xref: /openbmc/qemu/hw/intc/armv7m_nvic.c (revision 940e43aa30e0f793bd18b79221296cdf17724018)
1 /*
2  * ARM Nested Vectored Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  *
9  * The ARMv7M System controller is fairly tightly tied in with the
10  * NVIC.  Much of that is also implemented here.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "cpu.h"
16 #include "hw/sysbus.h"
17 #include "migration/vmstate.h"
18 #include "qemu/timer.h"
19 #include "hw/intc/armv7m_nvic.h"
20 #include "hw/irq.h"
21 #include "hw/qdev-properties.h"
22 #include "sysemu/runstate.h"
23 #include "target/arm/cpu.h"
24 #include "exec/exec-all.h"
25 #include "exec/memop.h"
26 #include "qemu/log.h"
27 #include "qemu/module.h"
28 #include "trace.h"
29 
30 /* IRQ number counting:
31  *
32  * the num-irq property counts the number of external IRQ lines
33  *
34  * NVICState::num_irq counts the total number of exceptions
35  * (external IRQs, the 15 internal exceptions including reset,
36  * and one for the unused exception number 0).
37  *
38  * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
39  *
40  * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
41  *
42  * Iterating through all exceptions should typically be done with
43  * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
44  *
45  * The external qemu_irq lines are the NVIC's external IRQ lines,
46  * so line 0 is exception 16.
47  *
48  * In the terminology of the architecture manual, "interrupts" are
49  * a subcategory of exception referring to the external interrupts
50  * (which are exception numbers NVIC_FIRST_IRQ and upward).
51  * For historical reasons QEMU tends to use "interrupt" and
52  * "exception" more or less interchangeably.
53  */
54 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
55 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
56 
57 /* Effective running priority of the CPU when no exception is active
58  * (higher than the highest possible priority value)
59  */
60 #define NVIC_NOEXC_PRIO 0x100
61 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
62 #define NVIC_NS_PRIO_LIMIT 0x80
63 
64 static const uint8_t nvic_id[] = {
65     0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
66 };
67 
68 static void signal_sysresetreq(NVICState *s)
69 {
70     if (qemu_irq_is_connected(s->sysresetreq)) {
71         qemu_irq_pulse(s->sysresetreq);
72     } else {
73         /*
74          * Default behaviour if the SoC doesn't need to wire up
75          * SYSRESETREQ (eg to a system reset controller of some kind):
76          * perform a system reset via the usual QEMU API.
77          */
78         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
79     }
80 }
81 
82 static int nvic_pending_prio(NVICState *s)
83 {
84     /* return the group priority of the current pending interrupt,
85      * or NVIC_NOEXC_PRIO if no interrupt is pending
86      */
87     return s->vectpending_prio;
88 }
89 
90 /* Return the value of the ISCR RETTOBASE bit:
91  * 1 if there is exactly one active exception
92  * 0 if there is more than one active exception
93  * UNKNOWN if there are no active exceptions (we choose 1,
94  * which matches the choice Cortex-M3 is documented as making).
95  *
96  * NB: some versions of the documentation talk about this
97  * counting "active exceptions other than the one shown by IPSR";
98  * this is only different in the obscure corner case where guest
99  * code has manually deactivated an exception and is about
100  * to fail an exception-return integrity check. The definition
101  * above is the one from the v8M ARM ARM and is also in line
102  * with the behaviour documented for the Cortex-M3.
103  */
104 static bool nvic_rettobase(NVICState *s)
105 {
106     int irq, nhand = 0;
107     bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
108 
109     for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
110         if (s->vectors[irq].active ||
111             (check_sec && irq < NVIC_INTERNAL_VECTORS &&
112              s->sec_vectors[irq].active)) {
113             nhand++;
114             if (nhand == 2) {
115                 return 0;
116             }
117         }
118     }
119 
120     return 1;
121 }
122 
123 /* Return the value of the ISCR ISRPENDING bit:
124  * 1 if an external interrupt is pending
125  * 0 if no external interrupt is pending
126  */
127 static bool nvic_isrpending(NVICState *s)
128 {
129     int irq;
130 
131     /* We can shortcut if the highest priority pending interrupt
132      * happens to be external or if there is nothing pending.
133      */
134     if (s->vectpending > NVIC_FIRST_IRQ) {
135         return true;
136     }
137     if (s->vectpending == 0) {
138         return false;
139     }
140 
141     for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
142         if (s->vectors[irq].pending) {
143             return true;
144         }
145     }
146     return false;
147 }
148 
149 static bool exc_is_banked(int exc)
150 {
151     /* Return true if this is one of the limited set of exceptions which
152      * are banked (and thus have state in sec_vectors[])
153      */
154     return exc == ARMV7M_EXCP_HARD ||
155         exc == ARMV7M_EXCP_MEM ||
156         exc == ARMV7M_EXCP_USAGE ||
157         exc == ARMV7M_EXCP_SVC ||
158         exc == ARMV7M_EXCP_PENDSV ||
159         exc == ARMV7M_EXCP_SYSTICK;
160 }
161 
162 /* Return a mask word which clears the subpriority bits from
163  * a priority value for an M-profile exception, leaving only
164  * the group priority.
165  */
166 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
167 {
168     return ~0U << (s->prigroup[secure] + 1);
169 }
170 
171 static bool exc_targets_secure(NVICState *s, int exc)
172 {
173     /* Return true if this non-banked exception targets Secure state. */
174     if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
175         return false;
176     }
177 
178     if (exc >= NVIC_FIRST_IRQ) {
179         return !s->itns[exc];
180     }
181 
182     /* Function shouldn't be called for banked exceptions. */
183     assert(!exc_is_banked(exc));
184 
185     switch (exc) {
186     case ARMV7M_EXCP_NMI:
187     case ARMV7M_EXCP_BUS:
188         return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
189     case ARMV7M_EXCP_SECURE:
190         return true;
191     case ARMV7M_EXCP_DEBUG:
192         /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
193         return false;
194     default:
195         /* reset, and reserved (unused) low exception numbers.
196          * We'll get called by code that loops through all the exception
197          * numbers, but it doesn't matter what we return here as these
198          * non-existent exceptions will never be pended or active.
199          */
200         return true;
201     }
202 }
203 
204 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
205 {
206     /* Return the group priority for this exception, given its raw
207      * (group-and-subgroup) priority value and whether it is targeting
208      * secure state or not.
209      */
210     if (rawprio < 0) {
211         return rawprio;
212     }
213     rawprio &= nvic_gprio_mask(s, targets_secure);
214     /* AIRCR.PRIS causes us to squash all NS priorities into the
215      * lower half of the total range
216      */
217     if (!targets_secure &&
218         (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
219         rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
220     }
221     return rawprio;
222 }
223 
224 /* Recompute vectpending and exception_prio for a CPU which implements
225  * the Security extension
226  */
227 static void nvic_recompute_state_secure(NVICState *s)
228 {
229     int i, bank;
230     int pend_prio = NVIC_NOEXC_PRIO;
231     int active_prio = NVIC_NOEXC_PRIO;
232     int pend_irq = 0;
233     bool pending_is_s_banked = false;
234     int pend_subprio = 0;
235 
236     /* R_CQRV: precedence is by:
237      *  - lowest group priority; if both the same then
238      *  - lowest subpriority; if both the same then
239      *  - lowest exception number; if both the same (ie banked) then
240      *  - secure exception takes precedence
241      * Compare pseudocode RawExecutionPriority.
242      * Annoyingly, now we have two prigroup values (for S and NS)
243      * we can't do the loop comparison on raw priority values.
244      */
245     for (i = 1; i < s->num_irq; i++) {
246         for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
247             VecInfo *vec;
248             int prio, subprio;
249             bool targets_secure;
250 
251             if (bank == M_REG_S) {
252                 if (!exc_is_banked(i)) {
253                     continue;
254                 }
255                 vec = &s->sec_vectors[i];
256                 targets_secure = true;
257             } else {
258                 vec = &s->vectors[i];
259                 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
260             }
261 
262             prio = exc_group_prio(s, vec->prio, targets_secure);
263             subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure);
264             if (vec->enabled && vec->pending &&
265                 ((prio < pend_prio) ||
266                  (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) {
267                 pend_prio = prio;
268                 pend_subprio = subprio;
269                 pend_irq = i;
270                 pending_is_s_banked = (bank == M_REG_S);
271             }
272             if (vec->active && prio < active_prio) {
273                 active_prio = prio;
274             }
275         }
276     }
277 
278     s->vectpending_is_s_banked = pending_is_s_banked;
279     s->vectpending = pend_irq;
280     s->vectpending_prio = pend_prio;
281     s->exception_prio = active_prio;
282 
283     trace_nvic_recompute_state_secure(s->vectpending,
284                                       s->vectpending_is_s_banked,
285                                       s->vectpending_prio,
286                                       s->exception_prio);
287 }
288 
289 /* Recompute vectpending and exception_prio */
290 static void nvic_recompute_state(NVICState *s)
291 {
292     int i;
293     int pend_prio = NVIC_NOEXC_PRIO;
294     int active_prio = NVIC_NOEXC_PRIO;
295     int pend_irq = 0;
296 
297     /* In theory we could write one function that handled both
298      * the "security extension present" and "not present"; however
299      * the security related changes significantly complicate the
300      * recomputation just by themselves and mixing both cases together
301      * would be even worse, so we retain a separate non-secure-only
302      * version for CPUs which don't implement the security extension.
303      */
304     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
305         nvic_recompute_state_secure(s);
306         return;
307     }
308 
309     for (i = 1; i < s->num_irq; i++) {
310         VecInfo *vec = &s->vectors[i];
311 
312         if (vec->enabled && vec->pending && vec->prio < pend_prio) {
313             pend_prio = vec->prio;
314             pend_irq = i;
315         }
316         if (vec->active && vec->prio < active_prio) {
317             active_prio = vec->prio;
318         }
319     }
320 
321     if (active_prio > 0) {
322         active_prio &= nvic_gprio_mask(s, false);
323     }
324 
325     if (pend_prio > 0) {
326         pend_prio &= nvic_gprio_mask(s, false);
327     }
328 
329     s->vectpending = pend_irq;
330     s->vectpending_prio = pend_prio;
331     s->exception_prio = active_prio;
332 
333     trace_nvic_recompute_state(s->vectpending,
334                                s->vectpending_prio,
335                                s->exception_prio);
336 }
337 
338 /* Return the current execution priority of the CPU
339  * (equivalent to the pseudocode ExecutionPriority function).
340  * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
341  */
342 static inline int nvic_exec_prio(NVICState *s)
343 {
344     CPUARMState *env = &s->cpu->env;
345     int running = NVIC_NOEXC_PRIO;
346 
347     if (env->v7m.basepri[M_REG_NS] > 0) {
348         running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
349     }
350 
351     if (env->v7m.basepri[M_REG_S] > 0) {
352         int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
353         if (running > basepri) {
354             running = basepri;
355         }
356     }
357 
358     if (env->v7m.primask[M_REG_NS]) {
359         if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
360             if (running > NVIC_NS_PRIO_LIMIT) {
361                 running = NVIC_NS_PRIO_LIMIT;
362             }
363         } else {
364             running = 0;
365         }
366     }
367 
368     if (env->v7m.primask[M_REG_S]) {
369         running = 0;
370     }
371 
372     if (env->v7m.faultmask[M_REG_NS]) {
373         if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
374             running = -1;
375         } else {
376             if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
377                 if (running > NVIC_NS_PRIO_LIMIT) {
378                     running = NVIC_NS_PRIO_LIMIT;
379                 }
380             } else {
381                 running = 0;
382             }
383         }
384     }
385 
386     if (env->v7m.faultmask[M_REG_S]) {
387         running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
388     }
389 
390     /* consider priority of active handler */
391     return MIN(running, s->exception_prio);
392 }
393 
394 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
395 {
396     /* Return true if the requested execution priority is negative
397      * for the specified security state, ie that security state
398      * has an active NMI or HardFault or has set its FAULTMASK.
399      * Note that this is not the same as whether the execution
400      * priority is actually negative (for instance AIRCR.PRIS may
401      * mean we don't allow FAULTMASK_NS to actually make the execution
402      * priority negative). Compare pseudocode IsReqExcPriNeg().
403      */
404     NVICState *s = opaque;
405 
406     if (s->cpu->env.v7m.faultmask[secure]) {
407         return true;
408     }
409 
410     if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
411         s->vectors[ARMV7M_EXCP_HARD].active) {
412         return true;
413     }
414 
415     if (s->vectors[ARMV7M_EXCP_NMI].active &&
416         exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
417         return true;
418     }
419 
420     return false;
421 }
422 
423 bool armv7m_nvic_can_take_pending_exception(void *opaque)
424 {
425     NVICState *s = opaque;
426 
427     return nvic_exec_prio(s) > nvic_pending_prio(s);
428 }
429 
430 int armv7m_nvic_raw_execution_priority(void *opaque)
431 {
432     NVICState *s = opaque;
433 
434     return s->exception_prio;
435 }
436 
437 /* caller must call nvic_irq_update() after this.
438  * secure indicates the bank to use for banked exceptions (we assert if
439  * we are passed secure=true for a non-banked exception).
440  */
441 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
442 {
443     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
444     assert(irq < s->num_irq);
445 
446     prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits);
447 
448     if (secure) {
449         assert(exc_is_banked(irq));
450         s->sec_vectors[irq].prio = prio;
451     } else {
452         s->vectors[irq].prio = prio;
453     }
454 
455     trace_nvic_set_prio(irq, secure, prio);
456 }
457 
458 /* Return the current raw priority register value.
459  * secure indicates the bank to use for banked exceptions (we assert if
460  * we are passed secure=true for a non-banked exception).
461  */
462 static int get_prio(NVICState *s, unsigned irq, bool secure)
463 {
464     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
465     assert(irq < s->num_irq);
466 
467     if (secure) {
468         assert(exc_is_banked(irq));
469         return s->sec_vectors[irq].prio;
470     } else {
471         return s->vectors[irq].prio;
472     }
473 }
474 
475 /* Recompute state and assert irq line accordingly.
476  * Must be called after changes to:
477  *  vec->active, vec->enabled, vec->pending or vec->prio for any vector
478  *  prigroup
479  */
480 static void nvic_irq_update(NVICState *s)
481 {
482     int lvl;
483     int pend_prio;
484 
485     nvic_recompute_state(s);
486     pend_prio = nvic_pending_prio(s);
487 
488     /* Raise NVIC output if this IRQ would be taken, except that we
489      * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
490      * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
491      * to those CPU registers don't cause us to recalculate the NVIC
492      * pending info.
493      */
494     lvl = (pend_prio < s->exception_prio);
495     trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
496     qemu_set_irq(s->excpout, lvl);
497 }
498 
499 /**
500  * armv7m_nvic_clear_pending: mark the specified exception as not pending
501  * @opaque: the NVIC
502  * @irq: the exception number to mark as not pending
503  * @secure: false for non-banked exceptions or for the nonsecure
504  * version of a banked exception, true for the secure version of a banked
505  * exception.
506  *
507  * Marks the specified exception as not pending. Note that we will assert()
508  * if @secure is true and @irq does not specify one of the fixed set
509  * of architecturally banked exceptions.
510  */
511 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
512 {
513     NVICState *s = (NVICState *)opaque;
514     VecInfo *vec;
515 
516     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
517 
518     if (secure) {
519         assert(exc_is_banked(irq));
520         vec = &s->sec_vectors[irq];
521     } else {
522         vec = &s->vectors[irq];
523     }
524     trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
525     if (vec->pending) {
526         vec->pending = 0;
527         nvic_irq_update(s);
528     }
529 }
530 
531 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
532                                        bool derived)
533 {
534     /* Pend an exception, including possibly escalating it to HardFault.
535      *
536      * This function handles both "normal" pending of interrupts and
537      * exceptions, and also derived exceptions (ones which occur as
538      * a result of trying to take some other exception).
539      *
540      * If derived == true, the caller guarantees that we are part way through
541      * trying to take an exception (but have not yet called
542      * armv7m_nvic_acknowledge_irq() to make it active), and so:
543      *  - s->vectpending is the "original exception" we were trying to take
544      *  - irq is the "derived exception"
545      *  - nvic_exec_prio(s) gives the priority before exception entry
546      * Here we handle the prioritization logic which the pseudocode puts
547      * in the DerivedLateArrival() function.
548      */
549 
550     NVICState *s = (NVICState *)opaque;
551     bool banked = exc_is_banked(irq);
552     VecInfo *vec;
553     bool targets_secure;
554 
555     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
556     assert(!secure || banked);
557 
558     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
559 
560     targets_secure = banked ? secure : exc_targets_secure(s, irq);
561 
562     trace_nvic_set_pending(irq, secure, targets_secure,
563                            derived, vec->enabled, vec->prio);
564 
565     if (derived) {
566         /* Derived exceptions are always synchronous. */
567         assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
568 
569         if (irq == ARMV7M_EXCP_DEBUG &&
570             exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
571             /* DebugMonitorFault, but its priority is lower than the
572              * preempted exception priority: just ignore it.
573              */
574             return;
575         }
576 
577         if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
578             /* If this is a terminal exception (one which means we cannot
579              * take the original exception, like a failure to read its
580              * vector table entry), then we must take the derived exception.
581              * If the derived exception can't take priority over the
582              * original exception, then we go into Lockup.
583              *
584              * For QEMU, we rely on the fact that a derived exception is
585              * terminal if and only if it's reported to us as HardFault,
586              * which saves having to have an extra argument is_terminal
587              * that we'd only use in one place.
588              */
589             cpu_abort(&s->cpu->parent_obj,
590                       "Lockup: can't take terminal derived exception "
591                       "(original exception priority %d)\n",
592                       s->vectpending_prio);
593         }
594         /* We now continue with the same code as for a normal pending
595          * exception, which will cause us to pend the derived exception.
596          * We'll then take either the original or the derived exception
597          * based on which is higher priority by the usual mechanism
598          * for selecting the highest priority pending interrupt.
599          */
600     }
601 
602     if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
603         /* If a synchronous exception is pending then it may be
604          * escalated to HardFault if:
605          *  * it is equal or lower priority to current execution
606          *  * it is disabled
607          * (ie we need to take it immediately but we can't do so).
608          * Asynchronous exceptions (and interrupts) simply remain pending.
609          *
610          * For QEMU, we don't have any imprecise (asynchronous) faults,
611          * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
612          * synchronous.
613          * Debug exceptions are awkward because only Debug exceptions
614          * resulting from the BKPT instruction should be escalated,
615          * but we don't currently implement any Debug exceptions other
616          * than those that result from BKPT, so we treat all debug exceptions
617          * as needing escalation.
618          *
619          * This all means we can identify whether to escalate based only on
620          * the exception number and don't (yet) need the caller to explicitly
621          * tell us whether this exception is synchronous or not.
622          */
623         int running = nvic_exec_prio(s);
624         bool escalate = false;
625 
626         if (exc_group_prio(s, vec->prio, secure) >= running) {
627             trace_nvic_escalate_prio(irq, vec->prio, running);
628             escalate = true;
629         } else if (!vec->enabled) {
630             trace_nvic_escalate_disabled(irq);
631             escalate = true;
632         }
633 
634         if (escalate) {
635 
636             /* We need to escalate this exception to a synchronous HardFault.
637              * If BFHFNMINS is set then we escalate to the banked HF for
638              * the target security state of the original exception; otherwise
639              * we take a Secure HardFault.
640              */
641             irq = ARMV7M_EXCP_HARD;
642             if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
643                 (targets_secure ||
644                  !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
645                 vec = &s->sec_vectors[irq];
646             } else {
647                 vec = &s->vectors[irq];
648             }
649             if (running <= vec->prio) {
650                 /* We want to escalate to HardFault but we can't take the
651                  * synchronous HardFault at this point either. This is a
652                  * Lockup condition due to a guest bug. We don't model
653                  * Lockup, so report via cpu_abort() instead.
654                  */
655                 cpu_abort(&s->cpu->parent_obj,
656                           "Lockup: can't escalate %d to HardFault "
657                           "(current priority %d)\n", irq, running);
658             }
659 
660             /* HF may be banked but there is only one shared HFSR */
661             s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
662         }
663     }
664 
665     if (!vec->pending) {
666         vec->pending = 1;
667         nvic_irq_update(s);
668     }
669 }
670 
671 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
672 {
673     do_armv7m_nvic_set_pending(opaque, irq, secure, false);
674 }
675 
676 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
677 {
678     do_armv7m_nvic_set_pending(opaque, irq, secure, true);
679 }
680 
681 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure)
682 {
683     /*
684      * Pend an exception during lazy FP stacking. This differs
685      * from the usual exception pending because the logic for
686      * whether we should escalate depends on the saved context
687      * in the FPCCR register, not on the current state of the CPU/NVIC.
688      */
689     NVICState *s = (NVICState *)opaque;
690     bool banked = exc_is_banked(irq);
691     VecInfo *vec;
692     bool targets_secure;
693     bool escalate = false;
694     /*
695      * We will only look at bits in fpccr if this is a banked exception
696      * (in which case 'secure' tells us whether it is the S or NS version).
697      * All the bits for the non-banked exceptions are in fpccr_s.
698      */
699     uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S];
700     uint32_t fpccr = s->cpu->env.v7m.fpccr[secure];
701 
702     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
703     assert(!secure || banked);
704 
705     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
706 
707     targets_secure = banked ? secure : exc_targets_secure(s, irq);
708 
709     switch (irq) {
710     case ARMV7M_EXCP_DEBUG:
711         if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) {
712             /* Ignore DebugMonitor exception */
713             return;
714         }
715         break;
716     case ARMV7M_EXCP_MEM:
717         escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK);
718         break;
719     case ARMV7M_EXCP_USAGE:
720         escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK);
721         break;
722     case ARMV7M_EXCP_BUS:
723         escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK);
724         break;
725     case ARMV7M_EXCP_SECURE:
726         escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK);
727         break;
728     default:
729         g_assert_not_reached();
730     }
731 
732     if (escalate) {
733         /*
734          * Escalate to HardFault: faults that initially targeted Secure
735          * continue to do so, even if HF normally targets NonSecure.
736          */
737         irq = ARMV7M_EXCP_HARD;
738         if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
739             (targets_secure ||
740              !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
741             vec = &s->sec_vectors[irq];
742         } else {
743             vec = &s->vectors[irq];
744         }
745     }
746 
747     if (!vec->enabled ||
748         nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) {
749         if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) {
750             /*
751              * We want to escalate to HardFault but the context the
752              * FP state belongs to prevents the exception pre-empting.
753              */
754             cpu_abort(&s->cpu->parent_obj,
755                       "Lockup: can't escalate to HardFault during "
756                       "lazy FP register stacking\n");
757         }
758     }
759 
760     if (escalate) {
761         s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
762     }
763     if (!vec->pending) {
764         vec->pending = 1;
765         /*
766          * We do not call nvic_irq_update(), because we know our caller
767          * is going to handle causing us to take the exception by
768          * raising EXCP_LAZYFP, so raising the IRQ line would be
769          * pointless extra work. We just need to recompute the
770          * priorities so that armv7m_nvic_can_take_pending_exception()
771          * returns the right answer.
772          */
773         nvic_recompute_state(s);
774     }
775 }
776 
777 /* Make pending IRQ active.  */
778 void armv7m_nvic_acknowledge_irq(void *opaque)
779 {
780     NVICState *s = (NVICState *)opaque;
781     CPUARMState *env = &s->cpu->env;
782     const int pending = s->vectpending;
783     const int running = nvic_exec_prio(s);
784     VecInfo *vec;
785 
786     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
787 
788     if (s->vectpending_is_s_banked) {
789         vec = &s->sec_vectors[pending];
790     } else {
791         vec = &s->vectors[pending];
792     }
793 
794     assert(vec->enabled);
795     assert(vec->pending);
796 
797     assert(s->vectpending_prio < running);
798 
799     trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
800 
801     vec->active = 1;
802     vec->pending = 0;
803 
804     write_v7m_exception(env, s->vectpending);
805 
806     nvic_irq_update(s);
807 }
808 
809 void armv7m_nvic_get_pending_irq_info(void *opaque,
810                                       int *pirq, bool *ptargets_secure)
811 {
812     NVICState *s = (NVICState *)opaque;
813     const int pending = s->vectpending;
814     bool targets_secure;
815 
816     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
817 
818     if (s->vectpending_is_s_banked) {
819         targets_secure = true;
820     } else {
821         targets_secure = !exc_is_banked(pending) &&
822             exc_targets_secure(s, pending);
823     }
824 
825     trace_nvic_get_pending_irq_info(pending, targets_secure);
826 
827     *ptargets_secure = targets_secure;
828     *pirq = pending;
829 }
830 
831 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
832 {
833     NVICState *s = (NVICState *)opaque;
834     VecInfo *vec = NULL;
835     int ret = 0;
836 
837     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
838 
839     trace_nvic_complete_irq(irq, secure);
840 
841     if (secure && exc_is_banked(irq)) {
842         vec = &s->sec_vectors[irq];
843     } else {
844         vec = &s->vectors[irq];
845     }
846 
847     /*
848      * Identify illegal exception return cases. We can't immediately
849      * return at this point because we still need to deactivate
850      * (either this exception or NMI/HardFault) first.
851      */
852     if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) {
853         /*
854          * Return from a configurable exception targeting the opposite
855          * security state from the one we're trying to complete it for.
856          * Clear vec because it's not really the VecInfo for this
857          * (irq, secstate) so we mustn't deactivate it.
858          */
859         ret = -1;
860         vec = NULL;
861     } else if (!vec->active) {
862         /* Return from an inactive interrupt */
863         ret = -1;
864     } else {
865         /* Legal return, we will return the RETTOBASE bit value to the caller */
866         ret = nvic_rettobase(s);
867     }
868 
869     /*
870      * For negative priorities, v8M will forcibly deactivate the appropriate
871      * NMI or HardFault regardless of what interrupt we're being asked to
872      * deactivate (compare the DeActivate() pseudocode). This is a guard
873      * against software returning from NMI or HardFault with a corrupted
874      * IPSR and leaving the CPU in a negative-priority state.
875      * v7M does not do this, but simply deactivates the requested interrupt.
876      */
877     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
878         switch (armv7m_nvic_raw_execution_priority(s)) {
879         case -1:
880             if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
881                 vec = &s->vectors[ARMV7M_EXCP_HARD];
882             } else {
883                 vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
884             }
885             break;
886         case -2:
887             vec = &s->vectors[ARMV7M_EXCP_NMI];
888             break;
889         case -3:
890             vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
891             break;
892         default:
893             break;
894         }
895     }
896 
897     if (!vec) {
898         return ret;
899     }
900 
901     vec->active = 0;
902     if (vec->level) {
903         /* Re-pend the exception if it's still held high; only
904          * happens for extenal IRQs
905          */
906         assert(irq >= NVIC_FIRST_IRQ);
907         vec->pending = 1;
908     }
909 
910     nvic_irq_update(s);
911 
912     return ret;
913 }
914 
915 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
916 {
917     /*
918      * Return whether an exception is "ready", i.e. it is enabled and is
919      * configured at a priority which would allow it to interrupt the
920      * current execution priority.
921      *
922      * irq and secure have the same semantics as for armv7m_nvic_set_pending():
923      * for non-banked exceptions secure is always false; for banked exceptions
924      * it indicates which of the exceptions is required.
925      */
926     NVICState *s = (NVICState *)opaque;
927     bool banked = exc_is_banked(irq);
928     VecInfo *vec;
929     int running = nvic_exec_prio(s);
930 
931     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
932     assert(!secure || banked);
933 
934     /*
935      * HardFault is an odd special case: we always check against -1,
936      * even if we're secure and HardFault has priority -3; we never
937      * need to check for enabled state.
938      */
939     if (irq == ARMV7M_EXCP_HARD) {
940         return running > -1;
941     }
942 
943     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
944 
945     return vec->enabled &&
946         exc_group_prio(s, vec->prio, secure) < running;
947 }
948 
949 /* callback when external interrupt line is changed */
950 static void set_irq_level(void *opaque, int n, int level)
951 {
952     NVICState *s = opaque;
953     VecInfo *vec;
954 
955     n += NVIC_FIRST_IRQ;
956 
957     assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
958 
959     trace_nvic_set_irq_level(n, level);
960 
961     /* The pending status of an external interrupt is
962      * latched on rising edge and exception handler return.
963      *
964      * Pulsing the IRQ will always run the handler
965      * once, and the handler will re-run until the
966      * level is low when the handler completes.
967      */
968     vec = &s->vectors[n];
969     if (level != vec->level) {
970         vec->level = level;
971         if (level) {
972             armv7m_nvic_set_pending(s, n, false);
973         }
974     }
975 }
976 
977 /* callback when external NMI line is changed */
978 static void nvic_nmi_trigger(void *opaque, int n, int level)
979 {
980     NVICState *s = opaque;
981 
982     trace_nvic_set_nmi_level(level);
983 
984     /*
985      * The architecture doesn't specify whether NMI should share
986      * the normal-interrupt behaviour of being resampled on
987      * exception handler return. We choose not to, so just
988      * set NMI pending here and don't track the current level.
989      */
990     if (level) {
991         armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
992     }
993 }
994 
995 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
996 {
997     ARMCPU *cpu = s->cpu;
998     uint32_t val;
999 
1000     switch (offset) {
1001     case 4: /* Interrupt Control Type.  */
1002         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1003             goto bad_offset;
1004         }
1005         return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
1006     case 0xc: /* CPPWR */
1007         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1008             goto bad_offset;
1009         }
1010         /* We make the IMPDEF choice that nothing can ever go into a
1011          * non-retentive power state, which allows us to RAZ/WI this.
1012          */
1013         return 0;
1014     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1015     {
1016         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1017         int i;
1018 
1019         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1020             goto bad_offset;
1021         }
1022         if (!attrs.secure) {
1023             return 0;
1024         }
1025         val = 0;
1026         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1027             if (s->itns[startvec + i]) {
1028                 val |= (1 << i);
1029             }
1030         }
1031         return val;
1032     }
1033     case 0xcfc:
1034         if (!arm_feature(&cpu->env, ARM_FEATURE_V8_1M)) {
1035             goto bad_offset;
1036         }
1037         return cpu->revidr;
1038     case 0xd00: /* CPUID Base.  */
1039         return cpu->midr;
1040     case 0xd04: /* Interrupt Control State (ICSR) */
1041         /* VECTACTIVE */
1042         val = cpu->env.v7m.exception;
1043         /* VECTPENDING */
1044         val |= (s->vectpending & 0xff) << 12;
1045         /* ISRPENDING - set if any external IRQ is pending */
1046         if (nvic_isrpending(s)) {
1047             val |= (1 << 22);
1048         }
1049         /* RETTOBASE - set if only one handler is active */
1050         if (nvic_rettobase(s)) {
1051             val |= (1 << 11);
1052         }
1053         if (attrs.secure) {
1054             /* PENDSTSET */
1055             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
1056                 val |= (1 << 26);
1057             }
1058             /* PENDSVSET */
1059             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
1060                 val |= (1 << 28);
1061             }
1062         } else {
1063             /* PENDSTSET */
1064             if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
1065                 val |= (1 << 26);
1066             }
1067             /* PENDSVSET */
1068             if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
1069                 val |= (1 << 28);
1070             }
1071         }
1072         /* NMIPENDSET */
1073         if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
1074             && s->vectors[ARMV7M_EXCP_NMI].pending) {
1075             val |= (1 << 31);
1076         }
1077         /* ISRPREEMPT: RES0 when halting debug not implemented */
1078         /* STTNS: RES0 for the Main Extension */
1079         return val;
1080     case 0xd08: /* Vector Table Offset.  */
1081         return cpu->env.v7m.vecbase[attrs.secure];
1082     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1083         val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
1084         if (attrs.secure) {
1085             /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
1086             val |= cpu->env.v7m.aircr;
1087         } else {
1088             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1089                 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
1090                  * security isn't supported then BFHFNMINS is RAO (and
1091                  * the bit in env.v7m.aircr is always set).
1092                  */
1093                 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
1094             }
1095         }
1096         return val;
1097     case 0xd10: /* System Control.  */
1098         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1099             goto bad_offset;
1100         }
1101         return cpu->env.v7m.scr[attrs.secure];
1102     case 0xd14: /* Configuration Control.  */
1103         /*
1104          * Non-banked bits: BFHFNMIGN (stored in the NS copy of the register)
1105          * and TRD (stored in the S copy of the register)
1106          */
1107         val = cpu->env.v7m.ccr[attrs.secure];
1108         val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
1109         /* BFHFNMIGN is RAZ/WI from NS if AIRCR.BFHFNMINS is 0 */
1110         if (!attrs.secure) {
1111             if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1112                 val &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1113             }
1114         }
1115         return val;
1116     case 0xd24: /* System Handler Control and State (SHCSR) */
1117         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1118             goto bad_offset;
1119         }
1120         val = 0;
1121         if (attrs.secure) {
1122             if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
1123                 val |= (1 << 0);
1124             }
1125             if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
1126                 val |= (1 << 2);
1127             }
1128             if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
1129                 val |= (1 << 3);
1130             }
1131             if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
1132                 val |= (1 << 7);
1133             }
1134             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
1135                 val |= (1 << 10);
1136             }
1137             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
1138                 val |= (1 << 11);
1139             }
1140             if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
1141                 val |= (1 << 12);
1142             }
1143             if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
1144                 val |= (1 << 13);
1145             }
1146             if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
1147                 val |= (1 << 15);
1148             }
1149             if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
1150                 val |= (1 << 16);
1151             }
1152             if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
1153                 val |= (1 << 18);
1154             }
1155             if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
1156                 val |= (1 << 21);
1157             }
1158             /* SecureFault is not banked but is always RAZ/WI to NS */
1159             if (s->vectors[ARMV7M_EXCP_SECURE].active) {
1160                 val |= (1 << 4);
1161             }
1162             if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
1163                 val |= (1 << 19);
1164             }
1165             if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
1166                 val |= (1 << 20);
1167             }
1168         } else {
1169             if (s->vectors[ARMV7M_EXCP_MEM].active) {
1170                 val |= (1 << 0);
1171             }
1172             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1173                 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
1174                 if (s->vectors[ARMV7M_EXCP_HARD].active) {
1175                     val |= (1 << 2);
1176                 }
1177                 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
1178                     val |= (1 << 21);
1179                 }
1180             }
1181             if (s->vectors[ARMV7M_EXCP_USAGE].active) {
1182                 val |= (1 << 3);
1183             }
1184             if (s->vectors[ARMV7M_EXCP_SVC].active) {
1185                 val |= (1 << 7);
1186             }
1187             if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
1188                 val |= (1 << 10);
1189             }
1190             if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
1191                 val |= (1 << 11);
1192             }
1193             if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
1194                 val |= (1 << 12);
1195             }
1196             if (s->vectors[ARMV7M_EXCP_MEM].pending) {
1197                 val |= (1 << 13);
1198             }
1199             if (s->vectors[ARMV7M_EXCP_SVC].pending) {
1200                 val |= (1 << 15);
1201             }
1202             if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
1203                 val |= (1 << 16);
1204             }
1205             if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
1206                 val |= (1 << 18);
1207             }
1208         }
1209         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1210             if (s->vectors[ARMV7M_EXCP_BUS].active) {
1211                 val |= (1 << 1);
1212             }
1213             if (s->vectors[ARMV7M_EXCP_BUS].pending) {
1214                 val |= (1 << 14);
1215             }
1216             if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
1217                 val |= (1 << 17);
1218             }
1219             if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
1220                 s->vectors[ARMV7M_EXCP_NMI].active) {
1221                 /* NMIACT is not present in v7M */
1222                 val |= (1 << 5);
1223             }
1224         }
1225 
1226         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1227         if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
1228             val |= (1 << 8);
1229         }
1230         return val;
1231     case 0xd2c: /* Hard Fault Status.  */
1232         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1233             goto bad_offset;
1234         }
1235         return cpu->env.v7m.hfsr;
1236     case 0xd30: /* Debug Fault Status.  */
1237         return cpu->env.v7m.dfsr;
1238     case 0xd34: /* MMFAR MemManage Fault Address */
1239         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1240             goto bad_offset;
1241         }
1242         return cpu->env.v7m.mmfar[attrs.secure];
1243     case 0xd38: /* Bus Fault Address.  */
1244         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1245             goto bad_offset;
1246         }
1247         if (!attrs.secure &&
1248             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1249             return 0;
1250         }
1251         return cpu->env.v7m.bfar;
1252     case 0xd3c: /* Aux Fault Status.  */
1253         /* TODO: Implement fault status registers.  */
1254         qemu_log_mask(LOG_UNIMP,
1255                       "Aux Fault status registers unimplemented\n");
1256         return 0;
1257     case 0xd40: /* PFR0.  */
1258         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1259             goto bad_offset;
1260         }
1261         return cpu->isar.id_pfr0;
1262     case 0xd44: /* PFR1.  */
1263         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1264             goto bad_offset;
1265         }
1266         return cpu->isar.id_pfr1;
1267     case 0xd48: /* DFR0.  */
1268         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1269             goto bad_offset;
1270         }
1271         return cpu->isar.id_dfr0;
1272     case 0xd4c: /* AFR0.  */
1273         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1274             goto bad_offset;
1275         }
1276         return cpu->id_afr0;
1277     case 0xd50: /* MMFR0.  */
1278         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1279             goto bad_offset;
1280         }
1281         return cpu->isar.id_mmfr0;
1282     case 0xd54: /* MMFR1.  */
1283         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1284             goto bad_offset;
1285         }
1286         return cpu->isar.id_mmfr1;
1287     case 0xd58: /* MMFR2.  */
1288         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1289             goto bad_offset;
1290         }
1291         return cpu->isar.id_mmfr2;
1292     case 0xd5c: /* MMFR3.  */
1293         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1294             goto bad_offset;
1295         }
1296         return cpu->isar.id_mmfr3;
1297     case 0xd60: /* ISAR0.  */
1298         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1299             goto bad_offset;
1300         }
1301         return cpu->isar.id_isar0;
1302     case 0xd64: /* ISAR1.  */
1303         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1304             goto bad_offset;
1305         }
1306         return cpu->isar.id_isar1;
1307     case 0xd68: /* ISAR2.  */
1308         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1309             goto bad_offset;
1310         }
1311         return cpu->isar.id_isar2;
1312     case 0xd6c: /* ISAR3.  */
1313         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1314             goto bad_offset;
1315         }
1316         return cpu->isar.id_isar3;
1317     case 0xd70: /* ISAR4.  */
1318         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1319             goto bad_offset;
1320         }
1321         return cpu->isar.id_isar4;
1322     case 0xd74: /* ISAR5.  */
1323         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1324             goto bad_offset;
1325         }
1326         return cpu->isar.id_isar5;
1327     case 0xd78: /* CLIDR */
1328         return cpu->clidr;
1329     case 0xd7c: /* CTR */
1330         return cpu->ctr;
1331     case 0xd80: /* CSSIDR */
1332     {
1333         int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
1334         return cpu->ccsidr[idx];
1335     }
1336     case 0xd84: /* CSSELR */
1337         return cpu->env.v7m.csselr[attrs.secure];
1338     case 0xd88: /* CPACR */
1339         if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1340             return 0;
1341         }
1342         return cpu->env.v7m.cpacr[attrs.secure];
1343     case 0xd8c: /* NSACR */
1344         if (!attrs.secure || !cpu_isar_feature(aa32_vfp_simd, cpu)) {
1345             return 0;
1346         }
1347         return cpu->env.v7m.nsacr;
1348     /* TODO: Implement debug registers.  */
1349     case 0xd90: /* MPU_TYPE */
1350         /* Unified MPU; if the MPU is not present this value is zero */
1351         return cpu->pmsav7_dregion << 8;
1352     case 0xd94: /* MPU_CTRL */
1353         return cpu->env.v7m.mpu_ctrl[attrs.secure];
1354     case 0xd98: /* MPU_RNR */
1355         return cpu->env.pmsav7.rnr[attrs.secure];
1356     case 0xd9c: /* MPU_RBAR */
1357     case 0xda4: /* MPU_RBAR_A1 */
1358     case 0xdac: /* MPU_RBAR_A2 */
1359     case 0xdb4: /* MPU_RBAR_A3 */
1360     {
1361         int region = cpu->env.pmsav7.rnr[attrs.secure];
1362 
1363         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1364             /* PMSAv8M handling of the aliases is different from v7M:
1365              * aliases A1, A2, A3 override the low two bits of the region
1366              * number in MPU_RNR, and there is no 'region' field in the
1367              * RBAR register.
1368              */
1369             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1370             if (aliasno) {
1371                 region = deposit32(region, 0, 2, aliasno);
1372             }
1373             if (region >= cpu->pmsav7_dregion) {
1374                 return 0;
1375             }
1376             return cpu->env.pmsav8.rbar[attrs.secure][region];
1377         }
1378 
1379         if (region >= cpu->pmsav7_dregion) {
1380             return 0;
1381         }
1382         return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
1383     }
1384     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1385     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1386     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1387     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1388     {
1389         int region = cpu->env.pmsav7.rnr[attrs.secure];
1390 
1391         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1392             /* PMSAv8M handling of the aliases is different from v7M:
1393              * aliases A1, A2, A3 override the low two bits of the region
1394              * number in MPU_RNR.
1395              */
1396             int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1397             if (aliasno) {
1398                 region = deposit32(region, 0, 2, aliasno);
1399             }
1400             if (region >= cpu->pmsav7_dregion) {
1401                 return 0;
1402             }
1403             return cpu->env.pmsav8.rlar[attrs.secure][region];
1404         }
1405 
1406         if (region >= cpu->pmsav7_dregion) {
1407             return 0;
1408         }
1409         return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1410             (cpu->env.pmsav7.drsr[region] & 0xffff);
1411     }
1412     case 0xdc0: /* MPU_MAIR0 */
1413         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1414             goto bad_offset;
1415         }
1416         return cpu->env.pmsav8.mair0[attrs.secure];
1417     case 0xdc4: /* MPU_MAIR1 */
1418         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1419             goto bad_offset;
1420         }
1421         return cpu->env.pmsav8.mair1[attrs.secure];
1422     case 0xdd0: /* SAU_CTRL */
1423         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1424             goto bad_offset;
1425         }
1426         if (!attrs.secure) {
1427             return 0;
1428         }
1429         return cpu->env.sau.ctrl;
1430     case 0xdd4: /* SAU_TYPE */
1431         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1432             goto bad_offset;
1433         }
1434         if (!attrs.secure) {
1435             return 0;
1436         }
1437         return cpu->sau_sregion;
1438     case 0xdd8: /* SAU_RNR */
1439         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1440             goto bad_offset;
1441         }
1442         if (!attrs.secure) {
1443             return 0;
1444         }
1445         return cpu->env.sau.rnr;
1446     case 0xddc: /* SAU_RBAR */
1447     {
1448         int region = cpu->env.sau.rnr;
1449 
1450         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1451             goto bad_offset;
1452         }
1453         if (!attrs.secure) {
1454             return 0;
1455         }
1456         if (region >= cpu->sau_sregion) {
1457             return 0;
1458         }
1459         return cpu->env.sau.rbar[region];
1460     }
1461     case 0xde0: /* SAU_RLAR */
1462     {
1463         int region = cpu->env.sau.rnr;
1464 
1465         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1466             goto bad_offset;
1467         }
1468         if (!attrs.secure) {
1469             return 0;
1470         }
1471         if (region >= cpu->sau_sregion) {
1472             return 0;
1473         }
1474         return cpu->env.sau.rlar[region];
1475     }
1476     case 0xde4: /* SFSR */
1477         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1478             goto bad_offset;
1479         }
1480         if (!attrs.secure) {
1481             return 0;
1482         }
1483         return cpu->env.v7m.sfsr;
1484     case 0xde8: /* SFAR */
1485         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1486             goto bad_offset;
1487         }
1488         if (!attrs.secure) {
1489             return 0;
1490         }
1491         return cpu->env.v7m.sfar;
1492     case 0xf04: /* RFSR */
1493         if (!cpu_isar_feature(aa32_ras, cpu)) {
1494             goto bad_offset;
1495         }
1496         /* We provide minimal-RAS only: RFSR is RAZ/WI */
1497         return 0;
1498     case 0xf34: /* FPCCR */
1499         if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1500             return 0;
1501         }
1502         if (attrs.secure) {
1503             return cpu->env.v7m.fpccr[M_REG_S];
1504         } else {
1505             /*
1506              * NS can read LSPEN, CLRONRET and MONRDY. It can read
1507              * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0;
1508              * other non-banked bits RAZ.
1509              * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set.
1510              */
1511             uint32_t value = cpu->env.v7m.fpccr[M_REG_S];
1512             uint32_t mask = R_V7M_FPCCR_LSPEN_MASK |
1513                 R_V7M_FPCCR_CLRONRET_MASK |
1514                 R_V7M_FPCCR_MONRDY_MASK;
1515 
1516             if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1517                 mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK;
1518             }
1519 
1520             value &= mask;
1521 
1522             value |= cpu->env.v7m.fpccr[M_REG_NS];
1523             return value;
1524         }
1525     case 0xf38: /* FPCAR */
1526         if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1527             return 0;
1528         }
1529         return cpu->env.v7m.fpcar[attrs.secure];
1530     case 0xf3c: /* FPDSCR */
1531         if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1532             return 0;
1533         }
1534         return cpu->env.v7m.fpdscr[attrs.secure];
1535     case 0xf40: /* MVFR0 */
1536         return cpu->isar.mvfr0;
1537     case 0xf44: /* MVFR1 */
1538         return cpu->isar.mvfr1;
1539     case 0xf48: /* MVFR2 */
1540         return cpu->isar.mvfr2;
1541     default:
1542     bad_offset:
1543         qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1544         return 0;
1545     }
1546 }
1547 
1548 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1549                         MemTxAttrs attrs)
1550 {
1551     ARMCPU *cpu = s->cpu;
1552 
1553     switch (offset) {
1554     case 0xc: /* CPPWR */
1555         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1556             goto bad_offset;
1557         }
1558         /* Make the IMPDEF choice to RAZ/WI this. */
1559         break;
1560     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1561     {
1562         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1563         int i;
1564 
1565         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1566             goto bad_offset;
1567         }
1568         if (!attrs.secure) {
1569             break;
1570         }
1571         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1572             s->itns[startvec + i] = (value >> i) & 1;
1573         }
1574         nvic_irq_update(s);
1575         break;
1576     }
1577     case 0xd04: /* Interrupt Control State (ICSR) */
1578         if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1579             if (value & (1 << 31)) {
1580                 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1581             } else if (value & (1 << 30) &&
1582                        arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1583                 /* PENDNMICLR didn't exist in v7M */
1584                 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1585             }
1586         }
1587         if (value & (1 << 28)) {
1588             armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1589         } else if (value & (1 << 27)) {
1590             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1591         }
1592         if (value & (1 << 26)) {
1593             armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1594         } else if (value & (1 << 25)) {
1595             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1596         }
1597         break;
1598     case 0xd08: /* Vector Table Offset.  */
1599         cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1600         break;
1601     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1602         if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1603             if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1604                 if (attrs.secure ||
1605                     !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1606                     signal_sysresetreq(s);
1607                 }
1608             }
1609             if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1610                 qemu_log_mask(LOG_GUEST_ERROR,
1611                               "Setting VECTCLRACTIVE when not in DEBUG mode "
1612                               "is UNPREDICTABLE\n");
1613             }
1614             if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1615                 /* NB: this bit is RES0 in v8M */
1616                 qemu_log_mask(LOG_GUEST_ERROR,
1617                               "Setting VECTRESET when not in DEBUG mode "
1618                               "is UNPREDICTABLE\n");
1619             }
1620             if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1621                 s->prigroup[attrs.secure] =
1622                     extract32(value,
1623                               R_V7M_AIRCR_PRIGROUP_SHIFT,
1624                               R_V7M_AIRCR_PRIGROUP_LENGTH);
1625             }
1626             /* AIRCR.IESB is RAZ/WI because we implement only minimal RAS */
1627             if (attrs.secure) {
1628                 /* These bits are only writable by secure */
1629                 cpu->env.v7m.aircr = value &
1630                     (R_V7M_AIRCR_SYSRESETREQS_MASK |
1631                      R_V7M_AIRCR_BFHFNMINS_MASK |
1632                      R_V7M_AIRCR_PRIS_MASK);
1633                 /* BFHFNMINS changes the priority of Secure HardFault, and
1634                  * allows a pending Non-secure HardFault to preempt (which
1635                  * we implement by marking it enabled).
1636                  */
1637                 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1638                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1639                     s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1640                 } else {
1641                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1642                     s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1643                 }
1644             }
1645             nvic_irq_update(s);
1646         }
1647         break;
1648     case 0xd10: /* System Control.  */
1649         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1650             goto bad_offset;
1651         }
1652         /* We don't implement deep-sleep so these bits are RAZ/WI.
1653          * The other bits in the register are banked.
1654          * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
1655          * is architecturally permitted.
1656          */
1657         value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
1658         cpu->env.v7m.scr[attrs.secure] = value;
1659         break;
1660     case 0xd14: /* Configuration Control.  */
1661     {
1662         uint32_t mask;
1663 
1664         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1665             goto bad_offset;
1666         }
1667 
1668         /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1669         mask = R_V7M_CCR_STKALIGN_MASK |
1670             R_V7M_CCR_BFHFNMIGN_MASK |
1671             R_V7M_CCR_DIV_0_TRP_MASK |
1672             R_V7M_CCR_UNALIGN_TRP_MASK |
1673             R_V7M_CCR_USERSETMPEND_MASK |
1674             R_V7M_CCR_NONBASETHRDENA_MASK;
1675         if (arm_feature(&cpu->env, ARM_FEATURE_V8_1M) && attrs.secure) {
1676             /* TRD is always RAZ/WI from NS */
1677             mask |= R_V7M_CCR_TRD_MASK;
1678         }
1679         value &= mask;
1680 
1681         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1682             /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1683             value |= R_V7M_CCR_NONBASETHRDENA_MASK
1684                 | R_V7M_CCR_STKALIGN_MASK;
1685         }
1686         if (attrs.secure) {
1687             /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1688             cpu->env.v7m.ccr[M_REG_NS] =
1689                 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1690                 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1691             value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1692         } else {
1693             /*
1694              * BFHFNMIGN is RAZ/WI from NS if AIRCR.BFHFNMINS is 0, so
1695              * preserve the state currently in the NS element of the array
1696              */
1697             if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1698                 value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1699                 value |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
1700             }
1701         }
1702 
1703         cpu->env.v7m.ccr[attrs.secure] = value;
1704         break;
1705     }
1706     case 0xd24: /* System Handler Control and State (SHCSR) */
1707         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1708             goto bad_offset;
1709         }
1710         if (attrs.secure) {
1711             s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1712             /* Secure HardFault active bit cannot be written */
1713             s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1714             s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1715             s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1716                 (value & (1 << 10)) != 0;
1717             s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1718                 (value & (1 << 11)) != 0;
1719             s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1720                 (value & (1 << 12)) != 0;
1721             s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1722             s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1723             s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1724             s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1725             s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1726                 (value & (1 << 18)) != 0;
1727             s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1728             /* SecureFault not banked, but RAZ/WI to NS */
1729             s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1730             s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1731             s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1732         } else {
1733             s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1734             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1735                 /* HARDFAULTPENDED is not present in v7M */
1736                 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1737             }
1738             s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1739             s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1740             s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1741             s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1742             s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1743             s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1744             s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1745             s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1746             s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1747         }
1748         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1749             s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1750             s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1751             s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1752         }
1753         /* NMIACT can only be written if the write is of a zero, with
1754          * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1755          */
1756         if (!attrs.secure && cpu->env.v7m.secure &&
1757             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1758             (value & (1 << 5)) == 0) {
1759             s->vectors[ARMV7M_EXCP_NMI].active = 0;
1760         }
1761         /* HARDFAULTACT can only be written if the write is of a zero
1762          * to the non-secure HardFault state by the CPU in secure state.
1763          * The only case where we can be targeting the non-secure HF state
1764          * when in secure state is if this is a write via the NS alias
1765          * and BFHFNMINS is 1.
1766          */
1767         if (!attrs.secure && cpu->env.v7m.secure &&
1768             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1769             (value & (1 << 2)) == 0) {
1770             s->vectors[ARMV7M_EXCP_HARD].active = 0;
1771         }
1772 
1773         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1774         s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1775         nvic_irq_update(s);
1776         break;
1777     case 0xd2c: /* Hard Fault Status.  */
1778         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1779             goto bad_offset;
1780         }
1781         cpu->env.v7m.hfsr &= ~value; /* W1C */
1782         break;
1783     case 0xd30: /* Debug Fault Status.  */
1784         cpu->env.v7m.dfsr &= ~value; /* W1C */
1785         break;
1786     case 0xd34: /* Mem Manage Address.  */
1787         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1788             goto bad_offset;
1789         }
1790         cpu->env.v7m.mmfar[attrs.secure] = value;
1791         return;
1792     case 0xd38: /* Bus Fault Address.  */
1793         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1794             goto bad_offset;
1795         }
1796         if (!attrs.secure &&
1797             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1798             return;
1799         }
1800         cpu->env.v7m.bfar = value;
1801         return;
1802     case 0xd3c: /* Aux Fault Status.  */
1803         qemu_log_mask(LOG_UNIMP,
1804                       "NVIC: Aux fault status registers unimplemented\n");
1805         break;
1806     case 0xd84: /* CSSELR */
1807         if (!arm_v7m_csselr_razwi(cpu)) {
1808             cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
1809         }
1810         break;
1811     case 0xd88: /* CPACR */
1812         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1813             /* We implement only the Floating Point extension's CP10/CP11 */
1814             cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20);
1815         }
1816         break;
1817     case 0xd8c: /* NSACR */
1818         if (attrs.secure && cpu_isar_feature(aa32_vfp_simd, cpu)) {
1819             /* We implement only the Floating Point extension's CP10/CP11 */
1820             cpu->env.v7m.nsacr = value & (3 << 10);
1821         }
1822         break;
1823     case 0xd90: /* MPU_TYPE */
1824         return; /* RO */
1825     case 0xd94: /* MPU_CTRL */
1826         if ((value &
1827              (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1828             == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1829             qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1830                           "UNPREDICTABLE\n");
1831         }
1832         cpu->env.v7m.mpu_ctrl[attrs.secure]
1833             = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1834                        R_V7M_MPU_CTRL_HFNMIENA_MASK |
1835                        R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1836         tlb_flush(CPU(cpu));
1837         break;
1838     case 0xd98: /* MPU_RNR */
1839         if (value >= cpu->pmsav7_dregion) {
1840             qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1841                           PRIu32 "/%" PRIu32 "\n",
1842                           value, cpu->pmsav7_dregion);
1843         } else {
1844             cpu->env.pmsav7.rnr[attrs.secure] = value;
1845         }
1846         break;
1847     case 0xd9c: /* MPU_RBAR */
1848     case 0xda4: /* MPU_RBAR_A1 */
1849     case 0xdac: /* MPU_RBAR_A2 */
1850     case 0xdb4: /* MPU_RBAR_A3 */
1851     {
1852         int region;
1853 
1854         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1855             /* PMSAv8M handling of the aliases is different from v7M:
1856              * aliases A1, A2, A3 override the low two bits of the region
1857              * number in MPU_RNR, and there is no 'region' field in the
1858              * RBAR register.
1859              */
1860             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1861 
1862             region = cpu->env.pmsav7.rnr[attrs.secure];
1863             if (aliasno) {
1864                 region = deposit32(region, 0, 2, aliasno);
1865             }
1866             if (region >= cpu->pmsav7_dregion) {
1867                 return;
1868             }
1869             cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1870             tlb_flush(CPU(cpu));
1871             return;
1872         }
1873 
1874         if (value & (1 << 4)) {
1875             /* VALID bit means use the region number specified in this
1876              * value and also update MPU_RNR.REGION with that value.
1877              */
1878             region = extract32(value, 0, 4);
1879             if (region >= cpu->pmsav7_dregion) {
1880                 qemu_log_mask(LOG_GUEST_ERROR,
1881                               "MPU region out of range %u/%" PRIu32 "\n",
1882                               region, cpu->pmsav7_dregion);
1883                 return;
1884             }
1885             cpu->env.pmsav7.rnr[attrs.secure] = region;
1886         } else {
1887             region = cpu->env.pmsav7.rnr[attrs.secure];
1888         }
1889 
1890         if (region >= cpu->pmsav7_dregion) {
1891             return;
1892         }
1893 
1894         cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1895         tlb_flush(CPU(cpu));
1896         break;
1897     }
1898     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1899     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1900     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1901     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1902     {
1903         int region = cpu->env.pmsav7.rnr[attrs.secure];
1904 
1905         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1906             /* PMSAv8M handling of the aliases is different from v7M:
1907              * aliases A1, A2, A3 override the low two bits of the region
1908              * number in MPU_RNR.
1909              */
1910             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1911 
1912             region = cpu->env.pmsav7.rnr[attrs.secure];
1913             if (aliasno) {
1914                 region = deposit32(region, 0, 2, aliasno);
1915             }
1916             if (region >= cpu->pmsav7_dregion) {
1917                 return;
1918             }
1919             cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1920             tlb_flush(CPU(cpu));
1921             return;
1922         }
1923 
1924         if (region >= cpu->pmsav7_dregion) {
1925             return;
1926         }
1927 
1928         cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1929         cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1930         tlb_flush(CPU(cpu));
1931         break;
1932     }
1933     case 0xdc0: /* MPU_MAIR0 */
1934         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1935             goto bad_offset;
1936         }
1937         if (cpu->pmsav7_dregion) {
1938             /* Register is RES0 if no MPU regions are implemented */
1939             cpu->env.pmsav8.mair0[attrs.secure] = value;
1940         }
1941         /* We don't need to do anything else because memory attributes
1942          * only affect cacheability, and we don't implement caching.
1943          */
1944         break;
1945     case 0xdc4: /* MPU_MAIR1 */
1946         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1947             goto bad_offset;
1948         }
1949         if (cpu->pmsav7_dregion) {
1950             /* Register is RES0 if no MPU regions are implemented */
1951             cpu->env.pmsav8.mair1[attrs.secure] = value;
1952         }
1953         /* We don't need to do anything else because memory attributes
1954          * only affect cacheability, and we don't implement caching.
1955          */
1956         break;
1957     case 0xdd0: /* SAU_CTRL */
1958         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1959             goto bad_offset;
1960         }
1961         if (!attrs.secure) {
1962             return;
1963         }
1964         cpu->env.sau.ctrl = value & 3;
1965         break;
1966     case 0xdd4: /* SAU_TYPE */
1967         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1968             goto bad_offset;
1969         }
1970         break;
1971     case 0xdd8: /* SAU_RNR */
1972         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1973             goto bad_offset;
1974         }
1975         if (!attrs.secure) {
1976             return;
1977         }
1978         if (value >= cpu->sau_sregion) {
1979             qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1980                           PRIu32 "/%" PRIu32 "\n",
1981                           value, cpu->sau_sregion);
1982         } else {
1983             cpu->env.sau.rnr = value;
1984         }
1985         break;
1986     case 0xddc: /* SAU_RBAR */
1987     {
1988         int region = cpu->env.sau.rnr;
1989 
1990         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1991             goto bad_offset;
1992         }
1993         if (!attrs.secure) {
1994             return;
1995         }
1996         if (region >= cpu->sau_sregion) {
1997             return;
1998         }
1999         cpu->env.sau.rbar[region] = value & ~0x1f;
2000         tlb_flush(CPU(cpu));
2001         break;
2002     }
2003     case 0xde0: /* SAU_RLAR */
2004     {
2005         int region = cpu->env.sau.rnr;
2006 
2007         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2008             goto bad_offset;
2009         }
2010         if (!attrs.secure) {
2011             return;
2012         }
2013         if (region >= cpu->sau_sregion) {
2014             return;
2015         }
2016         cpu->env.sau.rlar[region] = value & ~0x1c;
2017         tlb_flush(CPU(cpu));
2018         break;
2019     }
2020     case 0xde4: /* SFSR */
2021         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2022             goto bad_offset;
2023         }
2024         if (!attrs.secure) {
2025             return;
2026         }
2027         cpu->env.v7m.sfsr &= ~value; /* W1C */
2028         break;
2029     case 0xde8: /* SFAR */
2030         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2031             goto bad_offset;
2032         }
2033         if (!attrs.secure) {
2034             return;
2035         }
2036         cpu->env.v7m.sfsr = value;
2037         break;
2038     case 0xf00: /* Software Triggered Interrupt Register */
2039     {
2040         int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
2041 
2042         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
2043             goto bad_offset;
2044         }
2045 
2046         if (excnum < s->num_irq) {
2047             armv7m_nvic_set_pending(s, excnum, false);
2048         }
2049         break;
2050     }
2051     case 0xf04: /* RFSR */
2052         if (!cpu_isar_feature(aa32_ras, cpu)) {
2053             goto bad_offset;
2054         }
2055         /* We provide minimal-RAS only: RFSR is RAZ/WI */
2056         break;
2057     case 0xf34: /* FPCCR */
2058         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2059             /* Not all bits here are banked. */
2060             uint32_t fpccr_s;
2061 
2062             if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2063                 /* Don't allow setting of bits not present in v7M */
2064                 value &= (R_V7M_FPCCR_LSPACT_MASK |
2065                           R_V7M_FPCCR_USER_MASK |
2066                           R_V7M_FPCCR_THREAD_MASK |
2067                           R_V7M_FPCCR_HFRDY_MASK |
2068                           R_V7M_FPCCR_MMRDY_MASK |
2069                           R_V7M_FPCCR_BFRDY_MASK |
2070                           R_V7M_FPCCR_MONRDY_MASK |
2071                           R_V7M_FPCCR_LSPEN_MASK |
2072                           R_V7M_FPCCR_ASPEN_MASK);
2073             }
2074             value &= ~R_V7M_FPCCR_RES0_MASK;
2075 
2076             if (!attrs.secure) {
2077                 /* Some non-banked bits are configurably writable by NS */
2078                 fpccr_s = cpu->env.v7m.fpccr[M_REG_S];
2079                 if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) {
2080                     uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN);
2081                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen);
2082                 }
2083                 if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) {
2084                     uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET);
2085                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor);
2086                 }
2087                 if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2088                     uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY);
2089                     uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY);
2090                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
2091                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
2092                 }
2093                 /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */
2094                 {
2095                     uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY);
2096                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy);
2097                 }
2098 
2099                 /*
2100                  * All other non-banked bits are RAZ/WI from NS; write
2101                  * just the banked bits to fpccr[M_REG_NS].
2102                  */
2103                 value &= R_V7M_FPCCR_BANKED_MASK;
2104                 cpu->env.v7m.fpccr[M_REG_NS] = value;
2105             } else {
2106                 fpccr_s = value;
2107             }
2108             cpu->env.v7m.fpccr[M_REG_S] = fpccr_s;
2109         }
2110         break;
2111     case 0xf38: /* FPCAR */
2112         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2113             value &= ~7;
2114             cpu->env.v7m.fpcar[attrs.secure] = value;
2115         }
2116         break;
2117     case 0xf3c: /* FPDSCR */
2118         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2119             uint32_t mask = FPCR_AHP | FPCR_DN | FPCR_FZ | FPCR_RMODE_MASK;
2120             if (cpu_isar_feature(any_fp16, cpu)) {
2121                 mask |= FPCR_FZ16;
2122             }
2123             value &= mask;
2124             if (cpu_isar_feature(aa32_lob, cpu)) {
2125                 value |= 4 << FPCR_LTPSIZE_SHIFT;
2126             }
2127             cpu->env.v7m.fpdscr[attrs.secure] = value;
2128         }
2129         break;
2130     case 0xf50: /* ICIALLU */
2131     case 0xf58: /* ICIMVAU */
2132     case 0xf5c: /* DCIMVAC */
2133     case 0xf60: /* DCISW */
2134     case 0xf64: /* DCCMVAU */
2135     case 0xf68: /* DCCMVAC */
2136     case 0xf6c: /* DCCSW */
2137     case 0xf70: /* DCCIMVAC */
2138     case 0xf74: /* DCCISW */
2139     case 0xf78: /* BPIALL */
2140         /* Cache and branch predictor maintenance: for QEMU these always NOP */
2141         break;
2142     default:
2143     bad_offset:
2144         qemu_log_mask(LOG_GUEST_ERROR,
2145                       "NVIC: Bad write offset 0x%x\n", offset);
2146     }
2147 }
2148 
2149 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
2150 {
2151     /* Return true if unprivileged access to this register is permitted. */
2152     switch (offset) {
2153     case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
2154         /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
2155          * controls access even though the CPU is in Secure state (I_QDKX).
2156          */
2157         return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
2158     default:
2159         /* All other user accesses cause a BusFault unconditionally */
2160         return false;
2161     }
2162 }
2163 
2164 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
2165 {
2166     /* Behaviour for the SHPR register field for this exception:
2167      * return M_REG_NS to use the nonsecure vector (including for
2168      * non-banked exceptions), M_REG_S for the secure version of
2169      * a banked exception, and -1 if this field should RAZ/WI.
2170      */
2171     switch (exc) {
2172     case ARMV7M_EXCP_MEM:
2173     case ARMV7M_EXCP_USAGE:
2174     case ARMV7M_EXCP_SVC:
2175     case ARMV7M_EXCP_PENDSV:
2176     case ARMV7M_EXCP_SYSTICK:
2177         /* Banked exceptions */
2178         return attrs.secure;
2179     case ARMV7M_EXCP_BUS:
2180         /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
2181         if (!attrs.secure &&
2182             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2183             return -1;
2184         }
2185         return M_REG_NS;
2186     case ARMV7M_EXCP_SECURE:
2187         /* Not banked, RAZ/WI from nonsecure */
2188         if (!attrs.secure) {
2189             return -1;
2190         }
2191         return M_REG_NS;
2192     case ARMV7M_EXCP_DEBUG:
2193         /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
2194         return M_REG_NS;
2195     case 8 ... 10:
2196     case 13:
2197         /* RES0 */
2198         return -1;
2199     default:
2200         /* Not reachable due to decode of SHPR register addresses */
2201         g_assert_not_reached();
2202     }
2203 }
2204 
2205 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
2206                                     uint64_t *data, unsigned size,
2207                                     MemTxAttrs attrs)
2208 {
2209     NVICState *s = (NVICState *)opaque;
2210     uint32_t offset = addr;
2211     unsigned i, startvec, end;
2212     uint32_t val;
2213 
2214     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2215         /* Generate BusFault for unprivileged accesses */
2216         return MEMTX_ERROR;
2217     }
2218 
2219     switch (offset) {
2220     /* reads of set and clear both return the status */
2221     case 0x100 ... 0x13f: /* NVIC Set enable */
2222         offset += 0x80;
2223         /* fall through */
2224     case 0x180 ... 0x1bf: /* NVIC Clear enable */
2225         val = 0;
2226         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
2227 
2228         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2229             if (s->vectors[startvec + i].enabled &&
2230                 (attrs.secure || s->itns[startvec + i])) {
2231                 val |= (1 << i);
2232             }
2233         }
2234         break;
2235     case 0x200 ... 0x23f: /* NVIC Set pend */
2236         offset += 0x80;
2237         /* fall through */
2238     case 0x280 ... 0x2bf: /* NVIC Clear pend */
2239         val = 0;
2240         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2241         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2242             if (s->vectors[startvec + i].pending &&
2243                 (attrs.secure || s->itns[startvec + i])) {
2244                 val |= (1 << i);
2245             }
2246         }
2247         break;
2248     case 0x300 ... 0x33f: /* NVIC Active */
2249         val = 0;
2250 
2251         if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) {
2252             break;
2253         }
2254 
2255         startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
2256 
2257         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2258             if (s->vectors[startvec + i].active &&
2259                 (attrs.secure || s->itns[startvec + i])) {
2260                 val |= (1 << i);
2261             }
2262         }
2263         break;
2264     case 0x400 ... 0x5ef: /* NVIC Priority */
2265         val = 0;
2266         startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
2267 
2268         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2269             if (attrs.secure || s->itns[startvec + i]) {
2270                 val |= s->vectors[startvec + i].prio << (8 * i);
2271             }
2272         }
2273         break;
2274     case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2275         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2276             val = 0;
2277             break;
2278         }
2279         /* fall through */
2280     case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2281         val = 0;
2282         for (i = 0; i < size; i++) {
2283             unsigned hdlidx = (offset - 0xd14) + i;
2284             int sbank = shpr_bank(s, hdlidx, attrs);
2285 
2286             if (sbank < 0) {
2287                 continue;
2288             }
2289             val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
2290         }
2291         break;
2292     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2293         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2294             val = 0;
2295             break;
2296         };
2297         /*
2298          * The BFSR bits [15:8] are shared between security states
2299          * and we store them in the NS copy. They are RAZ/WI for
2300          * NS code if AIRCR.BFHFNMINS is 0.
2301          */
2302         val = s->cpu->env.v7m.cfsr[attrs.secure];
2303         if (!attrs.secure &&
2304             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2305             val &= ~R_V7M_CFSR_BFSR_MASK;
2306         } else {
2307             val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
2308         }
2309         val = extract32(val, (offset - 0xd28) * 8, size * 8);
2310         break;
2311     case 0xfe0 ... 0xfff: /* ID.  */
2312         if (offset & 3) {
2313             val = 0;
2314         } else {
2315             val = nvic_id[(offset - 0xfe0) >> 2];
2316         }
2317         break;
2318     default:
2319         if (size == 4) {
2320             val = nvic_readl(s, offset, attrs);
2321         } else {
2322             qemu_log_mask(LOG_GUEST_ERROR,
2323                           "NVIC: Bad read of size %d at offset 0x%x\n",
2324                           size, offset);
2325             val = 0;
2326         }
2327     }
2328 
2329     trace_nvic_sysreg_read(addr, val, size);
2330     *data = val;
2331     return MEMTX_OK;
2332 }
2333 
2334 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
2335                                      uint64_t value, unsigned size,
2336                                      MemTxAttrs attrs)
2337 {
2338     NVICState *s = (NVICState *)opaque;
2339     uint32_t offset = addr;
2340     unsigned i, startvec, end;
2341     unsigned setval = 0;
2342 
2343     trace_nvic_sysreg_write(addr, value, size);
2344 
2345     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2346         /* Generate BusFault for unprivileged accesses */
2347         return MEMTX_ERROR;
2348     }
2349 
2350     switch (offset) {
2351     case 0x100 ... 0x13f: /* NVIC Set enable */
2352         offset += 0x80;
2353         setval = 1;
2354         /* fall through */
2355     case 0x180 ... 0x1bf: /* NVIC Clear enable */
2356         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
2357 
2358         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2359             if (value & (1 << i) &&
2360                 (attrs.secure || s->itns[startvec + i])) {
2361                 s->vectors[startvec + i].enabled = setval;
2362             }
2363         }
2364         nvic_irq_update(s);
2365         goto exit_ok;
2366     case 0x200 ... 0x23f: /* NVIC Set pend */
2367         /* the special logic in armv7m_nvic_set_pending()
2368          * is not needed since IRQs are never escalated
2369          */
2370         offset += 0x80;
2371         setval = 1;
2372         /* fall through */
2373     case 0x280 ... 0x2bf: /* NVIC Clear pend */
2374         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2375 
2376         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2377             if (value & (1 << i) &&
2378                 (attrs.secure || s->itns[startvec + i])) {
2379                 s->vectors[startvec + i].pending = setval;
2380             }
2381         }
2382         nvic_irq_update(s);
2383         goto exit_ok;
2384     case 0x300 ... 0x33f: /* NVIC Active */
2385         goto exit_ok; /* R/O */
2386     case 0x400 ... 0x5ef: /* NVIC Priority */
2387         startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
2388 
2389         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2390             if (attrs.secure || s->itns[startvec + i]) {
2391                 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
2392             }
2393         }
2394         nvic_irq_update(s);
2395         goto exit_ok;
2396     case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2397         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2398             goto exit_ok;
2399         }
2400         /* fall through */
2401     case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2402         for (i = 0; i < size; i++) {
2403             unsigned hdlidx = (offset - 0xd14) + i;
2404             int newprio = extract32(value, i * 8, 8);
2405             int sbank = shpr_bank(s, hdlidx, attrs);
2406 
2407             if (sbank < 0) {
2408                 continue;
2409             }
2410             set_prio(s, hdlidx, sbank, newprio);
2411         }
2412         nvic_irq_update(s);
2413         goto exit_ok;
2414     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2415         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2416             goto exit_ok;
2417         }
2418         /* All bits are W1C, so construct 32 bit value with 0s in
2419          * the parts not written by the access size
2420          */
2421         value <<= ((offset - 0xd28) * 8);
2422 
2423         if (!attrs.secure &&
2424             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2425             /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */
2426             value &= ~R_V7M_CFSR_BFSR_MASK;
2427         }
2428 
2429         s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
2430         if (attrs.secure) {
2431             /* The BFSR bits [15:8] are shared between security states
2432              * and we store them in the NS copy.
2433              */
2434             s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
2435         }
2436         goto exit_ok;
2437     }
2438     if (size == 4) {
2439         nvic_writel(s, offset, value, attrs);
2440         goto exit_ok;
2441     }
2442     qemu_log_mask(LOG_GUEST_ERROR,
2443                   "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
2444     /* This is UNPREDICTABLE; treat as RAZ/WI */
2445 
2446  exit_ok:
2447     /* Ensure any changes made are reflected in the cached hflags.  */
2448     arm_rebuild_hflags(&s->cpu->env);
2449     return MEMTX_OK;
2450 }
2451 
2452 static const MemoryRegionOps nvic_sysreg_ops = {
2453     .read_with_attrs = nvic_sysreg_read,
2454     .write_with_attrs = nvic_sysreg_write,
2455     .endianness = DEVICE_NATIVE_ENDIAN,
2456 };
2457 
2458 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
2459                                         uint64_t value, unsigned size,
2460                                         MemTxAttrs attrs)
2461 {
2462     MemoryRegion *mr = opaque;
2463 
2464     if (attrs.secure) {
2465         /* S accesses to the alias act like NS accesses to the real region */
2466         attrs.secure = 0;
2467         return memory_region_dispatch_write(mr, addr, value,
2468                                             size_memop(size) | MO_TE, attrs);
2469     } else {
2470         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2471         if (attrs.user) {
2472             return MEMTX_ERROR;
2473         }
2474         return MEMTX_OK;
2475     }
2476 }
2477 
2478 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
2479                                        uint64_t *data, unsigned size,
2480                                        MemTxAttrs attrs)
2481 {
2482     MemoryRegion *mr = opaque;
2483 
2484     if (attrs.secure) {
2485         /* S accesses to the alias act like NS accesses to the real region */
2486         attrs.secure = 0;
2487         return memory_region_dispatch_read(mr, addr, data,
2488                                            size_memop(size) | MO_TE, attrs);
2489     } else {
2490         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2491         if (attrs.user) {
2492             return MEMTX_ERROR;
2493         }
2494         *data = 0;
2495         return MEMTX_OK;
2496     }
2497 }
2498 
2499 static const MemoryRegionOps nvic_sysreg_ns_ops = {
2500     .read_with_attrs = nvic_sysreg_ns_read,
2501     .write_with_attrs = nvic_sysreg_ns_write,
2502     .endianness = DEVICE_NATIVE_ENDIAN,
2503 };
2504 
2505 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
2506                                       uint64_t value, unsigned size,
2507                                       MemTxAttrs attrs)
2508 {
2509     NVICState *s = opaque;
2510     MemoryRegion *mr;
2511 
2512     /* Direct the access to the correct systick */
2513     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2514     return memory_region_dispatch_write(mr, addr, value,
2515                                         size_memop(size) | MO_TE, attrs);
2516 }
2517 
2518 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
2519                                      uint64_t *data, unsigned size,
2520                                      MemTxAttrs attrs)
2521 {
2522     NVICState *s = opaque;
2523     MemoryRegion *mr;
2524 
2525     /* Direct the access to the correct systick */
2526     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2527     return memory_region_dispatch_read(mr, addr, data, size_memop(size) | MO_TE,
2528                                        attrs);
2529 }
2530 
2531 static const MemoryRegionOps nvic_systick_ops = {
2532     .read_with_attrs = nvic_systick_read,
2533     .write_with_attrs = nvic_systick_write,
2534     .endianness = DEVICE_NATIVE_ENDIAN,
2535 };
2536 
2537 
2538 static MemTxResult ras_read(void *opaque, hwaddr addr,
2539                             uint64_t *data, unsigned size,
2540                             MemTxAttrs attrs)
2541 {
2542     if (attrs.user) {
2543         return MEMTX_ERROR;
2544     }
2545 
2546     switch (addr) {
2547     case 0xe10: /* ERRIIDR */
2548         /* architect field = Arm; product/variant/revision 0 */
2549         *data = 0x43b;
2550         break;
2551     case 0xfc8: /* ERRDEVID */
2552         /* Minimal RAS: we implement 0 error record indexes */
2553         *data = 0;
2554         break;
2555     default:
2556         qemu_log_mask(LOG_UNIMP, "Read RAS register offset 0x%x\n",
2557                       (uint32_t)addr);
2558         *data = 0;
2559         break;
2560     }
2561     return MEMTX_OK;
2562 }
2563 
2564 static MemTxResult ras_write(void *opaque, hwaddr addr,
2565                              uint64_t value, unsigned size,
2566                              MemTxAttrs attrs)
2567 {
2568     if (attrs.user) {
2569         return MEMTX_ERROR;
2570     }
2571 
2572     switch (addr) {
2573     default:
2574         qemu_log_mask(LOG_UNIMP, "Write to RAS register offset 0x%x\n",
2575                       (uint32_t)addr);
2576         break;
2577     }
2578     return MEMTX_OK;
2579 }
2580 
2581 static const MemoryRegionOps ras_ops = {
2582     .read_with_attrs = ras_read,
2583     .write_with_attrs = ras_write,
2584     .endianness = DEVICE_NATIVE_ENDIAN,
2585 };
2586 
2587 /*
2588  * Unassigned portions of the PPB space are RAZ/WI for privileged
2589  * accesses, and fault for non-privileged accesses.
2590  */
2591 static MemTxResult ppb_default_read(void *opaque, hwaddr addr,
2592                                     uint64_t *data, unsigned size,
2593                                     MemTxAttrs attrs)
2594 {
2595     qemu_log_mask(LOG_UNIMP, "Read of unassigned area of PPB: offset 0x%x\n",
2596                   (uint32_t)addr);
2597     if (attrs.user) {
2598         return MEMTX_ERROR;
2599     }
2600     *data = 0;
2601     return MEMTX_OK;
2602 }
2603 
2604 static MemTxResult ppb_default_write(void *opaque, hwaddr addr,
2605                                      uint64_t value, unsigned size,
2606                                      MemTxAttrs attrs)
2607 {
2608     qemu_log_mask(LOG_UNIMP, "Write of unassigned area of PPB: offset 0x%x\n",
2609                   (uint32_t)addr);
2610     if (attrs.user) {
2611         return MEMTX_ERROR;
2612     }
2613     return MEMTX_OK;
2614 }
2615 
2616 static const MemoryRegionOps ppb_default_ops = {
2617     .read_with_attrs = ppb_default_read,
2618     .write_with_attrs = ppb_default_write,
2619     .endianness = DEVICE_NATIVE_ENDIAN,
2620     .valid.min_access_size = 1,
2621     .valid.max_access_size = 8,
2622 };
2623 
2624 static int nvic_post_load(void *opaque, int version_id)
2625 {
2626     NVICState *s = opaque;
2627     unsigned i;
2628     int resetprio;
2629 
2630     /* Check for out of range priority settings */
2631     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2632 
2633     if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
2634         s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
2635         s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
2636         return 1;
2637     }
2638     for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
2639         if (s->vectors[i].prio & ~0xff) {
2640             return 1;
2641         }
2642     }
2643 
2644     nvic_recompute_state(s);
2645 
2646     return 0;
2647 }
2648 
2649 static const VMStateDescription vmstate_VecInfo = {
2650     .name = "armv7m_nvic_info",
2651     .version_id = 1,
2652     .minimum_version_id = 1,
2653     .fields = (VMStateField[]) {
2654         VMSTATE_INT16(prio, VecInfo),
2655         VMSTATE_UINT8(enabled, VecInfo),
2656         VMSTATE_UINT8(pending, VecInfo),
2657         VMSTATE_UINT8(active, VecInfo),
2658         VMSTATE_UINT8(level, VecInfo),
2659         VMSTATE_END_OF_LIST()
2660     }
2661 };
2662 
2663 static bool nvic_security_needed(void *opaque)
2664 {
2665     NVICState *s = opaque;
2666 
2667     return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2668 }
2669 
2670 static int nvic_security_post_load(void *opaque, int version_id)
2671 {
2672     NVICState *s = opaque;
2673     int i;
2674 
2675     /* Check for out of range priority settings */
2676     if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2677         && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2678         /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2679          * if the CPU state has been migrated yet; a mismatch won't
2680          * cause the emulation to blow up, though.
2681          */
2682         return 1;
2683     }
2684     for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2685         if (s->sec_vectors[i].prio & ~0xff) {
2686             return 1;
2687         }
2688     }
2689     return 0;
2690 }
2691 
2692 static const VMStateDescription vmstate_nvic_security = {
2693     .name = "armv7m_nvic/m-security",
2694     .version_id = 1,
2695     .minimum_version_id = 1,
2696     .needed = nvic_security_needed,
2697     .post_load = &nvic_security_post_load,
2698     .fields = (VMStateField[]) {
2699         VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2700                              vmstate_VecInfo, VecInfo),
2701         VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
2702         VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
2703         VMSTATE_END_OF_LIST()
2704     }
2705 };
2706 
2707 static const VMStateDescription vmstate_nvic = {
2708     .name = "armv7m_nvic",
2709     .version_id = 4,
2710     .minimum_version_id = 4,
2711     .post_load = &nvic_post_load,
2712     .fields = (VMStateField[]) {
2713         VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2714                              vmstate_VecInfo, VecInfo),
2715         VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
2716         VMSTATE_END_OF_LIST()
2717     },
2718     .subsections = (const VMStateDescription*[]) {
2719         &vmstate_nvic_security,
2720         NULL
2721     }
2722 };
2723 
2724 static Property props_nvic[] = {
2725     /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2726     DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2727     DEFINE_PROP_END_OF_LIST()
2728 };
2729 
2730 static void armv7m_nvic_reset(DeviceState *dev)
2731 {
2732     int resetprio;
2733     NVICState *s = NVIC(dev);
2734 
2735     memset(s->vectors, 0, sizeof(s->vectors));
2736     memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2737     s->prigroup[M_REG_NS] = 0;
2738     s->prigroup[M_REG_S] = 0;
2739 
2740     s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
2741     /* MEM, BUS, and USAGE are enabled through
2742      * the System Handler Control register
2743      */
2744     s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2745     s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2746     s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2747 
2748     /* DebugMonitor is enabled via DEMCR.MON_EN */
2749     s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0;
2750 
2751     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2752     s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
2753     s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2754     s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2755 
2756     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2757         s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2758         s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2759         s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2760         s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2761 
2762         /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2763         s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
2764         /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2765         s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2766     } else {
2767         s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
2768     }
2769 
2770     /* Strictly speaking the reset handler should be enabled.
2771      * However, we don't simulate soft resets through the NVIC,
2772      * and the reset vector should never be pended.
2773      * So we leave it disabled to catch logic errors.
2774      */
2775 
2776     s->exception_prio = NVIC_NOEXC_PRIO;
2777     s->vectpending = 0;
2778     s->vectpending_is_s_banked = false;
2779     s->vectpending_prio = NVIC_NOEXC_PRIO;
2780 
2781     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2782         memset(s->itns, 0, sizeof(s->itns));
2783     } else {
2784         /* This state is constant and not guest accessible in a non-security
2785          * NVIC; we set the bits to true to avoid having to do a feature
2786          * bit check in the NVIC enable/pend/etc register accessors.
2787          */
2788         int i;
2789 
2790         for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2791             s->itns[i] = true;
2792         }
2793     }
2794 
2795     /*
2796      * We updated state that affects the CPU's MMUidx and thus its hflags;
2797      * and we can't guarantee that we run before the CPU reset function.
2798      */
2799     arm_rebuild_hflags(&s->cpu->env);
2800 }
2801 
2802 static void nvic_systick_trigger(void *opaque, int n, int level)
2803 {
2804     NVICState *s = opaque;
2805 
2806     if (level) {
2807         /* SysTick just asked us to pend its exception.
2808          * (This is different from an external interrupt line's
2809          * behaviour.)
2810          * n == 0 : NonSecure systick
2811          * n == 1 : Secure systick
2812          */
2813         armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
2814     }
2815 }
2816 
2817 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2818 {
2819     NVICState *s = NVIC(dev);
2820 
2821     /* The armv7m container object will have set our CPU pointer */
2822     if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
2823         error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
2824         return;
2825     }
2826 
2827     if (s->num_irq > NVIC_MAX_IRQ) {
2828         error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2829         return;
2830     }
2831 
2832     qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2833 
2834     /* include space for internal exception vectors */
2835     s->num_irq += NVIC_FIRST_IRQ;
2836 
2837     s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
2838 
2839     if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), errp)) {
2840         return;
2841     }
2842     sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2843                        qdev_get_gpio_in_named(dev, "systick-trigger",
2844                                               M_REG_NS));
2845 
2846     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2847         /* We couldn't init the secure systick device in instance_init
2848          * as we didn't know then if the CPU had the security extensions;
2849          * so we have to do it here.
2850          */
2851         object_initialize_child(OBJECT(dev), "systick-reg-s",
2852                                 &s->systick[M_REG_S], TYPE_SYSTICK);
2853 
2854         if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_S]), errp)) {
2855             return;
2856         }
2857         sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2858                            qdev_get_gpio_in_named(dev, "systick-trigger",
2859                                                   M_REG_S));
2860     }
2861 
2862     /*
2863      * This device provides a single sysbus memory region which
2864      * represents the whole of the "System PPB" space. This is the
2865      * range from 0xe0000000 to 0xe00fffff and includes the NVIC,
2866      * the System Control Space (system registers), the systick timer,
2867      * and for CPUs with the Security extension an NS banked version
2868      * of all of these.
2869      *
2870      * The default behaviour for unimplemented registers/ranges
2871      * (for instance the Data Watchpoint and Trace unit at 0xe0001000)
2872      * is to RAZ/WI for privileged access and BusFault for non-privileged
2873      * access.
2874      *
2875      * The NVIC and System Control Space (SCS) starts at 0xe000e000
2876      * and looks like this:
2877      *  0x004 - ICTR
2878      *  0x010 - 0xff - systick
2879      *  0x100..0x7ec - NVIC
2880      *  0x7f0..0xcff - Reserved
2881      *  0xd00..0xd3c - SCS registers
2882      *  0xd40..0xeff - Reserved or Not implemented
2883      *  0xf00 - STIR
2884      *
2885      * Some registers within this space are banked between security states.
2886      * In v8M there is a second range 0xe002e000..0xe002efff which is the
2887      * NonSecure alias SCS; secure accesses to this behave like NS accesses
2888      * to the main SCS range, and non-secure accesses (including when
2889      * the security extension is not implemented) are RAZ/WI.
2890      * Note that both the main SCS range and the alias range are defined
2891      * to be exempt from memory attribution (R_BLJT) and so the memory
2892      * transaction attribute always matches the current CPU security
2893      * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2894      * wrappers we change attrs.secure to indicate the NS access; so
2895      * generally code determining which banked register to use should
2896      * use attrs.secure; code determining actual behaviour of the system
2897      * should use env->v7m.secure.
2898      *
2899      * The container covers the whole PPB space. Within it the priority
2900      * of overlapping regions is:
2901      *  - default region (for RAZ/WI and BusFault) : -1
2902      *  - system register regions : 0
2903      *  - systick : 1
2904      * This is because the systick device is a small block of registers
2905      * in the middle of the other system control registers.
2906      */
2907     memory_region_init(&s->container, OBJECT(s), "nvic", 0x100000);
2908     memory_region_init_io(&s->defaultmem, OBJECT(s), &ppb_default_ops, s,
2909                           "nvic-default", 0x100000);
2910     memory_region_add_subregion_overlap(&s->container, 0, &s->defaultmem, -1);
2911     memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2912                           "nvic_sysregs", 0x1000);
2913     memory_region_add_subregion(&s->container, 0xe000, &s->sysregmem);
2914 
2915     memory_region_init_io(&s->systickmem, OBJECT(s),
2916                           &nvic_systick_ops, s,
2917                           "nvic_systick", 0xe0);
2918 
2919     memory_region_add_subregion_overlap(&s->container, 0xe010,
2920                                         &s->systickmem, 1);
2921 
2922     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2923         memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
2924                               &nvic_sysreg_ns_ops, &s->sysregmem,
2925                               "nvic_sysregs_ns", 0x1000);
2926         memory_region_add_subregion(&s->container, 0x2e000, &s->sysreg_ns_mem);
2927         memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2928                               &nvic_sysreg_ns_ops, &s->systickmem,
2929                               "nvic_systick_ns", 0xe0);
2930         memory_region_add_subregion_overlap(&s->container, 0x2e010,
2931                                             &s->systick_ns_mem, 1);
2932     }
2933 
2934     if (cpu_isar_feature(aa32_ras, s->cpu)) {
2935         memory_region_init_io(&s->ras_mem, OBJECT(s),
2936                               &ras_ops, s, "nvic_ras", 0x1000);
2937         memory_region_add_subregion(&s->container, 0x5000, &s->ras_mem);
2938     }
2939 
2940     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
2941 }
2942 
2943 static void armv7m_nvic_instance_init(Object *obj)
2944 {
2945     /* We have a different default value for the num-irq property
2946      * than our superclass. This function runs after qdev init
2947      * has set the defaults from the Property array and before
2948      * any user-specified property setting, so just modify the
2949      * value in the GICState struct.
2950      */
2951     DeviceState *dev = DEVICE(obj);
2952     NVICState *nvic = NVIC(obj);
2953     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2954 
2955     object_initialize_child(obj, "systick-reg-ns", &nvic->systick[M_REG_NS],
2956                             TYPE_SYSTICK);
2957     /* We can't initialize the secure systick here, as we don't know
2958      * yet if we need it.
2959      */
2960 
2961     sysbus_init_irq(sbd, &nvic->excpout);
2962     qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2963     qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2964                             M_REG_NUM_BANKS);
2965     qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1);
2966 }
2967 
2968 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2969 {
2970     DeviceClass *dc = DEVICE_CLASS(klass);
2971 
2972     dc->vmsd  = &vmstate_nvic;
2973     device_class_set_props(dc, props_nvic);
2974     dc->reset = armv7m_nvic_reset;
2975     dc->realize = armv7m_nvic_realize;
2976 }
2977 
2978 static const TypeInfo armv7m_nvic_info = {
2979     .name          = TYPE_NVIC,
2980     .parent        = TYPE_SYS_BUS_DEVICE,
2981     .instance_init = armv7m_nvic_instance_init,
2982     .instance_size = sizeof(NVICState),
2983     .class_init    = armv7m_nvic_class_init,
2984     .class_size    = sizeof(SysBusDeviceClass),
2985 };
2986 
2987 static void armv7m_nvic_register_types(void)
2988 {
2989     type_register_static(&armv7m_nvic_info);
2990 }
2991 
2992 type_init(armv7m_nvic_register_types)
2993