xref: /openbmc/qemu/hw/intc/pnv_xive.c (revision 01afa757b6f1b8c7858cc29b8332e9fb6aa1e16f)
1 /*
2  * QEMU PowerPC XIVE interrupt controller model
3  *
4  * Copyright (c) 2017-2019, IBM Corporation.
5  *
6  * This code is licensed under the GPL version 2 or later. See the
7  * COPYING file in the top-level directory.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "sysemu/reset.h"
18 #include "monitor/monitor.h"
19 #include "hw/ppc/fdt.h"
20 #include "hw/ppc/pnv.h"
21 #include "hw/ppc/pnv_core.h"
22 #include "hw/ppc/pnv_xscom.h"
23 #include "hw/ppc/pnv_xive.h"
24 #include "hw/ppc/xive_regs.h"
25 #include "hw/qdev-properties.h"
26 #include "hw/ppc/ppc.h"
27 
28 #include <libfdt.h>
29 
30 #include "pnv_xive_regs.h"
31 
32 #undef XIVE_DEBUG
33 
34 /*
35  * Virtual structures table (VST)
36  */
37 #define SBE_PER_BYTE   4
38 
39 typedef struct XiveVstInfo {
40     const char *name;
41     uint32_t    size;
42     uint32_t    max_blocks;
43 } XiveVstInfo;
44 
45 static const XiveVstInfo vst_infos[] = {
46     [VST_TSEL_IVT]  = { "EAT",  sizeof(XiveEAS), 16 },
47     [VST_TSEL_SBE]  = { "SBE",  1,               16 },
48     [VST_TSEL_EQDT] = { "ENDT", sizeof(XiveEND), 16 },
49     [VST_TSEL_VPDT] = { "VPDT", sizeof(XiveNVT), 32 },
50 
51     /*
52      *  Interrupt fifo backing store table (not modeled) :
53      *
54      * 0 - IPI,
55      * 1 - HWD,
56      * 2 - First escalate,
57      * 3 - Second escalate,
58      * 4 - Redistribution,
59      * 5 - IPI cascaded queue ?
60      */
61     [VST_TSEL_IRQ]  = { "IRQ",  1,               6  },
62 };
63 
64 #define xive_error(xive, fmt, ...)                                      \
65     qemu_log_mask(LOG_GUEST_ERROR, "XIVE[%x] - " fmt "\n",              \
66                   (xive)->chip->chip_id, ## __VA_ARGS__);
67 
68 /*
69  * QEMU version of the GETFIELD/SETFIELD macros
70  *
71  * TODO: It might be better to use the existing extract64() and
72  * deposit64() but this means that all the register definitions will
73  * change and become incompatible with the ones found in skiboot.
74  *
75  * Keep it as it is for now until we find a common ground.
76  */
77 static inline uint64_t GETFIELD(uint64_t mask, uint64_t word)
78 {
79     return (word & mask) >> ctz64(mask);
80 }
81 
82 static inline uint64_t SETFIELD(uint64_t mask, uint64_t word,
83                                 uint64_t value)
84 {
85     return (word & ~mask) | ((value << ctz64(mask)) & mask);
86 }
87 
88 /*
89  * When PC_TCTXT_CHIPID_OVERRIDE is configured, the PC_TCTXT_CHIPID
90  * field overrides the hardwired chip ID in the Powerbus operations
91  * and for CAM compares
92  */
93 static uint8_t pnv_xive_block_id(PnvXive *xive)
94 {
95     uint8_t blk = xive->chip->chip_id;
96     uint64_t cfg_val = xive->regs[PC_TCTXT_CFG >> 3];
97 
98     if (cfg_val & PC_TCTXT_CHIPID_OVERRIDE) {
99         blk = GETFIELD(PC_TCTXT_CHIPID, cfg_val);
100     }
101 
102     return blk;
103 }
104 
105 /*
106  * Remote access to controllers. HW uses MMIOs. For now, a simple scan
107  * of the chips is good enough.
108  *
109  * TODO: Block scope support
110  */
111 static PnvXive *pnv_xive_get_remote(uint8_t blk)
112 {
113     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
114     int i;
115 
116     for (i = 0; i < pnv->num_chips; i++) {
117         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
118         PnvXive *xive = &chip9->xive;
119 
120         if (pnv_xive_block_id(xive) == blk) {
121             return xive;
122         }
123     }
124     return NULL;
125 }
126 
127 /*
128  * VST accessors for SBE, EAT, ENDT, NVT
129  *
130  * Indirect VST tables are arrays of VSDs pointing to a page (of same
131  * size). Each page is a direct VST table.
132  */
133 
134 #define XIVE_VSD_SIZE 8
135 
136 /* Indirect page size can be 4K, 64K, 2M, 16M. */
137 static uint64_t pnv_xive_vst_page_size_allowed(uint32_t page_shift)
138 {
139      return page_shift == 12 || page_shift == 16 ||
140          page_shift == 21 || page_shift == 24;
141 }
142 
143 static uint64_t pnv_xive_vst_addr_direct(PnvXive *xive, uint32_t type,
144                                          uint64_t vsd, uint32_t idx)
145 {
146     const XiveVstInfo *info = &vst_infos[type];
147     uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
148     uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
149     uint32_t idx_max;
150 
151     idx_max = vst_tsize / info->size - 1;
152     if (idx > idx_max) {
153 #ifdef XIVE_DEBUG
154         xive_error(xive, "VST: %s entry %x out of range [ 0 .. %x ] !?",
155                    info->name, idx, idx_max);
156 #endif
157         return 0;
158     }
159 
160     return vst_addr + idx * info->size;
161 }
162 
163 static uint64_t pnv_xive_vst_addr_indirect(PnvXive *xive, uint32_t type,
164                                            uint64_t vsd, uint32_t idx)
165 {
166     const XiveVstInfo *info = &vst_infos[type];
167     uint64_t vsd_addr;
168     uint32_t vsd_idx;
169     uint32_t page_shift;
170     uint32_t vst_per_page;
171 
172     /* Get the page size of the indirect table. */
173     vsd_addr = vsd & VSD_ADDRESS_MASK;
174     vsd = ldq_be_dma(&address_space_memory, vsd_addr);
175 
176     if (!(vsd & VSD_ADDRESS_MASK)) {
177 #ifdef XIVE_DEBUG
178         xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
179 #endif
180         return 0;
181     }
182 
183     page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
184 
185     if (!pnv_xive_vst_page_size_allowed(page_shift)) {
186         xive_error(xive, "VST: invalid %s page shift %d", info->name,
187                    page_shift);
188         return 0;
189     }
190 
191     vst_per_page = (1ull << page_shift) / info->size;
192     vsd_idx = idx / vst_per_page;
193 
194     /* Load the VSD we are looking for, if not already done */
195     if (vsd_idx) {
196         vsd_addr = vsd_addr + vsd_idx * XIVE_VSD_SIZE;
197         vsd = ldq_be_dma(&address_space_memory, vsd_addr);
198 
199         if (!(vsd & VSD_ADDRESS_MASK)) {
200 #ifdef XIVE_DEBUG
201             xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
202 #endif
203             return 0;
204         }
205 
206         /*
207          * Check that the pages have a consistent size across the
208          * indirect table
209          */
210         if (page_shift != GETFIELD(VSD_TSIZE, vsd) + 12) {
211             xive_error(xive, "VST: %s entry %x indirect page size differ !?",
212                        info->name, idx);
213             return 0;
214         }
215     }
216 
217     return pnv_xive_vst_addr_direct(xive, type, vsd, (idx % vst_per_page));
218 }
219 
220 static uint64_t pnv_xive_vst_addr(PnvXive *xive, uint32_t type, uint8_t blk,
221                                   uint32_t idx)
222 {
223     const XiveVstInfo *info = &vst_infos[type];
224     uint64_t vsd;
225 
226     if (blk >= info->max_blocks) {
227         xive_error(xive, "VST: invalid block id %d for VST %s %d !?",
228                    blk, info->name, idx);
229         return 0;
230     }
231 
232     vsd = xive->vsds[type][blk];
233 
234     /* Remote VST access */
235     if (GETFIELD(VSD_MODE, vsd) == VSD_MODE_FORWARD) {
236         xive = pnv_xive_get_remote(blk);
237 
238         return xive ? pnv_xive_vst_addr(xive, type, blk, idx) : 0;
239     }
240 
241     if (VSD_INDIRECT & vsd) {
242         return pnv_xive_vst_addr_indirect(xive, type, vsd, idx);
243     }
244 
245     return pnv_xive_vst_addr_direct(xive, type, vsd, idx);
246 }
247 
248 static int pnv_xive_vst_read(PnvXive *xive, uint32_t type, uint8_t blk,
249                              uint32_t idx, void *data)
250 {
251     const XiveVstInfo *info = &vst_infos[type];
252     uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
253 
254     if (!addr) {
255         return -1;
256     }
257 
258     cpu_physical_memory_read(addr, data, info->size);
259     return 0;
260 }
261 
262 #define XIVE_VST_WORD_ALL -1
263 
264 static int pnv_xive_vst_write(PnvXive *xive, uint32_t type, uint8_t blk,
265                               uint32_t idx, void *data, uint32_t word_number)
266 {
267     const XiveVstInfo *info = &vst_infos[type];
268     uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
269 
270     if (!addr) {
271         return -1;
272     }
273 
274     if (word_number == XIVE_VST_WORD_ALL) {
275         cpu_physical_memory_write(addr, data, info->size);
276     } else {
277         cpu_physical_memory_write(addr + word_number * 4,
278                                   data + word_number * 4, 4);
279     }
280     return 0;
281 }
282 
283 static int pnv_xive_get_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
284                             XiveEND *end)
285 {
286     return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end);
287 }
288 
289 static int pnv_xive_write_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
290                               XiveEND *end, uint8_t word_number)
291 {
292     return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end,
293                               word_number);
294 }
295 
296 static int pnv_xive_end_update(PnvXive *xive)
297 {
298     uint8_t  blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
299                            xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
300     uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
301                            xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
302     int i;
303     uint64_t eqc_watch[4];
304 
305     for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
306         eqc_watch[i] = cpu_to_be64(xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i]);
307     }
308 
309     return pnv_xive_vst_write(xive, VST_TSEL_EQDT, blk, idx, eqc_watch,
310                               XIVE_VST_WORD_ALL);
311 }
312 
313 static void pnv_xive_end_cache_load(PnvXive *xive)
314 {
315     uint8_t  blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
316                            xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
317     uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
318                            xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
319     uint64_t eqc_watch[4] = { 0 };
320     int i;
321 
322     if (pnv_xive_vst_read(xive, VST_TSEL_EQDT, blk, idx, eqc_watch)) {
323         xive_error(xive, "VST: no END entry %x/%x !?", blk, idx);
324     }
325 
326     for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
327         xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(eqc_watch[i]);
328     }
329 }
330 
331 static int pnv_xive_get_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
332                             XiveNVT *nvt)
333 {
334     return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt);
335 }
336 
337 static int pnv_xive_write_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
338                               XiveNVT *nvt, uint8_t word_number)
339 {
340     return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt,
341                               word_number);
342 }
343 
344 static int pnv_xive_nvt_update(PnvXive *xive)
345 {
346     uint8_t  blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
347                            xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
348     uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
349                            xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
350     int i;
351     uint64_t vpc_watch[8];
352 
353     for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
354         vpc_watch[i] = cpu_to_be64(xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i]);
355     }
356 
357     return pnv_xive_vst_write(xive, VST_TSEL_VPDT, blk, idx, vpc_watch,
358                               XIVE_VST_WORD_ALL);
359 }
360 
361 static void pnv_xive_nvt_cache_load(PnvXive *xive)
362 {
363     uint8_t  blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
364                            xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
365     uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
366                            xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
367     uint64_t vpc_watch[8] = { 0 };
368     int i;
369 
370     if (pnv_xive_vst_read(xive, VST_TSEL_VPDT, blk, idx, vpc_watch)) {
371         xive_error(xive, "VST: no NVT entry %x/%x !?", blk, idx);
372     }
373 
374     for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
375         xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(vpc_watch[i]);
376     }
377 }
378 
379 static int pnv_xive_get_eas(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
380                             XiveEAS *eas)
381 {
382     PnvXive *xive = PNV_XIVE(xrtr);
383 
384     /*
385      * EAT lookups should be local to the IC
386      */
387     if (pnv_xive_block_id(xive) != blk) {
388         xive_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx));
389         return -1;
390     }
391 
392     return pnv_xive_vst_read(xive, VST_TSEL_IVT, blk, idx, eas);
393 }
394 
395 /*
396  * One bit per thread id. The first register PC_THREAD_EN_REG0 covers
397  * the first cores 0-15 (normal) of the chip or 0-7 (fused). The
398  * second register covers cores 16-23 (normal) or 8-11 (fused).
399  */
400 static bool pnv_xive_is_cpu_enabled(PnvXive *xive, PowerPCCPU *cpu)
401 {
402     int pir = ppc_cpu_pir(cpu);
403     uint32_t fc = PNV9_PIR2FUSEDCORE(pir);
404     uint64_t reg = fc < 8 ? PC_THREAD_EN_REG0 : PC_THREAD_EN_REG1;
405     uint32_t bit = pir & 0x3f;
406 
407     return xive->regs[reg >> 3] & PPC_BIT(bit);
408 }
409 
410 static int pnv_xive_match_nvt(XivePresenter *xptr, uint8_t format,
411                               uint8_t nvt_blk, uint32_t nvt_idx,
412                               bool cam_ignore, uint8_t priority,
413                               uint32_t logic_serv, XiveTCTXMatch *match)
414 {
415     PnvXive *xive = PNV_XIVE(xptr);
416     PnvChip *chip = xive->chip;
417     int count = 0;
418     int i, j;
419 
420     for (i = 0; i < chip->nr_cores; i++) {
421         PnvCore *pc = chip->cores[i];
422         CPUCore *cc = CPU_CORE(pc);
423 
424         for (j = 0; j < cc->nr_threads; j++) {
425             PowerPCCPU *cpu = pc->threads[j];
426             XiveTCTX *tctx;
427             int ring;
428 
429             if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
430                 continue;
431             }
432 
433             tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
434 
435             /*
436              * Check the thread context CAM lines and record matches.
437              */
438             ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk,
439                                              nvt_idx, cam_ignore, logic_serv);
440             /*
441              * Save the context and follow on to catch duplicates, that we
442              * don't support yet.
443              */
444             if (ring != -1) {
445                 if (match->tctx) {
446                     qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a "
447                                   "thread context NVT %x/%x\n",
448                                   nvt_blk, nvt_idx);
449                     return -1;
450                 }
451 
452                 match->ring = ring;
453                 match->tctx = tctx;
454                 count++;
455             }
456         }
457     }
458 
459     return count;
460 }
461 
462 static uint8_t pnv_xive_get_block_id(XiveRouter *xrtr)
463 {
464     return pnv_xive_block_id(PNV_XIVE(xrtr));
465 }
466 
467 /*
468  * The TIMA MMIO space is shared among the chips and to identify the
469  * chip from which the access is being done, we extract the chip id
470  * from the PIR.
471  */
472 static PnvXive *pnv_xive_tm_get_xive(PowerPCCPU *cpu)
473 {
474     int pir = ppc_cpu_pir(cpu);
475     XivePresenter *xptr = XIVE_TCTX(pnv_cpu_state(cpu)->intc)->xptr;
476     PnvXive *xive = PNV_XIVE(xptr);
477 
478     if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
479         xive_error(xive, "IC: CPU %x is not enabled", pir);
480     }
481     return xive;
482 }
483 
484 /*
485  * The internal sources (IPIs) of the interrupt controller have no
486  * knowledge of the XIVE chip on which they reside. Encode the block
487  * id in the source interrupt number before forwarding the source
488  * event notification to the Router. This is required on a multichip
489  * system.
490  */
491 static void pnv_xive_notify(XiveNotifier *xn, uint32_t srcno)
492 {
493     PnvXive *xive = PNV_XIVE(xn);
494     uint8_t blk = pnv_xive_block_id(xive);
495 
496     xive_router_notify(xn, XIVE_EAS(blk, srcno));
497 }
498 
499 /*
500  * XIVE helpers
501  */
502 
503 static uint64_t pnv_xive_vc_size(PnvXive *xive)
504 {
505     return (~xive->regs[CQ_VC_BARM >> 3] + 1) & CQ_VC_BARM_MASK;
506 }
507 
508 static uint64_t pnv_xive_edt_shift(PnvXive *xive)
509 {
510     return ctz64(pnv_xive_vc_size(xive) / XIVE_TABLE_EDT_MAX);
511 }
512 
513 static uint64_t pnv_xive_pc_size(PnvXive *xive)
514 {
515     return (~xive->regs[CQ_PC_BARM >> 3] + 1) & CQ_PC_BARM_MASK;
516 }
517 
518 static uint32_t pnv_xive_nr_ipis(PnvXive *xive, uint8_t blk)
519 {
520     uint64_t vsd = xive->vsds[VST_TSEL_SBE][blk];
521     uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
522 
523     return VSD_INDIRECT & vsd ? 0 : vst_tsize * SBE_PER_BYTE;
524 }
525 
526 /*
527  * Compute the number of entries per indirect subpage.
528  */
529 static uint64_t pnv_xive_vst_per_subpage(PnvXive *xive, uint32_t type)
530 {
531     uint8_t blk = pnv_xive_block_id(xive);
532     uint64_t vsd = xive->vsds[type][blk];
533     const XiveVstInfo *info = &vst_infos[type];
534     uint64_t vsd_addr;
535     uint32_t page_shift;
536 
537     /* For direct tables, fake a valid value */
538     if (!(VSD_INDIRECT & vsd)) {
539         return 1;
540     }
541 
542     /* Get the page size of the indirect table. */
543     vsd_addr = vsd & VSD_ADDRESS_MASK;
544     vsd = ldq_be_dma(&address_space_memory, vsd_addr);
545 
546     if (!(vsd & VSD_ADDRESS_MASK)) {
547 #ifdef XIVE_DEBUG
548         xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
549 #endif
550         return 0;
551     }
552 
553     page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
554 
555     if (!pnv_xive_vst_page_size_allowed(page_shift)) {
556         xive_error(xive, "VST: invalid %s page shift %d", info->name,
557                    page_shift);
558         return 0;
559     }
560 
561     return (1ull << page_shift) / info->size;
562 }
563 
564 /*
565  * EDT Table
566  *
567  * The Virtualization Controller MMIO region containing the IPI ESB
568  * pages and END ESB pages is sub-divided into "sets" which map
569  * portions of the VC region to the different ESB pages. It is
570  * configured at runtime through the EDT "Domain Table" to let the
571  * firmware decide how to split the VC address space between IPI ESB
572  * pages and END ESB pages.
573  */
574 
575 /*
576  * Computes the overall size of the IPI or the END ESB pages
577  */
578 static uint64_t pnv_xive_edt_size(PnvXive *xive, uint64_t type)
579 {
580     uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
581     uint64_t size = 0;
582     int i;
583 
584     for (i = 0; i < XIVE_TABLE_EDT_MAX; i++) {
585         uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
586 
587         if (edt_type == type) {
588             size += edt_size;
589         }
590     }
591 
592     return size;
593 }
594 
595 /*
596  * Maps an offset of the VC region in the IPI or END region using the
597  * layout defined by the EDT "Domaine Table"
598  */
599 static uint64_t pnv_xive_edt_offset(PnvXive *xive, uint64_t vc_offset,
600                                               uint64_t type)
601 {
602     int i;
603     uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
604     uint64_t edt_offset = vc_offset;
605 
606     for (i = 0; i < XIVE_TABLE_EDT_MAX && (i * edt_size) < vc_offset; i++) {
607         uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
608 
609         if (edt_type != type) {
610             edt_offset -= edt_size;
611         }
612     }
613 
614     return edt_offset;
615 }
616 
617 static void pnv_xive_edt_resize(PnvXive *xive)
618 {
619     uint64_t ipi_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_IPI);
620     uint64_t end_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_EQ);
621 
622     memory_region_set_size(&xive->ipi_edt_mmio, ipi_edt_size);
623     memory_region_add_subregion(&xive->ipi_mmio, 0, &xive->ipi_edt_mmio);
624 
625     memory_region_set_size(&xive->end_edt_mmio, end_edt_size);
626     memory_region_add_subregion(&xive->end_mmio, 0, &xive->end_edt_mmio);
627 }
628 
629 /*
630  * XIVE Table configuration. Only EDT is supported.
631  */
632 static int pnv_xive_table_set_data(PnvXive *xive, uint64_t val)
633 {
634     uint64_t tsel = xive->regs[CQ_TAR >> 3] & CQ_TAR_TSEL;
635     uint8_t tsel_index = GETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3]);
636     uint64_t *xive_table;
637     uint8_t max_index;
638 
639     switch (tsel) {
640     case CQ_TAR_TSEL_BLK:
641         max_index = ARRAY_SIZE(xive->blk);
642         xive_table = xive->blk;
643         break;
644     case CQ_TAR_TSEL_MIG:
645         max_index = ARRAY_SIZE(xive->mig);
646         xive_table = xive->mig;
647         break;
648     case CQ_TAR_TSEL_EDT:
649         max_index = ARRAY_SIZE(xive->edt);
650         xive_table = xive->edt;
651         break;
652     case CQ_TAR_TSEL_VDT:
653         max_index = ARRAY_SIZE(xive->vdt);
654         xive_table = xive->vdt;
655         break;
656     default:
657         xive_error(xive, "IC: invalid table %d", (int) tsel);
658         return -1;
659     }
660 
661     if (tsel_index >= max_index) {
662         xive_error(xive, "IC: invalid index %d", (int) tsel_index);
663         return -1;
664     }
665 
666     xive_table[tsel_index] = val;
667 
668     if (xive->regs[CQ_TAR >> 3] & CQ_TAR_TBL_AUTOINC) {
669         xive->regs[CQ_TAR >> 3] =
670             SETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3], ++tsel_index);
671     }
672 
673     /*
674      * EDT configuration is complete. Resize the MMIO windows exposing
675      * the IPI and the END ESBs in the VC region.
676      */
677     if (tsel == CQ_TAR_TSEL_EDT && tsel_index == ARRAY_SIZE(xive->edt)) {
678         pnv_xive_edt_resize(xive);
679     }
680 
681     return 0;
682 }
683 
684 /*
685  * Virtual Structure Tables (VST) configuration
686  */
687 static void pnv_xive_vst_set_exclusive(PnvXive *xive, uint8_t type,
688                                        uint8_t blk, uint64_t vsd)
689 {
690     XiveENDSource *end_xsrc = &xive->end_source;
691     XiveSource *xsrc = &xive->ipi_source;
692     const XiveVstInfo *info = &vst_infos[type];
693     uint32_t page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
694     uint64_t vst_tsize = 1ull << page_shift;
695     uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
696 
697     /* Basic checks */
698 
699     if (VSD_INDIRECT & vsd) {
700         if (!(xive->regs[VC_GLOBAL_CONFIG >> 3] & VC_GCONF_INDIRECT)) {
701             xive_error(xive, "VST: %s indirect tables are not enabled",
702                        info->name);
703             return;
704         }
705 
706         if (!pnv_xive_vst_page_size_allowed(page_shift)) {
707             xive_error(xive, "VST: invalid %s page shift %d", info->name,
708                        page_shift);
709             return;
710         }
711     }
712 
713     if (!QEMU_IS_ALIGNED(vst_addr, 1ull << page_shift)) {
714         xive_error(xive, "VST: %s table address 0x%"PRIx64" is not aligned with"
715                    " page shift %d", info->name, vst_addr, page_shift);
716         return;
717     }
718 
719     /* Record the table configuration (in SRAM on HW) */
720     xive->vsds[type][blk] = vsd;
721 
722     /* Now tune the models with the configuration provided by the FW */
723 
724     switch (type) {
725     case VST_TSEL_IVT:  /* Nothing to be done */
726         break;
727 
728     case VST_TSEL_EQDT:
729         /*
730          * Backing store pages for the END.
731          *
732          * If the table is direct, we can compute the number of PQ
733          * entries provisioned by FW (such as skiboot) and resize the
734          * END ESB window accordingly.
735          */
736         if (!(VSD_INDIRECT & vsd)) {
737             memory_region_set_size(&end_xsrc->esb_mmio, (vst_tsize / info->size)
738                                    * (1ull << xsrc->esb_shift));
739         }
740         memory_region_add_subregion(&xive->end_edt_mmio, 0,
741                                     &end_xsrc->esb_mmio);
742         break;
743 
744     case VST_TSEL_SBE:
745         /*
746          * Backing store pages for the source PQ bits. The model does
747          * not use these PQ bits backed in RAM because the XiveSource
748          * model has its own.
749          *
750          * If the table is direct, we can compute the number of PQ
751          * entries provisioned by FW (such as skiboot) and resize the
752          * ESB window accordingly.
753          */
754         if (!(VSD_INDIRECT & vsd)) {
755             memory_region_set_size(&xsrc->esb_mmio, vst_tsize * SBE_PER_BYTE
756                                    * (1ull << xsrc->esb_shift));
757         }
758         memory_region_add_subregion(&xive->ipi_edt_mmio, 0, &xsrc->esb_mmio);
759         break;
760 
761     case VST_TSEL_VPDT: /* Not modeled */
762     case VST_TSEL_IRQ:  /* Not modeled */
763         /*
764          * These tables contains the backing store pages for the
765          * interrupt fifos of the VC sub-engine in case of overflow.
766          */
767         break;
768 
769     default:
770         g_assert_not_reached();
771     }
772 }
773 
774 /*
775  * Both PC and VC sub-engines are configured as each use the Virtual
776  * Structure Tables : SBE, EAS, END and NVT.
777  */
778 static void pnv_xive_vst_set_data(PnvXive *xive, uint64_t vsd, bool pc_engine)
779 {
780     uint8_t mode = GETFIELD(VSD_MODE, vsd);
781     uint8_t type = GETFIELD(VST_TABLE_SELECT,
782                             xive->regs[VC_VSD_TABLE_ADDR >> 3]);
783     uint8_t blk = GETFIELD(VST_TABLE_BLOCK,
784                            xive->regs[VC_VSD_TABLE_ADDR >> 3]);
785     uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
786 
787     if (type > VST_TSEL_IRQ) {
788         xive_error(xive, "VST: invalid table type %d", type);
789         return;
790     }
791 
792     if (blk >= vst_infos[type].max_blocks) {
793         xive_error(xive, "VST: invalid block id %d for"
794                       " %s table", blk, vst_infos[type].name);
795         return;
796     }
797 
798     /*
799      * Only take the VC sub-engine configuration into account because
800      * the XiveRouter model combines both VC and PC sub-engines
801      */
802     if (pc_engine) {
803         return;
804     }
805 
806     if (!vst_addr) {
807         xive_error(xive, "VST: invalid %s table address", vst_infos[type].name);
808         return;
809     }
810 
811     switch (mode) {
812     case VSD_MODE_FORWARD:
813         xive->vsds[type][blk] = vsd;
814         break;
815 
816     case VSD_MODE_EXCLUSIVE:
817         pnv_xive_vst_set_exclusive(xive, type, blk, vsd);
818         break;
819 
820     default:
821         xive_error(xive, "VST: unsupported table mode %d", mode);
822         return;
823     }
824 }
825 
826 /*
827  * Interrupt controller MMIO region. The layout is compatible between
828  * 4K and 64K pages :
829  *
830  * Page 0           sub-engine BARs
831  *  0x000 - 0x3FF   IC registers
832  *  0x400 - 0x7FF   PC registers
833  *  0x800 - 0xFFF   VC registers
834  *
835  * Page 1           Notify page (writes only)
836  *  0x000 - 0x7FF   HW interrupt triggers (PSI, PHB)
837  *  0x800 - 0xFFF   forwards and syncs
838  *
839  * Page 2           LSI Trigger page (writes only) (not modeled)
840  * Page 3           LSI SB EOI page (reads only) (not modeled)
841  *
842  * Page 4-7         indirect TIMA
843  */
844 
845 /*
846  * IC - registers MMIO
847  */
848 static void pnv_xive_ic_reg_write(void *opaque, hwaddr offset,
849                                   uint64_t val, unsigned size)
850 {
851     PnvXive *xive = PNV_XIVE(opaque);
852     MemoryRegion *sysmem = get_system_memory();
853     uint32_t reg = offset >> 3;
854     bool is_chip0 = xive->chip->chip_id == 0;
855 
856     switch (offset) {
857 
858     /*
859      * XIVE CQ (PowerBus bridge) settings
860      */
861     case CQ_MSGSND:     /* msgsnd for doorbells */
862     case CQ_FIRMASK_OR: /* FIR error reporting */
863         break;
864     case CQ_PBI_CTL:
865         if (val & CQ_PBI_PC_64K) {
866             xive->pc_shift = 16;
867         }
868         if (val & CQ_PBI_VC_64K) {
869             xive->vc_shift = 16;
870         }
871         break;
872     case CQ_CFG_PB_GEN: /* PowerBus General Configuration */
873         /*
874          * TODO: CQ_INT_ADDR_OPT for 1-block-per-chip mode
875          */
876         break;
877 
878     /*
879      * XIVE Virtualization Controller settings
880      */
881     case VC_GLOBAL_CONFIG:
882         break;
883 
884     /*
885      * XIVE Presenter Controller settings
886      */
887     case PC_GLOBAL_CONFIG:
888         /*
889          * PC_GCONF_CHIPID_OVR
890          *   Overrides Int command Chip ID with the Chip ID field (DEBUG)
891          */
892         break;
893     case PC_TCTXT_CFG:
894         /*
895          * TODO: block group support
896          */
897         break;
898     case PC_TCTXT_TRACK:
899         /*
900          * PC_TCTXT_TRACK_EN:
901          *   enable block tracking and exchange of block ownership
902          *   information between Interrupt controllers
903          */
904         break;
905 
906     /*
907      * Misc settings
908      */
909     case VC_SBC_CONFIG: /* Store EOI configuration */
910         /*
911          * Configure store EOI if required by firwmare (skiboot has removed
912          * support recently though)
913          */
914         if (val & (VC_SBC_CONF_CPLX_CIST | VC_SBC_CONF_CIST_BOTH)) {
915             xive->ipi_source.esb_flags |= XIVE_SRC_STORE_EOI;
916         }
917         break;
918 
919     case VC_EQC_CONFIG: /* TODO: silent escalation */
920     case VC_AIB_TX_ORDER_TAG2: /* relax ordering */
921         break;
922 
923     /*
924      * XIVE BAR settings (XSCOM only)
925      */
926     case CQ_RST_CTL:
927         /* bit4: resets all BAR registers */
928         break;
929 
930     case CQ_IC_BAR: /* IC BAR. 8 pages */
931         xive->ic_shift = val & CQ_IC_BAR_64K ? 16 : 12;
932         if (!(val & CQ_IC_BAR_VALID)) {
933             xive->ic_base = 0;
934             if (xive->regs[reg] & CQ_IC_BAR_VALID) {
935                 memory_region_del_subregion(&xive->ic_mmio,
936                                             &xive->ic_reg_mmio);
937                 memory_region_del_subregion(&xive->ic_mmio,
938                                             &xive->ic_notify_mmio);
939                 memory_region_del_subregion(&xive->ic_mmio,
940                                             &xive->ic_lsi_mmio);
941                 memory_region_del_subregion(&xive->ic_mmio,
942                                             &xive->tm_indirect_mmio);
943 
944                 memory_region_del_subregion(sysmem, &xive->ic_mmio);
945             }
946         } else {
947             xive->ic_base = val & ~(CQ_IC_BAR_VALID | CQ_IC_BAR_64K);
948             if (!(xive->regs[reg] & CQ_IC_BAR_VALID)) {
949                 memory_region_add_subregion(sysmem, xive->ic_base,
950                                             &xive->ic_mmio);
951 
952                 memory_region_add_subregion(&xive->ic_mmio,  0,
953                                             &xive->ic_reg_mmio);
954                 memory_region_add_subregion(&xive->ic_mmio,
955                                             1ul << xive->ic_shift,
956                                             &xive->ic_notify_mmio);
957                 memory_region_add_subregion(&xive->ic_mmio,
958                                             2ul << xive->ic_shift,
959                                             &xive->ic_lsi_mmio);
960                 memory_region_add_subregion(&xive->ic_mmio,
961                                             4ull << xive->ic_shift,
962                                             &xive->tm_indirect_mmio);
963             }
964         }
965         break;
966 
967     case CQ_TM1_BAR: /* TM BAR. 4 pages. Map only once */
968     case CQ_TM2_BAR: /* second TM BAR. for hotplug. Not modeled */
969         xive->tm_shift = val & CQ_TM_BAR_64K ? 16 : 12;
970         if (!(val & CQ_TM_BAR_VALID)) {
971             xive->tm_base = 0;
972             if (xive->regs[reg] & CQ_TM_BAR_VALID && is_chip0) {
973                 memory_region_del_subregion(sysmem, &xive->tm_mmio);
974             }
975         } else {
976             xive->tm_base = val & ~(CQ_TM_BAR_VALID | CQ_TM_BAR_64K);
977             if (!(xive->regs[reg] & CQ_TM_BAR_VALID) && is_chip0) {
978                 memory_region_add_subregion(sysmem, xive->tm_base,
979                                             &xive->tm_mmio);
980             }
981         }
982         break;
983 
984     case CQ_PC_BARM:
985         xive->regs[reg] = val;
986         memory_region_set_size(&xive->pc_mmio, pnv_xive_pc_size(xive));
987         break;
988     case CQ_PC_BAR: /* From 32M to 512G */
989         if (!(val & CQ_PC_BAR_VALID)) {
990             xive->pc_base = 0;
991             if (xive->regs[reg] & CQ_PC_BAR_VALID) {
992                 memory_region_del_subregion(sysmem, &xive->pc_mmio);
993             }
994         } else {
995             xive->pc_base = val & ~(CQ_PC_BAR_VALID);
996             if (!(xive->regs[reg] & CQ_PC_BAR_VALID)) {
997                 memory_region_add_subregion(sysmem, xive->pc_base,
998                                             &xive->pc_mmio);
999             }
1000         }
1001         break;
1002 
1003     case CQ_VC_BARM:
1004         xive->regs[reg] = val;
1005         memory_region_set_size(&xive->vc_mmio, pnv_xive_vc_size(xive));
1006         break;
1007     case CQ_VC_BAR: /* From 64M to 4TB */
1008         if (!(val & CQ_VC_BAR_VALID)) {
1009             xive->vc_base = 0;
1010             if (xive->regs[reg] & CQ_VC_BAR_VALID) {
1011                 memory_region_del_subregion(sysmem, &xive->vc_mmio);
1012             }
1013         } else {
1014             xive->vc_base = val & ~(CQ_VC_BAR_VALID);
1015             if (!(xive->regs[reg] & CQ_VC_BAR_VALID)) {
1016                 memory_region_add_subregion(sysmem, xive->vc_base,
1017                                             &xive->vc_mmio);
1018             }
1019         }
1020         break;
1021 
1022     /*
1023      * XIVE Table settings.
1024      */
1025     case CQ_TAR: /* Table Address */
1026         break;
1027     case CQ_TDR: /* Table Data */
1028         pnv_xive_table_set_data(xive, val);
1029         break;
1030 
1031     /*
1032      * XIVE VC & PC Virtual Structure Table settings
1033      */
1034     case VC_VSD_TABLE_ADDR:
1035     case PC_VSD_TABLE_ADDR: /* Virtual table selector */
1036         break;
1037     case VC_VSD_TABLE_DATA: /* Virtual table setting */
1038     case PC_VSD_TABLE_DATA:
1039         pnv_xive_vst_set_data(xive, val, offset == PC_VSD_TABLE_DATA);
1040         break;
1041 
1042     /*
1043      * Interrupt fifo overflow in memory backing store (Not modeled)
1044      */
1045     case VC_IRQ_CONFIG_IPI:
1046     case VC_IRQ_CONFIG_HW:
1047     case VC_IRQ_CONFIG_CASCADE1:
1048     case VC_IRQ_CONFIG_CASCADE2:
1049     case VC_IRQ_CONFIG_REDIST:
1050     case VC_IRQ_CONFIG_IPI_CASC:
1051         break;
1052 
1053     /*
1054      * XIVE hardware thread enablement
1055      */
1056     case PC_THREAD_EN_REG0: /* Physical Thread Enable */
1057     case PC_THREAD_EN_REG1: /* Physical Thread Enable (fused core) */
1058         break;
1059 
1060     case PC_THREAD_EN_REG0_SET:
1061         xive->regs[PC_THREAD_EN_REG0 >> 3] |= val;
1062         break;
1063     case PC_THREAD_EN_REG1_SET:
1064         xive->regs[PC_THREAD_EN_REG1 >> 3] |= val;
1065         break;
1066     case PC_THREAD_EN_REG0_CLR:
1067         xive->regs[PC_THREAD_EN_REG0 >> 3] &= ~val;
1068         break;
1069     case PC_THREAD_EN_REG1_CLR:
1070         xive->regs[PC_THREAD_EN_REG1 >> 3] &= ~val;
1071         break;
1072 
1073     /*
1074      * Indirect TIMA access set up. Defines the PIR of the HW thread
1075      * to use.
1076      */
1077     case PC_TCTXT_INDIR0 ... PC_TCTXT_INDIR3:
1078         break;
1079 
1080     /*
1081      * XIVE PC & VC cache updates for EAS, NVT and END
1082      */
1083     case VC_IVC_SCRUB_MASK:
1084     case VC_IVC_SCRUB_TRIG:
1085         break;
1086 
1087     case VC_EQC_CWATCH_SPEC:
1088         val &= ~VC_EQC_CWATCH_CONFLICT; /* HW resets this bit */
1089         break;
1090     case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
1091         break;
1092     case VC_EQC_CWATCH_DAT0:
1093         /* writing to DATA0 triggers the cache write */
1094         xive->regs[reg] = val;
1095         pnv_xive_end_update(xive);
1096         break;
1097     case VC_EQC_SCRUB_MASK:
1098     case VC_EQC_SCRUB_TRIG:
1099         /*
1100          * The scrubbing registers flush the cache in RAM and can also
1101          * invalidate.
1102          */
1103         break;
1104 
1105     case PC_VPC_CWATCH_SPEC:
1106         val &= ~PC_VPC_CWATCH_CONFLICT; /* HW resets this bit */
1107         break;
1108     case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1109         break;
1110     case PC_VPC_CWATCH_DAT0:
1111         /* writing to DATA0 triggers the cache write */
1112         xive->regs[reg] = val;
1113         pnv_xive_nvt_update(xive);
1114         break;
1115     case PC_VPC_SCRUB_MASK:
1116     case PC_VPC_SCRUB_TRIG:
1117         /*
1118          * The scrubbing registers flush the cache in RAM and can also
1119          * invalidate.
1120          */
1121         break;
1122 
1123 
1124     /*
1125      * XIVE PC & VC cache invalidation
1126      */
1127     case PC_AT_KILL:
1128         break;
1129     case VC_AT_MACRO_KILL:
1130         break;
1131     case PC_AT_KILL_MASK:
1132     case VC_AT_MACRO_KILL_MASK:
1133         break;
1134 
1135     default:
1136         xive_error(xive, "IC: invalid write to reg=0x%"HWADDR_PRIx, offset);
1137         return;
1138     }
1139 
1140     xive->regs[reg] = val;
1141 }
1142 
1143 static uint64_t pnv_xive_ic_reg_read(void *opaque, hwaddr offset, unsigned size)
1144 {
1145     PnvXive *xive = PNV_XIVE(opaque);
1146     uint64_t val = 0;
1147     uint32_t reg = offset >> 3;
1148 
1149     switch (offset) {
1150     case CQ_CFG_PB_GEN:
1151     case CQ_IC_BAR:
1152     case CQ_TM1_BAR:
1153     case CQ_TM2_BAR:
1154     case CQ_PC_BAR:
1155     case CQ_PC_BARM:
1156     case CQ_VC_BAR:
1157     case CQ_VC_BARM:
1158     case CQ_TAR:
1159     case CQ_TDR:
1160     case CQ_PBI_CTL:
1161 
1162     case PC_TCTXT_CFG:
1163     case PC_TCTXT_TRACK:
1164     case PC_TCTXT_INDIR0:
1165     case PC_TCTXT_INDIR1:
1166     case PC_TCTXT_INDIR2:
1167     case PC_TCTXT_INDIR3:
1168     case PC_GLOBAL_CONFIG:
1169 
1170     case PC_VPC_SCRUB_MASK:
1171 
1172     case VC_GLOBAL_CONFIG:
1173     case VC_AIB_TX_ORDER_TAG2:
1174 
1175     case VC_IRQ_CONFIG_IPI:
1176     case VC_IRQ_CONFIG_HW:
1177     case VC_IRQ_CONFIG_CASCADE1:
1178     case VC_IRQ_CONFIG_CASCADE2:
1179     case VC_IRQ_CONFIG_REDIST:
1180     case VC_IRQ_CONFIG_IPI_CASC:
1181 
1182     case VC_EQC_SCRUB_MASK:
1183     case VC_IVC_SCRUB_MASK:
1184     case VC_SBC_CONFIG:
1185     case VC_AT_MACRO_KILL_MASK:
1186     case VC_VSD_TABLE_ADDR:
1187     case PC_VSD_TABLE_ADDR:
1188     case VC_VSD_TABLE_DATA:
1189     case PC_VSD_TABLE_DATA:
1190     case PC_THREAD_EN_REG0:
1191     case PC_THREAD_EN_REG1:
1192         val = xive->regs[reg];
1193         break;
1194 
1195     /*
1196      * XIVE hardware thread enablement
1197      */
1198     case PC_THREAD_EN_REG0_SET:
1199     case PC_THREAD_EN_REG0_CLR:
1200         val = xive->regs[PC_THREAD_EN_REG0 >> 3];
1201         break;
1202     case PC_THREAD_EN_REG1_SET:
1203     case PC_THREAD_EN_REG1_CLR:
1204         val = xive->regs[PC_THREAD_EN_REG1 >> 3];
1205         break;
1206 
1207     case CQ_MSGSND: /* Identifies which cores have msgsnd enabled. */
1208         val = 0xffffff0000000000;
1209         break;
1210 
1211     /*
1212      * XIVE PC & VC cache updates for EAS, NVT and END
1213      */
1214     case VC_EQC_CWATCH_SPEC:
1215         xive->regs[reg] = ~(VC_EQC_CWATCH_FULL | VC_EQC_CWATCH_CONFLICT);
1216         val = xive->regs[reg];
1217         break;
1218     case VC_EQC_CWATCH_DAT0:
1219         /*
1220          * Load DATA registers from cache with data requested by the
1221          * SPEC register
1222          */
1223         pnv_xive_end_cache_load(xive);
1224         val = xive->regs[reg];
1225         break;
1226     case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
1227         val = xive->regs[reg];
1228         break;
1229 
1230     case PC_VPC_CWATCH_SPEC:
1231         xive->regs[reg] = ~(PC_VPC_CWATCH_FULL | PC_VPC_CWATCH_CONFLICT);
1232         val = xive->regs[reg];
1233         break;
1234     case PC_VPC_CWATCH_DAT0:
1235         /*
1236          * Load DATA registers from cache with data requested by the
1237          * SPEC register
1238          */
1239         pnv_xive_nvt_cache_load(xive);
1240         val = xive->regs[reg];
1241         break;
1242     case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1243         val = xive->regs[reg];
1244         break;
1245 
1246     case PC_VPC_SCRUB_TRIG:
1247     case VC_IVC_SCRUB_TRIG:
1248     case VC_EQC_SCRUB_TRIG:
1249         xive->regs[reg] &= ~VC_SCRUB_VALID;
1250         val = xive->regs[reg];
1251         break;
1252 
1253     /*
1254      * XIVE PC & VC cache invalidation
1255      */
1256     case PC_AT_KILL:
1257         xive->regs[reg] &= ~PC_AT_KILL_VALID;
1258         val = xive->regs[reg];
1259         break;
1260     case VC_AT_MACRO_KILL:
1261         xive->regs[reg] &= ~VC_KILL_VALID;
1262         val = xive->regs[reg];
1263         break;
1264 
1265     /*
1266      * XIVE synchronisation
1267      */
1268     case VC_EQC_CONFIG:
1269         val = VC_EQC_SYNC_MASK;
1270         break;
1271 
1272     default:
1273         xive_error(xive, "IC: invalid read reg=0x%"HWADDR_PRIx, offset);
1274     }
1275 
1276     return val;
1277 }
1278 
1279 static const MemoryRegionOps pnv_xive_ic_reg_ops = {
1280     .read = pnv_xive_ic_reg_read,
1281     .write = pnv_xive_ic_reg_write,
1282     .endianness = DEVICE_BIG_ENDIAN,
1283     .valid = {
1284         .min_access_size = 8,
1285         .max_access_size = 8,
1286     },
1287     .impl = {
1288         .min_access_size = 8,
1289         .max_access_size = 8,
1290     },
1291 };
1292 
1293 /*
1294  * IC - Notify MMIO port page (write only)
1295  */
1296 #define PNV_XIVE_FORWARD_IPI        0x800 /* Forward IPI */
1297 #define PNV_XIVE_FORWARD_HW         0x880 /* Forward HW */
1298 #define PNV_XIVE_FORWARD_OS_ESC     0x900 /* Forward OS escalation */
1299 #define PNV_XIVE_FORWARD_HW_ESC     0x980 /* Forward Hyp escalation */
1300 #define PNV_XIVE_FORWARD_REDIS      0xa00 /* Forward Redistribution */
1301 #define PNV_XIVE_RESERVED5          0xa80 /* Cache line 5 PowerBUS operation */
1302 #define PNV_XIVE_RESERVED6          0xb00 /* Cache line 6 PowerBUS operation */
1303 #define PNV_XIVE_RESERVED7          0xb80 /* Cache line 7 PowerBUS operation */
1304 
1305 /* VC synchronisation */
1306 #define PNV_XIVE_SYNC_IPI           0xc00 /* Sync IPI */
1307 #define PNV_XIVE_SYNC_HW            0xc80 /* Sync HW */
1308 #define PNV_XIVE_SYNC_OS_ESC        0xd00 /* Sync OS escalation */
1309 #define PNV_XIVE_SYNC_HW_ESC        0xd80 /* Sync Hyp escalation */
1310 #define PNV_XIVE_SYNC_REDIS         0xe00 /* Sync Redistribution */
1311 
1312 /* PC synchronisation */
1313 #define PNV_XIVE_SYNC_PULL          0xe80 /* Sync pull context */
1314 #define PNV_XIVE_SYNC_PUSH          0xf00 /* Sync push context */
1315 #define PNV_XIVE_SYNC_VPC           0xf80 /* Sync remove VPC store */
1316 
1317 static void pnv_xive_ic_hw_trigger(PnvXive *xive, hwaddr addr, uint64_t val)
1318 {
1319     uint8_t blk;
1320     uint32_t idx;
1321 
1322     if (val & XIVE_TRIGGER_END) {
1323         xive_error(xive, "IC: END trigger at @0x%"HWADDR_PRIx" data 0x%"PRIx64,
1324                    addr, val);
1325         return;
1326     }
1327 
1328     /*
1329      * Forward the source event notification directly to the Router.
1330      * The source interrupt number should already be correctly encoded
1331      * with the chip block id by the sending device (PHB, PSI).
1332      */
1333     blk = XIVE_EAS_BLOCK(val);
1334     idx = XIVE_EAS_INDEX(val);
1335 
1336     xive_router_notify(XIVE_NOTIFIER(xive), XIVE_EAS(blk, idx));
1337 }
1338 
1339 static void pnv_xive_ic_notify_write(void *opaque, hwaddr addr, uint64_t val,
1340                                      unsigned size)
1341 {
1342     PnvXive *xive = PNV_XIVE(opaque);
1343 
1344     /* VC: HW triggers */
1345     switch (addr) {
1346     case 0x000 ... 0x7FF:
1347         pnv_xive_ic_hw_trigger(opaque, addr, val);
1348         break;
1349 
1350     /* VC: Forwarded IRQs */
1351     case PNV_XIVE_FORWARD_IPI:
1352     case PNV_XIVE_FORWARD_HW:
1353     case PNV_XIVE_FORWARD_OS_ESC:
1354     case PNV_XIVE_FORWARD_HW_ESC:
1355     case PNV_XIVE_FORWARD_REDIS:
1356         /* TODO: forwarded IRQs. Should be like HW triggers */
1357         xive_error(xive, "IC: forwarded at @0x%"HWADDR_PRIx" IRQ 0x%"PRIx64,
1358                    addr, val);
1359         break;
1360 
1361     /* VC syncs */
1362     case PNV_XIVE_SYNC_IPI:
1363     case PNV_XIVE_SYNC_HW:
1364     case PNV_XIVE_SYNC_OS_ESC:
1365     case PNV_XIVE_SYNC_HW_ESC:
1366     case PNV_XIVE_SYNC_REDIS:
1367         break;
1368 
1369     /* PC syncs */
1370     case PNV_XIVE_SYNC_PULL:
1371     case PNV_XIVE_SYNC_PUSH:
1372     case PNV_XIVE_SYNC_VPC:
1373         break;
1374 
1375     default:
1376         xive_error(xive, "IC: invalid notify write @%"HWADDR_PRIx, addr);
1377     }
1378 }
1379 
1380 static uint64_t pnv_xive_ic_notify_read(void *opaque, hwaddr addr,
1381                                         unsigned size)
1382 {
1383     PnvXive *xive = PNV_XIVE(opaque);
1384 
1385     /* loads are invalid */
1386     xive_error(xive, "IC: invalid notify read @%"HWADDR_PRIx, addr);
1387     return -1;
1388 }
1389 
1390 static const MemoryRegionOps pnv_xive_ic_notify_ops = {
1391     .read = pnv_xive_ic_notify_read,
1392     .write = pnv_xive_ic_notify_write,
1393     .endianness = DEVICE_BIG_ENDIAN,
1394     .valid = {
1395         .min_access_size = 8,
1396         .max_access_size = 8,
1397     },
1398     .impl = {
1399         .min_access_size = 8,
1400         .max_access_size = 8,
1401     },
1402 };
1403 
1404 /*
1405  * IC - LSI MMIO handlers (not modeled)
1406  */
1407 
1408 static void pnv_xive_ic_lsi_write(void *opaque, hwaddr addr,
1409                               uint64_t val, unsigned size)
1410 {
1411     PnvXive *xive = PNV_XIVE(opaque);
1412 
1413     xive_error(xive, "IC: LSI invalid write @%"HWADDR_PRIx, addr);
1414 }
1415 
1416 static uint64_t pnv_xive_ic_lsi_read(void *opaque, hwaddr addr, unsigned size)
1417 {
1418     PnvXive *xive = PNV_XIVE(opaque);
1419 
1420     xive_error(xive, "IC: LSI invalid read @%"HWADDR_PRIx, addr);
1421     return -1;
1422 }
1423 
1424 static const MemoryRegionOps pnv_xive_ic_lsi_ops = {
1425     .read = pnv_xive_ic_lsi_read,
1426     .write = pnv_xive_ic_lsi_write,
1427     .endianness = DEVICE_BIG_ENDIAN,
1428     .valid = {
1429         .min_access_size = 8,
1430         .max_access_size = 8,
1431     },
1432     .impl = {
1433         .min_access_size = 8,
1434         .max_access_size = 8,
1435     },
1436 };
1437 
1438 /*
1439  * IC - Indirect TIMA MMIO handlers
1440  */
1441 
1442 /*
1443  * When the TIMA is accessed from the indirect page, the thread id of
1444  * the target CPU is configured in the PC_TCTXT_INDIR0 register before
1445  * use. This is used for resets and for debug purpose also.
1446  */
1447 static XiveTCTX *pnv_xive_get_indirect_tctx(PnvXive *xive)
1448 {
1449     PnvChip *chip = xive->chip;
1450     uint64_t tctxt_indir = xive->regs[PC_TCTXT_INDIR0 >> 3];
1451     PowerPCCPU *cpu = NULL;
1452     int pir;
1453 
1454     if (!(tctxt_indir & PC_TCTXT_INDIR_VALID)) {
1455         xive_error(xive, "IC: no indirect TIMA access in progress");
1456         return NULL;
1457     }
1458 
1459     pir = (chip->chip_id << 8) | GETFIELD(PC_TCTXT_INDIR_THRDID, tctxt_indir);
1460     cpu = pnv_chip_find_cpu(chip, pir);
1461     if (!cpu) {
1462         xive_error(xive, "IC: invalid PIR %x for indirect access", pir);
1463         return NULL;
1464     }
1465 
1466     /* Check that HW thread is XIVE enabled */
1467     if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
1468         xive_error(xive, "IC: CPU %x is not enabled", pir);
1469     }
1470 
1471     return XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1472 }
1473 
1474 static void xive_tm_indirect_write(void *opaque, hwaddr offset,
1475                                    uint64_t value, unsigned size)
1476 {
1477     XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1478 
1479     xive_tctx_tm_write(XIVE_PRESENTER(opaque), tctx, offset, value, size);
1480 }
1481 
1482 static uint64_t xive_tm_indirect_read(void *opaque, hwaddr offset,
1483                                       unsigned size)
1484 {
1485     XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1486 
1487     return xive_tctx_tm_read(XIVE_PRESENTER(opaque), tctx, offset, size);
1488 }
1489 
1490 static const MemoryRegionOps xive_tm_indirect_ops = {
1491     .read = xive_tm_indirect_read,
1492     .write = xive_tm_indirect_write,
1493     .endianness = DEVICE_BIG_ENDIAN,
1494     .valid = {
1495         .min_access_size = 1,
1496         .max_access_size = 8,
1497     },
1498     .impl = {
1499         .min_access_size = 1,
1500         .max_access_size = 8,
1501     },
1502 };
1503 
1504 static void pnv_xive_tm_write(void *opaque, hwaddr offset,
1505                               uint64_t value, unsigned size)
1506 {
1507     PowerPCCPU *cpu = POWERPC_CPU(current_cpu);
1508     PnvXive *xive = pnv_xive_tm_get_xive(cpu);
1509     XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1510 
1511     xive_tctx_tm_write(XIVE_PRESENTER(xive), tctx, offset, value, size);
1512 }
1513 
1514 static uint64_t pnv_xive_tm_read(void *opaque, hwaddr offset, unsigned size)
1515 {
1516     PowerPCCPU *cpu = POWERPC_CPU(current_cpu);
1517     PnvXive *xive = pnv_xive_tm_get_xive(cpu);
1518     XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1519 
1520     return xive_tctx_tm_read(XIVE_PRESENTER(xive), tctx, offset, size);
1521 }
1522 
1523 const MemoryRegionOps pnv_xive_tm_ops = {
1524     .read = pnv_xive_tm_read,
1525     .write = pnv_xive_tm_write,
1526     .endianness = DEVICE_BIG_ENDIAN,
1527     .valid = {
1528         .min_access_size = 1,
1529         .max_access_size = 8,
1530     },
1531     .impl = {
1532         .min_access_size = 1,
1533         .max_access_size = 8,
1534     },
1535 };
1536 
1537 /*
1538  * Interrupt controller XSCOM region.
1539  */
1540 static uint64_t pnv_xive_xscom_read(void *opaque, hwaddr addr, unsigned size)
1541 {
1542     switch (addr >> 3) {
1543     case X_VC_EQC_CONFIG:
1544         /* FIXME (skiboot): This is the only XSCOM load. Bizarre. */
1545         return VC_EQC_SYNC_MASK;
1546     default:
1547         return pnv_xive_ic_reg_read(opaque, addr, size);
1548     }
1549 }
1550 
1551 static void pnv_xive_xscom_write(void *opaque, hwaddr addr,
1552                                 uint64_t val, unsigned size)
1553 {
1554     pnv_xive_ic_reg_write(opaque, addr, val, size);
1555 }
1556 
1557 static const MemoryRegionOps pnv_xive_xscom_ops = {
1558     .read = pnv_xive_xscom_read,
1559     .write = pnv_xive_xscom_write,
1560     .endianness = DEVICE_BIG_ENDIAN,
1561     .valid = {
1562         .min_access_size = 8,
1563         .max_access_size = 8,
1564     },
1565     .impl = {
1566         .min_access_size = 8,
1567         .max_access_size = 8,
1568     }
1569 };
1570 
1571 /*
1572  * Virtualization Controller MMIO region containing the IPI and END ESB pages
1573  */
1574 static uint64_t pnv_xive_vc_read(void *opaque, hwaddr offset,
1575                                  unsigned size)
1576 {
1577     PnvXive *xive = PNV_XIVE(opaque);
1578     uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1579     uint64_t edt_type = 0;
1580     uint64_t edt_offset;
1581     MemTxResult result;
1582     AddressSpace *edt_as = NULL;
1583     uint64_t ret = -1;
1584 
1585     if (edt_index < XIVE_TABLE_EDT_MAX) {
1586         edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1587     }
1588 
1589     switch (edt_type) {
1590     case CQ_TDR_EDT_IPI:
1591         edt_as = &xive->ipi_as;
1592         break;
1593     case CQ_TDR_EDT_EQ:
1594         edt_as = &xive->end_as;
1595         break;
1596     default:
1597         xive_error(xive, "VC: invalid EDT type for read @%"HWADDR_PRIx, offset);
1598         return -1;
1599     }
1600 
1601     /* Remap the offset for the targeted address space */
1602     edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1603 
1604     ret = address_space_ldq(edt_as, edt_offset, MEMTXATTRS_UNSPECIFIED,
1605                             &result);
1606 
1607     if (result != MEMTX_OK) {
1608         xive_error(xive, "VC: %s read failed at @0x%"HWADDR_PRIx " -> @0x%"
1609                    HWADDR_PRIx, edt_type == CQ_TDR_EDT_IPI ? "IPI" : "END",
1610                    offset, edt_offset);
1611         return -1;
1612     }
1613 
1614     return ret;
1615 }
1616 
1617 static void pnv_xive_vc_write(void *opaque, hwaddr offset,
1618                               uint64_t val, unsigned size)
1619 {
1620     PnvXive *xive = PNV_XIVE(opaque);
1621     uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1622     uint64_t edt_type = 0;
1623     uint64_t edt_offset;
1624     MemTxResult result;
1625     AddressSpace *edt_as = NULL;
1626 
1627     if (edt_index < XIVE_TABLE_EDT_MAX) {
1628         edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1629     }
1630 
1631     switch (edt_type) {
1632     case CQ_TDR_EDT_IPI:
1633         edt_as = &xive->ipi_as;
1634         break;
1635     case CQ_TDR_EDT_EQ:
1636         edt_as = &xive->end_as;
1637         break;
1638     default:
1639         xive_error(xive, "VC: invalid EDT type for write @%"HWADDR_PRIx,
1640                    offset);
1641         return;
1642     }
1643 
1644     /* Remap the offset for the targeted address space */
1645     edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1646 
1647     address_space_stq(edt_as, edt_offset, val, MEMTXATTRS_UNSPECIFIED, &result);
1648     if (result != MEMTX_OK) {
1649         xive_error(xive, "VC: write failed at @0x%"HWADDR_PRIx, edt_offset);
1650     }
1651 }
1652 
1653 static const MemoryRegionOps pnv_xive_vc_ops = {
1654     .read = pnv_xive_vc_read,
1655     .write = pnv_xive_vc_write,
1656     .endianness = DEVICE_BIG_ENDIAN,
1657     .valid = {
1658         .min_access_size = 8,
1659         .max_access_size = 8,
1660     },
1661     .impl = {
1662         .min_access_size = 8,
1663         .max_access_size = 8,
1664     },
1665 };
1666 
1667 /*
1668  * Presenter Controller MMIO region. The Virtualization Controller
1669  * updates the IPB in the NVT table when required. Not modeled.
1670  */
1671 static uint64_t pnv_xive_pc_read(void *opaque, hwaddr addr,
1672                                  unsigned size)
1673 {
1674     PnvXive *xive = PNV_XIVE(opaque);
1675 
1676     xive_error(xive, "PC: invalid read @%"HWADDR_PRIx, addr);
1677     return -1;
1678 }
1679 
1680 static void pnv_xive_pc_write(void *opaque, hwaddr addr,
1681                               uint64_t value, unsigned size)
1682 {
1683     PnvXive *xive = PNV_XIVE(opaque);
1684 
1685     xive_error(xive, "PC: invalid write to VC @%"HWADDR_PRIx, addr);
1686 }
1687 
1688 static const MemoryRegionOps pnv_xive_pc_ops = {
1689     .read = pnv_xive_pc_read,
1690     .write = pnv_xive_pc_write,
1691     .endianness = DEVICE_BIG_ENDIAN,
1692     .valid = {
1693         .min_access_size = 8,
1694         .max_access_size = 8,
1695     },
1696     .impl = {
1697         .min_access_size = 8,
1698         .max_access_size = 8,
1699     },
1700 };
1701 
1702 static void xive_nvt_pic_print_info(XiveNVT *nvt, uint32_t nvt_idx,
1703                                     Monitor *mon)
1704 {
1705     uint8_t  eq_blk = xive_get_field32(NVT_W1_EQ_BLOCK, nvt->w1);
1706     uint32_t eq_idx = xive_get_field32(NVT_W1_EQ_INDEX, nvt->w1);
1707 
1708     if (!xive_nvt_is_valid(nvt)) {
1709         return;
1710     }
1711 
1712     monitor_printf(mon, "  %08x end:%02x/%04x IPB:%02x\n", nvt_idx,
1713                    eq_blk, eq_idx,
1714                    xive_get_field32(NVT_W4_IPB, nvt->w4));
1715 }
1716 
1717 void pnv_xive_pic_print_info(PnvXive *xive, Monitor *mon)
1718 {
1719     XiveRouter *xrtr = XIVE_ROUTER(xive);
1720     uint8_t blk = pnv_xive_block_id(xive);
1721     uint8_t chip_id = xive->chip->chip_id;
1722     uint32_t srcno0 = XIVE_EAS(blk, 0);
1723     uint32_t nr_ipis = pnv_xive_nr_ipis(xive, blk);
1724     XiveEAS eas;
1725     XiveEND end;
1726     XiveNVT nvt;
1727     int i;
1728     uint64_t xive_nvt_per_subpage;
1729 
1730     monitor_printf(mon, "XIVE[%x] #%d Source %08x .. %08x\n", chip_id, blk,
1731                    srcno0, srcno0 + nr_ipis - 1);
1732     xive_source_pic_print_info(&xive->ipi_source, srcno0, mon);
1733 
1734     monitor_printf(mon, "XIVE[%x] #%d EAT %08x .. %08x\n", chip_id, blk,
1735                    srcno0, srcno0 + nr_ipis - 1);
1736     for (i = 0; i < nr_ipis; i++) {
1737         if (xive_router_get_eas(xrtr, blk, i, &eas)) {
1738             break;
1739         }
1740         if (!xive_eas_is_masked(&eas)) {
1741             xive_eas_pic_print_info(&eas, i, mon);
1742         }
1743     }
1744 
1745     monitor_printf(mon, "XIVE[%x] #%d ENDT\n", chip_id, blk);
1746     i = 0;
1747     while (!xive_router_get_end(xrtr, blk, i, &end)) {
1748         xive_end_pic_print_info(&end, i++, mon);
1749     }
1750 
1751     monitor_printf(mon, "XIVE[%x] #%d END Escalation EAT\n", chip_id, blk);
1752     i = 0;
1753     while (!xive_router_get_end(xrtr, blk, i, &end)) {
1754         xive_end_eas_pic_print_info(&end, i++, mon);
1755     }
1756 
1757     monitor_printf(mon, "XIVE[%x] #%d NVTT %08x .. %08x\n", chip_id, blk,
1758                    0, XIVE_NVT_COUNT - 1);
1759     xive_nvt_per_subpage = pnv_xive_vst_per_subpage(xive, VST_TSEL_VPDT);
1760     for (i = 0; i < XIVE_NVT_COUNT; i += xive_nvt_per_subpage) {
1761         while (!xive_router_get_nvt(xrtr, blk, i, &nvt)) {
1762             xive_nvt_pic_print_info(&nvt, i++, mon);
1763         }
1764     }
1765 }
1766 
1767 static void pnv_xive_reset(void *dev)
1768 {
1769     PnvXive *xive = PNV_XIVE(dev);
1770     XiveSource *xsrc = &xive->ipi_source;
1771     XiveENDSource *end_xsrc = &xive->end_source;
1772 
1773     /* Default page size (Should be changed at runtime to 64k) */
1774     xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1775 
1776     /* Clear subregions */
1777     if (memory_region_is_mapped(&xsrc->esb_mmio)) {
1778         memory_region_del_subregion(&xive->ipi_edt_mmio, &xsrc->esb_mmio);
1779     }
1780 
1781     if (memory_region_is_mapped(&xive->ipi_edt_mmio)) {
1782         memory_region_del_subregion(&xive->ipi_mmio, &xive->ipi_edt_mmio);
1783     }
1784 
1785     if (memory_region_is_mapped(&end_xsrc->esb_mmio)) {
1786         memory_region_del_subregion(&xive->end_edt_mmio, &end_xsrc->esb_mmio);
1787     }
1788 
1789     if (memory_region_is_mapped(&xive->end_edt_mmio)) {
1790         memory_region_del_subregion(&xive->end_mmio, &xive->end_edt_mmio);
1791     }
1792 }
1793 
1794 static void pnv_xive_init(Object *obj)
1795 {
1796     PnvXive *xive = PNV_XIVE(obj);
1797 
1798     object_initialize_child(obj, "ipi_source", &xive->ipi_source,
1799                             TYPE_XIVE_SOURCE);
1800     object_initialize_child(obj, "end_source", &xive->end_source,
1801                             TYPE_XIVE_END_SOURCE);
1802 }
1803 
1804 /*
1805  *  Maximum number of IRQs and ENDs supported by HW
1806  */
1807 #define PNV_XIVE_NR_IRQS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1808 #define PNV_XIVE_NR_ENDS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1809 
1810 static void pnv_xive_realize(DeviceState *dev, Error **errp)
1811 {
1812     PnvXive *xive = PNV_XIVE(dev);
1813     PnvXiveClass *pxc = PNV_XIVE_GET_CLASS(dev);
1814     XiveSource *xsrc = &xive->ipi_source;
1815     XiveENDSource *end_xsrc = &xive->end_source;
1816     Error *local_err = NULL;
1817 
1818     pxc->parent_realize(dev, &local_err);
1819     if (local_err) {
1820         error_propagate(errp, local_err);
1821         return;
1822     }
1823 
1824     assert(xive->chip);
1825 
1826     /*
1827      * The XiveSource and XiveENDSource objects are realized with the
1828      * maximum allowed HW configuration. The ESB MMIO regions will be
1829      * resized dynamically when the controller is configured by the FW
1830      * to limit accesses to resources not provisioned.
1831      */
1832     object_property_set_int(OBJECT(xsrc), "nr-irqs", PNV_XIVE_NR_IRQS,
1833                             &error_fatal);
1834     object_property_set_link(OBJECT(xsrc), "xive", OBJECT(xive), &error_abort);
1835     if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
1836         return;
1837     }
1838 
1839     object_property_set_int(OBJECT(end_xsrc), "nr-ends", PNV_XIVE_NR_ENDS,
1840                             &error_fatal);
1841     object_property_set_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
1842                              &error_abort);
1843     if (!qdev_realize(DEVICE(end_xsrc), NULL, errp)) {
1844         return;
1845     }
1846 
1847     /* Default page size. Generally changed at runtime to 64k */
1848     xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1849 
1850     /* XSCOM region, used for initial configuration of the BARs */
1851     memory_region_init_io(&xive->xscom_regs, OBJECT(dev), &pnv_xive_xscom_ops,
1852                           xive, "xscom-xive", PNV9_XSCOM_XIVE_SIZE << 3);
1853 
1854     /* Interrupt controller MMIO regions */
1855     memory_region_init(&xive->ic_mmio, OBJECT(dev), "xive-ic",
1856                        PNV9_XIVE_IC_SIZE);
1857 
1858     memory_region_init_io(&xive->ic_reg_mmio, OBJECT(dev), &pnv_xive_ic_reg_ops,
1859                           xive, "xive-ic-reg", 1 << xive->ic_shift);
1860     memory_region_init_io(&xive->ic_notify_mmio, OBJECT(dev),
1861                           &pnv_xive_ic_notify_ops,
1862                           xive, "xive-ic-notify", 1 << xive->ic_shift);
1863 
1864     /* The Pervasive LSI trigger and EOI pages (not modeled) */
1865     memory_region_init_io(&xive->ic_lsi_mmio, OBJECT(dev), &pnv_xive_ic_lsi_ops,
1866                           xive, "xive-ic-lsi", 2 << xive->ic_shift);
1867 
1868     /* Thread Interrupt Management Area (Indirect) */
1869     memory_region_init_io(&xive->tm_indirect_mmio, OBJECT(dev),
1870                           &xive_tm_indirect_ops,
1871                           xive, "xive-tima-indirect", PNV9_XIVE_TM_SIZE);
1872     /*
1873      * Overall Virtualization Controller MMIO region containing the
1874      * IPI ESB pages and END ESB pages. The layout is defined by the
1875      * EDT "Domain table" and the accesses are dispatched using
1876      * address spaces for each.
1877      */
1878     memory_region_init_io(&xive->vc_mmio, OBJECT(xive), &pnv_xive_vc_ops, xive,
1879                           "xive-vc", PNV9_XIVE_VC_SIZE);
1880 
1881     memory_region_init(&xive->ipi_mmio, OBJECT(xive), "xive-vc-ipi",
1882                        PNV9_XIVE_VC_SIZE);
1883     address_space_init(&xive->ipi_as, &xive->ipi_mmio, "xive-vc-ipi");
1884     memory_region_init(&xive->end_mmio, OBJECT(xive), "xive-vc-end",
1885                        PNV9_XIVE_VC_SIZE);
1886     address_space_init(&xive->end_as, &xive->end_mmio, "xive-vc-end");
1887 
1888     /*
1889      * The MMIO windows exposing the IPI ESBs and the END ESBs in the
1890      * VC region. Their size is configured by the FW in the EDT table.
1891      */
1892     memory_region_init(&xive->ipi_edt_mmio, OBJECT(xive), "xive-vc-ipi-edt", 0);
1893     memory_region_init(&xive->end_edt_mmio, OBJECT(xive), "xive-vc-end-edt", 0);
1894 
1895     /* Presenter Controller MMIO region (not modeled) */
1896     memory_region_init_io(&xive->pc_mmio, OBJECT(xive), &pnv_xive_pc_ops, xive,
1897                           "xive-pc", PNV9_XIVE_PC_SIZE);
1898 
1899     /* Thread Interrupt Management Area (Direct) */
1900     memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &pnv_xive_tm_ops,
1901                           xive, "xive-tima", PNV9_XIVE_TM_SIZE);
1902 
1903     qemu_register_reset(pnv_xive_reset, dev);
1904 }
1905 
1906 static int pnv_xive_dt_xscom(PnvXScomInterface *dev, void *fdt,
1907                              int xscom_offset)
1908 {
1909     const char compat[] = "ibm,power9-xive-x";
1910     char *name;
1911     int offset;
1912     uint32_t lpc_pcba = PNV9_XSCOM_XIVE_BASE;
1913     uint32_t reg[] = {
1914         cpu_to_be32(lpc_pcba),
1915         cpu_to_be32(PNV9_XSCOM_XIVE_SIZE)
1916     };
1917 
1918     name = g_strdup_printf("xive@%x", lpc_pcba);
1919     offset = fdt_add_subnode(fdt, xscom_offset, name);
1920     _FDT(offset);
1921     g_free(name);
1922 
1923     _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
1924     _FDT((fdt_setprop(fdt, offset, "compatible", compat,
1925                       sizeof(compat))));
1926     return 0;
1927 }
1928 
1929 static Property pnv_xive_properties[] = {
1930     DEFINE_PROP_UINT64("ic-bar", PnvXive, ic_base, 0),
1931     DEFINE_PROP_UINT64("vc-bar", PnvXive, vc_base, 0),
1932     DEFINE_PROP_UINT64("pc-bar", PnvXive, pc_base, 0),
1933     DEFINE_PROP_UINT64("tm-bar", PnvXive, tm_base, 0),
1934     /* The PnvChip id identifies the XIVE interrupt controller. */
1935     DEFINE_PROP_LINK("chip", PnvXive, chip, TYPE_PNV_CHIP, PnvChip *),
1936     DEFINE_PROP_END_OF_LIST(),
1937 };
1938 
1939 static void pnv_xive_class_init(ObjectClass *klass, void *data)
1940 {
1941     DeviceClass *dc = DEVICE_CLASS(klass);
1942     PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
1943     XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
1944     XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1945     XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass);
1946     PnvXiveClass *pxc = PNV_XIVE_CLASS(klass);
1947 
1948     xdc->dt_xscom = pnv_xive_dt_xscom;
1949 
1950     dc->desc = "PowerNV XIVE Interrupt Controller";
1951     device_class_set_parent_realize(dc, pnv_xive_realize, &pxc->parent_realize);
1952     dc->realize = pnv_xive_realize;
1953     device_class_set_props(dc, pnv_xive_properties);
1954 
1955     xrc->get_eas = pnv_xive_get_eas;
1956     xrc->get_end = pnv_xive_get_end;
1957     xrc->write_end = pnv_xive_write_end;
1958     xrc->get_nvt = pnv_xive_get_nvt;
1959     xrc->write_nvt = pnv_xive_write_nvt;
1960     xrc->get_block_id = pnv_xive_get_block_id;
1961 
1962     xnc->notify = pnv_xive_notify;
1963     xpc->match_nvt  = pnv_xive_match_nvt;
1964 };
1965 
1966 static const TypeInfo pnv_xive_info = {
1967     .name          = TYPE_PNV_XIVE,
1968     .parent        = TYPE_XIVE_ROUTER,
1969     .instance_init = pnv_xive_init,
1970     .instance_size = sizeof(PnvXive),
1971     .class_init    = pnv_xive_class_init,
1972     .class_size    = sizeof(PnvXiveClass),
1973     .interfaces    = (InterfaceInfo[]) {
1974         { TYPE_PNV_XSCOM_INTERFACE },
1975         { }
1976     }
1977 };
1978 
1979 static void pnv_xive_register_types(void)
1980 {
1981     type_register_static(&pnv_xive_info);
1982 }
1983 
1984 type_init(pnv_xive_register_types)
1985