1 /* 2 * ARM Nested Vectored Interrupt Controller 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 * 9 * The ARMv7M System controller is fairly tightly tied in with the 10 * NVIC. Much of that is also implemented here. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "cpu.h" 16 #include "hw/sysbus.h" 17 #include "migration/vmstate.h" 18 #include "qemu/timer.h" 19 #include "hw/intc/armv7m_nvic.h" 20 #include "hw/irq.h" 21 #include "hw/qdev-properties.h" 22 #include "sysemu/runstate.h" 23 #include "target/arm/cpu.h" 24 #include "exec/exec-all.h" 25 #include "exec/memop.h" 26 #include "qemu/log.h" 27 #include "qemu/module.h" 28 #include "trace.h" 29 30 /* IRQ number counting: 31 * 32 * the num-irq property counts the number of external IRQ lines 33 * 34 * NVICState::num_irq counts the total number of exceptions 35 * (external IRQs, the 15 internal exceptions including reset, 36 * and one for the unused exception number 0). 37 * 38 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines. 39 * 40 * NVIC_MAX_VECTORS is the highest permitted number of exceptions. 41 * 42 * Iterating through all exceptions should typically be done with 43 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0. 44 * 45 * The external qemu_irq lines are the NVIC's external IRQ lines, 46 * so line 0 is exception 16. 47 * 48 * In the terminology of the architecture manual, "interrupts" are 49 * a subcategory of exception referring to the external interrupts 50 * (which are exception numbers NVIC_FIRST_IRQ and upward). 51 * For historical reasons QEMU tends to use "interrupt" and 52 * "exception" more or less interchangeably. 53 */ 54 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS 55 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ) 56 57 /* Effective running priority of the CPU when no exception is active 58 * (higher than the highest possible priority value) 59 */ 60 #define NVIC_NOEXC_PRIO 0x100 61 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */ 62 #define NVIC_NS_PRIO_LIMIT 0x80 63 64 static const uint8_t nvic_id[] = { 65 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 66 }; 67 68 static void signal_sysresetreq(NVICState *s) 69 { 70 if (qemu_irq_is_connected(s->sysresetreq)) { 71 qemu_irq_pulse(s->sysresetreq); 72 } else { 73 /* 74 * Default behaviour if the SoC doesn't need to wire up 75 * SYSRESETREQ (eg to a system reset controller of some kind): 76 * perform a system reset via the usual QEMU API. 77 */ 78 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 79 } 80 } 81 82 static int nvic_pending_prio(NVICState *s) 83 { 84 /* return the group priority of the current pending interrupt, 85 * or NVIC_NOEXC_PRIO if no interrupt is pending 86 */ 87 return s->vectpending_prio; 88 } 89 90 /* Return the value of the ISCR RETTOBASE bit: 91 * 1 if there is exactly one active exception 92 * 0 if there is more than one active exception 93 * UNKNOWN if there are no active exceptions (we choose 1, 94 * which matches the choice Cortex-M3 is documented as making). 95 * 96 * NB: some versions of the documentation talk about this 97 * counting "active exceptions other than the one shown by IPSR"; 98 * this is only different in the obscure corner case where guest 99 * code has manually deactivated an exception and is about 100 * to fail an exception-return integrity check. The definition 101 * above is the one from the v8M ARM ARM and is also in line 102 * with the behaviour documented for the Cortex-M3. 103 */ 104 static bool nvic_rettobase(NVICState *s) 105 { 106 int irq, nhand = 0; 107 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 108 109 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) { 110 if (s->vectors[irq].active || 111 (check_sec && irq < NVIC_INTERNAL_VECTORS && 112 s->sec_vectors[irq].active)) { 113 nhand++; 114 if (nhand == 2) { 115 return 0; 116 } 117 } 118 } 119 120 return 1; 121 } 122 123 /* Return the value of the ISCR ISRPENDING bit: 124 * 1 if an external interrupt is pending 125 * 0 if no external interrupt is pending 126 */ 127 static bool nvic_isrpending(NVICState *s) 128 { 129 int irq; 130 131 /* We can shortcut if the highest priority pending interrupt 132 * happens to be external or if there is nothing pending. 133 */ 134 if (s->vectpending > NVIC_FIRST_IRQ) { 135 return true; 136 } 137 if (s->vectpending == 0) { 138 return false; 139 } 140 141 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) { 142 if (s->vectors[irq].pending) { 143 return true; 144 } 145 } 146 return false; 147 } 148 149 static bool exc_is_banked(int exc) 150 { 151 /* Return true if this is one of the limited set of exceptions which 152 * are banked (and thus have state in sec_vectors[]) 153 */ 154 return exc == ARMV7M_EXCP_HARD || 155 exc == ARMV7M_EXCP_MEM || 156 exc == ARMV7M_EXCP_USAGE || 157 exc == ARMV7M_EXCP_SVC || 158 exc == ARMV7M_EXCP_PENDSV || 159 exc == ARMV7M_EXCP_SYSTICK; 160 } 161 162 /* Return a mask word which clears the subpriority bits from 163 * a priority value for an M-profile exception, leaving only 164 * the group priority. 165 */ 166 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure) 167 { 168 return ~0U << (s->prigroup[secure] + 1); 169 } 170 171 static bool exc_targets_secure(NVICState *s, int exc) 172 { 173 /* Return true if this non-banked exception targets Secure state. */ 174 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 175 return false; 176 } 177 178 if (exc >= NVIC_FIRST_IRQ) { 179 return !s->itns[exc]; 180 } 181 182 /* Function shouldn't be called for banked exceptions. */ 183 assert(!exc_is_banked(exc)); 184 185 switch (exc) { 186 case ARMV7M_EXCP_NMI: 187 case ARMV7M_EXCP_BUS: 188 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); 189 case ARMV7M_EXCP_SECURE: 190 return true; 191 case ARMV7M_EXCP_DEBUG: 192 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */ 193 return false; 194 default: 195 /* reset, and reserved (unused) low exception numbers. 196 * We'll get called by code that loops through all the exception 197 * numbers, but it doesn't matter what we return here as these 198 * non-existent exceptions will never be pended or active. 199 */ 200 return true; 201 } 202 } 203 204 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure) 205 { 206 /* Return the group priority for this exception, given its raw 207 * (group-and-subgroup) priority value and whether it is targeting 208 * secure state or not. 209 */ 210 if (rawprio < 0) { 211 return rawprio; 212 } 213 rawprio &= nvic_gprio_mask(s, targets_secure); 214 /* AIRCR.PRIS causes us to squash all NS priorities into the 215 * lower half of the total range 216 */ 217 if (!targets_secure && 218 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) { 219 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT; 220 } 221 return rawprio; 222 } 223 224 /* Recompute vectpending and exception_prio for a CPU which implements 225 * the Security extension 226 */ 227 static void nvic_recompute_state_secure(NVICState *s) 228 { 229 int i, bank; 230 int pend_prio = NVIC_NOEXC_PRIO; 231 int active_prio = NVIC_NOEXC_PRIO; 232 int pend_irq = 0; 233 bool pending_is_s_banked = false; 234 int pend_subprio = 0; 235 236 /* R_CQRV: precedence is by: 237 * - lowest group priority; if both the same then 238 * - lowest subpriority; if both the same then 239 * - lowest exception number; if both the same (ie banked) then 240 * - secure exception takes precedence 241 * Compare pseudocode RawExecutionPriority. 242 * Annoyingly, now we have two prigroup values (for S and NS) 243 * we can't do the loop comparison on raw priority values. 244 */ 245 for (i = 1; i < s->num_irq; i++) { 246 for (bank = M_REG_S; bank >= M_REG_NS; bank--) { 247 VecInfo *vec; 248 int prio, subprio; 249 bool targets_secure; 250 251 if (bank == M_REG_S) { 252 if (!exc_is_banked(i)) { 253 continue; 254 } 255 vec = &s->sec_vectors[i]; 256 targets_secure = true; 257 } else { 258 vec = &s->vectors[i]; 259 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i); 260 } 261 262 prio = exc_group_prio(s, vec->prio, targets_secure); 263 subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure); 264 if (vec->enabled && vec->pending && 265 ((prio < pend_prio) || 266 (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) { 267 pend_prio = prio; 268 pend_subprio = subprio; 269 pend_irq = i; 270 pending_is_s_banked = (bank == M_REG_S); 271 } 272 if (vec->active && prio < active_prio) { 273 active_prio = prio; 274 } 275 } 276 } 277 278 s->vectpending_is_s_banked = pending_is_s_banked; 279 s->vectpending = pend_irq; 280 s->vectpending_prio = pend_prio; 281 s->exception_prio = active_prio; 282 283 trace_nvic_recompute_state_secure(s->vectpending, 284 s->vectpending_is_s_banked, 285 s->vectpending_prio, 286 s->exception_prio); 287 } 288 289 /* Recompute vectpending and exception_prio */ 290 static void nvic_recompute_state(NVICState *s) 291 { 292 int i; 293 int pend_prio = NVIC_NOEXC_PRIO; 294 int active_prio = NVIC_NOEXC_PRIO; 295 int pend_irq = 0; 296 297 /* In theory we could write one function that handled both 298 * the "security extension present" and "not present"; however 299 * the security related changes significantly complicate the 300 * recomputation just by themselves and mixing both cases together 301 * would be even worse, so we retain a separate non-secure-only 302 * version for CPUs which don't implement the security extension. 303 */ 304 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 305 nvic_recompute_state_secure(s); 306 return; 307 } 308 309 for (i = 1; i < s->num_irq; i++) { 310 VecInfo *vec = &s->vectors[i]; 311 312 if (vec->enabled && vec->pending && vec->prio < pend_prio) { 313 pend_prio = vec->prio; 314 pend_irq = i; 315 } 316 if (vec->active && vec->prio < active_prio) { 317 active_prio = vec->prio; 318 } 319 } 320 321 if (active_prio > 0) { 322 active_prio &= nvic_gprio_mask(s, false); 323 } 324 325 if (pend_prio > 0) { 326 pend_prio &= nvic_gprio_mask(s, false); 327 } 328 329 s->vectpending = pend_irq; 330 s->vectpending_prio = pend_prio; 331 s->exception_prio = active_prio; 332 333 trace_nvic_recompute_state(s->vectpending, 334 s->vectpending_prio, 335 s->exception_prio); 336 } 337 338 /* Return the current execution priority of the CPU 339 * (equivalent to the pseudocode ExecutionPriority function). 340 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO. 341 */ 342 static inline int nvic_exec_prio(NVICState *s) 343 { 344 CPUARMState *env = &s->cpu->env; 345 int running = NVIC_NOEXC_PRIO; 346 347 if (env->v7m.basepri[M_REG_NS] > 0) { 348 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS); 349 } 350 351 if (env->v7m.basepri[M_REG_S] > 0) { 352 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S); 353 if (running > basepri) { 354 running = basepri; 355 } 356 } 357 358 if (env->v7m.primask[M_REG_NS]) { 359 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 360 if (running > NVIC_NS_PRIO_LIMIT) { 361 running = NVIC_NS_PRIO_LIMIT; 362 } 363 } else { 364 running = 0; 365 } 366 } 367 368 if (env->v7m.primask[M_REG_S]) { 369 running = 0; 370 } 371 372 if (env->v7m.faultmask[M_REG_NS]) { 373 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 374 running = -1; 375 } else { 376 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 377 if (running > NVIC_NS_PRIO_LIMIT) { 378 running = NVIC_NS_PRIO_LIMIT; 379 } 380 } else { 381 running = 0; 382 } 383 } 384 } 385 386 if (env->v7m.faultmask[M_REG_S]) { 387 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1; 388 } 389 390 /* consider priority of active handler */ 391 return MIN(running, s->exception_prio); 392 } 393 394 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) 395 { 396 /* Return true if the requested execution priority is negative 397 * for the specified security state, ie that security state 398 * has an active NMI or HardFault or has set its FAULTMASK. 399 * Note that this is not the same as whether the execution 400 * priority is actually negative (for instance AIRCR.PRIS may 401 * mean we don't allow FAULTMASK_NS to actually make the execution 402 * priority negative). Compare pseudocode IsReqExcPriNeg(). 403 */ 404 NVICState *s = opaque; 405 406 if (s->cpu->env.v7m.faultmask[secure]) { 407 return true; 408 } 409 410 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active : 411 s->vectors[ARMV7M_EXCP_HARD].active) { 412 return true; 413 } 414 415 if (s->vectors[ARMV7M_EXCP_NMI].active && 416 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) { 417 return true; 418 } 419 420 return false; 421 } 422 423 bool armv7m_nvic_can_take_pending_exception(void *opaque) 424 { 425 NVICState *s = opaque; 426 427 return nvic_exec_prio(s) > nvic_pending_prio(s); 428 } 429 430 int armv7m_nvic_raw_execution_priority(void *opaque) 431 { 432 NVICState *s = opaque; 433 434 return s->exception_prio; 435 } 436 437 /* caller must call nvic_irq_update() after this. 438 * secure indicates the bank to use for banked exceptions (we assert if 439 * we are passed secure=true for a non-banked exception). 440 */ 441 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio) 442 { 443 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 444 assert(irq < s->num_irq); 445 446 prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits); 447 448 if (secure) { 449 assert(exc_is_banked(irq)); 450 s->sec_vectors[irq].prio = prio; 451 } else { 452 s->vectors[irq].prio = prio; 453 } 454 455 trace_nvic_set_prio(irq, secure, prio); 456 } 457 458 /* Return the current raw priority register value. 459 * secure indicates the bank to use for banked exceptions (we assert if 460 * we are passed secure=true for a non-banked exception). 461 */ 462 static int get_prio(NVICState *s, unsigned irq, bool secure) 463 { 464 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 465 assert(irq < s->num_irq); 466 467 if (secure) { 468 assert(exc_is_banked(irq)); 469 return s->sec_vectors[irq].prio; 470 } else { 471 return s->vectors[irq].prio; 472 } 473 } 474 475 /* Recompute state and assert irq line accordingly. 476 * Must be called after changes to: 477 * vec->active, vec->enabled, vec->pending or vec->prio for any vector 478 * prigroup 479 */ 480 static void nvic_irq_update(NVICState *s) 481 { 482 int lvl; 483 int pend_prio; 484 485 nvic_recompute_state(s); 486 pend_prio = nvic_pending_prio(s); 487 488 /* Raise NVIC output if this IRQ would be taken, except that we 489 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which 490 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes 491 * to those CPU registers don't cause us to recalculate the NVIC 492 * pending info. 493 */ 494 lvl = (pend_prio < s->exception_prio); 495 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl); 496 qemu_set_irq(s->excpout, lvl); 497 } 498 499 /** 500 * armv7m_nvic_clear_pending: mark the specified exception as not pending 501 * @opaque: the NVIC 502 * @irq: the exception number to mark as not pending 503 * @secure: false for non-banked exceptions or for the nonsecure 504 * version of a banked exception, true for the secure version of a banked 505 * exception. 506 * 507 * Marks the specified exception as not pending. Note that we will assert() 508 * if @secure is true and @irq does not specify one of the fixed set 509 * of architecturally banked exceptions. 510 */ 511 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure) 512 { 513 NVICState *s = (NVICState *)opaque; 514 VecInfo *vec; 515 516 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 517 518 if (secure) { 519 assert(exc_is_banked(irq)); 520 vec = &s->sec_vectors[irq]; 521 } else { 522 vec = &s->vectors[irq]; 523 } 524 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio); 525 if (vec->pending) { 526 vec->pending = 0; 527 nvic_irq_update(s); 528 } 529 } 530 531 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure, 532 bool derived) 533 { 534 /* Pend an exception, including possibly escalating it to HardFault. 535 * 536 * This function handles both "normal" pending of interrupts and 537 * exceptions, and also derived exceptions (ones which occur as 538 * a result of trying to take some other exception). 539 * 540 * If derived == true, the caller guarantees that we are part way through 541 * trying to take an exception (but have not yet called 542 * armv7m_nvic_acknowledge_irq() to make it active), and so: 543 * - s->vectpending is the "original exception" we were trying to take 544 * - irq is the "derived exception" 545 * - nvic_exec_prio(s) gives the priority before exception entry 546 * Here we handle the prioritization logic which the pseudocode puts 547 * in the DerivedLateArrival() function. 548 */ 549 550 NVICState *s = (NVICState *)opaque; 551 bool banked = exc_is_banked(irq); 552 VecInfo *vec; 553 bool targets_secure; 554 555 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 556 assert(!secure || banked); 557 558 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 559 560 targets_secure = banked ? secure : exc_targets_secure(s, irq); 561 562 trace_nvic_set_pending(irq, secure, targets_secure, 563 derived, vec->enabled, vec->prio); 564 565 if (derived) { 566 /* Derived exceptions are always synchronous. */ 567 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV); 568 569 if (irq == ARMV7M_EXCP_DEBUG && 570 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) { 571 /* DebugMonitorFault, but its priority is lower than the 572 * preempted exception priority: just ignore it. 573 */ 574 return; 575 } 576 577 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) { 578 /* If this is a terminal exception (one which means we cannot 579 * take the original exception, like a failure to read its 580 * vector table entry), then we must take the derived exception. 581 * If the derived exception can't take priority over the 582 * original exception, then we go into Lockup. 583 * 584 * For QEMU, we rely on the fact that a derived exception is 585 * terminal if and only if it's reported to us as HardFault, 586 * which saves having to have an extra argument is_terminal 587 * that we'd only use in one place. 588 */ 589 cpu_abort(&s->cpu->parent_obj, 590 "Lockup: can't take terminal derived exception " 591 "(original exception priority %d)\n", 592 s->vectpending_prio); 593 } 594 /* We now continue with the same code as for a normal pending 595 * exception, which will cause us to pend the derived exception. 596 * We'll then take either the original or the derived exception 597 * based on which is higher priority by the usual mechanism 598 * for selecting the highest priority pending interrupt. 599 */ 600 } 601 602 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) { 603 /* If a synchronous exception is pending then it may be 604 * escalated to HardFault if: 605 * * it is equal or lower priority to current execution 606 * * it is disabled 607 * (ie we need to take it immediately but we can't do so). 608 * Asynchronous exceptions (and interrupts) simply remain pending. 609 * 610 * For QEMU, we don't have any imprecise (asynchronous) faults, 611 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always 612 * synchronous. 613 * Debug exceptions are awkward because only Debug exceptions 614 * resulting from the BKPT instruction should be escalated, 615 * but we don't currently implement any Debug exceptions other 616 * than those that result from BKPT, so we treat all debug exceptions 617 * as needing escalation. 618 * 619 * This all means we can identify whether to escalate based only on 620 * the exception number and don't (yet) need the caller to explicitly 621 * tell us whether this exception is synchronous or not. 622 */ 623 int running = nvic_exec_prio(s); 624 bool escalate = false; 625 626 if (exc_group_prio(s, vec->prio, secure) >= running) { 627 trace_nvic_escalate_prio(irq, vec->prio, running); 628 escalate = true; 629 } else if (!vec->enabled) { 630 trace_nvic_escalate_disabled(irq); 631 escalate = true; 632 } 633 634 if (escalate) { 635 636 /* We need to escalate this exception to a synchronous HardFault. 637 * If BFHFNMINS is set then we escalate to the banked HF for 638 * the target security state of the original exception; otherwise 639 * we take a Secure HardFault. 640 */ 641 irq = ARMV7M_EXCP_HARD; 642 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && 643 (targets_secure || 644 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { 645 vec = &s->sec_vectors[irq]; 646 } else { 647 vec = &s->vectors[irq]; 648 } 649 if (running <= vec->prio) { 650 /* We want to escalate to HardFault but we can't take the 651 * synchronous HardFault at this point either. This is a 652 * Lockup condition due to a guest bug. We don't model 653 * Lockup, so report via cpu_abort() instead. 654 */ 655 cpu_abort(&s->cpu->parent_obj, 656 "Lockup: can't escalate %d to HardFault " 657 "(current priority %d)\n", irq, running); 658 } 659 660 /* HF may be banked but there is only one shared HFSR */ 661 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 662 } 663 } 664 665 if (!vec->pending) { 666 vec->pending = 1; 667 nvic_irq_update(s); 668 } 669 } 670 671 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure) 672 { 673 do_armv7m_nvic_set_pending(opaque, irq, secure, false); 674 } 675 676 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure) 677 { 678 do_armv7m_nvic_set_pending(opaque, irq, secure, true); 679 } 680 681 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure) 682 { 683 /* 684 * Pend an exception during lazy FP stacking. This differs 685 * from the usual exception pending because the logic for 686 * whether we should escalate depends on the saved context 687 * in the FPCCR register, not on the current state of the CPU/NVIC. 688 */ 689 NVICState *s = (NVICState *)opaque; 690 bool banked = exc_is_banked(irq); 691 VecInfo *vec; 692 bool targets_secure; 693 bool escalate = false; 694 /* 695 * We will only look at bits in fpccr if this is a banked exception 696 * (in which case 'secure' tells us whether it is the S or NS version). 697 * All the bits for the non-banked exceptions are in fpccr_s. 698 */ 699 uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S]; 700 uint32_t fpccr = s->cpu->env.v7m.fpccr[secure]; 701 702 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 703 assert(!secure || banked); 704 705 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 706 707 targets_secure = banked ? secure : exc_targets_secure(s, irq); 708 709 switch (irq) { 710 case ARMV7M_EXCP_DEBUG: 711 if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) { 712 /* Ignore DebugMonitor exception */ 713 return; 714 } 715 break; 716 case ARMV7M_EXCP_MEM: 717 escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK); 718 break; 719 case ARMV7M_EXCP_USAGE: 720 escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK); 721 break; 722 case ARMV7M_EXCP_BUS: 723 escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK); 724 break; 725 case ARMV7M_EXCP_SECURE: 726 escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK); 727 break; 728 default: 729 g_assert_not_reached(); 730 } 731 732 if (escalate) { 733 /* 734 * Escalate to HardFault: faults that initially targeted Secure 735 * continue to do so, even if HF normally targets NonSecure. 736 */ 737 irq = ARMV7M_EXCP_HARD; 738 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && 739 (targets_secure || 740 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { 741 vec = &s->sec_vectors[irq]; 742 } else { 743 vec = &s->vectors[irq]; 744 } 745 } 746 747 if (!vec->enabled || 748 nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) { 749 if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) { 750 /* 751 * We want to escalate to HardFault but the context the 752 * FP state belongs to prevents the exception pre-empting. 753 */ 754 cpu_abort(&s->cpu->parent_obj, 755 "Lockup: can't escalate to HardFault during " 756 "lazy FP register stacking\n"); 757 } 758 } 759 760 if (escalate) { 761 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 762 } 763 if (!vec->pending) { 764 vec->pending = 1; 765 /* 766 * We do not call nvic_irq_update(), because we know our caller 767 * is going to handle causing us to take the exception by 768 * raising EXCP_LAZYFP, so raising the IRQ line would be 769 * pointless extra work. We just need to recompute the 770 * priorities so that armv7m_nvic_can_take_pending_exception() 771 * returns the right answer. 772 */ 773 nvic_recompute_state(s); 774 } 775 } 776 777 /* Make pending IRQ active. */ 778 void armv7m_nvic_acknowledge_irq(void *opaque) 779 { 780 NVICState *s = (NVICState *)opaque; 781 CPUARMState *env = &s->cpu->env; 782 const int pending = s->vectpending; 783 const int running = nvic_exec_prio(s); 784 VecInfo *vec; 785 786 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 787 788 if (s->vectpending_is_s_banked) { 789 vec = &s->sec_vectors[pending]; 790 } else { 791 vec = &s->vectors[pending]; 792 } 793 794 assert(vec->enabled); 795 assert(vec->pending); 796 797 assert(s->vectpending_prio < running); 798 799 trace_nvic_acknowledge_irq(pending, s->vectpending_prio); 800 801 vec->active = 1; 802 vec->pending = 0; 803 804 write_v7m_exception(env, s->vectpending); 805 806 nvic_irq_update(s); 807 } 808 809 void armv7m_nvic_get_pending_irq_info(void *opaque, 810 int *pirq, bool *ptargets_secure) 811 { 812 NVICState *s = (NVICState *)opaque; 813 const int pending = s->vectpending; 814 bool targets_secure; 815 816 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 817 818 if (s->vectpending_is_s_banked) { 819 targets_secure = true; 820 } else { 821 targets_secure = !exc_is_banked(pending) && 822 exc_targets_secure(s, pending); 823 } 824 825 trace_nvic_get_pending_irq_info(pending, targets_secure); 826 827 *ptargets_secure = targets_secure; 828 *pirq = pending; 829 } 830 831 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure) 832 { 833 NVICState *s = (NVICState *)opaque; 834 VecInfo *vec = NULL; 835 int ret; 836 837 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 838 839 /* 840 * For negative priorities, v8M will forcibly deactivate the appropriate 841 * NMI or HardFault regardless of what interrupt we're being asked to 842 * deactivate (compare the DeActivate() pseudocode). This is a guard 843 * against software returning from NMI or HardFault with a corrupted 844 * IPSR and leaving the CPU in a negative-priority state. 845 * v7M does not do this, but simply deactivates the requested interrupt. 846 */ 847 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { 848 switch (armv7m_nvic_raw_execution_priority(s)) { 849 case -1: 850 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 851 vec = &s->vectors[ARMV7M_EXCP_HARD]; 852 } else { 853 vec = &s->sec_vectors[ARMV7M_EXCP_HARD]; 854 } 855 break; 856 case -2: 857 vec = &s->vectors[ARMV7M_EXCP_NMI]; 858 break; 859 case -3: 860 vec = &s->sec_vectors[ARMV7M_EXCP_HARD]; 861 break; 862 default: 863 break; 864 } 865 } 866 867 if (!vec) { 868 if (secure && exc_is_banked(irq)) { 869 vec = &s->sec_vectors[irq]; 870 } else { 871 vec = &s->vectors[irq]; 872 } 873 } 874 875 trace_nvic_complete_irq(irq, secure); 876 877 if (!vec->active) { 878 /* Tell the caller this was an illegal exception return */ 879 return -1; 880 } 881 882 /* 883 * If this is a configurable exception and it is currently 884 * targeting the opposite security state from the one we're trying 885 * to complete it for, this counts as an illegal exception return. 886 * We still need to deactivate whatever vector the logic above has 887 * selected, though, as it might not be the same as the one for the 888 * requested exception number. 889 */ 890 if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) { 891 ret = -1; 892 } else { 893 ret = nvic_rettobase(s); 894 } 895 896 vec->active = 0; 897 if (vec->level) { 898 /* Re-pend the exception if it's still held high; only 899 * happens for extenal IRQs 900 */ 901 assert(irq >= NVIC_FIRST_IRQ); 902 vec->pending = 1; 903 } 904 905 nvic_irq_update(s); 906 907 return ret; 908 } 909 910 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure) 911 { 912 /* 913 * Return whether an exception is "ready", i.e. it is enabled and is 914 * configured at a priority which would allow it to interrupt the 915 * current execution priority. 916 * 917 * irq and secure have the same semantics as for armv7m_nvic_set_pending(): 918 * for non-banked exceptions secure is always false; for banked exceptions 919 * it indicates which of the exceptions is required. 920 */ 921 NVICState *s = (NVICState *)opaque; 922 bool banked = exc_is_banked(irq); 923 VecInfo *vec; 924 int running = nvic_exec_prio(s); 925 926 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 927 assert(!secure || banked); 928 929 /* 930 * HardFault is an odd special case: we always check against -1, 931 * even if we're secure and HardFault has priority -3; we never 932 * need to check for enabled state. 933 */ 934 if (irq == ARMV7M_EXCP_HARD) { 935 return running > -1; 936 } 937 938 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 939 940 return vec->enabled && 941 exc_group_prio(s, vec->prio, secure) < running; 942 } 943 944 /* callback when external interrupt line is changed */ 945 static void set_irq_level(void *opaque, int n, int level) 946 { 947 NVICState *s = opaque; 948 VecInfo *vec; 949 950 n += NVIC_FIRST_IRQ; 951 952 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq); 953 954 trace_nvic_set_irq_level(n, level); 955 956 /* The pending status of an external interrupt is 957 * latched on rising edge and exception handler return. 958 * 959 * Pulsing the IRQ will always run the handler 960 * once, and the handler will re-run until the 961 * level is low when the handler completes. 962 */ 963 vec = &s->vectors[n]; 964 if (level != vec->level) { 965 vec->level = level; 966 if (level) { 967 armv7m_nvic_set_pending(s, n, false); 968 } 969 } 970 } 971 972 /* callback when external NMI line is changed */ 973 static void nvic_nmi_trigger(void *opaque, int n, int level) 974 { 975 NVICState *s = opaque; 976 977 trace_nvic_set_nmi_level(level); 978 979 /* 980 * The architecture doesn't specify whether NMI should share 981 * the normal-interrupt behaviour of being resampled on 982 * exception handler return. We choose not to, so just 983 * set NMI pending here and don't track the current level. 984 */ 985 if (level) { 986 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); 987 } 988 } 989 990 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs) 991 { 992 ARMCPU *cpu = s->cpu; 993 uint32_t val; 994 995 switch (offset) { 996 case 4: /* Interrupt Control Type. */ 997 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 998 goto bad_offset; 999 } 1000 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1; 1001 case 0xc: /* CPPWR */ 1002 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1003 goto bad_offset; 1004 } 1005 /* We make the IMPDEF choice that nothing can ever go into a 1006 * non-retentive power state, which allows us to RAZ/WI this. 1007 */ 1008 return 0; 1009 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 1010 { 1011 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 1012 int i; 1013 1014 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1015 goto bad_offset; 1016 } 1017 if (!attrs.secure) { 1018 return 0; 1019 } 1020 val = 0; 1021 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 1022 if (s->itns[startvec + i]) { 1023 val |= (1 << i); 1024 } 1025 } 1026 return val; 1027 } 1028 case 0xd00: /* CPUID Base. */ 1029 return cpu->midr; 1030 case 0xd04: /* Interrupt Control State (ICSR) */ 1031 /* VECTACTIVE */ 1032 val = cpu->env.v7m.exception; 1033 /* VECTPENDING */ 1034 val |= (s->vectpending & 0xff) << 12; 1035 /* ISRPENDING - set if any external IRQ is pending */ 1036 if (nvic_isrpending(s)) { 1037 val |= (1 << 22); 1038 } 1039 /* RETTOBASE - set if only one handler is active */ 1040 if (nvic_rettobase(s)) { 1041 val |= (1 << 11); 1042 } 1043 if (attrs.secure) { 1044 /* PENDSTSET */ 1045 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) { 1046 val |= (1 << 26); 1047 } 1048 /* PENDSVSET */ 1049 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) { 1050 val |= (1 << 28); 1051 } 1052 } else { 1053 /* PENDSTSET */ 1054 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) { 1055 val |= (1 << 26); 1056 } 1057 /* PENDSVSET */ 1058 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) { 1059 val |= (1 << 28); 1060 } 1061 } 1062 /* NMIPENDSET */ 1063 if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) 1064 && s->vectors[ARMV7M_EXCP_NMI].pending) { 1065 val |= (1 << 31); 1066 } 1067 /* ISRPREEMPT: RES0 when halting debug not implemented */ 1068 /* STTNS: RES0 for the Main Extension */ 1069 return val; 1070 case 0xd08: /* Vector Table Offset. */ 1071 return cpu->env.v7m.vecbase[attrs.secure]; 1072 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 1073 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8); 1074 if (attrs.secure) { 1075 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */ 1076 val |= cpu->env.v7m.aircr; 1077 } else { 1078 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1079 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If 1080 * security isn't supported then BFHFNMINS is RAO (and 1081 * the bit in env.v7m.aircr is always set). 1082 */ 1083 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK; 1084 } 1085 } 1086 return val; 1087 case 0xd10: /* System Control. */ 1088 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1089 goto bad_offset; 1090 } 1091 return cpu->env.v7m.scr[attrs.secure]; 1092 case 0xd14: /* Configuration Control. */ 1093 /* The BFHFNMIGN bit is the only non-banked bit; we 1094 * keep it in the non-secure copy of the register. 1095 */ 1096 val = cpu->env.v7m.ccr[attrs.secure]; 1097 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; 1098 return val; 1099 case 0xd24: /* System Handler Control and State (SHCSR) */ 1100 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1101 goto bad_offset; 1102 } 1103 val = 0; 1104 if (attrs.secure) { 1105 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) { 1106 val |= (1 << 0); 1107 } 1108 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) { 1109 val |= (1 << 2); 1110 } 1111 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) { 1112 val |= (1 << 3); 1113 } 1114 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) { 1115 val |= (1 << 7); 1116 } 1117 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) { 1118 val |= (1 << 10); 1119 } 1120 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) { 1121 val |= (1 << 11); 1122 } 1123 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) { 1124 val |= (1 << 12); 1125 } 1126 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) { 1127 val |= (1 << 13); 1128 } 1129 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) { 1130 val |= (1 << 15); 1131 } 1132 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) { 1133 val |= (1 << 16); 1134 } 1135 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) { 1136 val |= (1 << 18); 1137 } 1138 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) { 1139 val |= (1 << 21); 1140 } 1141 /* SecureFault is not banked but is always RAZ/WI to NS */ 1142 if (s->vectors[ARMV7M_EXCP_SECURE].active) { 1143 val |= (1 << 4); 1144 } 1145 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) { 1146 val |= (1 << 19); 1147 } 1148 if (s->vectors[ARMV7M_EXCP_SECURE].pending) { 1149 val |= (1 << 20); 1150 } 1151 } else { 1152 if (s->vectors[ARMV7M_EXCP_MEM].active) { 1153 val |= (1 << 0); 1154 } 1155 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1156 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */ 1157 if (s->vectors[ARMV7M_EXCP_HARD].active) { 1158 val |= (1 << 2); 1159 } 1160 if (s->vectors[ARMV7M_EXCP_HARD].pending) { 1161 val |= (1 << 21); 1162 } 1163 } 1164 if (s->vectors[ARMV7M_EXCP_USAGE].active) { 1165 val |= (1 << 3); 1166 } 1167 if (s->vectors[ARMV7M_EXCP_SVC].active) { 1168 val |= (1 << 7); 1169 } 1170 if (s->vectors[ARMV7M_EXCP_PENDSV].active) { 1171 val |= (1 << 10); 1172 } 1173 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) { 1174 val |= (1 << 11); 1175 } 1176 if (s->vectors[ARMV7M_EXCP_USAGE].pending) { 1177 val |= (1 << 12); 1178 } 1179 if (s->vectors[ARMV7M_EXCP_MEM].pending) { 1180 val |= (1 << 13); 1181 } 1182 if (s->vectors[ARMV7M_EXCP_SVC].pending) { 1183 val |= (1 << 15); 1184 } 1185 if (s->vectors[ARMV7M_EXCP_MEM].enabled) { 1186 val |= (1 << 16); 1187 } 1188 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) { 1189 val |= (1 << 18); 1190 } 1191 } 1192 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1193 if (s->vectors[ARMV7M_EXCP_BUS].active) { 1194 val |= (1 << 1); 1195 } 1196 if (s->vectors[ARMV7M_EXCP_BUS].pending) { 1197 val |= (1 << 14); 1198 } 1199 if (s->vectors[ARMV7M_EXCP_BUS].enabled) { 1200 val |= (1 << 17); 1201 } 1202 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 1203 s->vectors[ARMV7M_EXCP_NMI].active) { 1204 /* NMIACT is not present in v7M */ 1205 val |= (1 << 5); 1206 } 1207 } 1208 1209 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 1210 if (s->vectors[ARMV7M_EXCP_DEBUG].active) { 1211 val |= (1 << 8); 1212 } 1213 return val; 1214 case 0xd2c: /* Hard Fault Status. */ 1215 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1216 goto bad_offset; 1217 } 1218 return cpu->env.v7m.hfsr; 1219 case 0xd30: /* Debug Fault Status. */ 1220 return cpu->env.v7m.dfsr; 1221 case 0xd34: /* MMFAR MemManage Fault Address */ 1222 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1223 goto bad_offset; 1224 } 1225 return cpu->env.v7m.mmfar[attrs.secure]; 1226 case 0xd38: /* Bus Fault Address. */ 1227 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1228 goto bad_offset; 1229 } 1230 if (!attrs.secure && 1231 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1232 return 0; 1233 } 1234 return cpu->env.v7m.bfar; 1235 case 0xd3c: /* Aux Fault Status. */ 1236 /* TODO: Implement fault status registers. */ 1237 qemu_log_mask(LOG_UNIMP, 1238 "Aux Fault status registers unimplemented\n"); 1239 return 0; 1240 case 0xd40: /* PFR0. */ 1241 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1242 goto bad_offset; 1243 } 1244 return cpu->isar.id_pfr0; 1245 case 0xd44: /* PFR1. */ 1246 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1247 goto bad_offset; 1248 } 1249 return cpu->isar.id_pfr1; 1250 case 0xd48: /* DFR0. */ 1251 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1252 goto bad_offset; 1253 } 1254 return cpu->isar.id_dfr0; 1255 case 0xd4c: /* AFR0. */ 1256 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1257 goto bad_offset; 1258 } 1259 return cpu->id_afr0; 1260 case 0xd50: /* MMFR0. */ 1261 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1262 goto bad_offset; 1263 } 1264 return cpu->isar.id_mmfr0; 1265 case 0xd54: /* MMFR1. */ 1266 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1267 goto bad_offset; 1268 } 1269 return cpu->isar.id_mmfr1; 1270 case 0xd58: /* MMFR2. */ 1271 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1272 goto bad_offset; 1273 } 1274 return cpu->isar.id_mmfr2; 1275 case 0xd5c: /* MMFR3. */ 1276 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1277 goto bad_offset; 1278 } 1279 return cpu->isar.id_mmfr3; 1280 case 0xd60: /* ISAR0. */ 1281 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1282 goto bad_offset; 1283 } 1284 return cpu->isar.id_isar0; 1285 case 0xd64: /* ISAR1. */ 1286 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1287 goto bad_offset; 1288 } 1289 return cpu->isar.id_isar1; 1290 case 0xd68: /* ISAR2. */ 1291 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1292 goto bad_offset; 1293 } 1294 return cpu->isar.id_isar2; 1295 case 0xd6c: /* ISAR3. */ 1296 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1297 goto bad_offset; 1298 } 1299 return cpu->isar.id_isar3; 1300 case 0xd70: /* ISAR4. */ 1301 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1302 goto bad_offset; 1303 } 1304 return cpu->isar.id_isar4; 1305 case 0xd74: /* ISAR5. */ 1306 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1307 goto bad_offset; 1308 } 1309 return cpu->isar.id_isar5; 1310 case 0xd78: /* CLIDR */ 1311 return cpu->clidr; 1312 case 0xd7c: /* CTR */ 1313 return cpu->ctr; 1314 case 0xd80: /* CSSIDR */ 1315 { 1316 int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK; 1317 return cpu->ccsidr[idx]; 1318 } 1319 case 0xd84: /* CSSELR */ 1320 return cpu->env.v7m.csselr[attrs.secure]; 1321 case 0xd88: /* CPACR */ 1322 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1323 return 0; 1324 } 1325 return cpu->env.v7m.cpacr[attrs.secure]; 1326 case 0xd8c: /* NSACR */ 1327 if (!attrs.secure || !cpu_isar_feature(aa32_vfp_simd, cpu)) { 1328 return 0; 1329 } 1330 return cpu->env.v7m.nsacr; 1331 /* TODO: Implement debug registers. */ 1332 case 0xd90: /* MPU_TYPE */ 1333 /* Unified MPU; if the MPU is not present this value is zero */ 1334 return cpu->pmsav7_dregion << 8; 1335 case 0xd94: /* MPU_CTRL */ 1336 return cpu->env.v7m.mpu_ctrl[attrs.secure]; 1337 case 0xd98: /* MPU_RNR */ 1338 return cpu->env.pmsav7.rnr[attrs.secure]; 1339 case 0xd9c: /* MPU_RBAR */ 1340 case 0xda4: /* MPU_RBAR_A1 */ 1341 case 0xdac: /* MPU_RBAR_A2 */ 1342 case 0xdb4: /* MPU_RBAR_A3 */ 1343 { 1344 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1345 1346 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1347 /* PMSAv8M handling of the aliases is different from v7M: 1348 * aliases A1, A2, A3 override the low two bits of the region 1349 * number in MPU_RNR, and there is no 'region' field in the 1350 * RBAR register. 1351 */ 1352 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1353 if (aliasno) { 1354 region = deposit32(region, 0, 2, aliasno); 1355 } 1356 if (region >= cpu->pmsav7_dregion) { 1357 return 0; 1358 } 1359 return cpu->env.pmsav8.rbar[attrs.secure][region]; 1360 } 1361 1362 if (region >= cpu->pmsav7_dregion) { 1363 return 0; 1364 } 1365 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf); 1366 } 1367 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1368 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1369 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1370 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1371 { 1372 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1373 1374 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1375 /* PMSAv8M handling of the aliases is different from v7M: 1376 * aliases A1, A2, A3 override the low two bits of the region 1377 * number in MPU_RNR. 1378 */ 1379 int aliasno = (offset - 0xda0) / 8; /* 0..3 */ 1380 if (aliasno) { 1381 region = deposit32(region, 0, 2, aliasno); 1382 } 1383 if (region >= cpu->pmsav7_dregion) { 1384 return 0; 1385 } 1386 return cpu->env.pmsav8.rlar[attrs.secure][region]; 1387 } 1388 1389 if (region >= cpu->pmsav7_dregion) { 1390 return 0; 1391 } 1392 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) | 1393 (cpu->env.pmsav7.drsr[region] & 0xffff); 1394 } 1395 case 0xdc0: /* MPU_MAIR0 */ 1396 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1397 goto bad_offset; 1398 } 1399 return cpu->env.pmsav8.mair0[attrs.secure]; 1400 case 0xdc4: /* MPU_MAIR1 */ 1401 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1402 goto bad_offset; 1403 } 1404 return cpu->env.pmsav8.mair1[attrs.secure]; 1405 case 0xdd0: /* SAU_CTRL */ 1406 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1407 goto bad_offset; 1408 } 1409 if (!attrs.secure) { 1410 return 0; 1411 } 1412 return cpu->env.sau.ctrl; 1413 case 0xdd4: /* SAU_TYPE */ 1414 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1415 goto bad_offset; 1416 } 1417 if (!attrs.secure) { 1418 return 0; 1419 } 1420 return cpu->sau_sregion; 1421 case 0xdd8: /* SAU_RNR */ 1422 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1423 goto bad_offset; 1424 } 1425 if (!attrs.secure) { 1426 return 0; 1427 } 1428 return cpu->env.sau.rnr; 1429 case 0xddc: /* SAU_RBAR */ 1430 { 1431 int region = cpu->env.sau.rnr; 1432 1433 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1434 goto bad_offset; 1435 } 1436 if (!attrs.secure) { 1437 return 0; 1438 } 1439 if (region >= cpu->sau_sregion) { 1440 return 0; 1441 } 1442 return cpu->env.sau.rbar[region]; 1443 } 1444 case 0xde0: /* SAU_RLAR */ 1445 { 1446 int region = cpu->env.sau.rnr; 1447 1448 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1449 goto bad_offset; 1450 } 1451 if (!attrs.secure) { 1452 return 0; 1453 } 1454 if (region >= cpu->sau_sregion) { 1455 return 0; 1456 } 1457 return cpu->env.sau.rlar[region]; 1458 } 1459 case 0xde4: /* SFSR */ 1460 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1461 goto bad_offset; 1462 } 1463 if (!attrs.secure) { 1464 return 0; 1465 } 1466 return cpu->env.v7m.sfsr; 1467 case 0xde8: /* SFAR */ 1468 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1469 goto bad_offset; 1470 } 1471 if (!attrs.secure) { 1472 return 0; 1473 } 1474 return cpu->env.v7m.sfar; 1475 case 0xf34: /* FPCCR */ 1476 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1477 return 0; 1478 } 1479 if (attrs.secure) { 1480 return cpu->env.v7m.fpccr[M_REG_S]; 1481 } else { 1482 /* 1483 * NS can read LSPEN, CLRONRET and MONRDY. It can read 1484 * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0; 1485 * other non-banked bits RAZ. 1486 * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set. 1487 */ 1488 uint32_t value = cpu->env.v7m.fpccr[M_REG_S]; 1489 uint32_t mask = R_V7M_FPCCR_LSPEN_MASK | 1490 R_V7M_FPCCR_CLRONRET_MASK | 1491 R_V7M_FPCCR_MONRDY_MASK; 1492 1493 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1494 mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK; 1495 } 1496 1497 value &= mask; 1498 1499 value |= cpu->env.v7m.fpccr[M_REG_NS]; 1500 return value; 1501 } 1502 case 0xf38: /* FPCAR */ 1503 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1504 return 0; 1505 } 1506 return cpu->env.v7m.fpcar[attrs.secure]; 1507 case 0xf3c: /* FPDSCR */ 1508 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1509 return 0; 1510 } 1511 return cpu->env.v7m.fpdscr[attrs.secure]; 1512 case 0xf40: /* MVFR0 */ 1513 return cpu->isar.mvfr0; 1514 case 0xf44: /* MVFR1 */ 1515 return cpu->isar.mvfr1; 1516 case 0xf48: /* MVFR2 */ 1517 return cpu->isar.mvfr2; 1518 default: 1519 bad_offset: 1520 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset); 1521 return 0; 1522 } 1523 } 1524 1525 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value, 1526 MemTxAttrs attrs) 1527 { 1528 ARMCPU *cpu = s->cpu; 1529 1530 switch (offset) { 1531 case 0xc: /* CPPWR */ 1532 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1533 goto bad_offset; 1534 } 1535 /* Make the IMPDEF choice to RAZ/WI this. */ 1536 break; 1537 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 1538 { 1539 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 1540 int i; 1541 1542 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1543 goto bad_offset; 1544 } 1545 if (!attrs.secure) { 1546 break; 1547 } 1548 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 1549 s->itns[startvec + i] = (value >> i) & 1; 1550 } 1551 nvic_irq_update(s); 1552 break; 1553 } 1554 case 0xd04: /* Interrupt Control State (ICSR) */ 1555 if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1556 if (value & (1 << 31)) { 1557 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); 1558 } else if (value & (1 << 30) && 1559 arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1560 /* PENDNMICLR didn't exist in v7M */ 1561 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false); 1562 } 1563 } 1564 if (value & (1 << 28)) { 1565 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1566 } else if (value & (1 << 27)) { 1567 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1568 } 1569 if (value & (1 << 26)) { 1570 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1571 } else if (value & (1 << 25)) { 1572 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1573 } 1574 break; 1575 case 0xd08: /* Vector Table Offset. */ 1576 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80; 1577 break; 1578 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 1579 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) { 1580 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) { 1581 if (attrs.secure || 1582 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) { 1583 signal_sysresetreq(s); 1584 } 1585 } 1586 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) { 1587 qemu_log_mask(LOG_GUEST_ERROR, 1588 "Setting VECTCLRACTIVE when not in DEBUG mode " 1589 "is UNPREDICTABLE\n"); 1590 } 1591 if (value & R_V7M_AIRCR_VECTRESET_MASK) { 1592 /* NB: this bit is RES0 in v8M */ 1593 qemu_log_mask(LOG_GUEST_ERROR, 1594 "Setting VECTRESET when not in DEBUG mode " 1595 "is UNPREDICTABLE\n"); 1596 } 1597 if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1598 s->prigroup[attrs.secure] = 1599 extract32(value, 1600 R_V7M_AIRCR_PRIGROUP_SHIFT, 1601 R_V7M_AIRCR_PRIGROUP_LENGTH); 1602 } 1603 if (attrs.secure) { 1604 /* These bits are only writable by secure */ 1605 cpu->env.v7m.aircr = value & 1606 (R_V7M_AIRCR_SYSRESETREQS_MASK | 1607 R_V7M_AIRCR_BFHFNMINS_MASK | 1608 R_V7M_AIRCR_PRIS_MASK); 1609 /* BFHFNMINS changes the priority of Secure HardFault, and 1610 * allows a pending Non-secure HardFault to preempt (which 1611 * we implement by marking it enabled). 1612 */ 1613 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1614 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3; 1615 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 1616 } else { 1617 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 1618 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 1619 } 1620 } 1621 nvic_irq_update(s); 1622 } 1623 break; 1624 case 0xd10: /* System Control. */ 1625 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1626 goto bad_offset; 1627 } 1628 /* We don't implement deep-sleep so these bits are RAZ/WI. 1629 * The other bits in the register are banked. 1630 * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which 1631 * is architecturally permitted. 1632 */ 1633 value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK); 1634 cpu->env.v7m.scr[attrs.secure] = value; 1635 break; 1636 case 0xd14: /* Configuration Control. */ 1637 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1638 goto bad_offset; 1639 } 1640 1641 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */ 1642 value &= (R_V7M_CCR_STKALIGN_MASK | 1643 R_V7M_CCR_BFHFNMIGN_MASK | 1644 R_V7M_CCR_DIV_0_TRP_MASK | 1645 R_V7M_CCR_UNALIGN_TRP_MASK | 1646 R_V7M_CCR_USERSETMPEND_MASK | 1647 R_V7M_CCR_NONBASETHRDENA_MASK); 1648 1649 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1650 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */ 1651 value |= R_V7M_CCR_NONBASETHRDENA_MASK 1652 | R_V7M_CCR_STKALIGN_MASK; 1653 } 1654 if (attrs.secure) { 1655 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */ 1656 cpu->env.v7m.ccr[M_REG_NS] = 1657 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK) 1658 | (value & R_V7M_CCR_BFHFNMIGN_MASK); 1659 value &= ~R_V7M_CCR_BFHFNMIGN_MASK; 1660 } 1661 1662 cpu->env.v7m.ccr[attrs.secure] = value; 1663 break; 1664 case 0xd24: /* System Handler Control and State (SHCSR) */ 1665 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1666 goto bad_offset; 1667 } 1668 if (attrs.secure) { 1669 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1670 /* Secure HardFault active bit cannot be written */ 1671 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1672 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1673 s->sec_vectors[ARMV7M_EXCP_PENDSV].active = 1674 (value & (1 << 10)) != 0; 1675 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active = 1676 (value & (1 << 11)) != 0; 1677 s->sec_vectors[ARMV7M_EXCP_USAGE].pending = 1678 (value & (1 << 12)) != 0; 1679 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1680 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1681 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1682 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1683 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled = 1684 (value & (1 << 18)) != 0; 1685 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1686 /* SecureFault not banked, but RAZ/WI to NS */ 1687 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0; 1688 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0; 1689 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0; 1690 } else { 1691 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1692 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1693 /* HARDFAULTPENDED is not present in v7M */ 1694 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1695 } 1696 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1697 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1698 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0; 1699 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0; 1700 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0; 1701 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1702 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1703 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1704 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; 1705 } 1706 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1707 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0; 1708 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0; 1709 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1710 } 1711 /* NMIACT can only be written if the write is of a zero, with 1712 * BFHFNMINS 1, and by the CPU in secure state via the NS alias. 1713 */ 1714 if (!attrs.secure && cpu->env.v7m.secure && 1715 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1716 (value & (1 << 5)) == 0) { 1717 s->vectors[ARMV7M_EXCP_NMI].active = 0; 1718 } 1719 /* HARDFAULTACT can only be written if the write is of a zero 1720 * to the non-secure HardFault state by the CPU in secure state. 1721 * The only case where we can be targeting the non-secure HF state 1722 * when in secure state is if this is a write via the NS alias 1723 * and BFHFNMINS is 1. 1724 */ 1725 if (!attrs.secure && cpu->env.v7m.secure && 1726 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1727 (value & (1 << 2)) == 0) { 1728 s->vectors[ARMV7M_EXCP_HARD].active = 0; 1729 } 1730 1731 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 1732 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0; 1733 nvic_irq_update(s); 1734 break; 1735 case 0xd2c: /* Hard Fault Status. */ 1736 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1737 goto bad_offset; 1738 } 1739 cpu->env.v7m.hfsr &= ~value; /* W1C */ 1740 break; 1741 case 0xd30: /* Debug Fault Status. */ 1742 cpu->env.v7m.dfsr &= ~value; /* W1C */ 1743 break; 1744 case 0xd34: /* Mem Manage Address. */ 1745 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1746 goto bad_offset; 1747 } 1748 cpu->env.v7m.mmfar[attrs.secure] = value; 1749 return; 1750 case 0xd38: /* Bus Fault Address. */ 1751 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1752 goto bad_offset; 1753 } 1754 if (!attrs.secure && 1755 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1756 return; 1757 } 1758 cpu->env.v7m.bfar = value; 1759 return; 1760 case 0xd3c: /* Aux Fault Status. */ 1761 qemu_log_mask(LOG_UNIMP, 1762 "NVIC: Aux fault status registers unimplemented\n"); 1763 break; 1764 case 0xd84: /* CSSELR */ 1765 if (!arm_v7m_csselr_razwi(cpu)) { 1766 cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK; 1767 } 1768 break; 1769 case 0xd88: /* CPACR */ 1770 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 1771 /* We implement only the Floating Point extension's CP10/CP11 */ 1772 cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20); 1773 } 1774 break; 1775 case 0xd8c: /* NSACR */ 1776 if (attrs.secure && cpu_isar_feature(aa32_vfp_simd, cpu)) { 1777 /* We implement only the Floating Point extension's CP10/CP11 */ 1778 cpu->env.v7m.nsacr = value & (3 << 10); 1779 } 1780 break; 1781 case 0xd90: /* MPU_TYPE */ 1782 return; /* RO */ 1783 case 0xd94: /* MPU_CTRL */ 1784 if ((value & 1785 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK)) 1786 == R_V7M_MPU_CTRL_HFNMIENA_MASK) { 1787 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is " 1788 "UNPREDICTABLE\n"); 1789 } 1790 cpu->env.v7m.mpu_ctrl[attrs.secure] 1791 = value & (R_V7M_MPU_CTRL_ENABLE_MASK | 1792 R_V7M_MPU_CTRL_HFNMIENA_MASK | 1793 R_V7M_MPU_CTRL_PRIVDEFENA_MASK); 1794 tlb_flush(CPU(cpu)); 1795 break; 1796 case 0xd98: /* MPU_RNR */ 1797 if (value >= cpu->pmsav7_dregion) { 1798 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %" 1799 PRIu32 "/%" PRIu32 "\n", 1800 value, cpu->pmsav7_dregion); 1801 } else { 1802 cpu->env.pmsav7.rnr[attrs.secure] = value; 1803 } 1804 break; 1805 case 0xd9c: /* MPU_RBAR */ 1806 case 0xda4: /* MPU_RBAR_A1 */ 1807 case 0xdac: /* MPU_RBAR_A2 */ 1808 case 0xdb4: /* MPU_RBAR_A3 */ 1809 { 1810 int region; 1811 1812 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1813 /* PMSAv8M handling of the aliases is different from v7M: 1814 * aliases A1, A2, A3 override the low two bits of the region 1815 * number in MPU_RNR, and there is no 'region' field in the 1816 * RBAR register. 1817 */ 1818 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1819 1820 region = cpu->env.pmsav7.rnr[attrs.secure]; 1821 if (aliasno) { 1822 region = deposit32(region, 0, 2, aliasno); 1823 } 1824 if (region >= cpu->pmsav7_dregion) { 1825 return; 1826 } 1827 cpu->env.pmsav8.rbar[attrs.secure][region] = value; 1828 tlb_flush(CPU(cpu)); 1829 return; 1830 } 1831 1832 if (value & (1 << 4)) { 1833 /* VALID bit means use the region number specified in this 1834 * value and also update MPU_RNR.REGION with that value. 1835 */ 1836 region = extract32(value, 0, 4); 1837 if (region >= cpu->pmsav7_dregion) { 1838 qemu_log_mask(LOG_GUEST_ERROR, 1839 "MPU region out of range %u/%" PRIu32 "\n", 1840 region, cpu->pmsav7_dregion); 1841 return; 1842 } 1843 cpu->env.pmsav7.rnr[attrs.secure] = region; 1844 } else { 1845 region = cpu->env.pmsav7.rnr[attrs.secure]; 1846 } 1847 1848 if (region >= cpu->pmsav7_dregion) { 1849 return; 1850 } 1851 1852 cpu->env.pmsav7.drbar[region] = value & ~0x1f; 1853 tlb_flush(CPU(cpu)); 1854 break; 1855 } 1856 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1857 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1858 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1859 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1860 { 1861 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1862 1863 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1864 /* PMSAv8M handling of the aliases is different from v7M: 1865 * aliases A1, A2, A3 override the low two bits of the region 1866 * number in MPU_RNR. 1867 */ 1868 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1869 1870 region = cpu->env.pmsav7.rnr[attrs.secure]; 1871 if (aliasno) { 1872 region = deposit32(region, 0, 2, aliasno); 1873 } 1874 if (region >= cpu->pmsav7_dregion) { 1875 return; 1876 } 1877 cpu->env.pmsav8.rlar[attrs.secure][region] = value; 1878 tlb_flush(CPU(cpu)); 1879 return; 1880 } 1881 1882 if (region >= cpu->pmsav7_dregion) { 1883 return; 1884 } 1885 1886 cpu->env.pmsav7.drsr[region] = value & 0xff3f; 1887 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f; 1888 tlb_flush(CPU(cpu)); 1889 break; 1890 } 1891 case 0xdc0: /* MPU_MAIR0 */ 1892 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1893 goto bad_offset; 1894 } 1895 if (cpu->pmsav7_dregion) { 1896 /* Register is RES0 if no MPU regions are implemented */ 1897 cpu->env.pmsav8.mair0[attrs.secure] = value; 1898 } 1899 /* We don't need to do anything else because memory attributes 1900 * only affect cacheability, and we don't implement caching. 1901 */ 1902 break; 1903 case 0xdc4: /* MPU_MAIR1 */ 1904 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1905 goto bad_offset; 1906 } 1907 if (cpu->pmsav7_dregion) { 1908 /* Register is RES0 if no MPU regions are implemented */ 1909 cpu->env.pmsav8.mair1[attrs.secure] = value; 1910 } 1911 /* We don't need to do anything else because memory attributes 1912 * only affect cacheability, and we don't implement caching. 1913 */ 1914 break; 1915 case 0xdd0: /* SAU_CTRL */ 1916 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1917 goto bad_offset; 1918 } 1919 if (!attrs.secure) { 1920 return; 1921 } 1922 cpu->env.sau.ctrl = value & 3; 1923 break; 1924 case 0xdd4: /* SAU_TYPE */ 1925 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1926 goto bad_offset; 1927 } 1928 break; 1929 case 0xdd8: /* SAU_RNR */ 1930 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1931 goto bad_offset; 1932 } 1933 if (!attrs.secure) { 1934 return; 1935 } 1936 if (value >= cpu->sau_sregion) { 1937 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %" 1938 PRIu32 "/%" PRIu32 "\n", 1939 value, cpu->sau_sregion); 1940 } else { 1941 cpu->env.sau.rnr = value; 1942 } 1943 break; 1944 case 0xddc: /* SAU_RBAR */ 1945 { 1946 int region = cpu->env.sau.rnr; 1947 1948 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1949 goto bad_offset; 1950 } 1951 if (!attrs.secure) { 1952 return; 1953 } 1954 if (region >= cpu->sau_sregion) { 1955 return; 1956 } 1957 cpu->env.sau.rbar[region] = value & ~0x1f; 1958 tlb_flush(CPU(cpu)); 1959 break; 1960 } 1961 case 0xde0: /* SAU_RLAR */ 1962 { 1963 int region = cpu->env.sau.rnr; 1964 1965 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1966 goto bad_offset; 1967 } 1968 if (!attrs.secure) { 1969 return; 1970 } 1971 if (region >= cpu->sau_sregion) { 1972 return; 1973 } 1974 cpu->env.sau.rlar[region] = value & ~0x1c; 1975 tlb_flush(CPU(cpu)); 1976 break; 1977 } 1978 case 0xde4: /* SFSR */ 1979 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1980 goto bad_offset; 1981 } 1982 if (!attrs.secure) { 1983 return; 1984 } 1985 cpu->env.v7m.sfsr &= ~value; /* W1C */ 1986 break; 1987 case 0xde8: /* SFAR */ 1988 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1989 goto bad_offset; 1990 } 1991 if (!attrs.secure) { 1992 return; 1993 } 1994 cpu->env.v7m.sfsr = value; 1995 break; 1996 case 0xf00: /* Software Triggered Interrupt Register */ 1997 { 1998 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ; 1999 2000 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 2001 goto bad_offset; 2002 } 2003 2004 if (excnum < s->num_irq) { 2005 armv7m_nvic_set_pending(s, excnum, false); 2006 } 2007 break; 2008 } 2009 case 0xf34: /* FPCCR */ 2010 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 2011 /* Not all bits here are banked. */ 2012 uint32_t fpccr_s; 2013 2014 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 2015 /* Don't allow setting of bits not present in v7M */ 2016 value &= (R_V7M_FPCCR_LSPACT_MASK | 2017 R_V7M_FPCCR_USER_MASK | 2018 R_V7M_FPCCR_THREAD_MASK | 2019 R_V7M_FPCCR_HFRDY_MASK | 2020 R_V7M_FPCCR_MMRDY_MASK | 2021 R_V7M_FPCCR_BFRDY_MASK | 2022 R_V7M_FPCCR_MONRDY_MASK | 2023 R_V7M_FPCCR_LSPEN_MASK | 2024 R_V7M_FPCCR_ASPEN_MASK); 2025 } 2026 value &= ~R_V7M_FPCCR_RES0_MASK; 2027 2028 if (!attrs.secure) { 2029 /* Some non-banked bits are configurably writable by NS */ 2030 fpccr_s = cpu->env.v7m.fpccr[M_REG_S]; 2031 if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) { 2032 uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN); 2033 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen); 2034 } 2035 if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) { 2036 uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET); 2037 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor); 2038 } 2039 if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2040 uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY); 2041 uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY); 2042 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy); 2043 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy); 2044 } 2045 /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */ 2046 { 2047 uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY); 2048 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy); 2049 } 2050 2051 /* 2052 * All other non-banked bits are RAZ/WI from NS; write 2053 * just the banked bits to fpccr[M_REG_NS]. 2054 */ 2055 value &= R_V7M_FPCCR_BANKED_MASK; 2056 cpu->env.v7m.fpccr[M_REG_NS] = value; 2057 } else { 2058 fpccr_s = value; 2059 } 2060 cpu->env.v7m.fpccr[M_REG_S] = fpccr_s; 2061 } 2062 break; 2063 case 0xf38: /* FPCAR */ 2064 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 2065 value &= ~7; 2066 cpu->env.v7m.fpcar[attrs.secure] = value; 2067 } 2068 break; 2069 case 0xf3c: /* FPDSCR */ 2070 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 2071 uint32_t mask = FPCR_AHP | FPCR_DN | FPCR_FZ | FPCR_RMODE_MASK; 2072 if (cpu_isar_feature(any_fp16, cpu)) { 2073 mask |= FPCR_FZ16; 2074 } 2075 value &= mask; 2076 if (cpu_isar_feature(aa32_lob, cpu)) { 2077 value |= 4 << FPCR_LTPSIZE_SHIFT; 2078 } 2079 cpu->env.v7m.fpdscr[attrs.secure] = value; 2080 } 2081 break; 2082 case 0xf50: /* ICIALLU */ 2083 case 0xf58: /* ICIMVAU */ 2084 case 0xf5c: /* DCIMVAC */ 2085 case 0xf60: /* DCISW */ 2086 case 0xf64: /* DCCMVAU */ 2087 case 0xf68: /* DCCMVAC */ 2088 case 0xf6c: /* DCCSW */ 2089 case 0xf70: /* DCCIMVAC */ 2090 case 0xf74: /* DCCISW */ 2091 case 0xf78: /* BPIALL */ 2092 /* Cache and branch predictor maintenance: for QEMU these always NOP */ 2093 break; 2094 default: 2095 bad_offset: 2096 qemu_log_mask(LOG_GUEST_ERROR, 2097 "NVIC: Bad write offset 0x%x\n", offset); 2098 } 2099 } 2100 2101 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs) 2102 { 2103 /* Return true if unprivileged access to this register is permitted. */ 2104 switch (offset) { 2105 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */ 2106 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that 2107 * controls access even though the CPU is in Secure state (I_QDKX). 2108 */ 2109 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK; 2110 default: 2111 /* All other user accesses cause a BusFault unconditionally */ 2112 return false; 2113 } 2114 } 2115 2116 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs) 2117 { 2118 /* Behaviour for the SHPR register field for this exception: 2119 * return M_REG_NS to use the nonsecure vector (including for 2120 * non-banked exceptions), M_REG_S for the secure version of 2121 * a banked exception, and -1 if this field should RAZ/WI. 2122 */ 2123 switch (exc) { 2124 case ARMV7M_EXCP_MEM: 2125 case ARMV7M_EXCP_USAGE: 2126 case ARMV7M_EXCP_SVC: 2127 case ARMV7M_EXCP_PENDSV: 2128 case ARMV7M_EXCP_SYSTICK: 2129 /* Banked exceptions */ 2130 return attrs.secure; 2131 case ARMV7M_EXCP_BUS: 2132 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */ 2133 if (!attrs.secure && 2134 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2135 return -1; 2136 } 2137 return M_REG_NS; 2138 case ARMV7M_EXCP_SECURE: 2139 /* Not banked, RAZ/WI from nonsecure */ 2140 if (!attrs.secure) { 2141 return -1; 2142 } 2143 return M_REG_NS; 2144 case ARMV7M_EXCP_DEBUG: 2145 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */ 2146 return M_REG_NS; 2147 case 8 ... 10: 2148 case 13: 2149 /* RES0 */ 2150 return -1; 2151 default: 2152 /* Not reachable due to decode of SHPR register addresses */ 2153 g_assert_not_reached(); 2154 } 2155 } 2156 2157 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr, 2158 uint64_t *data, unsigned size, 2159 MemTxAttrs attrs) 2160 { 2161 NVICState *s = (NVICState *)opaque; 2162 uint32_t offset = addr; 2163 unsigned i, startvec, end; 2164 uint32_t val; 2165 2166 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 2167 /* Generate BusFault for unprivileged accesses */ 2168 return MEMTX_ERROR; 2169 } 2170 2171 switch (offset) { 2172 /* reads of set and clear both return the status */ 2173 case 0x100 ... 0x13f: /* NVIC Set enable */ 2174 offset += 0x80; 2175 /* fall through */ 2176 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 2177 val = 0; 2178 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */ 2179 2180 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2181 if (s->vectors[startvec + i].enabled && 2182 (attrs.secure || s->itns[startvec + i])) { 2183 val |= (1 << i); 2184 } 2185 } 2186 break; 2187 case 0x200 ... 0x23f: /* NVIC Set pend */ 2188 offset += 0x80; 2189 /* fall through */ 2190 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 2191 val = 0; 2192 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 2193 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2194 if (s->vectors[startvec + i].pending && 2195 (attrs.secure || s->itns[startvec + i])) { 2196 val |= (1 << i); 2197 } 2198 } 2199 break; 2200 case 0x300 ... 0x33f: /* NVIC Active */ 2201 val = 0; 2202 2203 if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) { 2204 break; 2205 } 2206 2207 startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */ 2208 2209 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2210 if (s->vectors[startvec + i].active && 2211 (attrs.secure || s->itns[startvec + i])) { 2212 val |= (1 << i); 2213 } 2214 } 2215 break; 2216 case 0x400 ... 0x5ef: /* NVIC Priority */ 2217 val = 0; 2218 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */ 2219 2220 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 2221 if (attrs.secure || s->itns[startvec + i]) { 2222 val |= s->vectors[startvec + i].prio << (8 * i); 2223 } 2224 } 2225 break; 2226 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */ 2227 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2228 val = 0; 2229 break; 2230 } 2231 /* fall through */ 2232 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ 2233 val = 0; 2234 for (i = 0; i < size; i++) { 2235 unsigned hdlidx = (offset - 0xd14) + i; 2236 int sbank = shpr_bank(s, hdlidx, attrs); 2237 2238 if (sbank < 0) { 2239 continue; 2240 } 2241 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank)); 2242 } 2243 break; 2244 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 2245 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2246 val = 0; 2247 break; 2248 }; 2249 /* 2250 * The BFSR bits [15:8] are shared between security states 2251 * and we store them in the NS copy. They are RAZ/WI for 2252 * NS code if AIRCR.BFHFNMINS is 0. 2253 */ 2254 val = s->cpu->env.v7m.cfsr[attrs.secure]; 2255 if (!attrs.secure && 2256 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2257 val &= ~R_V7M_CFSR_BFSR_MASK; 2258 } else { 2259 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK; 2260 } 2261 val = extract32(val, (offset - 0xd28) * 8, size * 8); 2262 break; 2263 case 0xfe0 ... 0xfff: /* ID. */ 2264 if (offset & 3) { 2265 val = 0; 2266 } else { 2267 val = nvic_id[(offset - 0xfe0) >> 2]; 2268 } 2269 break; 2270 default: 2271 if (size == 4) { 2272 val = nvic_readl(s, offset, attrs); 2273 } else { 2274 qemu_log_mask(LOG_GUEST_ERROR, 2275 "NVIC: Bad read of size %d at offset 0x%x\n", 2276 size, offset); 2277 val = 0; 2278 } 2279 } 2280 2281 trace_nvic_sysreg_read(addr, val, size); 2282 *data = val; 2283 return MEMTX_OK; 2284 } 2285 2286 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr, 2287 uint64_t value, unsigned size, 2288 MemTxAttrs attrs) 2289 { 2290 NVICState *s = (NVICState *)opaque; 2291 uint32_t offset = addr; 2292 unsigned i, startvec, end; 2293 unsigned setval = 0; 2294 2295 trace_nvic_sysreg_write(addr, value, size); 2296 2297 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 2298 /* Generate BusFault for unprivileged accesses */ 2299 return MEMTX_ERROR; 2300 } 2301 2302 switch (offset) { 2303 case 0x100 ... 0x13f: /* NVIC Set enable */ 2304 offset += 0x80; 2305 setval = 1; 2306 /* fall through */ 2307 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 2308 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; 2309 2310 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2311 if (value & (1 << i) && 2312 (attrs.secure || s->itns[startvec + i])) { 2313 s->vectors[startvec + i].enabled = setval; 2314 } 2315 } 2316 nvic_irq_update(s); 2317 goto exit_ok; 2318 case 0x200 ... 0x23f: /* NVIC Set pend */ 2319 /* the special logic in armv7m_nvic_set_pending() 2320 * is not needed since IRQs are never escalated 2321 */ 2322 offset += 0x80; 2323 setval = 1; 2324 /* fall through */ 2325 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 2326 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 2327 2328 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2329 if (value & (1 << i) && 2330 (attrs.secure || s->itns[startvec + i])) { 2331 s->vectors[startvec + i].pending = setval; 2332 } 2333 } 2334 nvic_irq_update(s); 2335 goto exit_ok; 2336 case 0x300 ... 0x33f: /* NVIC Active */ 2337 goto exit_ok; /* R/O */ 2338 case 0x400 ... 0x5ef: /* NVIC Priority */ 2339 startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */ 2340 2341 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 2342 if (attrs.secure || s->itns[startvec + i]) { 2343 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff); 2344 } 2345 } 2346 nvic_irq_update(s); 2347 goto exit_ok; 2348 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */ 2349 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2350 goto exit_ok; 2351 } 2352 /* fall through */ 2353 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ 2354 for (i = 0; i < size; i++) { 2355 unsigned hdlidx = (offset - 0xd14) + i; 2356 int newprio = extract32(value, i * 8, 8); 2357 int sbank = shpr_bank(s, hdlidx, attrs); 2358 2359 if (sbank < 0) { 2360 continue; 2361 } 2362 set_prio(s, hdlidx, sbank, newprio); 2363 } 2364 nvic_irq_update(s); 2365 goto exit_ok; 2366 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 2367 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2368 goto exit_ok; 2369 } 2370 /* All bits are W1C, so construct 32 bit value with 0s in 2371 * the parts not written by the access size 2372 */ 2373 value <<= ((offset - 0xd28) * 8); 2374 2375 if (!attrs.secure && 2376 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2377 /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */ 2378 value &= ~R_V7M_CFSR_BFSR_MASK; 2379 } 2380 2381 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value; 2382 if (attrs.secure) { 2383 /* The BFSR bits [15:8] are shared between security states 2384 * and we store them in the NS copy. 2385 */ 2386 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK); 2387 } 2388 goto exit_ok; 2389 } 2390 if (size == 4) { 2391 nvic_writel(s, offset, value, attrs); 2392 goto exit_ok; 2393 } 2394 qemu_log_mask(LOG_GUEST_ERROR, 2395 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset); 2396 /* This is UNPREDICTABLE; treat as RAZ/WI */ 2397 2398 exit_ok: 2399 /* Ensure any changes made are reflected in the cached hflags. */ 2400 arm_rebuild_hflags(&s->cpu->env); 2401 return MEMTX_OK; 2402 } 2403 2404 static const MemoryRegionOps nvic_sysreg_ops = { 2405 .read_with_attrs = nvic_sysreg_read, 2406 .write_with_attrs = nvic_sysreg_write, 2407 .endianness = DEVICE_NATIVE_ENDIAN, 2408 }; 2409 2410 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr, 2411 uint64_t value, unsigned size, 2412 MemTxAttrs attrs) 2413 { 2414 MemoryRegion *mr = opaque; 2415 2416 if (attrs.secure) { 2417 /* S accesses to the alias act like NS accesses to the real region */ 2418 attrs.secure = 0; 2419 return memory_region_dispatch_write(mr, addr, value, 2420 size_memop(size) | MO_TE, attrs); 2421 } else { 2422 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 2423 if (attrs.user) { 2424 return MEMTX_ERROR; 2425 } 2426 return MEMTX_OK; 2427 } 2428 } 2429 2430 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr, 2431 uint64_t *data, unsigned size, 2432 MemTxAttrs attrs) 2433 { 2434 MemoryRegion *mr = opaque; 2435 2436 if (attrs.secure) { 2437 /* S accesses to the alias act like NS accesses to the real region */ 2438 attrs.secure = 0; 2439 return memory_region_dispatch_read(mr, addr, data, 2440 size_memop(size) | MO_TE, attrs); 2441 } else { 2442 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 2443 if (attrs.user) { 2444 return MEMTX_ERROR; 2445 } 2446 *data = 0; 2447 return MEMTX_OK; 2448 } 2449 } 2450 2451 static const MemoryRegionOps nvic_sysreg_ns_ops = { 2452 .read_with_attrs = nvic_sysreg_ns_read, 2453 .write_with_attrs = nvic_sysreg_ns_write, 2454 .endianness = DEVICE_NATIVE_ENDIAN, 2455 }; 2456 2457 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr, 2458 uint64_t value, unsigned size, 2459 MemTxAttrs attrs) 2460 { 2461 NVICState *s = opaque; 2462 MemoryRegion *mr; 2463 2464 /* Direct the access to the correct systick */ 2465 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); 2466 return memory_region_dispatch_write(mr, addr, value, 2467 size_memop(size) | MO_TE, attrs); 2468 } 2469 2470 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr, 2471 uint64_t *data, unsigned size, 2472 MemTxAttrs attrs) 2473 { 2474 NVICState *s = opaque; 2475 MemoryRegion *mr; 2476 2477 /* Direct the access to the correct systick */ 2478 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); 2479 return memory_region_dispatch_read(mr, addr, data, size_memop(size) | MO_TE, 2480 attrs); 2481 } 2482 2483 static const MemoryRegionOps nvic_systick_ops = { 2484 .read_with_attrs = nvic_systick_read, 2485 .write_with_attrs = nvic_systick_write, 2486 .endianness = DEVICE_NATIVE_ENDIAN, 2487 }; 2488 2489 /* 2490 * Unassigned portions of the PPB space are RAZ/WI for privileged 2491 * accesses, and fault for non-privileged accesses. 2492 */ 2493 static MemTxResult ppb_default_read(void *opaque, hwaddr addr, 2494 uint64_t *data, unsigned size, 2495 MemTxAttrs attrs) 2496 { 2497 qemu_log_mask(LOG_UNIMP, "Read of unassigned area of PPB: offset 0x%x\n", 2498 (uint32_t)addr); 2499 if (attrs.user) { 2500 return MEMTX_ERROR; 2501 } 2502 *data = 0; 2503 return MEMTX_OK; 2504 } 2505 2506 static MemTxResult ppb_default_write(void *opaque, hwaddr addr, 2507 uint64_t value, unsigned size, 2508 MemTxAttrs attrs) 2509 { 2510 qemu_log_mask(LOG_UNIMP, "Write of unassigned area of PPB: offset 0x%x\n", 2511 (uint32_t)addr); 2512 if (attrs.user) { 2513 return MEMTX_ERROR; 2514 } 2515 return MEMTX_OK; 2516 } 2517 2518 static const MemoryRegionOps ppb_default_ops = { 2519 .read_with_attrs = ppb_default_read, 2520 .write_with_attrs = ppb_default_write, 2521 .endianness = DEVICE_NATIVE_ENDIAN, 2522 .valid.min_access_size = 1, 2523 .valid.max_access_size = 8, 2524 }; 2525 2526 static int nvic_post_load(void *opaque, int version_id) 2527 { 2528 NVICState *s = opaque; 2529 unsigned i; 2530 int resetprio; 2531 2532 /* Check for out of range priority settings */ 2533 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 2534 2535 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio || 2536 s->vectors[ARMV7M_EXCP_NMI].prio != -2 || 2537 s->vectors[ARMV7M_EXCP_HARD].prio != -1) { 2538 return 1; 2539 } 2540 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) { 2541 if (s->vectors[i].prio & ~0xff) { 2542 return 1; 2543 } 2544 } 2545 2546 nvic_recompute_state(s); 2547 2548 return 0; 2549 } 2550 2551 static const VMStateDescription vmstate_VecInfo = { 2552 .name = "armv7m_nvic_info", 2553 .version_id = 1, 2554 .minimum_version_id = 1, 2555 .fields = (VMStateField[]) { 2556 VMSTATE_INT16(prio, VecInfo), 2557 VMSTATE_UINT8(enabled, VecInfo), 2558 VMSTATE_UINT8(pending, VecInfo), 2559 VMSTATE_UINT8(active, VecInfo), 2560 VMSTATE_UINT8(level, VecInfo), 2561 VMSTATE_END_OF_LIST() 2562 } 2563 }; 2564 2565 static bool nvic_security_needed(void *opaque) 2566 { 2567 NVICState *s = opaque; 2568 2569 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 2570 } 2571 2572 static int nvic_security_post_load(void *opaque, int version_id) 2573 { 2574 NVICState *s = opaque; 2575 int i; 2576 2577 /* Check for out of range priority settings */ 2578 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1 2579 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) { 2580 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know 2581 * if the CPU state has been migrated yet; a mismatch won't 2582 * cause the emulation to blow up, though. 2583 */ 2584 return 1; 2585 } 2586 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) { 2587 if (s->sec_vectors[i].prio & ~0xff) { 2588 return 1; 2589 } 2590 } 2591 return 0; 2592 } 2593 2594 static const VMStateDescription vmstate_nvic_security = { 2595 .name = "armv7m_nvic/m-security", 2596 .version_id = 1, 2597 .minimum_version_id = 1, 2598 .needed = nvic_security_needed, 2599 .post_load = &nvic_security_post_load, 2600 .fields = (VMStateField[]) { 2601 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1, 2602 vmstate_VecInfo, VecInfo), 2603 VMSTATE_UINT32(prigroup[M_REG_S], NVICState), 2604 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS), 2605 VMSTATE_END_OF_LIST() 2606 } 2607 }; 2608 2609 static const VMStateDescription vmstate_nvic = { 2610 .name = "armv7m_nvic", 2611 .version_id = 4, 2612 .minimum_version_id = 4, 2613 .post_load = &nvic_post_load, 2614 .fields = (VMStateField[]) { 2615 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1, 2616 vmstate_VecInfo, VecInfo), 2617 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState), 2618 VMSTATE_END_OF_LIST() 2619 }, 2620 .subsections = (const VMStateDescription*[]) { 2621 &vmstate_nvic_security, 2622 NULL 2623 } 2624 }; 2625 2626 static Property props_nvic[] = { 2627 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */ 2628 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64), 2629 DEFINE_PROP_END_OF_LIST() 2630 }; 2631 2632 static void armv7m_nvic_reset(DeviceState *dev) 2633 { 2634 int resetprio; 2635 NVICState *s = NVIC(dev); 2636 2637 memset(s->vectors, 0, sizeof(s->vectors)); 2638 memset(s->sec_vectors, 0, sizeof(s->sec_vectors)); 2639 s->prigroup[M_REG_NS] = 0; 2640 s->prigroup[M_REG_S] = 0; 2641 2642 s->vectors[ARMV7M_EXCP_NMI].enabled = 1; 2643 /* MEM, BUS, and USAGE are enabled through 2644 * the System Handler Control register 2645 */ 2646 s->vectors[ARMV7M_EXCP_SVC].enabled = 1; 2647 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2648 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2649 2650 /* DebugMonitor is enabled via DEMCR.MON_EN */ 2651 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0; 2652 2653 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 2654 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio; 2655 s->vectors[ARMV7M_EXCP_NMI].prio = -2; 2656 s->vectors[ARMV7M_EXCP_HARD].prio = -1; 2657 2658 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2659 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1; 2660 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1; 2661 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2662 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2663 2664 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */ 2665 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 2666 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */ 2667 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 2668 } else { 2669 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 2670 } 2671 2672 /* Strictly speaking the reset handler should be enabled. 2673 * However, we don't simulate soft resets through the NVIC, 2674 * and the reset vector should never be pended. 2675 * So we leave it disabled to catch logic errors. 2676 */ 2677 2678 s->exception_prio = NVIC_NOEXC_PRIO; 2679 s->vectpending = 0; 2680 s->vectpending_is_s_banked = false; 2681 s->vectpending_prio = NVIC_NOEXC_PRIO; 2682 2683 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2684 memset(s->itns, 0, sizeof(s->itns)); 2685 } else { 2686 /* This state is constant and not guest accessible in a non-security 2687 * NVIC; we set the bits to true to avoid having to do a feature 2688 * bit check in the NVIC enable/pend/etc register accessors. 2689 */ 2690 int i; 2691 2692 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) { 2693 s->itns[i] = true; 2694 } 2695 } 2696 2697 /* 2698 * We updated state that affects the CPU's MMUidx and thus its hflags; 2699 * and we can't guarantee that we run before the CPU reset function. 2700 */ 2701 arm_rebuild_hflags(&s->cpu->env); 2702 } 2703 2704 static void nvic_systick_trigger(void *opaque, int n, int level) 2705 { 2706 NVICState *s = opaque; 2707 2708 if (level) { 2709 /* SysTick just asked us to pend its exception. 2710 * (This is different from an external interrupt line's 2711 * behaviour.) 2712 * n == 0 : NonSecure systick 2713 * n == 1 : Secure systick 2714 */ 2715 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n); 2716 } 2717 } 2718 2719 static void armv7m_nvic_realize(DeviceState *dev, Error **errp) 2720 { 2721 NVICState *s = NVIC(dev); 2722 2723 /* The armv7m container object will have set our CPU pointer */ 2724 if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) { 2725 error_setg(errp, "The NVIC can only be used with a Cortex-M CPU"); 2726 return; 2727 } 2728 2729 if (s->num_irq > NVIC_MAX_IRQ) { 2730 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq); 2731 return; 2732 } 2733 2734 qdev_init_gpio_in(dev, set_irq_level, s->num_irq); 2735 2736 /* include space for internal exception vectors */ 2737 s->num_irq += NVIC_FIRST_IRQ; 2738 2739 s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2; 2740 2741 if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), errp)) { 2742 return; 2743 } 2744 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0, 2745 qdev_get_gpio_in_named(dev, "systick-trigger", 2746 M_REG_NS)); 2747 2748 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2749 /* We couldn't init the secure systick device in instance_init 2750 * as we didn't know then if the CPU had the security extensions; 2751 * so we have to do it here. 2752 */ 2753 object_initialize_child(OBJECT(dev), "systick-reg-s", 2754 &s->systick[M_REG_S], TYPE_SYSTICK); 2755 2756 if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_S]), errp)) { 2757 return; 2758 } 2759 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0, 2760 qdev_get_gpio_in_named(dev, "systick-trigger", 2761 M_REG_S)); 2762 } 2763 2764 /* 2765 * This device provides a single sysbus memory region which 2766 * represents the whole of the "System PPB" space. This is the 2767 * range from 0xe0000000 to 0xe00fffff and includes the NVIC, 2768 * the System Control Space (system registers), the systick timer, 2769 * and for CPUs with the Security extension an NS banked version 2770 * of all of these. 2771 * 2772 * The default behaviour for unimplemented registers/ranges 2773 * (for instance the Data Watchpoint and Trace unit at 0xe0001000) 2774 * is to RAZ/WI for privileged access and BusFault for non-privileged 2775 * access. 2776 * 2777 * The NVIC and System Control Space (SCS) starts at 0xe000e000 2778 * and looks like this: 2779 * 0x004 - ICTR 2780 * 0x010 - 0xff - systick 2781 * 0x100..0x7ec - NVIC 2782 * 0x7f0..0xcff - Reserved 2783 * 0xd00..0xd3c - SCS registers 2784 * 0xd40..0xeff - Reserved or Not implemented 2785 * 0xf00 - STIR 2786 * 2787 * Some registers within this space are banked between security states. 2788 * In v8M there is a second range 0xe002e000..0xe002efff which is the 2789 * NonSecure alias SCS; secure accesses to this behave like NS accesses 2790 * to the main SCS range, and non-secure accesses (including when 2791 * the security extension is not implemented) are RAZ/WI. 2792 * Note that both the main SCS range and the alias range are defined 2793 * to be exempt from memory attribution (R_BLJT) and so the memory 2794 * transaction attribute always matches the current CPU security 2795 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops 2796 * wrappers we change attrs.secure to indicate the NS access; so 2797 * generally code determining which banked register to use should 2798 * use attrs.secure; code determining actual behaviour of the system 2799 * should use env->v7m.secure. 2800 * 2801 * The container covers the whole PPB space. Within it the priority 2802 * of overlapping regions is: 2803 * - default region (for RAZ/WI and BusFault) : -1 2804 * - system register regions : 0 2805 * - systick : 1 2806 * This is because the systick device is a small block of registers 2807 * in the middle of the other system control registers. 2808 */ 2809 memory_region_init(&s->container, OBJECT(s), "nvic", 0x100000); 2810 memory_region_init_io(&s->defaultmem, OBJECT(s), &ppb_default_ops, s, 2811 "nvic-default", 0x100000); 2812 memory_region_add_subregion_overlap(&s->container, 0, &s->defaultmem, -1); 2813 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s, 2814 "nvic_sysregs", 0x1000); 2815 memory_region_add_subregion(&s->container, 0xe000, &s->sysregmem); 2816 2817 memory_region_init_io(&s->systickmem, OBJECT(s), 2818 &nvic_systick_ops, s, 2819 "nvic_systick", 0xe0); 2820 2821 memory_region_add_subregion_overlap(&s->container, 0xe010, 2822 &s->systickmem, 1); 2823 2824 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { 2825 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s), 2826 &nvic_sysreg_ns_ops, &s->sysregmem, 2827 "nvic_sysregs_ns", 0x1000); 2828 memory_region_add_subregion(&s->container, 0x2e000, &s->sysreg_ns_mem); 2829 memory_region_init_io(&s->systick_ns_mem, OBJECT(s), 2830 &nvic_sysreg_ns_ops, &s->systickmem, 2831 "nvic_systick_ns", 0xe0); 2832 memory_region_add_subregion_overlap(&s->container, 0x2e010, 2833 &s->systick_ns_mem, 1); 2834 } 2835 2836 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container); 2837 } 2838 2839 static void armv7m_nvic_instance_init(Object *obj) 2840 { 2841 /* We have a different default value for the num-irq property 2842 * than our superclass. This function runs after qdev init 2843 * has set the defaults from the Property array and before 2844 * any user-specified property setting, so just modify the 2845 * value in the GICState struct. 2846 */ 2847 DeviceState *dev = DEVICE(obj); 2848 NVICState *nvic = NVIC(obj); 2849 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 2850 2851 object_initialize_child(obj, "systick-reg-ns", &nvic->systick[M_REG_NS], 2852 TYPE_SYSTICK); 2853 /* We can't initialize the secure systick here, as we don't know 2854 * yet if we need it. 2855 */ 2856 2857 sysbus_init_irq(sbd, &nvic->excpout); 2858 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1); 2859 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", 2860 M_REG_NUM_BANKS); 2861 qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1); 2862 } 2863 2864 static void armv7m_nvic_class_init(ObjectClass *klass, void *data) 2865 { 2866 DeviceClass *dc = DEVICE_CLASS(klass); 2867 2868 dc->vmsd = &vmstate_nvic; 2869 device_class_set_props(dc, props_nvic); 2870 dc->reset = armv7m_nvic_reset; 2871 dc->realize = armv7m_nvic_realize; 2872 } 2873 2874 static const TypeInfo armv7m_nvic_info = { 2875 .name = TYPE_NVIC, 2876 .parent = TYPE_SYS_BUS_DEVICE, 2877 .instance_init = armv7m_nvic_instance_init, 2878 .instance_size = sizeof(NVICState), 2879 .class_init = armv7m_nvic_class_init, 2880 .class_size = sizeof(SysBusDeviceClass), 2881 }; 2882 2883 static void armv7m_nvic_register_types(void) 2884 { 2885 type_register_static(&armv7m_nvic_info); 2886 } 2887 2888 type_init(armv7m_nvic_register_types) 2889