (priority == 0xff) {
1093         new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED);
1094         goto out;
1095     }
1096 
1097     if (flags & SPAPR_XIVE_SRC_MASK) {
1098         new_eas.w = eas.w | cpu_to_be64(EAS_MASKED);
1099     } else {
1100         new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED);
1101     }
1102 
1103     if (spapr_xive_priority_is_reserved(xive, priority)) {
1104         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1105                       " is reserved\n", priority);
1106         return H_P4;
1107     }
1108 
1109     /*
1110      * Validate that "target" is part of the list of threads allocated
1111      * to the partition. For that, find the END corresponding to the
1112      * target.
1113      */
1114     if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1115         return H_P3;
1116     }
1117 
1118     new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk);
1119     new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx);
1120 
1121     if (flags & SPAPR_XIVE_SRC_SET_EISN) {
1122         new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn);
1123     }
1124 
1125     if (spapr_xive_in_kernel(xive)) {
1126         Error *local_err = NULL;
1127 
1128         kvmppc_xive_set_source_config(xive, lisn, &new_eas, &local_err);
1129         if (local_err) {
1130             error_report_err(local_err);
1131             return H_HARDWARE;
1132         }
1133     }
1134 
1135 out:
1136     xive->eat[lisn] = new_eas;
1137     return H_SUCCESS;
1138 }
1139 
1140 /*
1141  * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which
1142  * target/priority pair is assigned to the specified Logical Interrupt
1143  * Source.
1144  *
1145  * Parameters:
1146  * Input:
1147  * - R4: "flags"
1148  *         Bits 0-63 Reserved
1149  * - R5: "lisn" is per "interrupts", "interrupt-map", or
1150  *       "ibm,xive-lisn-ranges" properties, or as returned by the
1151  *       ibm,query-interrupt-source-number RTAS call, or as
1152  *       returned by the H_ALLOCATE_VAS_WINDOW hcall
1153  *
1154  * Output:
1155  * - R4: Target to which the specified Logical Interrupt Source is
1156  *       assigned
1157  * - R5: Priority to which the specified Logical Interrupt Source is
1158  *       assigned
1159  * - R6: EISN for the specified Logical Interrupt Source (this will be
1160  *       equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG)
1161  */
1162 static target_ulong h_int_get_source_config(PowerPCCPU *cpu,
1163                                             SpaprMachineState *spapr,
1164                                             target_ulong opcode,
1165                                             target_ulong *args)
1166 {
1167     SpaprXive *xive = spapr->xive;
1168     target_ulong flags = args[0];
1169     target_ulong lisn = args[1];
1170     XiveEAS eas;
1171     XiveEND *end;
1172     uint8_t nvt_blk;
1173     uint32_t end_idx, nvt_idx;
1174 
1175     trace_spapr_xive_get_source_config(flags, lisn);
1176 
1177     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1178         return H_FUNCTION;
1179     }
1180 
1181     if (flags) {
1182         return H_PARAMETER;
1183     }
1184 
1185     if (lisn >= xive->nr_irqs) {
1186         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1187                       lisn);
1188         return H_P2;
1189     }
1190 
1191     eas = xive->eat[lisn];
1192     if (!xive_eas_is_valid(&eas)) {
1193         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1194                       lisn);
1195         return H_P2;
1196     }
1197 
1198     /* EAS_END_BLOCK is unused on sPAPR */
1199     end_idx = xive_get_field64(EAS_END_INDEX, eas.w);
1200 
1201     assert(end_idx < xive->nr_ends);
1202     end = &xive->endt[end_idx];
1203 
1204     nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1205     nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1206     args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
1207 
1208     if (xive_eas_is_masked(&eas)) {
1209         args[1] = 0xff;
1210     } else {
1211         args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1212     }
1213 
1214     args[2] = xive_get_field64(EAS_END_DATA, eas.w);
1215 
1216     return H_SUCCESS;
1217 }
1218 
1219 /*
1220  * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real
1221  * address of the notification management page associated with the
1222  * specified target and priority.
1223  *
1224  * Parameters:
1225  * Input:
1226  * - R4: "flags"
1227  *         Bits 0-63 Reserved
1228  * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1229  *       "ibm,ppc-interrupt-gserver#s"
1230  * - R6: "priority" is a valid priority not in
1231  *       "ibm,plat-res-int-priorities"
1232  *
1233  * Output:
1234  * - R4: Logical real address of notification page
1235  * - R5: Power of 2 page size of the notification page
1236  */
1237 static target_ulong h_int_get_queue_info(PowerPCCPU *cpu,
1238                                          SpaprMachineState *spapr,
1239                                          target_ulong opcode,
1240                                          target_ulong *args)
1241 {
1242     SpaprXive *xive = spapr->xive;
1243     XiveENDSource *end_xsrc = &xive->end_source;
1244     target_ulong flags = args[0];
1245     target_ulong target = args[1];
1246     target_ulong priority = args[2];
1247     XiveEND *end;
1248     uint8_t end_blk;
1249     uint32_t end_idx;
1250 
1251     trace_spapr_xive_get_queue_info(flags, target, priority);
1252 
1253     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1254         return H_FUNCTION;
1255     }
1256 
1257     if (flags) {
1258         return H_PARAMETER;
1259     }
1260 
1261     /*
1262      * H_STATE should be returned if a H_INT_RESET is in progress.
1263      * This is not needed when running the emulation under QEMU
1264      */
1265 
1266     if (spapr_xive_priority_is_reserved(xive, priority)) {
1267         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1268                       " is reserved\n", priority);
1269         return H_P3;
1270     }
1271 
1272     /*
1273      * Validate that "target" is part of the list of threads allocated
1274      * to the partition. For that, find the END corresponding to the
1275      * target.
1276      */
1277     if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1278         return H_P2;
1279     }
1280 
1281     assert(end_idx < xive->nr_ends);
1282     end = &xive->endt[end_idx];
1283 
1284     args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx;
1285     if (xive_end_is_enqueue(end)) {
1286         args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1287     } else {
1288         args[1] = 0;
1289     }
1290 
1291     return H_SUCCESS;
1292 }
1293 
1294 /*
1295  * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for
1296  * a given "target" and "priority".  It is also used to set the
1297  * notification config associated with the EQ.  An EQ size of 0 is
1298  * used to reset the EQ config for a given target and priority. If
1299  * resetting the EQ config, the END associated with the given "target"
1300  * and "priority" will be changed to disable queueing.
1301  *
1302  * Upon return from the hcall(), no additional interrupts will be
1303  * directed to the old EQ (if one was set). The old EQ (if one was
1304  * set) should be investigated for interrupts that occurred prior to
1305  * or during the hcall().
1306  *
1307  * Parameters:
1308  * Input:
1309  * - R4: "flags"
1310  *         Bits 0-62: Reserved
1311  *         Bit 63: Unconditional Notify (n) per the XIVE spec
1312  * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1313  *       "ibm,ppc-interrupt-gserver#s"
1314  * - R6: "priority" is a valid priority not in
1315  *       "ibm,plat-res-int-priorities"
1316  * - R7: "eventQueue": The logical real address of the start of the EQ
1317  * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes"
1318  *
1319  * Output:
1320  * - None
1321  */
1322 
1323 #define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63)
1324 
1325 static target_ulong h_int_set_queue_config(PowerPCCPU *cpu,
1326                                            SpaprMachineState *spapr,
1327                                            target_ulong opcode,
1328                                            target_ulong *args)
1329 {
1330     SpaprXive *xive = spapr->xive;
1331     target_ulong flags = args[0];
1332     target_ulong target = args[1];
1333     target_ulong priority = args[2];
1334     target_ulong qpage = args[3];
1335     target_ulong qsize = args[4];
1336     XiveEND end;
1337     uint8_t end_blk, nvt_blk;
1338     uint32_t end_idx, nvt_idx;
1339 
1340     trace_spapr_xive_set_queue_config(flags, target, priority, qpage, qsize);
1341 
1342     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1343         return H_FUNCTION;
1344     }
1345 
1346     if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1347         return H_PARAMETER;
1348     }
1349 
1350     /*
1351      * H_STATE should be returned if a H_INT_RESET is in progress.
1352      * This is not needed when running the emulation under QEMU
1353      */
1354 
1355     if (spapr_xive_priority_is_reserved(xive, priority)) {
1356         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1357                       " is reserved\n", priority);
1358         return H_P3;
1359     }
1360 
1361     /*
1362      * Validate that "target" is part of the list of threads allocated
1363      * to the partition. For that, find the END corresponding to the
1364      * target.
1365      */
1366 
1367     if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1368         return H_P2;
1369     }
1370 
1371     assert(end_idx < xive->nr_ends);
1372     memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND));
1373 
1374     switch (qsize) {
1375     case 12:
1376     case 16:
1377     case 21:
1378     case 24:
1379         if (!QEMU_IS_ALIGNED(qpage, 1ul << qsize)) {
1380             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: EQ @0x%" HWADDR_PRIx
1381                           " is not naturally aligned with %" HWADDR_PRIx "\n",
1382                           qpage, (hwaddr)1 << qsize);
1383             return H_P4;
1384         }
1385         end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff);
1386         end.w3 = cpu_to_be32(qpage & 0xffffffff);
1387         end.w0 |= cpu_to_be32(END_W0_ENQUEUE);
1388         end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12);
1389         break;
1390     case 0:
1391         /* reset queue and disable queueing */
1392         spapr_xive_end_reset(&end);
1393         goto out;
1394 
1395     default:
1396         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n",
1397                       qsize);
1398         return H_P5;
1399     }
1400 
1401     if (qsize) {
1402         hwaddr plen = 1 << qsize;
1403         void *eq;
1404 
1405         /*
1406          * Validate the guest EQ. We should also check that the queue
1407          * has been zeroed by the OS.
1408          */
1409         eq = address_space_map(CPU(cpu)->as, qpage, &plen, true,
1410                                MEMTXATTRS_UNSPECIFIED);
1411         if (plen != 1 << qsize) {
1412             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%"
1413                           HWADDR_PRIx "\n", qpage);
1414             return H_P4;
1415         }
1416         address_space_unmap(CPU(cpu)->as, eq, plen, true, plen);
1417     }
1418 
1419     /* "target" should have been validated above */
1420     if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) {
1421         g_assert_not_reached();
1422     }
1423 
1424     /*
1425      * Ensure the priority and target are correctly set (they will not
1426      * be right after allocation)
1427      */
1428     end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) |
1429         xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx);
1430     end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority);
1431 
1432     if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1433         end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY);
1434     } else {
1435         end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY);
1436     }
1437 
1438     /*
1439      * The generation bit for the END starts at 1 and The END page
1440      * offset counter starts at 0.
1441      */
1442     end.w1 = cpu_to_be32(END_W1_GENERATION) |
1443         xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul);
1444     end.w0 |= cpu_to_be32(END_W0_VALID);
1445 
1446     /*
1447      * TODO: issue syncs required to ensure all in-flight interrupts
1448      * are complete on the old END
1449      */
1450 
1451 out:
1452     if (spapr_xive_in_kernel(xive)) {
1453         Error *local_err = NULL;
1454 
1455         kvmppc_xive_set_queue_config(xive, end_blk, end_idx, &end, &local_err);
1456         if (local_err) {
1457             error_report_err(local_err);
1458             return H_HARDWARE;
1459         }
1460     }
1461 
1462     /* Update END */
1463     memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND));
1464     return H_SUCCESS;
1465 }
1466 
1467 /*
1468  * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given
1469  * target and priority.
1470  *
1471  * Parameters:
1472  * Input:
1473  * - R4: "flags"
1474  *         Bits 0-62: Reserved
1475  *         Bit 63: Debug: Return debug data
1476  * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1477  *       "ibm,ppc-interrupt-gserver#s"
1478  * - R6: "priority" is a valid priority not in
1479  *       "ibm,plat-res-int-priorities"
1480  *
1481  * Output:
1482  * - R4: "flags":
1483  *       Bits 0-61: Reserved
1484  *       Bit 62: The value of Event Queue Generation Number (g) per
1485  *              the XIVE spec if "Debug" = 1
1486  *       Bit 63: The value of Unconditional Notify (n) per the XIVE spec
1487  * - R5: The logical real address of the start of the EQ
1488  * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes"
1489  * - R7: The value of Event Queue Offset Counter per XIVE spec
1490  *       if "Debug" = 1, else 0
1491  *
1492  */
1493 
1494 #define SPAPR_XIVE_END_DEBUG     PPC_BIT(63)
1495 
1496 static target_ulong h_int_get_queue_config(PowerPCCPU *cpu,
1497                                            SpaprMachineState *spapr,
1498                                            target_ulong opcode,
1499                                            target_ulong *args)
1500 {
1501     SpaprXive *xive = spapr->xive;
1502     target_ulong flags = args[0];
1503     target_ulong target = args[1];
1504     target_ulong priority = args[2];
1505     XiveEND *end;
1506     uint8_t end_blk;
1507     uint32_t end_idx;
1508 
1509     trace_spapr_xive_get_queue_config(flags, target, priority);
1510 
1511     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1512         return H_FUNCTION;
1513     }
1514 
1515     if (flags & ~SPAPR_XIVE_END_DEBUG) {
1516         return H_PARAMETER;
1517     }
1518 
1519     /*
1520      * H_STATE should be returned if a H_INT_RESET is in progress.
1521      * This is not needed when running the emulation under QEMU
1522      */
1523 
1524     if (spapr_xive_priority_is_reserved(xive, priority)) {
1525         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1526                       " is reserved\n", priority);
1527         return H_P3;
1528     }
1529 
1530     /*
1531      * Validate that "target" is part of the list of threads allocated
1532      * to the partition. For that, find the END corresponding to the
1533      * target.
1534      */
1535     if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1536         return H_P2;
1537     }
1538 
1539     assert(end_idx < xive->nr_ends);
1540     end = &xive->endt[end_idx];
1541 
1542     args[0] = 0;
1543     if (xive_end_is_notify(end)) {
1544         args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY;
1545     }
1546 
1547     if (xive_end_is_enqueue(end)) {
1548         args[1] = xive_end_qaddr(end);
1549         args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1550     } else {
1551         args[1] = 0;
1552         args[2] = 0;
1553     }
1554 
1555     if (spapr_xive_in_kernel(xive)) {
1556         Error *local_err = NULL;
1557 
1558         kvmppc_xive_get_queue_config(xive, end_blk, end_idx, end, &local_err);
1559         if (local_err) {
1560             error_report_err(local_err);
1561             return H_HARDWARE;
1562         }
1563     }
1564 
1565     /* TODO: do we need any locking on the END ? */
1566     if (flags & SPAPR_XIVE_END_DEBUG) {
1567         /* Load the event queue generation number into the return flags */
1568         args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62;
1569 
1570         /* Load R7 with the event queue offset counter */
1571         args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1572     } else {
1573         args[3] = 0;
1574     }
1575 
1576     return H_SUCCESS;
1577 }
1578 
1579 /*
1580  * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the
1581  * reporting cache line pair for the calling thread.  The reporting
1582  * cache lines will contain the OS interrupt context when the OS
1583  * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS
1584  * interrupt. The reporting cache lines can be reset by inputting -1
1585  * in "reportingLine".  Issuing the CI store byte without reporting
1586  * cache lines registered will result in the data not being accessible
1587  * to the OS.
1588  *
1589  * Parameters:
1590  * Input:
1591  * - R4: "flags"
1592  *         Bits 0-63: Reserved
1593  * - R5: "reportingLine": The logical real address of the reporting cache
1594  *       line pair
1595  *
1596  * Output:
1597  * - None
1598  */
1599 static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu,
1600                                                 SpaprMachineState *spapr,
1601                                                 target_ulong opcode,
1602                                                 target_ulong *args)
1603 {
1604     target_ulong flags   = args[0];
1605 
1606     trace_spapr_xive_set_os_reporting_line(flags);
1607 
1608     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1609         return H_FUNCTION;
1610     }
1611 
1612     /*
1613      * H_STATE should be returned if a H_INT_RESET is in progress.
1614      * This is not needed when running the emulation under QEMU
1615      */
1616 
1617     /* TODO: H_INT_SET_OS_REPORTING_LINE */
1618     return H_FUNCTION;
1619 }
1620 
1621 /*
1622  * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical
1623  * real address of the reporting cache line pair set for the input
1624  * "target".  If no reporting cache line pair has been set, -1 is
1625  * returned.
1626  *
1627  * Parameters:
1628  * Input:
1629  * - R4: "flags"
1630  *         Bits 0-63: Reserved
1631  * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1632  *       "ibm,ppc-interrupt-gserver#s"
1633  * - R6: "reportingLine": The logical real address of the reporting
1634  *        cache line pair
1635  *
1636  * Output:
1637  * - R4: The logical real address of the reporting line if set, else -1
1638  */
1639 static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu,
1640                                                 SpaprMachineState *spapr,
1641                                                 target_ulong opcode,
1642                                                 target_ulong *args)
1643 {
1644     target_ulong flags   = args[0];
1645 
1646     trace_spapr_xive_get_os_reporting_line(flags);
1647 
1648     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1649         return H_FUNCTION;
1650     }
1651 
1652     /*
1653      * H_STATE should be returned if a H_INT_RESET is in progress.
1654      * This is not needed when running the emulation under QEMU
1655      */
1656 
1657     /* TODO: H_INT_GET_OS_REPORTING_LINE */
1658     return H_FUNCTION;
1659 }
1660 
1661 /*
1662  * The H_INT_ESB hcall() is used to issue a load or store to the ESB
1663  * page for the input "lisn".  This hcall is only supported for LISNs
1664  * that have the ESB hcall flag set to 1 when returned from hcall()
1665  * H_INT_GET_SOURCE_INFO.
1666  *
1667  * Parameters:
1668  * Input:
1669  * - R4: "flags"
1670  *         Bits 0-62: Reserved
1671  *         bit 63: Store: Store=1, store operation, else load operation
1672  * - R5: "lisn" is per "interrupts", "interrupt-map", or
1673  *       "ibm,xive-lisn-ranges" properties, or as returned by the
1674  *       ibm,query-interrupt-source-number RTAS call, or as
1675  *       returned by the H_ALLOCATE_VAS_WINDOW hcall
1676  * - R6: "esbOffset" is the offset into the ESB page for the load or
1677  *       store operation
1678  * - R7: "storeData" is the data to write for a store operation
1679  *
1680  * Output:
1681  * - R4: The value of the load if load operation, else -1
1682  */
1683 
1684 #define SPAPR_XIVE_ESB_STORE PPC_BIT(63)
1685 
1686 static target_ulong h_int_esb(PowerPCCPU *cpu,
1687                               SpaprMachineState *spapr,
1688                               target_ulong opcode,
1689                               target_ulong *args)
1690 {
1691     SpaprXive *xive = spapr->xive;
1692     XiveEAS eas;
1693     target_ulong flags  = args[0];
1694     target_ulong lisn   = args[1];
1695     target_ulong offset = args[2];
1696     target_ulong data   = args[3];
1697     hwaddr mmio_addr;
1698     XiveSource *xsrc = &xive->source;
1699 
1700     trace_spapr_xive_esb(flags, lisn, offset, data);
1701 
1702     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1703         return H_FUNCTION;
1704     }
1705 
1706     if (flags & ~SPAPR_XIVE_ESB_STORE) {
1707         return H_PARAMETER;
1708     }
1709 
1710     if (lisn >= xive->nr_irqs) {
1711         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1712                       lisn);
1713         return H_P2;
1714     }
1715 
1716     eas = xive->eat[lisn];
1717     if (!xive_eas_is_valid(&eas)) {
1718         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1719                       lisn);
1720         return H_P2;
1721     }
1722 
1723     if (offset > (1ull << xsrc->esb_shift)) {
1724         return H_P3;
1725     }
1726 
1727     if (spapr_xive_in_kernel(xive)) {
1728         args[0] = kvmppc_xive_esb_rw(xsrc, lisn, offset, data,
1729                                      flags & SPAPR_XIVE_ESB_STORE);
1730     } else {
1731         mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset;
1732 
1733         if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8,
1734                           (flags & SPAPR_XIVE_ESB_STORE),
1735                           MEMTXATTRS_UNSPECIFIED)) {
1736             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%"
1737                           HWADDR_PRIx "\n", mmio_addr);
1738             return H_HARDWARE;
1739         }
1740         args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data;
1741     }
1742     return H_SUCCESS;
1743 }
1744 
1745 /*
1746  * The H_INT_SYNC hcall() is used to issue hardware syncs that will
1747  * ensure any in flight events for the input lisn are in the event
1748  * queue.
1749  *
1750  * Parameters:
1751  * Input:
1752  * - R4: "flags"
1753  *         Bits 0-63: Reserved
1754  * - R5: "lisn" is per "interrupts", "interrupt-map", or
1755  *       "ibm,xive-lisn-ranges" properties, or as returned by the
1756  *       ibm,query-interrupt-source-number RTAS call, or as
1757  *       returned by the H_ALLOCATE_VAS_WINDOW hcall
1758  *
1759  * Output:
1760  * - None
1761  */
1762 static target_ulong h_int_sync(PowerPCCPU *cpu,
1763                                SpaprMachineState *spapr,
1764                                target_ulong opcode,
1765                                target_ulong *args)
1766 {
1767     SpaprXive *xive = spapr->xive;
1768     XiveEAS eas;
1769     target_ulong flags = args[0];
1770     target_ulong lisn = args[1];
1771 
1772     trace_spapr_xive_sync(flags, lisn);
1773 
1774     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1775         return H_FUNCTION;
1776     }
1777 
1778     if (flags) {
1779         return H_PARAMETER;
1780     }
1781 
1782     if (lisn >= xive->nr_irqs) {
1783         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1784                       lisn);
1785         return H_P2;
1786     }
1787 
1788     eas = xive->eat[lisn];
1789     if (!xive_eas_is_valid(&eas)) {
1790         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1791                       lisn);
1792         return H_P2;
1793     }
1794 
1795     /*
1796      * H_STATE should be returned if a H_INT_RESET is in progress.
1797      * This is not needed when running the emulation under QEMU
1798      */
1799 
1800     /*
1801      * This is not real hardware. Nothing to be done unless when
1802      * under KVM
1803      */
1804 
1805     if (spapr_xive_in_kernel(xive)) {
1806         Error *local_err = NULL;
1807 
1808         kvmppc_xive_sync_source(xive, lisn, &local_err);
1809         if (local_err) {
1810             error_report_err(local_err);
1811             return H_HARDWARE;
1812         }
1813     }
1814     return H_SUCCESS;
1815 }
1816 
1817 /*
1818  * The H_INT_RESET hcall() is used to reset all of the partition's
1819  * interrupt exploitation structures to their initial state.  This
1820  * means losing all previously set interrupt state set via
1821  * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.
1822  *
1823  * Parameters:
1824  * Input:
1825  * - R4: "flags"
1826  *         Bits 0-63: Reserved
1827  *
1828  * Output:
1829  * - None
1830  */
1831 static target_ulong h_int_reset(PowerPCCPU *cpu,
1832                                 SpaprMachineState *spapr,
1833                                 target_ulong opcode,
1834                                 target_ulong *args)
1835 {
1836     SpaprXive *xive = spapr->xive;
1837     target_ulong flags   = args[0];
1838 
1839     trace_spapr_xive_reset(flags);
1840 
1841     if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1842         return H_FUNCTION;
1843     }
1844 
1845     if (flags) {
1846         return H_PARAMETER;
1847     }
1848 
1849     device_cold_reset(DEVICE(xive));
1850 
1851     if (spapr_xive_in_kernel(xive)) {
1852         Error *local_err = NULL;
1853 
1854         kvmppc_xive_reset(xive, &local_err);
1855         if (local_err) {
1856             error_report_err(local_err);
1857             return H_HARDWARE;
1858         }
1859     }
1860     return H_SUCCESS;
1861 }
1862 
1863 void spapr_xive_hcall_init(SpaprMachineState *spapr)
1864 {
1865     spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info);
1866     spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config);
1867     spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config);
1868     spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info);
1869     spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config);
1870     spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config);
1871     spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE,
1872                              h_int_set_os_reporting_line);
1873     spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE,
1874                              h_int_get_os_reporting_line);
1875     spapr_register_hypercall(H_INT_ESB, h_int_esb);
1876     spapr_register_hypercall(H_INT_SYNC, h_int_sync);
1877     spapr_register_hypercall(H_INT_RESET, h_int_reset);
1878 }
1879