xref: /openbmc/qemu/hw/intc/pnv_xive.c (revision 05a248715cef192336a594afed812871a52efc1f)
1 /*
2  * QEMU PowerPC XIVE interrupt controller model
3  *
4  * Copyright (c) 2017-2019, IBM Corporation.
5  *
6  * This code is licensed under the GPL version 2 or later. See the
7  * COPYING file in the top-level directory.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "sysemu/reset.h"
18 #include "monitor/monitor.h"
19 #include "hw/ppc/fdt.h"
20 #include "hw/ppc/pnv.h"
21 #include "hw/ppc/pnv_core.h"
22 #include "hw/ppc/pnv_xscom.h"
23 #include "hw/ppc/pnv_xive.h"
24 #include "hw/ppc/xive_regs.h"
25 #include "hw/qdev-properties.h"
26 #include "hw/ppc/ppc.h"
27 #include "trace.h"
28 
29 #include <libfdt.h>
30 
31 #include "pnv_xive_regs.h"
32 
33 #undef XIVE_DEBUG
34 
35 /*
36  * Virtual structures table (VST)
37  */
38 #define SBE_PER_BYTE   4
39 
40 typedef struct XiveVstInfo {
41     const char *name;
42     uint32_t    size;
43     uint32_t    max_blocks;
44 } XiveVstInfo;
45 
46 static const XiveVstInfo vst_infos[] = {
47     [VST_TSEL_IVT]  = { "EAT",  sizeof(XiveEAS), 16 },
48     [VST_TSEL_SBE]  = { "SBE",  1,               16 },
49     [VST_TSEL_EQDT] = { "ENDT", sizeof(XiveEND), 16 },
50     [VST_TSEL_VPDT] = { "VPDT", sizeof(XiveNVT), 32 },
51 
52     /*
53      *  Interrupt fifo backing store table (not modeled) :
54      *
55      * 0 - IPI,
56      * 1 - HWD,
57      * 2 - First escalate,
58      * 3 - Second escalate,
59      * 4 - Redistribution,
60      * 5 - IPI cascaded queue ?
61      */
62     [VST_TSEL_IRQ]  = { "IRQ",  1,               6  },
63 };
64 
65 #define xive_error(xive, fmt, ...)                                      \
66     qemu_log_mask(LOG_GUEST_ERROR, "XIVE[%x] - " fmt "\n",              \
67                   (xive)->chip->chip_id, ## __VA_ARGS__);
68 
69 /*
70  * QEMU version of the GETFIELD/SETFIELD macros
71  *
72  * TODO: It might be better to use the existing extract64() and
73  * deposit64() but this means that all the register definitions will
74  * change and become incompatible with the ones found in skiboot.
75  *
76  * Keep it as it is for now until we find a common ground.
77  */
78 static inline uint64_t GETFIELD(uint64_t mask, uint64_t word)
79 {
80     return (word & mask) >> ctz64(mask);
81 }
82 
83 static inline uint64_t SETFIELD(uint64_t mask, uint64_t word,
84                                 uint64_t value)
85 {
86     return (word & ~mask) | ((value << ctz64(mask)) & mask);
87 }
88 
89 /*
90  * When PC_TCTXT_CHIPID_OVERRIDE is configured, the PC_TCTXT_CHIPID
91  * field overrides the hardwired chip ID in the Powerbus operations
92  * and for CAM compares
93  */
94 static uint8_t pnv_xive_block_id(PnvXive *xive)
95 {
96     uint8_t blk = xive->chip->chip_id;
97     uint64_t cfg_val = xive->regs[PC_TCTXT_CFG >> 3];
98 
99     if (cfg_val & PC_TCTXT_CHIPID_OVERRIDE) {
100         blk = GETFIELD(PC_TCTXT_CHIPID, cfg_val);
101     }
102 
103     return blk;
104 }
105 
106 /*
107  * Remote access to controllers. HW uses MMIOs. For now, a simple scan
108  * of the chips is good enough.
109  *
110  * TODO: Block scope support
111  */
112 static PnvXive *pnv_xive_get_remote(uint8_t blk)
113 {
114     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
115     int i;
116 
117     for (i = 0; i < pnv->num_chips; i++) {
118         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
119         PnvXive *xive = &chip9->xive;
120 
121         if (pnv_xive_block_id(xive) == blk) {
122             return xive;
123         }
124     }
125     return NULL;
126 }
127 
128 /*
129  * VST accessors for SBE, EAT, ENDT, NVT
130  *
131  * Indirect VST tables are arrays of VSDs pointing to a page (of same
132  * size). Each page is a direct VST table.
133  */
134 
135 #define XIVE_VSD_SIZE 8
136 
137 /* Indirect page size can be 4K, 64K, 2M, 16M. */
138 static uint64_t pnv_xive_vst_page_size_allowed(uint32_t page_shift)
139 {
140      return page_shift == 12 || page_shift == 16 ||
141          page_shift == 21 || page_shift == 24;
142 }
143 
144 static uint64_t pnv_xive_vst_addr_direct(PnvXive *xive, uint32_t type,
145                                          uint64_t vsd, uint32_t idx)
146 {
147     const XiveVstInfo *info = &vst_infos[type];
148     uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
149     uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
150     uint32_t idx_max;
151 
152     idx_max = vst_tsize / info->size - 1;
153     if (idx > idx_max) {
154 #ifdef XIVE_DEBUG
155         xive_error(xive, "VST: %s entry %x out of range [ 0 .. %x ] !?",
156                    info->name, idx, idx_max);
157 #endif
158         return 0;
159     }
160 
161     return vst_addr + idx * info->size;
162 }
163 
164 static uint64_t pnv_xive_vst_addr_indirect(PnvXive *xive, uint32_t type,
165                                            uint64_t vsd, uint32_t idx)
166 {
167     const XiveVstInfo *info = &vst_infos[type];
168     uint64_t vsd_addr;
169     uint32_t vsd_idx;
170     uint32_t page_shift;
171     uint32_t vst_per_page;
172 
173     /* Get the page size of the indirect table. */
174     vsd_addr = vsd & VSD_ADDRESS_MASK;
175     ldq_be_dma(&address_space_memory, vsd_addr, &vsd, MEMTXATTRS_UNSPECIFIED);
176 
177     if (!(vsd & VSD_ADDRESS_MASK)) {
178 #ifdef XIVE_DEBUG
179         xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
180 #endif
181         return 0;
182     }
183 
184     page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
185 
186     if (!pnv_xive_vst_page_size_allowed(page_shift)) {
187         xive_error(xive, "VST: invalid %s page shift %d", info->name,
188                    page_shift);
189         return 0;
190     }
191 
192     vst_per_page = (1ull << page_shift) / info->size;
193     vsd_idx = idx / vst_per_page;
194 
195     /* Load the VSD we are looking for, if not already done */
196     if (vsd_idx) {
197         vsd_addr = vsd_addr + vsd_idx * XIVE_VSD_SIZE;
198         ldq_be_dma(&address_space_memory, vsd_addr, &vsd,
199                    MEMTXATTRS_UNSPECIFIED);
200 
201         if (!(vsd & VSD_ADDRESS_MASK)) {
202 #ifdef XIVE_DEBUG
203             xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
204 #endif
205             return 0;
206         }
207 
208         /*
209          * Check that the pages have a consistent size across the
210          * indirect table
211          */
212         if (page_shift != GETFIELD(VSD_TSIZE, vsd) + 12) {
213             xive_error(xive, "VST: %s entry %x indirect page size differ !?",
214                        info->name, idx);
215             return 0;
216         }
217     }
218 
219     return pnv_xive_vst_addr_direct(xive, type, vsd, (idx % vst_per_page));
220 }
221 
222 static uint64_t pnv_xive_vst_addr(PnvXive *xive, uint32_t type, uint8_t blk,
223                                   uint32_t idx)
224 {
225     const XiveVstInfo *info = &vst_infos[type];
226     uint64_t vsd;
227 
228     if (blk >= info->max_blocks) {
229         xive_error(xive, "VST: invalid block id %d for VST %s %d !?",
230                    blk, info->name, idx);
231         return 0;
232     }
233 
234     vsd = xive->vsds[type][blk];
235 
236     /* Remote VST access */
237     if (GETFIELD(VSD_MODE, vsd) == VSD_MODE_FORWARD) {
238         xive = pnv_xive_get_remote(blk);
239 
240         return xive ? pnv_xive_vst_addr(xive, type, blk, idx) : 0;
241     }
242 
243     if (VSD_INDIRECT & vsd) {
244         return pnv_xive_vst_addr_indirect(xive, type, vsd, idx);
245     }
246 
247     return pnv_xive_vst_addr_direct(xive, type, vsd, idx);
248 }
249 
250 static int pnv_xive_vst_read(PnvXive *xive, uint32_t type, uint8_t blk,
251                              uint32_t idx, void *data)
252 {
253     const XiveVstInfo *info = &vst_infos[type];
254     uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
255 
256     if (!addr) {
257         return -1;
258     }
259 
260     cpu_physical_memory_read(addr, data, info->size);
261     return 0;
262 }
263 
264 #define XIVE_VST_WORD_ALL -1
265 
266 static int pnv_xive_vst_write(PnvXive *xive, uint32_t type, uint8_t blk,
267                               uint32_t idx, void *data, uint32_t word_number)
268 {
269     const XiveVstInfo *info = &vst_infos[type];
270     uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
271 
272     if (!addr) {
273         return -1;
274     }
275 
276     if (word_number == XIVE_VST_WORD_ALL) {
277         cpu_physical_memory_write(addr, data, info->size);
278     } else {
279         cpu_physical_memory_write(addr + word_number * 4,
280                                   data + word_number * 4, 4);
281     }
282     return 0;
283 }
284 
285 static int pnv_xive_get_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
286                             XiveEND *end)
287 {
288     return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end);
289 }
290 
291 static int pnv_xive_write_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
292                               XiveEND *end, uint8_t word_number)
293 {
294     return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end,
295                               word_number);
296 }
297 
298 static int pnv_xive_end_update(PnvXive *xive)
299 {
300     uint8_t  blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
301                            xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
302     uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
303                            xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
304     int i;
305     uint64_t eqc_watch[4];
306 
307     for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
308         eqc_watch[i] = cpu_to_be64(xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i]);
309     }
310 
311     return pnv_xive_vst_write(xive, VST_TSEL_EQDT, blk, idx, eqc_watch,
312                               XIVE_VST_WORD_ALL);
313 }
314 
315 static void pnv_xive_end_cache_load(PnvXive *xive)
316 {
317     uint8_t  blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
318                            xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
319     uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
320                            xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
321     uint64_t eqc_watch[4] = { 0 };
322     int i;
323 
324     if (pnv_xive_vst_read(xive, VST_TSEL_EQDT, blk, idx, eqc_watch)) {
325         xive_error(xive, "VST: no END entry %x/%x !?", blk, idx);
326     }
327 
328     for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
329         xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(eqc_watch[i]);
330     }
331 }
332 
333 static int pnv_xive_get_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
334                             XiveNVT *nvt)
335 {
336     return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt);
337 }
338 
339 static int pnv_xive_write_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
340                               XiveNVT *nvt, uint8_t word_number)
341 {
342     return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt,
343                               word_number);
344 }
345 
346 static int pnv_xive_nvt_update(PnvXive *xive)
347 {
348     uint8_t  blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
349                            xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
350     uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
351                            xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
352     int i;
353     uint64_t vpc_watch[8];
354 
355     for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
356         vpc_watch[i] = cpu_to_be64(xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i]);
357     }
358 
359     return pnv_xive_vst_write(xive, VST_TSEL_VPDT, blk, idx, vpc_watch,
360                               XIVE_VST_WORD_ALL);
361 }
362 
363 static void pnv_xive_nvt_cache_load(PnvXive *xive)
364 {
365     uint8_t  blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
366                            xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
367     uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
368                            xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
369     uint64_t vpc_watch[8] = { 0 };
370     int i;
371 
372     if (pnv_xive_vst_read(xive, VST_TSEL_VPDT, blk, idx, vpc_watch)) {
373         xive_error(xive, "VST: no NVT entry %x/%x !?", blk, idx);
374     }
375 
376     for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
377         xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(vpc_watch[i]);
378     }
379 }
380 
381 static int pnv_xive_get_eas(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
382                             XiveEAS *eas)
383 {
384     PnvXive *xive = PNV_XIVE(xrtr);
385 
386     /*
387      * EAT lookups should be local to the IC
388      */
389     if (pnv_xive_block_id(xive) != blk) {
390         xive_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx));
391         return -1;
392     }
393 
394     return pnv_xive_vst_read(xive, VST_TSEL_IVT, blk, idx, eas);
395 }
396 
397 /*
398  * One bit per thread id. The first register PC_THREAD_EN_REG0 covers
399  * the first cores 0-15 (normal) of the chip or 0-7 (fused). The
400  * second register covers cores 16-23 (normal) or 8-11 (fused).
401  */
402 static bool pnv_xive_is_cpu_enabled(PnvXive *xive, PowerPCCPU *cpu)
403 {
404     int pir = ppc_cpu_pir(cpu);
405     uint32_t fc = PNV9_PIR2FUSEDCORE(pir);
406     uint64_t reg = fc < 8 ? PC_THREAD_EN_REG0 : PC_THREAD_EN_REG1;
407     uint32_t bit = pir & 0x3f;
408 
409     return xive->regs[reg >> 3] & PPC_BIT(bit);
410 }
411 
412 static int pnv_xive_match_nvt(XivePresenter *xptr, uint8_t format,
413                               uint8_t nvt_blk, uint32_t nvt_idx,
414                               bool cam_ignore, uint8_t priority,
415                               uint32_t logic_serv, XiveTCTXMatch *match)
416 {
417     PnvXive *xive = PNV_XIVE(xptr);
418     PnvChip *chip = xive->chip;
419     int count = 0;
420     int i, j;
421 
422     for (i = 0; i < chip->nr_cores; i++) {
423         PnvCore *pc = chip->cores[i];
424         CPUCore *cc = CPU_CORE(pc);
425 
426         for (j = 0; j < cc->nr_threads; j++) {
427             PowerPCCPU *cpu = pc->threads[j];
428             XiveTCTX *tctx;
429             int ring;
430 
431             if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
432                 continue;
433             }
434 
435             tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
436 
437             /*
438              * Check the thread context CAM lines and record matches.
439              */
440             ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk,
441                                              nvt_idx, cam_ignore, logic_serv);
442             /*
443              * Save the context and follow on to catch duplicates, that we
444              * don't support yet.
445              */
446             if (ring != -1) {
447                 if (match->tctx) {
448                     qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a "
449                                   "thread context NVT %x/%x\n",
450                                   nvt_blk, nvt_idx);
451                     return -1;
452                 }
453 
454                 match->ring = ring;
455                 match->tctx = tctx;
456                 count++;
457             }
458         }
459     }
460 
461     return count;
462 }
463 
464 static uint8_t pnv_xive_get_block_id(XiveRouter *xrtr)
465 {
466     return pnv_xive_block_id(PNV_XIVE(xrtr));
467 }
468 
469 /*
470  * The TIMA MMIO space is shared among the chips and to identify the
471  * chip from which the access is being done, we extract the chip id
472  * from the PIR.
473  */
474 static PnvXive *pnv_xive_tm_get_xive(PowerPCCPU *cpu)
475 {
476     int pir = ppc_cpu_pir(cpu);
477     XivePresenter *xptr = XIVE_TCTX(pnv_cpu_state(cpu)->intc)->xptr;
478     PnvXive *xive = PNV_XIVE(xptr);
479 
480     if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
481         xive_error(xive, "IC: CPU %x is not enabled", pir);
482     }
483     return xive;
484 }
485 
486 /*
487  * The internal sources (IPIs) of the interrupt controller have no
488  * knowledge of the XIVE chip on which they reside. Encode the block
489  * id in the source interrupt number before forwarding the source
490  * event notification to the Router. This is required on a multichip
491  * system.
492  */
493 static void pnv_xive_notify(XiveNotifier *xn, uint32_t srcno)
494 {
495     PnvXive *xive = PNV_XIVE(xn);
496     uint8_t blk = pnv_xive_block_id(xive);
497 
498     xive_router_notify(xn, XIVE_EAS(blk, srcno));
499 }
500 
501 /*
502  * XIVE helpers
503  */
504 
505 static uint64_t pnv_xive_vc_size(PnvXive *xive)
506 {
507     return (~xive->regs[CQ_VC_BARM >> 3] + 1) & CQ_VC_BARM_MASK;
508 }
509 
510 static uint64_t pnv_xive_edt_shift(PnvXive *xive)
511 {
512     return ctz64(pnv_xive_vc_size(xive) / XIVE_TABLE_EDT_MAX);
513 }
514 
515 static uint64_t pnv_xive_pc_size(PnvXive *xive)
516 {
517     return (~xive->regs[CQ_PC_BARM >> 3] + 1) & CQ_PC_BARM_MASK;
518 }
519 
520 static uint32_t pnv_xive_nr_ipis(PnvXive *xive, uint8_t blk)
521 {
522     uint64_t vsd = xive->vsds[VST_TSEL_SBE][blk];
523     uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
524 
525     return VSD_INDIRECT & vsd ? 0 : vst_tsize * SBE_PER_BYTE;
526 }
527 
528 /*
529  * Compute the number of entries per indirect subpage.
530  */
531 static uint64_t pnv_xive_vst_per_subpage(PnvXive *xive, uint32_t type)
532 {
533     uint8_t blk = pnv_xive_block_id(xive);
534     uint64_t vsd = xive->vsds[type][blk];
535     const XiveVstInfo *info = &vst_infos[type];
536     uint64_t vsd_addr;
537     uint32_t page_shift;
538 
539     /* For direct tables, fake a valid value */
540     if (!(VSD_INDIRECT & vsd)) {
541         return 1;
542     }
543 
544     /* Get the page size of the indirect table. */
545     vsd_addr = vsd & VSD_ADDRESS_MASK;
546     ldq_be_dma(&address_space_memory, vsd_addr, &vsd, MEMTXATTRS_UNSPECIFIED);
547 
548     if (!(vsd & VSD_ADDRESS_MASK)) {
549 #ifdef XIVE_DEBUG
550         xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
551 #endif
552         return 0;
553     }
554 
555     page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
556 
557     if (!pnv_xive_vst_page_size_allowed(page_shift)) {
558         xive_error(xive, "VST: invalid %s page shift %d", info->name,
559                    page_shift);
560         return 0;
561     }
562 
563     return (1ull << page_shift) / info->size;
564 }
565 
566 /*
567  * EDT Table
568  *
569  * The Virtualization Controller MMIO region containing the IPI ESB
570  * pages and END ESB pages is sub-divided into "sets" which map
571  * portions of the VC region to the different ESB pages. It is
572  * configured at runtime through the EDT "Domain Table" to let the
573  * firmware decide how to split the VC address space between IPI ESB
574  * pages and END ESB pages.
575  */
576 
577 /*
578  * Computes the overall size of the IPI or the END ESB pages
579  */
580 static uint64_t pnv_xive_edt_size(PnvXive *xive, uint64_t type)
581 {
582     uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
583     uint64_t size = 0;
584     int i;
585 
586     for (i = 0; i < XIVE_TABLE_EDT_MAX; i++) {
587         uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
588 
589         if (edt_type == type) {
590             size += edt_size;
591         }
592     }
593 
594     return size;
595 }
596 
597 /*
598  * Maps an offset of the VC region in the IPI or END region using the
599  * layout defined by the EDT "Domaine Table"
600  */
601 static uint64_t pnv_xive_edt_offset(PnvXive *xive, uint64_t vc_offset,
602                                               uint64_t type)
603 {
604     int i;
605     uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
606     uint64_t edt_offset = vc_offset;
607 
608     for (i = 0; i < XIVE_TABLE_EDT_MAX && (i * edt_size) < vc_offset; i++) {
609         uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
610 
611         if (edt_type != type) {
612             edt_offset -= edt_size;
613         }
614     }
615 
616     return edt_offset;
617 }
618 
619 static void pnv_xive_edt_resize(PnvXive *xive)
620 {
621     uint64_t ipi_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_IPI);
622     uint64_t end_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_EQ);
623 
624     memory_region_set_size(&xive->ipi_edt_mmio, ipi_edt_size);
625     memory_region_add_subregion(&xive->ipi_mmio, 0, &xive->ipi_edt_mmio);
626 
627     memory_region_set_size(&xive->end_edt_mmio, end_edt_size);
628     memory_region_add_subregion(&xive->end_mmio, 0, &xive->end_edt_mmio);
629 }
630 
631 /*
632  * XIVE Table configuration. Only EDT is supported.
633  */
634 static int pnv_xive_table_set_data(PnvXive *xive, uint64_t val)
635 {
636     uint64_t tsel = xive->regs[CQ_TAR >> 3] & CQ_TAR_TSEL;
637     uint8_t tsel_index = GETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3]);
638     uint64_t *xive_table;
639     uint8_t max_index;
640 
641     switch (tsel) {
642     case CQ_TAR_TSEL_BLK:
643         max_index = ARRAY_SIZE(xive->blk);
644         xive_table = xive->blk;
645         break;
646     case CQ_TAR_TSEL_MIG:
647         max_index = ARRAY_SIZE(xive->mig);
648         xive_table = xive->mig;
649         break;
650     case CQ_TAR_TSEL_EDT:
651         max_index = ARRAY_SIZE(xive->edt);
652         xive_table = xive->edt;
653         break;
654     case CQ_TAR_TSEL_VDT:
655         max_index = ARRAY_SIZE(xive->vdt);
656         xive_table = xive->vdt;
657         break;
658     default:
659         xive_error(xive, "IC: invalid table %d", (int) tsel);
660         return -1;
661     }
662 
663     if (tsel_index >= max_index) {
664         xive_error(xive, "IC: invalid index %d", (int) tsel_index);
665         return -1;
666     }
667 
668     xive_table[tsel_index] = val;
669 
670     if (xive->regs[CQ_TAR >> 3] & CQ_TAR_TBL_AUTOINC) {
671         xive->regs[CQ_TAR >> 3] =
672             SETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3], ++tsel_index);
673     }
674 
675     /*
676      * EDT configuration is complete. Resize the MMIO windows exposing
677      * the IPI and the END ESBs in the VC region.
678      */
679     if (tsel == CQ_TAR_TSEL_EDT && tsel_index == ARRAY_SIZE(xive->edt)) {
680         pnv_xive_edt_resize(xive);
681     }
682 
683     return 0;
684 }
685 
686 /*
687  * Virtual Structure Tables (VST) configuration
688  */
689 static void pnv_xive_vst_set_exclusive(PnvXive *xive, uint8_t type,
690                                        uint8_t blk, uint64_t vsd)
691 {
692     XiveENDSource *end_xsrc = &xive->end_source;
693     XiveSource *xsrc = &xive->ipi_source;
694     const XiveVstInfo *info = &vst_infos[type];
695     uint32_t page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
696     uint64_t vst_tsize = 1ull << page_shift;
697     uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
698 
699     /* Basic checks */
700 
701     if (VSD_INDIRECT & vsd) {
702         if (!(xive->regs[VC_GLOBAL_CONFIG >> 3] & VC_GCONF_INDIRECT)) {
703             xive_error(xive, "VST: %s indirect tables are not enabled",
704                        info->name);
705             return;
706         }
707 
708         if (!pnv_xive_vst_page_size_allowed(page_shift)) {
709             xive_error(xive, "VST: invalid %s page shift %d", info->name,
710                        page_shift);
711             return;
712         }
713     }
714 
715     if (!QEMU_IS_ALIGNED(vst_addr, 1ull << page_shift)) {
716         xive_error(xive, "VST: %s table address 0x%"PRIx64" is not aligned with"
717                    " page shift %d", info->name, vst_addr, page_shift);
718         return;
719     }
720 
721     /* Record the table configuration (in SRAM on HW) */
722     xive->vsds[type][blk] = vsd;
723 
724     /* Now tune the models with the configuration provided by the FW */
725 
726     switch (type) {
727     case VST_TSEL_IVT:  /* Nothing to be done */
728         break;
729 
730     case VST_TSEL_EQDT:
731         /*
732          * Backing store pages for the END.
733          *
734          * If the table is direct, we can compute the number of PQ
735          * entries provisioned by FW (such as skiboot) and resize the
736          * END ESB window accordingly.
737          */
738         if (!(VSD_INDIRECT & vsd)) {
739             memory_region_set_size(&end_xsrc->esb_mmio, (vst_tsize / info->size)
740                                    * (1ull << xsrc->esb_shift));
741         }
742         memory_region_add_subregion(&xive->end_edt_mmio, 0,
743                                     &end_xsrc->esb_mmio);
744         break;
745 
746     case VST_TSEL_SBE:
747         /*
748          * Backing store pages for the source PQ bits. The model does
749          * not use these PQ bits backed in RAM because the XiveSource
750          * model has its own.
751          *
752          * If the table is direct, we can compute the number of PQ
753          * entries provisioned by FW (such as skiboot) and resize the
754          * ESB window accordingly.
755          */
756         if (!(VSD_INDIRECT & vsd)) {
757             memory_region_set_size(&xsrc->esb_mmio, vst_tsize * SBE_PER_BYTE
758                                    * (1ull << xsrc->esb_shift));
759         }
760         memory_region_add_subregion(&xive->ipi_edt_mmio, 0, &xsrc->esb_mmio);
761         break;
762 
763     case VST_TSEL_VPDT: /* Not modeled */
764     case VST_TSEL_IRQ:  /* Not modeled */
765         /*
766          * These tables contains the backing store pages for the
767          * interrupt fifos of the VC sub-engine in case of overflow.
768          */
769         break;
770 
771     default:
772         g_assert_not_reached();
773     }
774 }
775 
776 /*
777  * Both PC and VC sub-engines are configured as each use the Virtual
778  * Structure Tables : SBE, EAS, END and NVT.
779  */
780 static void pnv_xive_vst_set_data(PnvXive *xive, uint64_t vsd, bool pc_engine)
781 {
782     uint8_t mode = GETFIELD(VSD_MODE, vsd);
783     uint8_t type = GETFIELD(VST_TABLE_SELECT,
784                             xive->regs[VC_VSD_TABLE_ADDR >> 3]);
785     uint8_t blk = GETFIELD(VST_TABLE_BLOCK,
786                            xive->regs[VC_VSD_TABLE_ADDR >> 3]);
787     uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
788 
789     if (type > VST_TSEL_IRQ) {
790         xive_error(xive, "VST: invalid table type %d", type);
791         return;
792     }
793 
794     if (blk >= vst_infos[type].max_blocks) {
795         xive_error(xive, "VST: invalid block id %d for"
796                       " %s table", blk, vst_infos[type].name);
797         return;
798     }
799 
800     /*
801      * Only take the VC sub-engine configuration into account because
802      * the XiveRouter model combines both VC and PC sub-engines
803      */
804     if (pc_engine) {
805         return;
806     }
807 
808     if (!vst_addr) {
809         xive_error(xive, "VST: invalid %s table address", vst_infos[type].name);
810         return;
811     }
812 
813     switch (mode) {
814     case VSD_MODE_FORWARD:
815         xive->vsds[type][blk] = vsd;
816         break;
817 
818     case VSD_MODE_EXCLUSIVE:
819         pnv_xive_vst_set_exclusive(xive, type, blk, vsd);
820         break;
821 
822     default:
823         xive_error(xive, "VST: unsupported table mode %d", mode);
824         return;
825     }
826 }
827 
828 /*
829  * Interrupt controller MMIO region. The layout is compatible between
830  * 4K and 64K pages :
831  *
832  * Page 0           sub-engine BARs
833  *  0x000 - 0x3FF   IC registers
834  *  0x400 - 0x7FF   PC registers
835  *  0x800 - 0xFFF   VC registers
836  *
837  * Page 1           Notify page (writes only)
838  *  0x000 - 0x7FF   HW interrupt triggers (PSI, PHB)
839  *  0x800 - 0xFFF   forwards and syncs
840  *
841  * Page 2           LSI Trigger page (writes only) (not modeled)
842  * Page 3           LSI SB EOI page (reads only) (not modeled)
843  *
844  * Page 4-7         indirect TIMA
845  */
846 
847 /*
848  * IC - registers MMIO
849  */
850 static void pnv_xive_ic_reg_write(void *opaque, hwaddr offset,
851                                   uint64_t val, unsigned size)
852 {
853     PnvXive *xive = PNV_XIVE(opaque);
854     MemoryRegion *sysmem = get_system_memory();
855     uint32_t reg = offset >> 3;
856     bool is_chip0 = xive->chip->chip_id == 0;
857 
858     switch (offset) {
859 
860     /*
861      * XIVE CQ (PowerBus bridge) settings
862      */
863     case CQ_MSGSND:     /* msgsnd for doorbells */
864     case CQ_FIRMASK_OR: /* FIR error reporting */
865         break;
866     case CQ_PBI_CTL:
867         if (val & CQ_PBI_PC_64K) {
868             xive->pc_shift = 16;
869         }
870         if (val & CQ_PBI_VC_64K) {
871             xive->vc_shift = 16;
872         }
873         break;
874     case CQ_CFG_PB_GEN: /* PowerBus General Configuration */
875         /*
876          * TODO: CQ_INT_ADDR_OPT for 1-block-per-chip mode
877          */
878         break;
879 
880     /*
881      * XIVE Virtualization Controller settings
882      */
883     case VC_GLOBAL_CONFIG:
884         break;
885 
886     /*
887      * XIVE Presenter Controller settings
888      */
889     case PC_GLOBAL_CONFIG:
890         /*
891          * PC_GCONF_CHIPID_OVR
892          *   Overrides Int command Chip ID with the Chip ID field (DEBUG)
893          */
894         break;
895     case PC_TCTXT_CFG:
896         /*
897          * TODO: block group support
898          */
899         break;
900     case PC_TCTXT_TRACK:
901         /*
902          * PC_TCTXT_TRACK_EN:
903          *   enable block tracking and exchange of block ownership
904          *   information between Interrupt controllers
905          */
906         break;
907 
908     /*
909      * Misc settings
910      */
911     case VC_SBC_CONFIG: /* Store EOI configuration */
912         /*
913          * Configure store EOI if required by firwmare (skiboot has removed
914          * support recently though)
915          */
916         if (val & (VC_SBC_CONF_CPLX_CIST | VC_SBC_CONF_CIST_BOTH)) {
917             xive->ipi_source.esb_flags |= XIVE_SRC_STORE_EOI;
918         }
919         break;
920 
921     case VC_EQC_CONFIG: /* TODO: silent escalation */
922     case VC_AIB_TX_ORDER_TAG2: /* relax ordering */
923         break;
924 
925     /*
926      * XIVE BAR settings (XSCOM only)
927      */
928     case CQ_RST_CTL:
929         /* bit4: resets all BAR registers */
930         break;
931 
932     case CQ_IC_BAR: /* IC BAR. 8 pages */
933         xive->ic_shift = val & CQ_IC_BAR_64K ? 16 : 12;
934         if (!(val & CQ_IC_BAR_VALID)) {
935             xive->ic_base = 0;
936             if (xive->regs[reg] & CQ_IC_BAR_VALID) {
937                 memory_region_del_subregion(&xive->ic_mmio,
938                                             &xive->ic_reg_mmio);
939                 memory_region_del_subregion(&xive->ic_mmio,
940                                             &xive->ic_notify_mmio);
941                 memory_region_del_subregion(&xive->ic_mmio,
942                                             &xive->ic_lsi_mmio);
943                 memory_region_del_subregion(&xive->ic_mmio,
944                                             &xive->tm_indirect_mmio);
945 
946                 memory_region_del_subregion(sysmem, &xive->ic_mmio);
947             }
948         } else {
949             xive->ic_base = val & ~(CQ_IC_BAR_VALID | CQ_IC_BAR_64K);
950             if (!(xive->regs[reg] & CQ_IC_BAR_VALID)) {
951                 memory_region_add_subregion(sysmem, xive->ic_base,
952                                             &xive->ic_mmio);
953 
954                 memory_region_add_subregion(&xive->ic_mmio,  0,
955                                             &xive->ic_reg_mmio);
956                 memory_region_add_subregion(&xive->ic_mmio,
957                                             1ul << xive->ic_shift,
958                                             &xive->ic_notify_mmio);
959                 memory_region_add_subregion(&xive->ic_mmio,
960                                             2ul << xive->ic_shift,
961                                             &xive->ic_lsi_mmio);
962                 memory_region_add_subregion(&xive->ic_mmio,
963                                             4ull << xive->ic_shift,
964                                             &xive->tm_indirect_mmio);
965             }
966         }
967         break;
968 
969     case CQ_TM1_BAR: /* TM BAR. 4 pages. Map only once */
970     case CQ_TM2_BAR: /* second TM BAR. for hotplug. Not modeled */
971         xive->tm_shift = val & CQ_TM_BAR_64K ? 16 : 12;
972         if (!(val & CQ_TM_BAR_VALID)) {
973             xive->tm_base = 0;
974             if (xive->regs[reg] & CQ_TM_BAR_VALID && is_chip0) {
975                 memory_region_del_subregion(sysmem, &xive->tm_mmio);
976             }
977         } else {
978             xive->tm_base = val & ~(CQ_TM_BAR_VALID | CQ_TM_BAR_64K);
979             if (!(xive->regs[reg] & CQ_TM_BAR_VALID) && is_chip0) {
980                 memory_region_add_subregion(sysmem, xive->tm_base,
981                                             &xive->tm_mmio);
982             }
983         }
984         break;
985 
986     case CQ_PC_BARM:
987         xive->regs[reg] = val;
988         memory_region_set_size(&xive->pc_mmio, pnv_xive_pc_size(xive));
989         break;
990     case CQ_PC_BAR: /* From 32M to 512G */
991         if (!(val & CQ_PC_BAR_VALID)) {
992             xive->pc_base = 0;
993             if (xive->regs[reg] & CQ_PC_BAR_VALID) {
994                 memory_region_del_subregion(sysmem, &xive->pc_mmio);
995             }
996         } else {
997             xive->pc_base = val & ~(CQ_PC_BAR_VALID);
998             if (!(xive->regs[reg] & CQ_PC_BAR_VALID)) {
999                 memory_region_add_subregion(sysmem, xive->pc_base,
1000                                             &xive->pc_mmio);
1001             }
1002         }
1003         break;
1004 
1005     case CQ_VC_BARM:
1006         xive->regs[reg] = val;
1007         memory_region_set_size(&xive->vc_mmio, pnv_xive_vc_size(xive));
1008         break;
1009     case CQ_VC_BAR: /* From 64M to 4TB */
1010         if (!(val & CQ_VC_BAR_VALID)) {
1011             xive->vc_base = 0;
1012             if (xive->regs[reg] & CQ_VC_BAR_VALID) {
1013                 memory_region_del_subregion(sysmem, &xive->vc_mmio);
1014             }
1015         } else {
1016             xive->vc_base = val & ~(CQ_VC_BAR_VALID);
1017             if (!(xive->regs[reg] & CQ_VC_BAR_VALID)) {
1018                 memory_region_add_subregion(sysmem, xive->vc_base,
1019                                             &xive->vc_mmio);
1020             }
1021         }
1022         break;
1023 
1024     /*
1025      * XIVE Table settings.
1026      */
1027     case CQ_TAR: /* Table Address */
1028         break;
1029     case CQ_TDR: /* Table Data */
1030         pnv_xive_table_set_data(xive, val);
1031         break;
1032 
1033     /*
1034      * XIVE VC & PC Virtual Structure Table settings
1035      */
1036     case VC_VSD_TABLE_ADDR:
1037     case PC_VSD_TABLE_ADDR: /* Virtual table selector */
1038         break;
1039     case VC_VSD_TABLE_DATA: /* Virtual table setting */
1040     case PC_VSD_TABLE_DATA:
1041         pnv_xive_vst_set_data(xive, val, offset == PC_VSD_TABLE_DATA);
1042         break;
1043 
1044     /*
1045      * Interrupt fifo overflow in memory backing store (Not modeled)
1046      */
1047     case VC_IRQ_CONFIG_IPI:
1048     case VC_IRQ_CONFIG_HW:
1049     case VC_IRQ_CONFIG_CASCADE1:
1050     case VC_IRQ_CONFIG_CASCADE2:
1051     case VC_IRQ_CONFIG_REDIST:
1052     case VC_IRQ_CONFIG_IPI_CASC:
1053         break;
1054 
1055     /*
1056      * XIVE hardware thread enablement
1057      */
1058     case PC_THREAD_EN_REG0: /* Physical Thread Enable */
1059     case PC_THREAD_EN_REG1: /* Physical Thread Enable (fused core) */
1060         break;
1061 
1062     case PC_THREAD_EN_REG0_SET:
1063         xive->regs[PC_THREAD_EN_REG0 >> 3] |= val;
1064         break;
1065     case PC_THREAD_EN_REG1_SET:
1066         xive->regs[PC_THREAD_EN_REG1 >> 3] |= val;
1067         break;
1068     case PC_THREAD_EN_REG0_CLR:
1069         xive->regs[PC_THREAD_EN_REG0 >> 3] &= ~val;
1070         break;
1071     case PC_THREAD_EN_REG1_CLR:
1072         xive->regs[PC_THREAD_EN_REG1 >> 3] &= ~val;
1073         break;
1074 
1075     /*
1076      * Indirect TIMA access set up. Defines the PIR of the HW thread
1077      * to use.
1078      */
1079     case PC_TCTXT_INDIR0 ... PC_TCTXT_INDIR3:
1080         break;
1081 
1082     /*
1083      * XIVE PC & VC cache updates for EAS, NVT and END
1084      */
1085     case VC_IVC_SCRUB_MASK:
1086     case VC_IVC_SCRUB_TRIG:
1087         break;
1088 
1089     case VC_EQC_CWATCH_SPEC:
1090         val &= ~VC_EQC_CWATCH_CONFLICT; /* HW resets this bit */
1091         break;
1092     case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
1093         break;
1094     case VC_EQC_CWATCH_DAT0:
1095         /* writing to DATA0 triggers the cache write */
1096         xive->regs[reg] = val;
1097         pnv_xive_end_update(xive);
1098         break;
1099     case VC_EQC_SCRUB_MASK:
1100     case VC_EQC_SCRUB_TRIG:
1101         /*
1102          * The scrubbing registers flush the cache in RAM and can also
1103          * invalidate.
1104          */
1105         break;
1106 
1107     case PC_VPC_CWATCH_SPEC:
1108         val &= ~PC_VPC_CWATCH_CONFLICT; /* HW resets this bit */
1109         break;
1110     case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1111         break;
1112     case PC_VPC_CWATCH_DAT0:
1113         /* writing to DATA0 triggers the cache write */
1114         xive->regs[reg] = val;
1115         pnv_xive_nvt_update(xive);
1116         break;
1117     case PC_VPC_SCRUB_MASK:
1118     case PC_VPC_SCRUB_TRIG:
1119         /*
1120          * The scrubbing registers flush the cache in RAM and can also
1121          * invalidate.
1122          */
1123         break;
1124 
1125 
1126     /*
1127      * XIVE PC & VC cache invalidation
1128      */
1129     case PC_AT_KILL:
1130         break;
1131     case VC_AT_MACRO_KILL:
1132         break;
1133     case PC_AT_KILL_MASK:
1134     case VC_AT_MACRO_KILL_MASK:
1135         break;
1136 
1137     default:
1138         xive_error(xive, "IC: invalid write to reg=0x%"HWADDR_PRIx, offset);
1139         return;
1140     }
1141 
1142     xive->regs[reg] = val;
1143 }
1144 
1145 static uint64_t pnv_xive_ic_reg_read(void *opaque, hwaddr offset, unsigned size)
1146 {
1147     PnvXive *xive = PNV_XIVE(opaque);
1148     uint64_t val = 0;
1149     uint32_t reg = offset >> 3;
1150 
1151     switch (offset) {
1152     case CQ_CFG_PB_GEN:
1153     case CQ_IC_BAR:
1154     case CQ_TM1_BAR:
1155     case CQ_TM2_BAR:
1156     case CQ_PC_BAR:
1157     case CQ_PC_BARM:
1158     case CQ_VC_BAR:
1159     case CQ_VC_BARM:
1160     case CQ_TAR:
1161     case CQ_TDR:
1162     case CQ_PBI_CTL:
1163 
1164     case PC_TCTXT_CFG:
1165     case PC_TCTXT_TRACK:
1166     case PC_TCTXT_INDIR0:
1167     case PC_TCTXT_INDIR1:
1168     case PC_TCTXT_INDIR2:
1169     case PC_TCTXT_INDIR3:
1170     case PC_GLOBAL_CONFIG:
1171 
1172     case PC_VPC_SCRUB_MASK:
1173 
1174     case VC_GLOBAL_CONFIG:
1175     case VC_AIB_TX_ORDER_TAG2:
1176 
1177     case VC_IRQ_CONFIG_IPI:
1178     case VC_IRQ_CONFIG_HW:
1179     case VC_IRQ_CONFIG_CASCADE1:
1180     case VC_IRQ_CONFIG_CASCADE2:
1181     case VC_IRQ_CONFIG_REDIST:
1182     case VC_IRQ_CONFIG_IPI_CASC:
1183 
1184     case VC_EQC_SCRUB_MASK:
1185     case VC_IVC_SCRUB_MASK:
1186     case VC_SBC_CONFIG:
1187     case VC_AT_MACRO_KILL_MASK:
1188     case VC_VSD_TABLE_ADDR:
1189     case PC_VSD_TABLE_ADDR:
1190     case VC_VSD_TABLE_DATA:
1191     case PC_VSD_TABLE_DATA:
1192     case PC_THREAD_EN_REG0:
1193     case PC_THREAD_EN_REG1:
1194         val = xive->regs[reg];
1195         break;
1196 
1197     /*
1198      * XIVE hardware thread enablement
1199      */
1200     case PC_THREAD_EN_REG0_SET:
1201     case PC_THREAD_EN_REG0_CLR:
1202         val = xive->regs[PC_THREAD_EN_REG0 >> 3];
1203         break;
1204     case PC_THREAD_EN_REG1_SET:
1205     case PC_THREAD_EN_REG1_CLR:
1206         val = xive->regs[PC_THREAD_EN_REG1 >> 3];
1207         break;
1208 
1209     case CQ_MSGSND: /* Identifies which cores have msgsnd enabled. */
1210         val = 0xffffff0000000000;
1211         break;
1212 
1213     /*
1214      * XIVE PC & VC cache updates for EAS, NVT and END
1215      */
1216     case VC_EQC_CWATCH_SPEC:
1217         xive->regs[reg] = ~(VC_EQC_CWATCH_FULL | VC_EQC_CWATCH_CONFLICT);
1218         val = xive->regs[reg];
1219         break;
1220     case VC_EQC_CWATCH_DAT0:
1221         /*
1222          * Load DATA registers from cache with data requested by the
1223          * SPEC register
1224          */
1225         pnv_xive_end_cache_load(xive);
1226         val = xive->regs[reg];
1227         break;
1228     case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
1229         val = xive->regs[reg];
1230         break;
1231 
1232     case PC_VPC_CWATCH_SPEC:
1233         xive->regs[reg] = ~(PC_VPC_CWATCH_FULL | PC_VPC_CWATCH_CONFLICT);
1234         val = xive->regs[reg];
1235         break;
1236     case PC_VPC_CWATCH_DAT0:
1237         /*
1238          * Load DATA registers from cache with data requested by the
1239          * SPEC register
1240          */
1241         pnv_xive_nvt_cache_load(xive);
1242         val = xive->regs[reg];
1243         break;
1244     case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1245         val = xive->regs[reg];
1246         break;
1247 
1248     case PC_VPC_SCRUB_TRIG:
1249     case VC_IVC_SCRUB_TRIG:
1250     case VC_EQC_SCRUB_TRIG:
1251         xive->regs[reg] &= ~VC_SCRUB_VALID;
1252         val = xive->regs[reg];
1253         break;
1254 
1255     /*
1256      * XIVE PC & VC cache invalidation
1257      */
1258     case PC_AT_KILL:
1259         xive->regs[reg] &= ~PC_AT_KILL_VALID;
1260         val = xive->regs[reg];
1261         break;
1262     case VC_AT_MACRO_KILL:
1263         xive->regs[reg] &= ~VC_KILL_VALID;
1264         val = xive->regs[reg];
1265         break;
1266 
1267     /*
1268      * XIVE synchronisation
1269      */
1270     case VC_EQC_CONFIG:
1271         val = VC_EQC_SYNC_MASK;
1272         break;
1273 
1274     default:
1275         xive_error(xive, "IC: invalid read reg=0x%"HWADDR_PRIx, offset);
1276     }
1277 
1278     return val;
1279 }
1280 
1281 static const MemoryRegionOps pnv_xive_ic_reg_ops = {
1282     .read = pnv_xive_ic_reg_read,
1283     .write = pnv_xive_ic_reg_write,
1284     .endianness = DEVICE_BIG_ENDIAN,
1285     .valid = {
1286         .min_access_size = 8,
1287         .max_access_size = 8,
1288     },
1289     .impl = {
1290         .min_access_size = 8,
1291         .max_access_size = 8,
1292     },
1293 };
1294 
1295 /*
1296  * IC - Notify MMIO port page (write only)
1297  */
1298 #define PNV_XIVE_FORWARD_IPI        0x800 /* Forward IPI */
1299 #define PNV_XIVE_FORWARD_HW         0x880 /* Forward HW */
1300 #define PNV_XIVE_FORWARD_OS_ESC     0x900 /* Forward OS escalation */
1301 #define PNV_XIVE_FORWARD_HW_ESC     0x980 /* Forward Hyp escalation */
1302 #define PNV_XIVE_FORWARD_REDIS      0xa00 /* Forward Redistribution */
1303 #define PNV_XIVE_RESERVED5          0xa80 /* Cache line 5 PowerBUS operation */
1304 #define PNV_XIVE_RESERVED6          0xb00 /* Cache line 6 PowerBUS operation */
1305 #define PNV_XIVE_RESERVED7          0xb80 /* Cache line 7 PowerBUS operation */
1306 
1307 /* VC synchronisation */
1308 #define PNV_XIVE_SYNC_IPI           0xc00 /* Sync IPI */
1309 #define PNV_XIVE_SYNC_HW            0xc80 /* Sync HW */
1310 #define PNV_XIVE_SYNC_OS_ESC        0xd00 /* Sync OS escalation */
1311 #define PNV_XIVE_SYNC_HW_ESC        0xd80 /* Sync Hyp escalation */
1312 #define PNV_XIVE_SYNC_REDIS         0xe00 /* Sync Redistribution */
1313 
1314 /* PC synchronisation */
1315 #define PNV_XIVE_SYNC_PULL          0xe80 /* Sync pull context */
1316 #define PNV_XIVE_SYNC_PUSH          0xf00 /* Sync push context */
1317 #define PNV_XIVE_SYNC_VPC           0xf80 /* Sync remove VPC store */
1318 
1319 static void pnv_xive_ic_hw_trigger(PnvXive *xive, hwaddr addr, uint64_t val)
1320 {
1321     uint8_t blk;
1322     uint32_t idx;
1323 
1324     trace_pnv_xive_ic_hw_trigger(addr, val);
1325 
1326     if (val & XIVE_TRIGGER_END) {
1327         xive_error(xive, "IC: END trigger at @0x%"HWADDR_PRIx" data 0x%"PRIx64,
1328                    addr, val);
1329         return;
1330     }
1331 
1332     /*
1333      * Forward the source event notification directly to the Router.
1334      * The source interrupt number should already be correctly encoded
1335      * with the chip block id by the sending device (PHB, PSI).
1336      */
1337     blk = XIVE_EAS_BLOCK(val);
1338     idx = XIVE_EAS_INDEX(val);
1339 
1340     xive_router_notify(XIVE_NOTIFIER(xive), XIVE_EAS(blk, idx));
1341 }
1342 
1343 static void pnv_xive_ic_notify_write(void *opaque, hwaddr addr, uint64_t val,
1344                                      unsigned size)
1345 {
1346     PnvXive *xive = PNV_XIVE(opaque);
1347 
1348     /* VC: HW triggers */
1349     switch (addr) {
1350     case 0x000 ... 0x7FF:
1351         pnv_xive_ic_hw_trigger(opaque, addr, val);
1352         break;
1353 
1354     /* VC: Forwarded IRQs */
1355     case PNV_XIVE_FORWARD_IPI:
1356     case PNV_XIVE_FORWARD_HW:
1357     case PNV_XIVE_FORWARD_OS_ESC:
1358     case PNV_XIVE_FORWARD_HW_ESC:
1359     case PNV_XIVE_FORWARD_REDIS:
1360         /* TODO: forwarded IRQs. Should be like HW triggers */
1361         xive_error(xive, "IC: forwarded at @0x%"HWADDR_PRIx" IRQ 0x%"PRIx64,
1362                    addr, val);
1363         break;
1364 
1365     /* VC syncs */
1366     case PNV_XIVE_SYNC_IPI:
1367     case PNV_XIVE_SYNC_HW:
1368     case PNV_XIVE_SYNC_OS_ESC:
1369     case PNV_XIVE_SYNC_HW_ESC:
1370     case PNV_XIVE_SYNC_REDIS:
1371         break;
1372 
1373     /* PC syncs */
1374     case PNV_XIVE_SYNC_PULL:
1375     case PNV_XIVE_SYNC_PUSH:
1376     case PNV_XIVE_SYNC_VPC:
1377         break;
1378 
1379     default:
1380         xive_error(xive, "IC: invalid notify write @%"HWADDR_PRIx, addr);
1381     }
1382 }
1383 
1384 static uint64_t pnv_xive_ic_notify_read(void *opaque, hwaddr addr,
1385                                         unsigned size)
1386 {
1387     PnvXive *xive = PNV_XIVE(opaque);
1388 
1389     /* loads are invalid */
1390     xive_error(xive, "IC: invalid notify read @%"HWADDR_PRIx, addr);
1391     return -1;
1392 }
1393 
1394 static const MemoryRegionOps pnv_xive_ic_notify_ops = {
1395     .read = pnv_xive_ic_notify_read,
1396     .write = pnv_xive_ic_notify_write,
1397     .endianness = DEVICE_BIG_ENDIAN,
1398     .valid = {
1399         .min_access_size = 8,
1400         .max_access_size = 8,
1401     },
1402     .impl = {
1403         .min_access_size = 8,
1404         .max_access_size = 8,
1405     },
1406 };
1407 
1408 /*
1409  * IC - LSI MMIO handlers (not modeled)
1410  */
1411 
1412 static void pnv_xive_ic_lsi_write(void *opaque, hwaddr addr,
1413                               uint64_t val, unsigned size)
1414 {
1415     PnvXive *xive = PNV_XIVE(opaque);
1416 
1417     xive_error(xive, "IC: LSI invalid write @%"HWADDR_PRIx, addr);
1418 }
1419 
1420 static uint64_t pnv_xive_ic_lsi_read(void *opaque, hwaddr addr, unsigned size)
1421 {
1422     PnvXive *xive = PNV_XIVE(opaque);
1423 
1424     xive_error(xive, "IC: LSI invalid read @%"HWADDR_PRIx, addr);
1425     return -1;
1426 }
1427 
1428 static const MemoryRegionOps pnv_xive_ic_lsi_ops = {
1429     .read = pnv_xive_ic_lsi_read,
1430     .write = pnv_xive_ic_lsi_write,
1431     .endianness = DEVICE_BIG_ENDIAN,
1432     .valid = {
1433         .min_access_size = 8,
1434         .max_access_size = 8,
1435     },
1436     .impl = {
1437         .min_access_size = 8,
1438         .max_access_size = 8,
1439     },
1440 };
1441 
1442 /*
1443  * IC - Indirect TIMA MMIO handlers
1444  */
1445 
1446 /*
1447  * When the TIMA is accessed from the indirect page, the thread id of
1448  * the target CPU is configured in the PC_TCTXT_INDIR0 register before
1449  * use. This is used for resets and for debug purpose also.
1450  */
1451 static XiveTCTX *pnv_xive_get_indirect_tctx(PnvXive *xive)
1452 {
1453     PnvChip *chip = xive->chip;
1454     uint64_t tctxt_indir = xive->regs[PC_TCTXT_INDIR0 >> 3];
1455     PowerPCCPU *cpu = NULL;
1456     int pir;
1457 
1458     if (!(tctxt_indir & PC_TCTXT_INDIR_VALID)) {
1459         xive_error(xive, "IC: no indirect TIMA access in progress");
1460         return NULL;
1461     }
1462 
1463     pir = (chip->chip_id << 8) | GETFIELD(PC_TCTXT_INDIR_THRDID, tctxt_indir);
1464     cpu = pnv_chip_find_cpu(chip, pir);
1465     if (!cpu) {
1466         xive_error(xive, "IC: invalid PIR %x for indirect access", pir);
1467         return NULL;
1468     }
1469 
1470     /* Check that HW thread is XIVE enabled */
1471     if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
1472         xive_error(xive, "IC: CPU %x is not enabled", pir);
1473     }
1474 
1475     return XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1476 }
1477 
1478 static void xive_tm_indirect_write(void *opaque, hwaddr offset,
1479                                    uint64_t value, unsigned size)
1480 {
1481     XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1482 
1483     xive_tctx_tm_write(XIVE_PRESENTER(opaque), tctx, offset, value, size);
1484 }
1485 
1486 static uint64_t xive_tm_indirect_read(void *opaque, hwaddr offset,
1487                                       unsigned size)
1488 {
1489     XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1490 
1491     return xive_tctx_tm_read(XIVE_PRESENTER(opaque), tctx, offset, size);
1492 }
1493 
1494 static const MemoryRegionOps xive_tm_indirect_ops = {
1495     .read = xive_tm_indirect_read,
1496     .write = xive_tm_indirect_write,
1497     .endianness = DEVICE_BIG_ENDIAN,
1498     .valid = {
1499         .min_access_size = 1,
1500         .max_access_size = 8,
1501     },
1502     .impl = {
1503         .min_access_size = 1,
1504         .max_access_size = 8,
1505     },
1506 };
1507 
1508 static void pnv_xive_tm_write(void *opaque, hwaddr offset,
1509                               uint64_t value, unsigned size)
1510 {
1511     PowerPCCPU *cpu = POWERPC_CPU(current_cpu);
1512     PnvXive *xive = pnv_xive_tm_get_xive(cpu);
1513     XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1514 
1515     xive_tctx_tm_write(XIVE_PRESENTER(xive), tctx, offset, value, size);
1516 }
1517 
1518 static uint64_t pnv_xive_tm_read(void *opaque, hwaddr offset, unsigned size)
1519 {
1520     PowerPCCPU *cpu = POWERPC_CPU(current_cpu);
1521     PnvXive *xive = pnv_xive_tm_get_xive(cpu);
1522     XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1523 
1524     return xive_tctx_tm_read(XIVE_PRESENTER(xive), tctx, offset, size);
1525 }
1526 
1527 const MemoryRegionOps pnv_xive_tm_ops = {
1528     .read = pnv_xive_tm_read,
1529     .write = pnv_xive_tm_write,
1530     .endianness = DEVICE_BIG_ENDIAN,
1531     .valid = {
1532         .min_access_size = 1,
1533         .max_access_size = 8,
1534     },
1535     .impl = {
1536         .min_access_size = 1,
1537         .max_access_size = 8,
1538     },
1539 };
1540 
1541 /*
1542  * Interrupt controller XSCOM region.
1543  */
1544 static uint64_t pnv_xive_xscom_read(void *opaque, hwaddr addr, unsigned size)
1545 {
1546     switch (addr >> 3) {
1547     case X_VC_EQC_CONFIG:
1548         /* FIXME (skiboot): This is the only XSCOM load. Bizarre. */
1549         return VC_EQC_SYNC_MASK;
1550     default:
1551         return pnv_xive_ic_reg_read(opaque, addr, size);
1552     }
1553 }
1554 
1555 static void pnv_xive_xscom_write(void *opaque, hwaddr addr,
1556                                 uint64_t val, unsigned size)
1557 {
1558     pnv_xive_ic_reg_write(opaque, addr, val, size);
1559 }
1560 
1561 static const MemoryRegionOps pnv_xive_xscom_ops = {
1562     .read = pnv_xive_xscom_read,
1563     .write = pnv_xive_xscom_write,
1564     .endianness = DEVICE_BIG_ENDIAN,
1565     .valid = {
1566         .min_access_size = 8,
1567         .max_access_size = 8,
1568     },
1569     .impl = {
1570         .min_access_size = 8,
1571         .max_access_size = 8,
1572     }
1573 };
1574 
1575 /*
1576  * Virtualization Controller MMIO region containing the IPI and END ESB pages
1577  */
1578 static uint64_t pnv_xive_vc_read(void *opaque, hwaddr offset,
1579                                  unsigned size)
1580 {
1581     PnvXive *xive = PNV_XIVE(opaque);
1582     uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1583     uint64_t edt_type = 0;
1584     uint64_t edt_offset;
1585     MemTxResult result;
1586     AddressSpace *edt_as = NULL;
1587     uint64_t ret = -1;
1588 
1589     if (edt_index < XIVE_TABLE_EDT_MAX) {
1590         edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1591     }
1592 
1593     switch (edt_type) {
1594     case CQ_TDR_EDT_IPI:
1595         edt_as = &xive->ipi_as;
1596         break;
1597     case CQ_TDR_EDT_EQ:
1598         edt_as = &xive->end_as;
1599         break;
1600     default:
1601         xive_error(xive, "VC: invalid EDT type for read @%"HWADDR_PRIx, offset);
1602         return -1;
1603     }
1604 
1605     /* Remap the offset for the targeted address space */
1606     edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1607 
1608     ret = address_space_ldq(edt_as, edt_offset, MEMTXATTRS_UNSPECIFIED,
1609                             &result);
1610 
1611     if (result != MEMTX_OK) {
1612         xive_error(xive, "VC: %s read failed at @0x%"HWADDR_PRIx " -> @0x%"
1613                    HWADDR_PRIx, edt_type == CQ_TDR_EDT_IPI ? "IPI" : "END",
1614                    offset, edt_offset);
1615         return -1;
1616     }
1617 
1618     return ret;
1619 }
1620 
1621 static void pnv_xive_vc_write(void *opaque, hwaddr offset,
1622                               uint64_t val, unsigned size)
1623 {
1624     PnvXive *xive = PNV_XIVE(opaque);
1625     uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1626     uint64_t edt_type = 0;
1627     uint64_t edt_offset;
1628     MemTxResult result;
1629     AddressSpace *edt_as = NULL;
1630 
1631     if (edt_index < XIVE_TABLE_EDT_MAX) {
1632         edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1633     }
1634 
1635     switch (edt_type) {
1636     case CQ_TDR_EDT_IPI:
1637         edt_as = &xive->ipi_as;
1638         break;
1639     case CQ_TDR_EDT_EQ:
1640         edt_as = &xive->end_as;
1641         break;
1642     default:
1643         xive_error(xive, "VC: invalid EDT type for write @%"HWADDR_PRIx,
1644                    offset);
1645         return;
1646     }
1647 
1648     /* Remap the offset for the targeted address space */
1649     edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1650 
1651     address_space_stq(edt_as, edt_offset, val, MEMTXATTRS_UNSPECIFIED, &result);
1652     if (result != MEMTX_OK) {
1653         xive_error(xive, "VC: write failed at @0x%"HWADDR_PRIx, edt_offset);
1654     }
1655 }
1656 
1657 static const MemoryRegionOps pnv_xive_vc_ops = {
1658     .read = pnv_xive_vc_read,
1659     .write = pnv_xive_vc_write,
1660     .endianness = DEVICE_BIG_ENDIAN,
1661     .valid = {
1662         .min_access_size = 8,
1663         .max_access_size = 8,
1664     },
1665     .impl = {
1666         .min_access_size = 8,
1667         .max_access_size = 8,
1668     },
1669 };
1670 
1671 /*
1672  * Presenter Controller MMIO region. The Virtualization Controller
1673  * updates the IPB in the NVT table when required. Not modeled.
1674  */
1675 static uint64_t pnv_xive_pc_read(void *opaque, hwaddr addr,
1676                                  unsigned size)
1677 {
1678     PnvXive *xive = PNV_XIVE(opaque);
1679 
1680     xive_error(xive, "PC: invalid read @%"HWADDR_PRIx, addr);
1681     return -1;
1682 }
1683 
1684 static void pnv_xive_pc_write(void *opaque, hwaddr addr,
1685                               uint64_t value, unsigned size)
1686 {
1687     PnvXive *xive = PNV_XIVE(opaque);
1688 
1689     xive_error(xive, "PC: invalid write to VC @%"HWADDR_PRIx, addr);
1690 }
1691 
1692 static const MemoryRegionOps pnv_xive_pc_ops = {
1693     .read = pnv_xive_pc_read,
1694     .write = pnv_xive_pc_write,
1695     .endianness = DEVICE_BIG_ENDIAN,
1696     .valid = {
1697         .min_access_size = 8,
1698         .max_access_size = 8,
1699     },
1700     .impl = {
1701         .min_access_size = 8,
1702         .max_access_size = 8,
1703     },
1704 };
1705 
1706 static void xive_nvt_pic_print_info(XiveNVT *nvt, uint32_t nvt_idx,
1707                                     Monitor *mon)
1708 {
1709     uint8_t  eq_blk = xive_get_field32(NVT_W1_EQ_BLOCK, nvt->w1);
1710     uint32_t eq_idx = xive_get_field32(NVT_W1_EQ_INDEX, nvt->w1);
1711 
1712     if (!xive_nvt_is_valid(nvt)) {
1713         return;
1714     }
1715 
1716     monitor_printf(mon, "  %08x end:%02x/%04x IPB:%02x\n", nvt_idx,
1717                    eq_blk, eq_idx,
1718                    xive_get_field32(NVT_W4_IPB, nvt->w4));
1719 }
1720 
1721 void pnv_xive_pic_print_info(PnvXive *xive, Monitor *mon)
1722 {
1723     XiveRouter *xrtr = XIVE_ROUTER(xive);
1724     uint8_t blk = pnv_xive_block_id(xive);
1725     uint8_t chip_id = xive->chip->chip_id;
1726     uint32_t srcno0 = XIVE_EAS(blk, 0);
1727     uint32_t nr_ipis = pnv_xive_nr_ipis(xive, blk);
1728     XiveEAS eas;
1729     XiveEND end;
1730     XiveNVT nvt;
1731     int i;
1732     uint64_t xive_nvt_per_subpage;
1733 
1734     monitor_printf(mon, "XIVE[%x] #%d Source %08x .. %08x\n", chip_id, blk,
1735                    srcno0, srcno0 + nr_ipis - 1);
1736     xive_source_pic_print_info(&xive->ipi_source, srcno0, mon);
1737 
1738     monitor_printf(mon, "XIVE[%x] #%d EAT %08x .. %08x\n", chip_id, blk,
1739                    srcno0, srcno0 + nr_ipis - 1);
1740     for (i = 0; i < nr_ipis; i++) {
1741         if (xive_router_get_eas(xrtr, blk, i, &eas)) {
1742             break;
1743         }
1744         if (!xive_eas_is_masked(&eas)) {
1745             xive_eas_pic_print_info(&eas, i, mon);
1746         }
1747     }
1748 
1749     monitor_printf(mon, "XIVE[%x] #%d ENDT\n", chip_id, blk);
1750     i = 0;
1751     while (!xive_router_get_end(xrtr, blk, i, &end)) {
1752         xive_end_pic_print_info(&end, i++, mon);
1753     }
1754 
1755     monitor_printf(mon, "XIVE[%x] #%d END Escalation EAT\n", chip_id, blk);
1756     i = 0;
1757     while (!xive_router_get_end(xrtr, blk, i, &end)) {
1758         xive_end_eas_pic_print_info(&end, i++, mon);
1759     }
1760 
1761     monitor_printf(mon, "XIVE[%x] #%d NVTT %08x .. %08x\n", chip_id, blk,
1762                    0, XIVE_NVT_COUNT - 1);
1763     xive_nvt_per_subpage = pnv_xive_vst_per_subpage(xive, VST_TSEL_VPDT);
1764     for (i = 0; i < XIVE_NVT_COUNT; i += xive_nvt_per_subpage) {
1765         while (!xive_router_get_nvt(xrtr, blk, i, &nvt)) {
1766             xive_nvt_pic_print_info(&nvt, i++, mon);
1767         }
1768     }
1769 }
1770 
1771 static void pnv_xive_reset(void *dev)
1772 {
1773     PnvXive *xive = PNV_XIVE(dev);
1774     XiveSource *xsrc = &xive->ipi_source;
1775     XiveENDSource *end_xsrc = &xive->end_source;
1776 
1777     /* Default page size (Should be changed at runtime to 64k) */
1778     xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1779 
1780     /* Clear subregions */
1781     if (memory_region_is_mapped(&xsrc->esb_mmio)) {
1782         memory_region_del_subregion(&xive->ipi_edt_mmio, &xsrc->esb_mmio);
1783     }
1784 
1785     if (memory_region_is_mapped(&xive->ipi_edt_mmio)) {
1786         memory_region_del_subregion(&xive->ipi_mmio, &xive->ipi_edt_mmio);
1787     }
1788 
1789     if (memory_region_is_mapped(&end_xsrc->esb_mmio)) {
1790         memory_region_del_subregion(&xive->end_edt_mmio, &end_xsrc->esb_mmio);
1791     }
1792 
1793     if (memory_region_is_mapped(&xive->end_edt_mmio)) {
1794         memory_region_del_subregion(&xive->end_mmio, &xive->end_edt_mmio);
1795     }
1796 }
1797 
1798 static void pnv_xive_init(Object *obj)
1799 {
1800     PnvXive *xive = PNV_XIVE(obj);
1801 
1802     object_initialize_child(obj, "ipi_source", &xive->ipi_source,
1803                             TYPE_XIVE_SOURCE);
1804     object_initialize_child(obj, "end_source", &xive->end_source,
1805                             TYPE_XIVE_END_SOURCE);
1806 }
1807 
1808 /*
1809  *  Maximum number of IRQs and ENDs supported by HW
1810  */
1811 #define PNV_XIVE_NR_IRQS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1812 #define PNV_XIVE_NR_ENDS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1813 
1814 static void pnv_xive_realize(DeviceState *dev, Error **errp)
1815 {
1816     PnvXive *xive = PNV_XIVE(dev);
1817     PnvXiveClass *pxc = PNV_XIVE_GET_CLASS(dev);
1818     XiveSource *xsrc = &xive->ipi_source;
1819     XiveENDSource *end_xsrc = &xive->end_source;
1820     Error *local_err = NULL;
1821 
1822     pxc->parent_realize(dev, &local_err);
1823     if (local_err) {
1824         error_propagate(errp, local_err);
1825         return;
1826     }
1827 
1828     assert(xive->chip);
1829 
1830     /*
1831      * The XiveSource and XiveENDSource objects are realized with the
1832      * maximum allowed HW configuration. The ESB MMIO regions will be
1833      * resized dynamically when the controller is configured by the FW
1834      * to limit accesses to resources not provisioned.
1835      */
1836     object_property_set_int(OBJECT(xsrc), "nr-irqs", PNV_XIVE_NR_IRQS,
1837                             &error_fatal);
1838     object_property_set_link(OBJECT(xsrc), "xive", OBJECT(xive), &error_abort);
1839     if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
1840         return;
1841     }
1842 
1843     object_property_set_int(OBJECT(end_xsrc), "nr-ends", PNV_XIVE_NR_ENDS,
1844                             &error_fatal);
1845     object_property_set_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
1846                              &error_abort);
1847     if (!qdev_realize(DEVICE(end_xsrc), NULL, errp)) {
1848         return;
1849     }
1850 
1851     /* Default page size. Generally changed at runtime to 64k */
1852     xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1853 
1854     /* XSCOM region, used for initial configuration of the BARs */
1855     memory_region_init_io(&xive->xscom_regs, OBJECT(dev), &pnv_xive_xscom_ops,
1856                           xive, "xscom-xive", PNV9_XSCOM_XIVE_SIZE << 3);
1857 
1858     /* Interrupt controller MMIO regions */
1859     memory_region_init(&xive->ic_mmio, OBJECT(dev), "xive-ic",
1860                        PNV9_XIVE_IC_SIZE);
1861 
1862     memory_region_init_io(&xive->ic_reg_mmio, OBJECT(dev), &pnv_xive_ic_reg_ops,
1863                           xive, "xive-ic-reg", 1 << xive->ic_shift);
1864     memory_region_init_io(&xive->ic_notify_mmio, OBJECT(dev),
1865                           &pnv_xive_ic_notify_ops,
1866                           xive, "xive-ic-notify", 1 << xive->ic_shift);
1867 
1868     /* The Pervasive LSI trigger and EOI pages (not modeled) */
1869     memory_region_init_io(&xive->ic_lsi_mmio, OBJECT(dev), &pnv_xive_ic_lsi_ops,
1870                           xive, "xive-ic-lsi", 2 << xive->ic_shift);
1871 
1872     /* Thread Interrupt Management Area (Indirect) */
1873     memory_region_init_io(&xive->tm_indirect_mmio, OBJECT(dev),
1874                           &xive_tm_indirect_ops,
1875                           xive, "xive-tima-indirect", PNV9_XIVE_TM_SIZE);
1876     /*
1877      * Overall Virtualization Controller MMIO region containing the
1878      * IPI ESB pages and END ESB pages. The layout is defined by the
1879      * EDT "Domain table" and the accesses are dispatched using
1880      * address spaces for each.
1881      */
1882     memory_region_init_io(&xive->vc_mmio, OBJECT(xive), &pnv_xive_vc_ops, xive,
1883                           "xive-vc", PNV9_XIVE_VC_SIZE);
1884 
1885     memory_region_init(&xive->ipi_mmio, OBJECT(xive), "xive-vc-ipi",
1886                        PNV9_XIVE_VC_SIZE);
1887     address_space_init(&xive->ipi_as, &xive->ipi_mmio, "xive-vc-ipi");
1888     memory_region_init(&xive->end_mmio, OBJECT(xive), "xive-vc-end",
1889                        PNV9_XIVE_VC_SIZE);
1890     address_space_init(&xive->end_as, &xive->end_mmio, "xive-vc-end");
1891 
1892     /*
1893      * The MMIO windows exposing the IPI ESBs and the END ESBs in the
1894      * VC region. Their size is configured by the FW in the EDT table.
1895      */
1896     memory_region_init(&xive->ipi_edt_mmio, OBJECT(xive), "xive-vc-ipi-edt", 0);
1897     memory_region_init(&xive->end_edt_mmio, OBJECT(xive), "xive-vc-end-edt", 0);
1898 
1899     /* Presenter Controller MMIO region (not modeled) */
1900     memory_region_init_io(&xive->pc_mmio, OBJECT(xive), &pnv_xive_pc_ops, xive,
1901                           "xive-pc", PNV9_XIVE_PC_SIZE);
1902 
1903     /* Thread Interrupt Management Area (Direct) */
1904     memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &pnv_xive_tm_ops,
1905                           xive, "xive-tima", PNV9_XIVE_TM_SIZE);
1906 
1907     qemu_register_reset(pnv_xive_reset, dev);
1908 }
1909 
1910 static int pnv_xive_dt_xscom(PnvXScomInterface *dev, void *fdt,
1911                              int xscom_offset)
1912 {
1913     const char compat[] = "ibm,power9-xive-x";
1914     char *name;
1915     int offset;
1916     uint32_t lpc_pcba = PNV9_XSCOM_XIVE_BASE;
1917     uint32_t reg[] = {
1918         cpu_to_be32(lpc_pcba),
1919         cpu_to_be32(PNV9_XSCOM_XIVE_SIZE)
1920     };
1921 
1922     name = g_strdup_printf("xive@%x", lpc_pcba);
1923     offset = fdt_add_subnode(fdt, xscom_offset, name);
1924     _FDT(offset);
1925     g_free(name);
1926 
1927     _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
1928     _FDT((fdt_setprop(fdt, offset, "compatible", compat,
1929                       sizeof(compat))));
1930     return 0;
1931 }
1932 
1933 static Property pnv_xive_properties[] = {
1934     DEFINE_PROP_UINT64("ic-bar", PnvXive, ic_base, 0),
1935     DEFINE_PROP_UINT64("vc-bar", PnvXive, vc_base, 0),
1936     DEFINE_PROP_UINT64("pc-bar", PnvXive, pc_base, 0),
1937     DEFINE_PROP_UINT64("tm-bar", PnvXive, tm_base, 0),
1938     /* The PnvChip id identifies the XIVE interrupt controller. */
1939     DEFINE_PROP_LINK("chip", PnvXive, chip, TYPE_PNV_CHIP, PnvChip *),
1940     DEFINE_PROP_END_OF_LIST(),
1941 };
1942 
1943 static void pnv_xive_class_init(ObjectClass *klass, void *data)
1944 {
1945     DeviceClass *dc = DEVICE_CLASS(klass);
1946     PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
1947     XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
1948     XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1949     XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass);
1950     PnvXiveClass *pxc = PNV_XIVE_CLASS(klass);
1951 
1952     xdc->dt_xscom = pnv_xive_dt_xscom;
1953 
1954     dc->desc = "PowerNV XIVE Interrupt Controller";
1955     device_class_set_parent_realize(dc, pnv_xive_realize, &pxc->parent_realize);
1956     dc->realize = pnv_xive_realize;
1957     device_class_set_props(dc, pnv_xive_properties);
1958 
1959     xrc->get_eas = pnv_xive_get_eas;
1960     xrc->get_end = pnv_xive_get_end;
1961     xrc->write_end = pnv_xive_write_end;
1962     xrc->get_nvt = pnv_xive_get_nvt;
1963     xrc->write_nvt = pnv_xive_write_nvt;
1964     xrc->get_block_id = pnv_xive_get_block_id;
1965 
1966     xnc->notify = pnv_xive_notify;
1967     xpc->match_nvt  = pnv_xive_match_nvt;
1968 };
1969 
1970 static const TypeInfo pnv_xive_info = {
1971     .name          = TYPE_PNV_XIVE,
1972     .parent        = TYPE_XIVE_ROUTER,
1973     .instance_init = pnv_xive_init,
1974     .instance_size = sizeof(PnvXive),
1975     .class_init    = pnv_xive_class_init,
1976     .class_size    = sizeof(PnvXiveClass),
1977     .interfaces    = (InterfaceInfo[]) {
1978         { TYPE_PNV_XSCOM_INTERFACE },
1979         { }
1980     }
1981 };
1982 
1983 static void pnv_xive_register_types(void)
1984 {
1985     type_register_static(&pnv_xive_info);
1986 }
1987 
1988 type_init(pnv_xive_register_types)
1989