1 /* 2 * ARM Nested Vectored Interrupt Controller 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 * 9 * The ARMv7M System controller is fairly tightly tied in with the 10 * NVIC. Much of that is also implemented here. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "hw/sysbus.h" 16 #include "migration/vmstate.h" 17 #include "qemu/timer.h" 18 #include "hw/intc/armv7m_nvic.h" 19 #include "hw/irq.h" 20 #include "hw/qdev-properties.h" 21 #include "sysemu/runstate.h" 22 #include "target/arm/cpu.h" 23 #include "exec/exec-all.h" 24 #include "exec/memop.h" 25 #include "qemu/log.h" 26 #include "qemu/module.h" 27 #include "trace.h" 28 29 /* IRQ number counting: 30 * 31 * the num-irq property counts the number of external IRQ lines 32 * 33 * NVICState::num_irq counts the total number of exceptions 34 * (external IRQs, the 15 internal exceptions including reset, 35 * and one for the unused exception number 0). 36 * 37 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines. 38 * 39 * NVIC_MAX_VECTORS is the highest permitted number of exceptions. 40 * 41 * Iterating through all exceptions should typically be done with 42 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0. 43 * 44 * The external qemu_irq lines are the NVIC's external IRQ lines, 45 * so line 0 is exception 16. 46 * 47 * In the terminology of the architecture manual, "interrupts" are 48 * a subcategory of exception referring to the external interrupts 49 * (which are exception numbers NVIC_FIRST_IRQ and upward). 50 * For historical reasons QEMU tends to use "interrupt" and 51 * "exception" more or less interchangeably. 52 */ 53 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS 54 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ) 55 56 /* Effective running priority of the CPU when no exception is active 57 * (higher than the highest possible priority value) 58 */ 59 #define NVIC_NOEXC_PRIO 0x100 60 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */ 61 #define NVIC_NS_PRIO_LIMIT 0x80 62 63 static const uint8_t nvic_id[] = { 64 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 65 }; 66 67 static void signal_sysresetreq(NVICState *s) 68 { 69 if (qemu_irq_is_connected(s->sysresetreq)) { 70 qemu_irq_pulse(s->sysresetreq); 71 } else { 72 /* 73 * Default behaviour if the SoC doesn't need to wire up 74 * SYSRESETREQ (eg to a system reset controller of some kind): 75 * perform a system reset via the usual QEMU API. 76 */ 77 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 78 } 79 } 80 81 static int nvic_pending_prio(NVICState *s) 82 { 83 /* return the group priority of the current pending interrupt, 84 * or NVIC_NOEXC_PRIO if no interrupt is pending 85 */ 86 return s->vectpending_prio; 87 } 88 89 /* Return the value of the ISCR RETTOBASE bit: 90 * 1 if there is exactly one active exception 91 * 0 if there is more than one active exception 92 * UNKNOWN if there are no active exceptions (we choose 1, 93 * which matches the choice Cortex-M3 is documented as making). 94 * 95 * NB: some versions of the documentation talk about this 96 * counting "active exceptions other than the one shown by IPSR"; 97 * this is only different in the obscure corner case where guest 98 * code has manually deactivated an exception and is about 99 * to fail an exception-return integrity check. The definition 100 * above is the one from the v8M ARM ARM and is also in line 101 * with the behaviour documented for the Cortex-M3. 102 */ 103 static bool nvic_rettobase(NVICState *s) 104 { 105 int irq, nhand = 0; 106 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 107 108 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) { 109 if (s->vectors[irq].active || 110 (check_sec && irq < NVIC_INTERNAL_VECTORS && 111 s->sec_vectors[irq].active)) { 112 nhand++; 113 if (nhand == 2) { 114 return 0; 115 } 116 } 117 } 118 119 return 1; 120 } 121 122 /* Return the value of the ISCR ISRPENDING bit: 123 * 1 if an external interrupt is pending 124 * 0 if no external interrupt is pending 125 */ 126 static bool nvic_isrpending(NVICState *s) 127 { 128 int irq; 129 130 /* 131 * We can shortcut if the highest priority pending interrupt 132 * happens to be external; if not we need to check the whole 133 * vectors[] array. 134 */ 135 if (s->vectpending > NVIC_FIRST_IRQ) { 136 return true; 137 } 138 139 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) { 140 if (s->vectors[irq].pending) { 141 return true; 142 } 143 } 144 return false; 145 } 146 147 static bool exc_is_banked(int exc) 148 { 149 /* Return true if this is one of the limited set of exceptions which 150 * are banked (and thus have state in sec_vectors[]) 151 */ 152 return exc == ARMV7M_EXCP_HARD || 153 exc == ARMV7M_EXCP_MEM || 154 exc == ARMV7M_EXCP_USAGE || 155 exc == ARMV7M_EXCP_SVC || 156 exc == ARMV7M_EXCP_PENDSV || 157 exc == ARMV7M_EXCP_SYSTICK; 158 } 159 160 /* Return a mask word which clears the subpriority bits from 161 * a priority value for an M-profile exception, leaving only 162 * the group priority. 163 */ 164 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure) 165 { 166 return ~0U << (s->prigroup[secure] + 1); 167 } 168 169 static bool exc_targets_secure(NVICState *s, int exc) 170 { 171 /* Return true if this non-banked exception targets Secure state. */ 172 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 173 return false; 174 } 175 176 if (exc >= NVIC_FIRST_IRQ) { 177 return !s->itns[exc]; 178 } 179 180 /* Function shouldn't be called for banked exceptions. */ 181 assert(!exc_is_banked(exc)); 182 183 switch (exc) { 184 case ARMV7M_EXCP_NMI: 185 case ARMV7M_EXCP_BUS: 186 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); 187 case ARMV7M_EXCP_SECURE: 188 return true; 189 case ARMV7M_EXCP_DEBUG: 190 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */ 191 return false; 192 default: 193 /* reset, and reserved (unused) low exception numbers. 194 * We'll get called by code that loops through all the exception 195 * numbers, but it doesn't matter what we return here as these 196 * non-existent exceptions will never be pended or active. 197 */ 198 return true; 199 } 200 } 201 202 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure) 203 { 204 /* Return the group priority for this exception, given its raw 205 * (group-and-subgroup) priority value and whether it is targeting 206 * secure state or not. 207 */ 208 if (rawprio < 0) { 209 return rawprio; 210 } 211 rawprio &= nvic_gprio_mask(s, targets_secure); 212 /* AIRCR.PRIS causes us to squash all NS priorities into the 213 * lower half of the total range 214 */ 215 if (!targets_secure && 216 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) { 217 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT; 218 } 219 return rawprio; 220 } 221 222 /* Recompute vectpending and exception_prio for a CPU which implements 223 * the Security extension 224 */ 225 static void nvic_recompute_state_secure(NVICState *s) 226 { 227 int i, bank; 228 int pend_prio = NVIC_NOEXC_PRIO; 229 int active_prio = NVIC_NOEXC_PRIO; 230 int pend_irq = 0; 231 bool pending_is_s_banked = false; 232 int pend_subprio = 0; 233 234 /* R_CQRV: precedence is by: 235 * - lowest group priority; if both the same then 236 * - lowest subpriority; if both the same then 237 * - lowest exception number; if both the same (ie banked) then 238 * - secure exception takes precedence 239 * Compare pseudocode RawExecutionPriority. 240 * Annoyingly, now we have two prigroup values (for S and NS) 241 * we can't do the loop comparison on raw priority values. 242 */ 243 for (i = 1; i < s->num_irq; i++) { 244 for (bank = M_REG_S; bank >= M_REG_NS; bank--) { 245 VecInfo *vec; 246 int prio, subprio; 247 bool targets_secure; 248 249 if (bank == M_REG_S) { 250 if (!exc_is_banked(i)) { 251 continue; 252 } 253 vec = &s->sec_vectors[i]; 254 targets_secure = true; 255 } else { 256 vec = &s->vectors[i]; 257 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i); 258 } 259 260 prio = exc_group_prio(s, vec->prio, targets_secure); 261 subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure); 262 if (vec->enabled && vec->pending && 263 ((prio < pend_prio) || 264 (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) { 265 pend_prio = prio; 266 pend_subprio = subprio; 267 pend_irq = i; 268 pending_is_s_banked = (bank == M_REG_S); 269 } 270 if (vec->active && prio < active_prio) { 271 active_prio = prio; 272 } 273 } 274 } 275 276 s->vectpending_is_s_banked = pending_is_s_banked; 277 s->vectpending = pend_irq; 278 s->vectpending_prio = pend_prio; 279 s->exception_prio = active_prio; 280 281 trace_nvic_recompute_state_secure(s->vectpending, 282 s->vectpending_is_s_banked, 283 s->vectpending_prio, 284 s->exception_prio); 285 } 286 287 /* Recompute vectpending and exception_prio */ 288 static void nvic_recompute_state(NVICState *s) 289 { 290 int i; 291 int pend_prio = NVIC_NOEXC_PRIO; 292 int active_prio = NVIC_NOEXC_PRIO; 293 int pend_irq = 0; 294 295 /* In theory we could write one function that handled both 296 * the "security extension present" and "not present"; however 297 * the security related changes significantly complicate the 298 * recomputation just by themselves and mixing both cases together 299 * would be even worse, so we retain a separate non-secure-only 300 * version for CPUs which don't implement the security extension. 301 */ 302 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 303 nvic_recompute_state_secure(s); 304 return; 305 } 306 307 for (i = 1; i < s->num_irq; i++) { 308 VecInfo *vec = &s->vectors[i]; 309 310 if (vec->enabled && vec->pending && vec->prio < pend_prio) { 311 pend_prio = vec->prio; 312 pend_irq = i; 313 } 314 if (vec->active && vec->prio < active_prio) { 315 active_prio = vec->prio; 316 } 317 } 318 319 if (active_prio > 0) { 320 active_prio &= nvic_gprio_mask(s, false); 321 } 322 323 if (pend_prio > 0) { 324 pend_prio &= nvic_gprio_mask(s, false); 325 } 326 327 s->vectpending = pend_irq; 328 s->vectpending_prio = pend_prio; 329 s->exception_prio = active_prio; 330 331 trace_nvic_recompute_state(s->vectpending, 332 s->vectpending_prio, 333 s->exception_prio); 334 } 335 336 /* Return the current execution priority of the CPU 337 * (equivalent to the pseudocode ExecutionPriority function). 338 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO. 339 */ 340 static inline int nvic_exec_prio(NVICState *s) 341 { 342 CPUARMState *env = &s->cpu->env; 343 int running = NVIC_NOEXC_PRIO; 344 345 if (env->v7m.basepri[M_REG_NS] > 0) { 346 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS); 347 } 348 349 if (env->v7m.basepri[M_REG_S] > 0) { 350 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S); 351 if (running > basepri) { 352 running = basepri; 353 } 354 } 355 356 if (env->v7m.primask[M_REG_NS]) { 357 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 358 if (running > NVIC_NS_PRIO_LIMIT) { 359 running = NVIC_NS_PRIO_LIMIT; 360 } 361 } else { 362 running = 0; 363 } 364 } 365 366 if (env->v7m.primask[M_REG_S]) { 367 running = 0; 368 } 369 370 if (env->v7m.faultmask[M_REG_NS]) { 371 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 372 running = -1; 373 } else { 374 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 375 if (running > NVIC_NS_PRIO_LIMIT) { 376 running = NVIC_NS_PRIO_LIMIT; 377 } 378 } else { 379 running = 0; 380 } 381 } 382 } 383 384 if (env->v7m.faultmask[M_REG_S]) { 385 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1; 386 } 387 388 /* consider priority of active handler */ 389 return MIN(running, s->exception_prio); 390 } 391 392 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) 393 { 394 /* Return true if the requested execution priority is negative 395 * for the specified security state, ie that security state 396 * has an active NMI or HardFault or has set its FAULTMASK. 397 * Note that this is not the same as whether the execution 398 * priority is actually negative (for instance AIRCR.PRIS may 399 * mean we don't allow FAULTMASK_NS to actually make the execution 400 * priority negative). Compare pseudocode IsReqExcPriNeg(). 401 */ 402 NVICState *s = opaque; 403 404 if (s->cpu->env.v7m.faultmask[secure]) { 405 return true; 406 } 407 408 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active : 409 s->vectors[ARMV7M_EXCP_HARD].active) { 410 return true; 411 } 412 413 if (s->vectors[ARMV7M_EXCP_NMI].active && 414 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) { 415 return true; 416 } 417 418 return false; 419 } 420 421 bool armv7m_nvic_can_take_pending_exception(void *opaque) 422 { 423 NVICState *s = opaque; 424 425 return nvic_exec_prio(s) > nvic_pending_prio(s); 426 } 427 428 int armv7m_nvic_raw_execution_priority(void *opaque) 429 { 430 NVICState *s = opaque; 431 432 return s->exception_prio; 433 } 434 435 /* caller must call nvic_irq_update() after this. 436 * secure indicates the bank to use for banked exceptions (we assert if 437 * we are passed secure=true for a non-banked exception). 438 */ 439 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio) 440 { 441 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 442 assert(irq < s->num_irq); 443 444 prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits); 445 446 if (secure) { 447 assert(exc_is_banked(irq)); 448 s->sec_vectors[irq].prio = prio; 449 } else { 450 s->vectors[irq].prio = prio; 451 } 452 453 trace_nvic_set_prio(irq, secure, prio); 454 } 455 456 /* Return the current raw priority register value. 457 * secure indicates the bank to use for banked exceptions (we assert if 458 * we are passed secure=true for a non-banked exception). 459 */ 460 static int get_prio(NVICState *s, unsigned irq, bool secure) 461 { 462 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 463 assert(irq < s->num_irq); 464 465 if (secure) { 466 assert(exc_is_banked(irq)); 467 return s->sec_vectors[irq].prio; 468 } else { 469 return s->vectors[irq].prio; 470 } 471 } 472 473 /* Recompute state and assert irq line accordingly. 474 * Must be called after changes to: 475 * vec->active, vec->enabled, vec->pending or vec->prio for any vector 476 * prigroup 477 */ 478 static void nvic_irq_update(NVICState *s) 479 { 480 int lvl; 481 int pend_prio; 482 483 nvic_recompute_state(s); 484 pend_prio = nvic_pending_prio(s); 485 486 /* Raise NVIC output if this IRQ would be taken, except that we 487 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which 488 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes 489 * to those CPU registers don't cause us to recalculate the NVIC 490 * pending info. 491 */ 492 lvl = (pend_prio < s->exception_prio); 493 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl); 494 qemu_set_irq(s->excpout, lvl); 495 } 496 497 /** 498 * armv7m_nvic_clear_pending: mark the specified exception as not pending 499 * @opaque: the NVIC 500 * @irq: the exception number to mark as not pending 501 * @secure: false for non-banked exceptions or for the nonsecure 502 * version of a banked exception, true for the secure version of a banked 503 * exception. 504 * 505 * Marks the specified exception as not pending. Note that we will assert() 506 * if @secure is true and @irq does not specify one of the fixed set 507 * of architecturally banked exceptions. 508 */ 509 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure) 510 { 511 NVICState *s = (NVICState *)opaque; 512 VecInfo *vec; 513 514 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 515 516 if (secure) { 517 assert(exc_is_banked(irq)); 518 vec = &s->sec_vectors[irq]; 519 } else { 520 vec = &s->vectors[irq]; 521 } 522 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio); 523 if (vec->pending) { 524 vec->pending = 0; 525 nvic_irq_update(s); 526 } 527 } 528 529 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure, 530 bool derived) 531 { 532 /* Pend an exception, including possibly escalating it to HardFault. 533 * 534 * This function handles both "normal" pending of interrupts and 535 * exceptions, and also derived exceptions (ones which occur as 536 * a result of trying to take some other exception). 537 * 538 * If derived == true, the caller guarantees that we are part way through 539 * trying to take an exception (but have not yet called 540 * armv7m_nvic_acknowledge_irq() to make it active), and so: 541 * - s->vectpending is the "original exception" we were trying to take 542 * - irq is the "derived exception" 543 * - nvic_exec_prio(s) gives the priority before exception entry 544 * Here we handle the prioritization logic which the pseudocode puts 545 * in the DerivedLateArrival() function. 546 */ 547 548 NVICState *s = (NVICState *)opaque; 549 bool banked = exc_is_banked(irq); 550 VecInfo *vec; 551 bool targets_secure; 552 553 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 554 assert(!secure || banked); 555 556 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 557 558 targets_secure = banked ? secure : exc_targets_secure(s, irq); 559 560 trace_nvic_set_pending(irq, secure, targets_secure, 561 derived, vec->enabled, vec->prio); 562 563 if (derived) { 564 /* Derived exceptions are always synchronous. */ 565 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV); 566 567 if (irq == ARMV7M_EXCP_DEBUG && 568 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) { 569 /* DebugMonitorFault, but its priority is lower than the 570 * preempted exception priority: just ignore it. 571 */ 572 return; 573 } 574 575 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) { 576 /* If this is a terminal exception (one which means we cannot 577 * take the original exception, like a failure to read its 578 * vector table entry), then we must take the derived exception. 579 * If the derived exception can't take priority over the 580 * original exception, then we go into Lockup. 581 * 582 * For QEMU, we rely on the fact that a derived exception is 583 * terminal if and only if it's reported to us as HardFault, 584 * which saves having to have an extra argument is_terminal 585 * that we'd only use in one place. 586 */ 587 cpu_abort(&s->cpu->parent_obj, 588 "Lockup: can't take terminal derived exception " 589 "(original exception priority %d)\n", 590 s->vectpending_prio); 591 } 592 /* We now continue with the same code as for a normal pending 593 * exception, which will cause us to pend the derived exception. 594 * We'll then take either the original or the derived exception 595 * based on which is higher priority by the usual mechanism 596 * for selecting the highest priority pending interrupt. 597 */ 598 } 599 600 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) { 601 /* If a synchronous exception is pending then it may be 602 * escalated to HardFault if: 603 * * it is equal or lower priority to current execution 604 * * it is disabled 605 * (ie we need to take it immediately but we can't do so). 606 * Asynchronous exceptions (and interrupts) simply remain pending. 607 * 608 * For QEMU, we don't have any imprecise (asynchronous) faults, 609 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always 610 * synchronous. 611 * Debug exceptions are awkward because only Debug exceptions 612 * resulting from the BKPT instruction should be escalated, 613 * but we don't currently implement any Debug exceptions other 614 * than those that result from BKPT, so we treat all debug exceptions 615 * as needing escalation. 616 * 617 * This all means we can identify whether to escalate based only on 618 * the exception number and don't (yet) need the caller to explicitly 619 * tell us whether this exception is synchronous or not. 620 */ 621 int running = nvic_exec_prio(s); 622 bool escalate = false; 623 624 if (exc_group_prio(s, vec->prio, secure) >= running) { 625 trace_nvic_escalate_prio(irq, vec->prio, running); 626 escalate = true; 627 } else if (!vec->enabled) { 628 trace_nvic_escalate_disabled(irq); 629 escalate = true; 630 } 631 632 if (escalate) { 633 634 /* We need to escalate this exception to a synchronous HardFault. 635 * If BFHFNMINS is set then we escalate to the banked HF for 636 * the target security state of the original exception; otherwise 637 * we take a Secure HardFault. 638 */ 639 irq = ARMV7M_EXCP_HARD; 640 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && 641 (targets_secure || 642 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { 643 vec = &s->sec_vectors[irq]; 644 } else { 645 vec = &s->vectors[irq]; 646 } 647 if (running <= vec->prio) { 648 /* We want to escalate to HardFault but we can't take the 649 * synchronous HardFault at this point either. This is a 650 * Lockup condition due to a guest bug. We don't model 651 * Lockup, so report via cpu_abort() instead. 652 */ 653 cpu_abort(&s->cpu->parent_obj, 654 "Lockup: can't escalate %d to HardFault " 655 "(current priority %d)\n", irq, running); 656 } 657 658 /* HF may be banked but there is only one shared HFSR */ 659 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 660 } 661 } 662 663 if (!vec->pending) { 664 vec->pending = 1; 665 nvic_irq_update(s); 666 } 667 } 668 669 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure) 670 { 671 do_armv7m_nvic_set_pending(opaque, irq, secure, false); 672 } 673 674 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure) 675 { 676 do_armv7m_nvic_set_pending(opaque, irq, secure, true); 677 } 678 679 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure) 680 { 681 /* 682 * Pend an exception during lazy FP stacking. This differs 683 * from the usual exception pending because the logic for 684 * whether we should escalate depends on the saved context 685 * in the FPCCR register, not on the current state of the CPU/NVIC. 686 */ 687 NVICState *s = (NVICState *)opaque; 688 bool banked = exc_is_banked(irq); 689 VecInfo *vec; 690 bool targets_secure; 691 bool escalate = false; 692 /* 693 * We will only look at bits in fpccr if this is a banked exception 694 * (in which case 'secure' tells us whether it is the S or NS version). 695 * All the bits for the non-banked exceptions are in fpccr_s. 696 */ 697 uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S]; 698 uint32_t fpccr = s->cpu->env.v7m.fpccr[secure]; 699 700 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 701 assert(!secure || banked); 702 703 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 704 705 targets_secure = banked ? secure : exc_targets_secure(s, irq); 706 707 switch (irq) { 708 case ARMV7M_EXCP_DEBUG: 709 if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) { 710 /* Ignore DebugMonitor exception */ 711 return; 712 } 713 break; 714 case ARMV7M_EXCP_MEM: 715 escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK); 716 break; 717 case ARMV7M_EXCP_USAGE: 718 escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK); 719 break; 720 case ARMV7M_EXCP_BUS: 721 escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK); 722 break; 723 case ARMV7M_EXCP_SECURE: 724 escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK); 725 break; 726 default: 727 g_assert_not_reached(); 728 } 729 730 if (escalate) { 731 /* 732 * Escalate to HardFault: faults that initially targeted Secure 733 * continue to do so, even if HF normally targets NonSecure. 734 */ 735 irq = ARMV7M_EXCP_HARD; 736 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && 737 (targets_secure || 738 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { 739 vec = &s->sec_vectors[irq]; 740 } else { 741 vec = &s->vectors[irq]; 742 } 743 } 744 745 if (!vec->enabled || 746 nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) { 747 if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) { 748 /* 749 * We want to escalate to HardFault but the context the 750 * FP state belongs to prevents the exception pre-empting. 751 */ 752 cpu_abort(&s->cpu->parent_obj, 753 "Lockup: can't escalate to HardFault during " 754 "lazy FP register stacking\n"); 755 } 756 } 757 758 if (escalate) { 759 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 760 } 761 if (!vec->pending) { 762 vec->pending = 1; 763 /* 764 * We do not call nvic_irq_update(), because we know our caller 765 * is going to handle causing us to take the exception by 766 * raising EXCP_LAZYFP, so raising the IRQ line would be 767 * pointless extra work. We just need to recompute the 768 * priorities so that armv7m_nvic_can_take_pending_exception() 769 * returns the right answer. 770 */ 771 nvic_recompute_state(s); 772 } 773 } 774 775 /* Make pending IRQ active. */ 776 void armv7m_nvic_acknowledge_irq(void *opaque) 777 { 778 NVICState *s = (NVICState *)opaque; 779 CPUARMState *env = &s->cpu->env; 780 const int pending = s->vectpending; 781 const int running = nvic_exec_prio(s); 782 VecInfo *vec; 783 784 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 785 786 if (s->vectpending_is_s_banked) { 787 vec = &s->sec_vectors[pending]; 788 } else { 789 vec = &s->vectors[pending]; 790 } 791 792 assert(vec->enabled); 793 assert(vec->pending); 794 795 assert(s->vectpending_prio < running); 796 797 trace_nvic_acknowledge_irq(pending, s->vectpending_prio); 798 799 vec->active = 1; 800 vec->pending = 0; 801 802 write_v7m_exception(env, s->vectpending); 803 804 nvic_irq_update(s); 805 } 806 807 void armv7m_nvic_get_pending_irq_info(void *opaque, 808 int *pirq, bool *ptargets_secure) 809 { 810 NVICState *s = (NVICState *)opaque; 811 const int pending = s->vectpending; 812 bool targets_secure; 813 814 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 815 816 if (s->vectpending_is_s_banked) { 817 targets_secure = true; 818 } else { 819 targets_secure = !exc_is_banked(pending) && 820 exc_targets_secure(s, pending); 821 } 822 823 trace_nvic_get_pending_irq_info(pending, targets_secure); 824 825 *ptargets_secure = targets_secure; 826 *pirq = pending; 827 } 828 829 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure) 830 { 831 NVICState *s = (NVICState *)opaque; 832 VecInfo *vec = NULL; 833 int ret = 0; 834 835 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 836 837 trace_nvic_complete_irq(irq, secure); 838 839 if (secure && exc_is_banked(irq)) { 840 vec = &s->sec_vectors[irq]; 841 } else { 842 vec = &s->vectors[irq]; 843 } 844 845 /* 846 * Identify illegal exception return cases. We can't immediately 847 * return at this point because we still need to deactivate 848 * (either this exception or NMI/HardFault) first. 849 */ 850 if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) { 851 /* 852 * Return from a configurable exception targeting the opposite 853 * security state from the one we're trying to complete it for. 854 * Clear vec because it's not really the VecInfo for this 855 * (irq, secstate) so we mustn't deactivate it. 856 */ 857 ret = -1; 858 vec = NULL; 859 } else if (!vec->active) { 860 /* Return from an inactive interrupt */ 861 ret = -1; 862 } else { 863 /* Legal return, we will return the RETTOBASE bit value to the caller */ 864 ret = nvic_rettobase(s); 865 } 866 867 /* 868 * For negative priorities, v8M will forcibly deactivate the appropriate 869 * NMI or HardFault regardless of what interrupt we're being asked to 870 * deactivate (compare the DeActivate() pseudocode). This is a guard 871 * against software returning from NMI or HardFault with a corrupted 872 * IPSR and leaving the CPU in a negative-priority state. 873 * v7M does not do this, but simply deactivates the requested interrupt. 874 */ 875 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { 876 switch (armv7m_nvic_raw_execution_priority(s)) { 877 case -1: 878 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 879 vec = &s->vectors[ARMV7M_EXCP_HARD]; 880 } else { 881 vec = &s->sec_vectors[ARMV7M_EXCP_HARD]; 882 } 883 break; 884 case -2: 885 vec = &s->vectors[ARMV7M_EXCP_NMI]; 886 break; 887 case -3: 888 vec = &s->sec_vectors[ARMV7M_EXCP_HARD]; 889 break; 890 default: 891 break; 892 } 893 } 894 895 if (!vec) { 896 return ret; 897 } 898 899 vec->active = 0; 900 if (vec->level) { 901 /* Re-pend the exception if it's still held high; only 902 * happens for extenal IRQs 903 */ 904 assert(irq >= NVIC_FIRST_IRQ); 905 vec->pending = 1; 906 } 907 908 nvic_irq_update(s); 909 910 return ret; 911 } 912 913 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure) 914 { 915 /* 916 * Return whether an exception is "ready", i.e. it is enabled and is 917 * configured at a priority which would allow it to interrupt the 918 * current execution priority. 919 * 920 * irq and secure have the same semantics as for armv7m_nvic_set_pending(): 921 * for non-banked exceptions secure is always false; for banked exceptions 922 * it indicates which of the exceptions is required. 923 */ 924 NVICState *s = (NVICState *)opaque; 925 bool banked = exc_is_banked(irq); 926 VecInfo *vec; 927 int running = nvic_exec_prio(s); 928 929 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 930 assert(!secure || banked); 931 932 /* 933 * HardFault is an odd special case: we always check against -1, 934 * even if we're secure and HardFault has priority -3; we never 935 * need to check for enabled state. 936 */ 937 if (irq == ARMV7M_EXCP_HARD) { 938 return running > -1; 939 } 940 941 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 942 943 return vec->enabled && 944 exc_group_prio(s, vec->prio, secure) < running; 945 } 946 947 /* callback when external interrupt line is changed */ 948 static void set_irq_level(void *opaque, int n, int level) 949 { 950 NVICState *s = opaque; 951 VecInfo *vec; 952 953 n += NVIC_FIRST_IRQ; 954 955 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq); 956 957 trace_nvic_set_irq_level(n, level); 958 959 /* The pending status of an external interrupt is 960 * latched on rising edge and exception handler return. 961 * 962 * Pulsing the IRQ will always run the handler 963 * once, and the handler will re-run until the 964 * level is low when the handler completes. 965 */ 966 vec = &s->vectors[n]; 967 if (level != vec->level) { 968 vec->level = level; 969 if (level) { 970 armv7m_nvic_set_pending(s, n, false); 971 } 972 } 973 } 974 975 /* callback when external NMI line is changed */ 976 static void nvic_nmi_trigger(void *opaque, int n, int level) 977 { 978 NVICState *s = opaque; 979 980 trace_nvic_set_nmi_level(level); 981 982 /* 983 * The architecture doesn't specify whether NMI should share 984 * the normal-interrupt behaviour of being resampled on 985 * exception handler return. We choose not to, so just 986 * set NMI pending here and don't track the current level. 987 */ 988 if (level) { 989 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); 990 } 991 } 992 993 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs) 994 { 995 ARMCPU *cpu = s->cpu; 996 uint32_t val; 997 998 switch (offset) { 999 case 4: /* Interrupt Control Type. */ 1000 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1001 goto bad_offset; 1002 } 1003 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1; 1004 case 0xc: /* CPPWR */ 1005 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1006 goto bad_offset; 1007 } 1008 /* We make the IMPDEF choice that nothing can ever go into a 1009 * non-retentive power state, which allows us to RAZ/WI this. 1010 */ 1011 return 0; 1012 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 1013 { 1014 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 1015 int i; 1016 1017 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1018 goto bad_offset; 1019 } 1020 if (!attrs.secure) { 1021 return 0; 1022 } 1023 val = 0; 1024 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 1025 if (s->itns[startvec + i]) { 1026 val |= (1 << i); 1027 } 1028 } 1029 return val; 1030 } 1031 case 0xcfc: 1032 if (!arm_feature(&cpu->env, ARM_FEATURE_V8_1M)) { 1033 goto bad_offset; 1034 } 1035 return cpu->revidr; 1036 case 0xd00: /* CPUID Base. */ 1037 return cpu->midr; 1038 case 0xd04: /* Interrupt Control State (ICSR) */ 1039 /* VECTACTIVE */ 1040 val = cpu->env.v7m.exception; 1041 /* VECTPENDING */ 1042 val |= (s->vectpending & 0x1ff) << 12; 1043 /* ISRPENDING - set if any external IRQ is pending */ 1044 if (nvic_isrpending(s)) { 1045 val |= (1 << 22); 1046 } 1047 /* RETTOBASE - set if only one handler is active */ 1048 if (nvic_rettobase(s)) { 1049 val |= (1 << 11); 1050 } 1051 if (attrs.secure) { 1052 /* PENDSTSET */ 1053 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) { 1054 val |= (1 << 26); 1055 } 1056 /* PENDSVSET */ 1057 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) { 1058 val |= (1 << 28); 1059 } 1060 } else { 1061 /* PENDSTSET */ 1062 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) { 1063 val |= (1 << 26); 1064 } 1065 /* PENDSVSET */ 1066 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) { 1067 val |= (1 << 28); 1068 } 1069 } 1070 /* NMIPENDSET */ 1071 if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) 1072 && s->vectors[ARMV7M_EXCP_NMI].pending) { 1073 val |= (1 << 31); 1074 } 1075 /* ISRPREEMPT: RES0 when halting debug not implemented */ 1076 /* STTNS: RES0 for the Main Extension */ 1077 return val; 1078 case 0xd08: /* Vector Table Offset. */ 1079 return cpu->env.v7m.vecbase[attrs.secure]; 1080 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 1081 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8); 1082 if (attrs.secure) { 1083 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */ 1084 val |= cpu->env.v7m.aircr; 1085 } else { 1086 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1087 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If 1088 * security isn't supported then BFHFNMINS is RAO (and 1089 * the bit in env.v7m.aircr is always set). 1090 */ 1091 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK; 1092 } 1093 } 1094 return val; 1095 case 0xd10: /* System Control. */ 1096 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1097 goto bad_offset; 1098 } 1099 return cpu->env.v7m.scr[attrs.secure]; 1100 case 0xd14: /* Configuration Control. */ 1101 /* 1102 * Non-banked bits: BFHFNMIGN (stored in the NS copy of the register) 1103 * and TRD (stored in the S copy of the register) 1104 */ 1105 val = cpu->env.v7m.ccr[attrs.secure]; 1106 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; 1107 /* BFHFNMIGN is RAZ/WI from NS if AIRCR.BFHFNMINS is 0 */ 1108 if (!attrs.secure) { 1109 if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1110 val &= ~R_V7M_CCR_BFHFNMIGN_MASK; 1111 } 1112 } 1113 return val; 1114 case 0xd24: /* System Handler Control and State (SHCSR) */ 1115 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1116 goto bad_offset; 1117 } 1118 val = 0; 1119 if (attrs.secure) { 1120 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) { 1121 val |= (1 << 0); 1122 } 1123 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) { 1124 val |= (1 << 2); 1125 } 1126 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) { 1127 val |= (1 << 3); 1128 } 1129 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) { 1130 val |= (1 << 7); 1131 } 1132 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) { 1133 val |= (1 << 10); 1134 } 1135 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) { 1136 val |= (1 << 11); 1137 } 1138 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) { 1139 val |= (1 << 12); 1140 } 1141 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) { 1142 val |= (1 << 13); 1143 } 1144 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) { 1145 val |= (1 << 15); 1146 } 1147 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) { 1148 val |= (1 << 16); 1149 } 1150 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) { 1151 val |= (1 << 18); 1152 } 1153 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) { 1154 val |= (1 << 21); 1155 } 1156 /* SecureFault is not banked but is always RAZ/WI to NS */ 1157 if (s->vectors[ARMV7M_EXCP_SECURE].active) { 1158 val |= (1 << 4); 1159 } 1160 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) { 1161 val |= (1 << 19); 1162 } 1163 if (s->vectors[ARMV7M_EXCP_SECURE].pending) { 1164 val |= (1 << 20); 1165 } 1166 } else { 1167 if (s->vectors[ARMV7M_EXCP_MEM].active) { 1168 val |= (1 << 0); 1169 } 1170 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1171 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */ 1172 if (s->vectors[ARMV7M_EXCP_HARD].active) { 1173 val |= (1 << 2); 1174 } 1175 if (s->vectors[ARMV7M_EXCP_HARD].pending) { 1176 val |= (1 << 21); 1177 } 1178 } 1179 if (s->vectors[ARMV7M_EXCP_USAGE].active) { 1180 val |= (1 << 3); 1181 } 1182 if (s->vectors[ARMV7M_EXCP_SVC].active) { 1183 val |= (1 << 7); 1184 } 1185 if (s->vectors[ARMV7M_EXCP_PENDSV].active) { 1186 val |= (1 << 10); 1187 } 1188 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) { 1189 val |= (1 << 11); 1190 } 1191 if (s->vectors[ARMV7M_EXCP_USAGE].pending) { 1192 val |= (1 << 12); 1193 } 1194 if (s->vectors[ARMV7M_EXCP_MEM].pending) { 1195 val |= (1 << 13); 1196 } 1197 if (s->vectors[ARMV7M_EXCP_SVC].pending) { 1198 val |= (1 << 15); 1199 } 1200 if (s->vectors[ARMV7M_EXCP_MEM].enabled) { 1201 val |= (1 << 16); 1202 } 1203 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) { 1204 val |= (1 << 18); 1205 } 1206 } 1207 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1208 if (s->vectors[ARMV7M_EXCP_BUS].active) { 1209 val |= (1 << 1); 1210 } 1211 if (s->vectors[ARMV7M_EXCP_BUS].pending) { 1212 val |= (1 << 14); 1213 } 1214 if (s->vectors[ARMV7M_EXCP_BUS].enabled) { 1215 val |= (1 << 17); 1216 } 1217 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 1218 s->vectors[ARMV7M_EXCP_NMI].active) { 1219 /* NMIACT is not present in v7M */ 1220 val |= (1 << 5); 1221 } 1222 } 1223 1224 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 1225 if (s->vectors[ARMV7M_EXCP_DEBUG].active) { 1226 val |= (1 << 8); 1227 } 1228 return val; 1229 case 0xd2c: /* Hard Fault Status. */ 1230 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1231 goto bad_offset; 1232 } 1233 return cpu->env.v7m.hfsr; 1234 case 0xd30: /* Debug Fault Status. */ 1235 return cpu->env.v7m.dfsr; 1236 case 0xd34: /* MMFAR MemManage Fault Address */ 1237 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1238 goto bad_offset; 1239 } 1240 return cpu->env.v7m.mmfar[attrs.secure]; 1241 case 0xd38: /* Bus Fault Address. */ 1242 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1243 goto bad_offset; 1244 } 1245 if (!attrs.secure && 1246 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1247 return 0; 1248 } 1249 return cpu->env.v7m.bfar; 1250 case 0xd3c: /* Aux Fault Status. */ 1251 /* TODO: Implement fault status registers. */ 1252 qemu_log_mask(LOG_UNIMP, 1253 "Aux Fault status registers unimplemented\n"); 1254 return 0; 1255 case 0xd40: /* PFR0. */ 1256 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1257 goto bad_offset; 1258 } 1259 return cpu->isar.id_pfr0; 1260 case 0xd44: /* PFR1. */ 1261 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1262 goto bad_offset; 1263 } 1264 return cpu->isar.id_pfr1; 1265 case 0xd48: /* DFR0. */ 1266 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1267 goto bad_offset; 1268 } 1269 return cpu->isar.id_dfr0; 1270 case 0xd4c: /* AFR0. */ 1271 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1272 goto bad_offset; 1273 } 1274 return cpu->id_afr0; 1275 case 0xd50: /* MMFR0. */ 1276 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1277 goto bad_offset; 1278 } 1279 return cpu->isar.id_mmfr0; 1280 case 0xd54: /* MMFR1. */ 1281 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1282 goto bad_offset; 1283 } 1284 return cpu->isar.id_mmfr1; 1285 case 0xd58: /* MMFR2. */ 1286 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1287 goto bad_offset; 1288 } 1289 return cpu->isar.id_mmfr2; 1290 case 0xd5c: /* MMFR3. */ 1291 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1292 goto bad_offset; 1293 } 1294 return cpu->isar.id_mmfr3; 1295 case 0xd60: /* ISAR0. */ 1296 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1297 goto bad_offset; 1298 } 1299 return cpu->isar.id_isar0; 1300 case 0xd64: /* ISAR1. */ 1301 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1302 goto bad_offset; 1303 } 1304 return cpu->isar.id_isar1; 1305 case 0xd68: /* ISAR2. */ 1306 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1307 goto bad_offset; 1308 } 1309 return cpu->isar.id_isar2; 1310 case 0xd6c: /* ISAR3. */ 1311 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1312 goto bad_offset; 1313 } 1314 return cpu->isar.id_isar3; 1315 case 0xd70: /* ISAR4. */ 1316 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1317 goto bad_offset; 1318 } 1319 return cpu->isar.id_isar4; 1320 case 0xd74: /* ISAR5. */ 1321 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1322 goto bad_offset; 1323 } 1324 return cpu->isar.id_isar5; 1325 case 0xd78: /* CLIDR */ 1326 return cpu->clidr; 1327 case 0xd7c: /* CTR */ 1328 return cpu->ctr; 1329 case 0xd80: /* CSSIDR */ 1330 { 1331 int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK; 1332 return cpu->ccsidr[idx]; 1333 } 1334 case 0xd84: /* CSSELR */ 1335 return cpu->env.v7m.csselr[attrs.secure]; 1336 case 0xd88: /* CPACR */ 1337 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1338 return 0; 1339 } 1340 return cpu->env.v7m.cpacr[attrs.secure]; 1341 case 0xd8c: /* NSACR */ 1342 if (!attrs.secure || !cpu_isar_feature(aa32_vfp_simd, cpu)) { 1343 return 0; 1344 } 1345 return cpu->env.v7m.nsacr; 1346 /* TODO: Implement debug registers. */ 1347 case 0xd90: /* MPU_TYPE */ 1348 /* Unified MPU; if the MPU is not present this value is zero */ 1349 return cpu->pmsav7_dregion << 8; 1350 case 0xd94: /* MPU_CTRL */ 1351 return cpu->env.v7m.mpu_ctrl[attrs.secure]; 1352 case 0xd98: /* MPU_RNR */ 1353 return cpu->env.pmsav7.rnr[attrs.secure]; 1354 case 0xd9c: /* MPU_RBAR */ 1355 case 0xda4: /* MPU_RBAR_A1 */ 1356 case 0xdac: /* MPU_RBAR_A2 */ 1357 case 0xdb4: /* MPU_RBAR_A3 */ 1358 { 1359 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1360 1361 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1362 /* PMSAv8M handling of the aliases is different from v7M: 1363 * aliases A1, A2, A3 override the low two bits of the region 1364 * number in MPU_RNR, and there is no 'region' field in the 1365 * RBAR register. 1366 */ 1367 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1368 if (aliasno) { 1369 region = deposit32(region, 0, 2, aliasno); 1370 } 1371 if (region >= cpu->pmsav7_dregion) { 1372 return 0; 1373 } 1374 return cpu->env.pmsav8.rbar[attrs.secure][region]; 1375 } 1376 1377 if (region >= cpu->pmsav7_dregion) { 1378 return 0; 1379 } 1380 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf); 1381 } 1382 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1383 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1384 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1385 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1386 { 1387 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1388 1389 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1390 /* PMSAv8M handling of the aliases is different from v7M: 1391 * aliases A1, A2, A3 override the low two bits of the region 1392 * number in MPU_RNR. 1393 */ 1394 int aliasno = (offset - 0xda0) / 8; /* 0..3 */ 1395 if (aliasno) { 1396 region = deposit32(region, 0, 2, aliasno); 1397 } 1398 if (region >= cpu->pmsav7_dregion) { 1399 return 0; 1400 } 1401 return cpu->env.pmsav8.rlar[attrs.secure][region]; 1402 } 1403 1404 if (region >= cpu->pmsav7_dregion) { 1405 return 0; 1406 } 1407 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) | 1408 (cpu->env.pmsav7.drsr[region] & 0xffff); 1409 } 1410 case 0xdc0: /* MPU_MAIR0 */ 1411 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1412 goto bad_offset; 1413 } 1414 return cpu->env.pmsav8.mair0[attrs.secure]; 1415 case 0xdc4: /* MPU_MAIR1 */ 1416 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1417 goto bad_offset; 1418 } 1419 return cpu->env.pmsav8.mair1[attrs.secure]; 1420 case 0xdd0: /* SAU_CTRL */ 1421 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1422 goto bad_offset; 1423 } 1424 if (!attrs.secure) { 1425 return 0; 1426 } 1427 return cpu->env.sau.ctrl; 1428 case 0xdd4: /* SAU_TYPE */ 1429 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1430 goto bad_offset; 1431 } 1432 if (!attrs.secure) { 1433 return 0; 1434 } 1435 return cpu->sau_sregion; 1436 case 0xdd8: /* SAU_RNR */ 1437 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1438 goto bad_offset; 1439 } 1440 if (!attrs.secure) { 1441 return 0; 1442 } 1443 return cpu->env.sau.rnr; 1444 case 0xddc: /* SAU_RBAR */ 1445 { 1446 int region = cpu->env.sau.rnr; 1447 1448 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1449 goto bad_offset; 1450 } 1451 if (!attrs.secure) { 1452 return 0; 1453 } 1454 if (region >= cpu->sau_sregion) { 1455 return 0; 1456 } 1457 return cpu->env.sau.rbar[region]; 1458 } 1459 case 0xde0: /* SAU_RLAR */ 1460 { 1461 int region = cpu->env.sau.rnr; 1462 1463 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1464 goto bad_offset; 1465 } 1466 if (!attrs.secure) { 1467 return 0; 1468 } 1469 if (region >= cpu->sau_sregion) { 1470 return 0; 1471 } 1472 return cpu->env.sau.rlar[region]; 1473 } 1474 case 0xde4: /* SFSR */ 1475 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1476 goto bad_offset; 1477 } 1478 if (!attrs.secure) { 1479 return 0; 1480 } 1481 return cpu->env.v7m.sfsr; 1482 case 0xde8: /* SFAR */ 1483 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1484 goto bad_offset; 1485 } 1486 if (!attrs.secure) { 1487 return 0; 1488 } 1489 return cpu->env.v7m.sfar; 1490 case 0xf04: /* RFSR */ 1491 if (!cpu_isar_feature(aa32_ras, cpu)) { 1492 goto bad_offset; 1493 } 1494 /* We provide minimal-RAS only: RFSR is RAZ/WI */ 1495 return 0; 1496 case 0xf34: /* FPCCR */ 1497 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1498 return 0; 1499 } 1500 if (attrs.secure) { 1501 return cpu->env.v7m.fpccr[M_REG_S]; 1502 } else { 1503 /* 1504 * NS can read LSPEN, CLRONRET and MONRDY. It can read 1505 * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0; 1506 * other non-banked bits RAZ. 1507 * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set. 1508 */ 1509 uint32_t value = cpu->env.v7m.fpccr[M_REG_S]; 1510 uint32_t mask = R_V7M_FPCCR_LSPEN_MASK | 1511 R_V7M_FPCCR_CLRONRET_MASK | 1512 R_V7M_FPCCR_MONRDY_MASK; 1513 1514 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1515 mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK; 1516 } 1517 1518 value &= mask; 1519 1520 value |= cpu->env.v7m.fpccr[M_REG_NS]; 1521 return value; 1522 } 1523 case 0xf38: /* FPCAR */ 1524 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1525 return 0; 1526 } 1527 return cpu->env.v7m.fpcar[attrs.secure]; 1528 case 0xf3c: /* FPDSCR */ 1529 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1530 return 0; 1531 } 1532 return cpu->env.v7m.fpdscr[attrs.secure]; 1533 case 0xf40: /* MVFR0 */ 1534 return cpu->isar.mvfr0; 1535 case 0xf44: /* MVFR1 */ 1536 return cpu->isar.mvfr1; 1537 case 0xf48: /* MVFR2 */ 1538 return cpu->isar.mvfr2; 1539 default: 1540 bad_offset: 1541 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset); 1542 return 0; 1543 } 1544 } 1545 1546 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value, 1547 MemTxAttrs attrs) 1548 { 1549 ARMCPU *cpu = s->cpu; 1550 1551 switch (offset) { 1552 case 0xc: /* CPPWR */ 1553 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1554 goto bad_offset; 1555 } 1556 /* Make the IMPDEF choice to RAZ/WI this. */ 1557 break; 1558 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 1559 { 1560 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 1561 int i; 1562 1563 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1564 goto bad_offset; 1565 } 1566 if (!attrs.secure) { 1567 break; 1568 } 1569 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 1570 s->itns[startvec + i] = (value >> i) & 1; 1571 } 1572 nvic_irq_update(s); 1573 break; 1574 } 1575 case 0xd04: /* Interrupt Control State (ICSR) */ 1576 if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1577 if (value & (1 << 31)) { 1578 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); 1579 } else if (value & (1 << 30) && 1580 arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1581 /* PENDNMICLR didn't exist in v7M */ 1582 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false); 1583 } 1584 } 1585 if (value & (1 << 28)) { 1586 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1587 } else if (value & (1 << 27)) { 1588 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1589 } 1590 if (value & (1 << 26)) { 1591 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1592 } else if (value & (1 << 25)) { 1593 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1594 } 1595 break; 1596 case 0xd08: /* Vector Table Offset. */ 1597 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80; 1598 break; 1599 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 1600 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) { 1601 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) { 1602 if (attrs.secure || 1603 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) { 1604 signal_sysresetreq(s); 1605 } 1606 } 1607 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) { 1608 qemu_log_mask(LOG_GUEST_ERROR, 1609 "Setting VECTCLRACTIVE when not in DEBUG mode " 1610 "is UNPREDICTABLE\n"); 1611 } 1612 if (value & R_V7M_AIRCR_VECTRESET_MASK) { 1613 /* NB: this bit is RES0 in v8M */ 1614 qemu_log_mask(LOG_GUEST_ERROR, 1615 "Setting VECTRESET when not in DEBUG mode " 1616 "is UNPREDICTABLE\n"); 1617 } 1618 if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1619 s->prigroup[attrs.secure] = 1620 extract32(value, 1621 R_V7M_AIRCR_PRIGROUP_SHIFT, 1622 R_V7M_AIRCR_PRIGROUP_LENGTH); 1623 } 1624 /* AIRCR.IESB is RAZ/WI because we implement only minimal RAS */ 1625 if (attrs.secure) { 1626 /* These bits are only writable by secure */ 1627 cpu->env.v7m.aircr = value & 1628 (R_V7M_AIRCR_SYSRESETREQS_MASK | 1629 R_V7M_AIRCR_BFHFNMINS_MASK | 1630 R_V7M_AIRCR_PRIS_MASK); 1631 /* BFHFNMINS changes the priority of Secure HardFault, and 1632 * allows a pending Non-secure HardFault to preempt (which 1633 * we implement by marking it enabled). 1634 */ 1635 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1636 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3; 1637 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 1638 } else { 1639 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 1640 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 1641 } 1642 } 1643 nvic_irq_update(s); 1644 } 1645 break; 1646 case 0xd10: /* System Control. */ 1647 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1648 goto bad_offset; 1649 } 1650 /* We don't implement deep-sleep so these bits are RAZ/WI. 1651 * The other bits in the register are banked. 1652 * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which 1653 * is architecturally permitted. 1654 */ 1655 value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK); 1656 cpu->env.v7m.scr[attrs.secure] = value; 1657 break; 1658 case 0xd14: /* Configuration Control. */ 1659 { 1660 uint32_t mask; 1661 1662 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1663 goto bad_offset; 1664 } 1665 1666 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */ 1667 mask = R_V7M_CCR_STKALIGN_MASK | 1668 R_V7M_CCR_BFHFNMIGN_MASK | 1669 R_V7M_CCR_DIV_0_TRP_MASK | 1670 R_V7M_CCR_UNALIGN_TRP_MASK | 1671 R_V7M_CCR_USERSETMPEND_MASK | 1672 R_V7M_CCR_NONBASETHRDENA_MASK; 1673 if (arm_feature(&cpu->env, ARM_FEATURE_V8_1M) && attrs.secure) { 1674 /* TRD is always RAZ/WI from NS */ 1675 mask |= R_V7M_CCR_TRD_MASK; 1676 } 1677 value &= mask; 1678 1679 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1680 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */ 1681 value |= R_V7M_CCR_NONBASETHRDENA_MASK 1682 | R_V7M_CCR_STKALIGN_MASK; 1683 } 1684 if (attrs.secure) { 1685 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */ 1686 cpu->env.v7m.ccr[M_REG_NS] = 1687 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK) 1688 | (value & R_V7M_CCR_BFHFNMIGN_MASK); 1689 value &= ~R_V7M_CCR_BFHFNMIGN_MASK; 1690 } else { 1691 /* 1692 * BFHFNMIGN is RAZ/WI from NS if AIRCR.BFHFNMINS is 0, so 1693 * preserve the state currently in the NS element of the array 1694 */ 1695 if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1696 value &= ~R_V7M_CCR_BFHFNMIGN_MASK; 1697 value |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; 1698 } 1699 } 1700 1701 cpu->env.v7m.ccr[attrs.secure] = value; 1702 break; 1703 } 1704 case 0xd24: /* System Handler Control and State (SHCSR) */ 1705 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1706 goto bad_offset; 1707 } 1708 if (attrs.secure) { 1709 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1710 /* Secure HardFault active bit cannot be written */ 1711 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1712 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1713 s->sec_vectors[ARMV7M_EXCP_PENDSV].active = 1714 (value & (1 << 10)) != 0; 1715 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active = 1716 (value & (1 << 11)) != 0; 1717 s->sec_vectors[ARMV7M_EXCP_USAGE].pending = 1718 (value & (1 << 12)) != 0; 1719 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1720 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1721 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1722 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1723 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled = 1724 (value & (1 << 18)) != 0; 1725 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1726 /* SecureFault not banked, but RAZ/WI to NS */ 1727 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0; 1728 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0; 1729 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0; 1730 } else { 1731 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1732 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1733 /* HARDFAULTPENDED is not present in v7M */ 1734 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1735 } 1736 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1737 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1738 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0; 1739 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0; 1740 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0; 1741 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1742 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1743 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1744 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; 1745 } 1746 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1747 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0; 1748 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0; 1749 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1750 } 1751 /* NMIACT can only be written if the write is of a zero, with 1752 * BFHFNMINS 1, and by the CPU in secure state via the NS alias. 1753 */ 1754 if (!attrs.secure && cpu->env.v7m.secure && 1755 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1756 (value & (1 << 5)) == 0) { 1757 s->vectors[ARMV7M_EXCP_NMI].active = 0; 1758 } 1759 /* HARDFAULTACT can only be written if the write is of a zero 1760 * to the non-secure HardFault state by the CPU in secure state. 1761 * The only case where we can be targeting the non-secure HF state 1762 * when in secure state is if this is a write via the NS alias 1763 * and BFHFNMINS is 1. 1764 */ 1765 if (!attrs.secure && cpu->env.v7m.secure && 1766 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1767 (value & (1 << 2)) == 0) { 1768 s->vectors[ARMV7M_EXCP_HARD].active = 0; 1769 } 1770 1771 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 1772 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0; 1773 nvic_irq_update(s); 1774 break; 1775 case 0xd2c: /* Hard Fault Status. */ 1776 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1777 goto bad_offset; 1778 } 1779 cpu->env.v7m.hfsr &= ~value; /* W1C */ 1780 break; 1781 case 0xd30: /* Debug Fault Status. */ 1782 cpu->env.v7m.dfsr &= ~value; /* W1C */ 1783 break; 1784 case 0xd34: /* Mem Manage Address. */ 1785 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1786 goto bad_offset; 1787 } 1788 cpu->env.v7m.mmfar[attrs.secure] = value; 1789 return; 1790 case 0xd38: /* Bus Fault Address. */ 1791 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1792 goto bad_offset; 1793 } 1794 if (!attrs.secure && 1795 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1796 return; 1797 } 1798 cpu->env.v7m.bfar = value; 1799 return; 1800 case 0xd3c: /* Aux Fault Status. */ 1801 qemu_log_mask(LOG_UNIMP, 1802 "NVIC: Aux fault status registers unimplemented\n"); 1803 break; 1804 case 0xd84: /* CSSELR */ 1805 if (!arm_v7m_csselr_razwi(cpu)) { 1806 cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK; 1807 } 1808 break; 1809 case 0xd88: /* CPACR */ 1810 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 1811 /* We implement only the Floating Point extension's CP10/CP11 */ 1812 cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20); 1813 } 1814 break; 1815 case 0xd8c: /* NSACR */ 1816 if (attrs.secure && cpu_isar_feature(aa32_vfp_simd, cpu)) { 1817 /* We implement only the Floating Point extension's CP10/CP11 */ 1818 cpu->env.v7m.nsacr = value & (3 << 10); 1819 } 1820 break; 1821 case 0xd90: /* MPU_TYPE */ 1822 return; /* RO */ 1823 case 0xd94: /* MPU_CTRL */ 1824 if ((value & 1825 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK)) 1826 == R_V7M_MPU_CTRL_HFNMIENA_MASK) { 1827 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is " 1828 "UNPREDICTABLE\n"); 1829 } 1830 cpu->env.v7m.mpu_ctrl[attrs.secure] 1831 = value & (R_V7M_MPU_CTRL_ENABLE_MASK | 1832 R_V7M_MPU_CTRL_HFNMIENA_MASK | 1833 R_V7M_MPU_CTRL_PRIVDEFENA_MASK); 1834 tlb_flush(CPU(cpu)); 1835 break; 1836 case 0xd98: /* MPU_RNR */ 1837 if (value >= cpu->pmsav7_dregion) { 1838 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %" 1839 PRIu32 "/%" PRIu32 "\n", 1840 value, cpu->pmsav7_dregion); 1841 } else { 1842 cpu->env.pmsav7.rnr[attrs.secure] = value; 1843 } 1844 break; 1845 case 0xd9c: /* MPU_RBAR */ 1846 case 0xda4: /* MPU_RBAR_A1 */ 1847 case 0xdac: /* MPU_RBAR_A2 */ 1848 case 0xdb4: /* MPU_RBAR_A3 */ 1849 { 1850 int region; 1851 1852 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1853 /* PMSAv8M handling of the aliases is different from v7M: 1854 * aliases A1, A2, A3 override the low two bits of the region 1855 * number in MPU_RNR, and there is no 'region' field in the 1856 * RBAR register. 1857 */ 1858 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1859 1860 region = cpu->env.pmsav7.rnr[attrs.secure]; 1861 if (aliasno) { 1862 region = deposit32(region, 0, 2, aliasno); 1863 } 1864 if (region >= cpu->pmsav7_dregion) { 1865 return; 1866 } 1867 cpu->env.pmsav8.rbar[attrs.secure][region] = value; 1868 tlb_flush(CPU(cpu)); 1869 return; 1870 } 1871 1872 if (value & (1 << 4)) { 1873 /* VALID bit means use the region number specified in this 1874 * value and also update MPU_RNR.REGION with that value. 1875 */ 1876 region = extract32(value, 0, 4); 1877 if (region >= cpu->pmsav7_dregion) { 1878 qemu_log_mask(LOG_GUEST_ERROR, 1879 "MPU region out of range %u/%" PRIu32 "\n", 1880 region, cpu->pmsav7_dregion); 1881 return; 1882 } 1883 cpu->env.pmsav7.rnr[attrs.secure] = region; 1884 } else { 1885 region = cpu->env.pmsav7.rnr[attrs.secure]; 1886 } 1887 1888 if (region >= cpu->pmsav7_dregion) { 1889 return; 1890 } 1891 1892 cpu->env.pmsav7.drbar[region] = value & ~0x1f; 1893 tlb_flush(CPU(cpu)); 1894 break; 1895 } 1896 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1897 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1898 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1899 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1900 { 1901 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1902 1903 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1904 /* PMSAv8M handling of the aliases is different from v7M: 1905 * aliases A1, A2, A3 override the low two bits of the region 1906 * number in MPU_RNR. 1907 */ 1908 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1909 1910 region = cpu->env.pmsav7.rnr[attrs.secure]; 1911 if (aliasno) { 1912 region = deposit32(region, 0, 2, aliasno); 1913 } 1914 if (region >= cpu->pmsav7_dregion) { 1915 return; 1916 } 1917 cpu->env.pmsav8.rlar[attrs.secure][region] = value; 1918 tlb_flush(CPU(cpu)); 1919 return; 1920 } 1921 1922 if (region >= cpu->pmsav7_dregion) { 1923 return; 1924 } 1925 1926 cpu->env.pmsav7.drsr[region] = value & 0xff3f; 1927 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f; 1928 tlb_flush(CPU(cpu)); 1929 break; 1930 } 1931 case 0xdc0: /* MPU_MAIR0 */ 1932 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1933 goto bad_offset; 1934 } 1935 if (cpu->pmsav7_dregion) { 1936 /* Register is RES0 if no MPU regions are implemented */ 1937 cpu->env.pmsav8.mair0[attrs.secure] = value; 1938 } 1939 /* We don't need to do anything else because memory attributes 1940 * only affect cacheability, and we don't implement caching. 1941 */ 1942 break; 1943 case 0xdc4: /* MPU_MAIR1 */ 1944 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1945 goto bad_offset; 1946 } 1947 if (cpu->pmsav7_dregion) { 1948 /* Register is RES0 if no MPU regions are implemented */ 1949 cpu->env.pmsav8.mair1[attrs.secure] = value; 1950 } 1951 /* We don't need to do anything else because memory attributes 1952 * only affect cacheability, and we don't implement caching. 1953 */ 1954 break; 1955 case 0xdd0: /* SAU_CTRL */ 1956 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1957 goto bad_offset; 1958 } 1959 if (!attrs.secure) { 1960 return; 1961 } 1962 cpu->env.sau.ctrl = value & 3; 1963 break; 1964 case 0xdd4: /* SAU_TYPE */ 1965 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1966 goto bad_offset; 1967 } 1968 break; 1969 case 0xdd8: /* SAU_RNR */ 1970 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1971 goto bad_offset; 1972 } 1973 if (!attrs.secure) { 1974 return; 1975 } 1976 if (value >= cpu->sau_sregion) { 1977 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %" 1978 PRIu32 "/%" PRIu32 "\n", 1979 value, cpu->sau_sregion); 1980 } else { 1981 cpu->env.sau.rnr = value; 1982 } 1983 break; 1984 case 0xddc: /* SAU_RBAR */ 1985 { 1986 int region = cpu->env.sau.rnr; 1987 1988 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1989 goto bad_offset; 1990 } 1991 if (!attrs.secure) { 1992 return; 1993 } 1994 if (region >= cpu->sau_sregion) { 1995 return; 1996 } 1997 cpu->env.sau.rbar[region] = value & ~0x1f; 1998 tlb_flush(CPU(cpu)); 1999 break; 2000 } 2001 case 0xde0: /* SAU_RLAR */ 2002 { 2003 int region = cpu->env.sau.rnr; 2004 2005 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 2006 goto bad_offset; 2007 } 2008 if (!attrs.secure) { 2009 return; 2010 } 2011 if (region >= cpu->sau_sregion) { 2012 return; 2013 } 2014 cpu->env.sau.rlar[region] = value & ~0x1c; 2015 tlb_flush(CPU(cpu)); 2016 break; 2017 } 2018 case 0xde4: /* SFSR */ 2019 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 2020 goto bad_offset; 2021 } 2022 if (!attrs.secure) { 2023 return; 2024 } 2025 cpu->env.v7m.sfsr &= ~value; /* W1C */ 2026 break; 2027 case 0xde8: /* SFAR */ 2028 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 2029 goto bad_offset; 2030 } 2031 if (!attrs.secure) { 2032 return; 2033 } 2034 cpu->env.v7m.sfsr = value; 2035 break; 2036 case 0xf00: /* Software Triggered Interrupt Register */ 2037 { 2038 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ; 2039 2040 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 2041 goto bad_offset; 2042 } 2043 2044 if (excnum < s->num_irq) { 2045 armv7m_nvic_set_pending(s, excnum, false); 2046 } 2047 break; 2048 } 2049 case 0xf04: /* RFSR */ 2050 if (!cpu_isar_feature(aa32_ras, cpu)) { 2051 goto bad_offset; 2052 } 2053 /* We provide minimal-RAS only: RFSR is RAZ/WI */ 2054 break; 2055 case 0xf34: /* FPCCR */ 2056 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 2057 /* Not all bits here are banked. */ 2058 uint32_t fpccr_s; 2059 2060 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 2061 /* Don't allow setting of bits not present in v7M */ 2062 value &= (R_V7M_FPCCR_LSPACT_MASK | 2063 R_V7M_FPCCR_USER_MASK | 2064 R_V7M_FPCCR_THREAD_MASK | 2065 R_V7M_FPCCR_HFRDY_MASK | 2066 R_V7M_FPCCR_MMRDY_MASK | 2067 R_V7M_FPCCR_BFRDY_MASK | 2068 R_V7M_FPCCR_MONRDY_MASK | 2069 R_V7M_FPCCR_LSPEN_MASK | 2070 R_V7M_FPCCR_ASPEN_MASK); 2071 } 2072 value &= ~R_V7M_FPCCR_RES0_MASK; 2073 2074 if (!attrs.secure) { 2075 /* Some non-banked bits are configurably writable by NS */ 2076 fpccr_s = cpu->env.v7m.fpccr[M_REG_S]; 2077 if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) { 2078 uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN); 2079 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen); 2080 } 2081 if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) { 2082 uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET); 2083 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor); 2084 } 2085 if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2086 uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY); 2087 uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY); 2088 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy); 2089 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy); 2090 } 2091 /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */ 2092 { 2093 uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY); 2094 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy); 2095 } 2096 2097 /* 2098 * All other non-banked bits are RAZ/WI from NS; write 2099 * just the banked bits to fpccr[M_REG_NS]. 2100 */ 2101 value &= R_V7M_FPCCR_BANKED_MASK; 2102 cpu->env.v7m.fpccr[M_REG_NS] = value; 2103 } else { 2104 fpccr_s = value; 2105 } 2106 cpu->env.v7m.fpccr[M_REG_S] = fpccr_s; 2107 } 2108 break; 2109 case 0xf38: /* FPCAR */ 2110 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 2111 value &= ~7; 2112 cpu->env.v7m.fpcar[attrs.secure] = value; 2113 } 2114 break; 2115 case 0xf3c: /* FPDSCR */ 2116 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 2117 uint32_t mask = FPCR_AHP | FPCR_DN | FPCR_FZ | FPCR_RMODE_MASK; 2118 if (cpu_isar_feature(any_fp16, cpu)) { 2119 mask |= FPCR_FZ16; 2120 } 2121 value &= mask; 2122 if (cpu_isar_feature(aa32_lob, cpu)) { 2123 value |= 4 << FPCR_LTPSIZE_SHIFT; 2124 } 2125 cpu->env.v7m.fpdscr[attrs.secure] = value; 2126 } 2127 break; 2128 case 0xf50: /* ICIALLU */ 2129 case 0xf58: /* ICIMVAU */ 2130 case 0xf5c: /* DCIMVAC */ 2131 case 0xf60: /* DCISW */ 2132 case 0xf64: /* DCCMVAU */ 2133 case 0xf68: /* DCCMVAC */ 2134 case 0xf6c: /* DCCSW */ 2135 case 0xf70: /* DCCIMVAC */ 2136 case 0xf74: /* DCCISW */ 2137 case 0xf78: /* BPIALL */ 2138 /* Cache and branch predictor maintenance: for QEMU these always NOP */ 2139 break; 2140 default: 2141 bad_offset: 2142 qemu_log_mask(LOG_GUEST_ERROR, 2143 "NVIC: Bad write offset 0x%x\n", offset); 2144 } 2145 } 2146 2147 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs) 2148 { 2149 /* Return true if unprivileged access to this register is permitted. */ 2150 switch (offset) { 2151 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */ 2152 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that 2153 * controls access even though the CPU is in Secure state (I_QDKX). 2154 */ 2155 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK; 2156 default: 2157 /* All other user accesses cause a BusFault unconditionally */ 2158 return false; 2159 } 2160 } 2161 2162 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs) 2163 { 2164 /* Behaviour for the SHPR register field for this exception: 2165 * return M_REG_NS to use the nonsecure vector (including for 2166 * non-banked exceptions), M_REG_S for the secure version of 2167 * a banked exception, and -1 if this field should RAZ/WI. 2168 */ 2169 switch (exc) { 2170 case ARMV7M_EXCP_MEM: 2171 case ARMV7M_EXCP_USAGE: 2172 case ARMV7M_EXCP_SVC: 2173 case ARMV7M_EXCP_PENDSV: 2174 case ARMV7M_EXCP_SYSTICK: 2175 /* Banked exceptions */ 2176 return attrs.secure; 2177 case ARMV7M_EXCP_BUS: 2178 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */ 2179 if (!attrs.secure && 2180 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2181 return -1; 2182 } 2183 return M_REG_NS; 2184 case ARMV7M_EXCP_SECURE: 2185 /* Not banked, RAZ/WI from nonsecure */ 2186 if (!attrs.secure) { 2187 return -1; 2188 } 2189 return M_REG_NS; 2190 case ARMV7M_EXCP_DEBUG: 2191 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */ 2192 return M_REG_NS; 2193 case 8 ... 10: 2194 case 13: 2195 /* RES0 */ 2196 return -1; 2197 default: 2198 /* Not reachable due to decode of SHPR register addresses */ 2199 g_assert_not_reached(); 2200 } 2201 } 2202 2203 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr, 2204 uint64_t *data, unsigned size, 2205 MemTxAttrs attrs) 2206 { 2207 NVICState *s = (NVICState *)opaque; 2208 uint32_t offset = addr; 2209 unsigned i, startvec, end; 2210 uint32_t val; 2211 2212 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 2213 /* Generate BusFault for unprivileged accesses */ 2214 return MEMTX_ERROR; 2215 } 2216 2217 switch (offset) { 2218 /* reads of set and clear both return the status */ 2219 case 0x100 ... 0x13f: /* NVIC Set enable */ 2220 offset += 0x80; 2221 /* fall through */ 2222 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 2223 val = 0; 2224 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */ 2225 2226 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2227 if (s->vectors[startvec + i].enabled && 2228 (attrs.secure || s->itns[startvec + i])) { 2229 val |= (1 << i); 2230 } 2231 } 2232 break; 2233 case 0x200 ... 0x23f: /* NVIC Set pend */ 2234 offset += 0x80; 2235 /* fall through */ 2236 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 2237 val = 0; 2238 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 2239 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2240 if (s->vectors[startvec + i].pending && 2241 (attrs.secure || s->itns[startvec + i])) { 2242 val |= (1 << i); 2243 } 2244 } 2245 break; 2246 case 0x300 ... 0x33f: /* NVIC Active */ 2247 val = 0; 2248 2249 if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) { 2250 break; 2251 } 2252 2253 startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */ 2254 2255 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2256 if (s->vectors[startvec + i].active && 2257 (attrs.secure || s->itns[startvec + i])) { 2258 val |= (1 << i); 2259 } 2260 } 2261 break; 2262 case 0x400 ... 0x5ef: /* NVIC Priority */ 2263 val = 0; 2264 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */ 2265 2266 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 2267 if (attrs.secure || s->itns[startvec + i]) { 2268 val |= s->vectors[startvec + i].prio << (8 * i); 2269 } 2270 } 2271 break; 2272 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */ 2273 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2274 val = 0; 2275 break; 2276 } 2277 /* fall through */ 2278 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ 2279 val = 0; 2280 for (i = 0; i < size; i++) { 2281 unsigned hdlidx = (offset - 0xd14) + i; 2282 int sbank = shpr_bank(s, hdlidx, attrs); 2283 2284 if (sbank < 0) { 2285 continue; 2286 } 2287 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank)); 2288 } 2289 break; 2290 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 2291 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2292 val = 0; 2293 break; 2294 }; 2295 /* 2296 * The BFSR bits [15:8] are shared between security states 2297 * and we store them in the NS copy. They are RAZ/WI for 2298 * NS code if AIRCR.BFHFNMINS is 0. 2299 */ 2300 val = s->cpu->env.v7m.cfsr[attrs.secure]; 2301 if (!attrs.secure && 2302 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2303 val &= ~R_V7M_CFSR_BFSR_MASK; 2304 } else { 2305 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK; 2306 } 2307 val = extract32(val, (offset - 0xd28) * 8, size * 8); 2308 break; 2309 case 0xfe0 ... 0xfff: /* ID. */ 2310 if (offset & 3) { 2311 val = 0; 2312 } else { 2313 val = nvic_id[(offset - 0xfe0) >> 2]; 2314 } 2315 break; 2316 default: 2317 if (size == 4) { 2318 val = nvic_readl(s, offset, attrs); 2319 } else { 2320 qemu_log_mask(LOG_GUEST_ERROR, 2321 "NVIC: Bad read of size %d at offset 0x%x\n", 2322 size, offset); 2323 val = 0; 2324 } 2325 } 2326 2327 trace_nvic_sysreg_read(addr, val, size); 2328 *data = val; 2329 return MEMTX_OK; 2330 } 2331 2332 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr, 2333 uint64_t value, unsigned size, 2334 MemTxAttrs attrs) 2335 { 2336 NVICState *s = (NVICState *)opaque; 2337 uint32_t offset = addr; 2338 unsigned i, startvec, end; 2339 unsigned setval = 0; 2340 2341 trace_nvic_sysreg_write(addr, value, size); 2342 2343 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 2344 /* Generate BusFault for unprivileged accesses */ 2345 return MEMTX_ERROR; 2346 } 2347 2348 switch (offset) { 2349 case 0x100 ... 0x13f: /* NVIC Set enable */ 2350 offset += 0x80; 2351 setval = 1; 2352 /* fall through */ 2353 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 2354 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; 2355 2356 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2357 if (value & (1 << i) && 2358 (attrs.secure || s->itns[startvec + i])) { 2359 s->vectors[startvec + i].enabled = setval; 2360 } 2361 } 2362 nvic_irq_update(s); 2363 goto exit_ok; 2364 case 0x200 ... 0x23f: /* NVIC Set pend */ 2365 /* the special logic in armv7m_nvic_set_pending() 2366 * is not needed since IRQs are never escalated 2367 */ 2368 offset += 0x80; 2369 setval = 1; 2370 /* fall through */ 2371 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 2372 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 2373 2374 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2375 if (value & (1 << i) && 2376 (attrs.secure || s->itns[startvec + i])) { 2377 s->vectors[startvec + i].pending = setval; 2378 } 2379 } 2380 nvic_irq_update(s); 2381 goto exit_ok; 2382 case 0x300 ... 0x33f: /* NVIC Active */ 2383 goto exit_ok; /* R/O */ 2384 case 0x400 ... 0x5ef: /* NVIC Priority */ 2385 startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */ 2386 2387 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 2388 if (attrs.secure || s->itns[startvec + i]) { 2389 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff); 2390 } 2391 } 2392 nvic_irq_update(s); 2393 goto exit_ok; 2394 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */ 2395 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2396 goto exit_ok; 2397 } 2398 /* fall through */ 2399 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ 2400 for (i = 0; i < size; i++) { 2401 unsigned hdlidx = (offset - 0xd14) + i; 2402 int newprio = extract32(value, i * 8, 8); 2403 int sbank = shpr_bank(s, hdlidx, attrs); 2404 2405 if (sbank < 0) { 2406 continue; 2407 } 2408 set_prio(s, hdlidx, sbank, newprio); 2409 } 2410 nvic_irq_update(s); 2411 goto exit_ok; 2412 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 2413 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2414 goto exit_ok; 2415 } 2416 /* All bits are W1C, so construct 32 bit value with 0s in 2417 * the parts not written by the access size 2418 */ 2419 value <<= ((offset - 0xd28) * 8); 2420 2421 if (!attrs.secure && 2422 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2423 /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */ 2424 value &= ~R_V7M_CFSR_BFSR_MASK; 2425 } 2426 2427 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value; 2428 if (attrs.secure) { 2429 /* The BFSR bits [15:8] are shared between security states 2430 * and we store them in the NS copy. 2431 */ 2432 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK); 2433 } 2434 goto exit_ok; 2435 } 2436 if (size == 4) { 2437 nvic_writel(s, offset, value, attrs); 2438 goto exit_ok; 2439 } 2440 qemu_log_mask(LOG_GUEST_ERROR, 2441 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset); 2442 /* This is UNPREDICTABLE; treat as RAZ/WI */ 2443 2444 exit_ok: 2445 /* Ensure any changes made are reflected in the cached hflags. */ 2446 arm_rebuild_hflags(&s->cpu->env); 2447 return MEMTX_OK; 2448 } 2449 2450 static const MemoryRegionOps nvic_sysreg_ops = { 2451 .read_with_attrs = nvic_sysreg_read, 2452 .write_with_attrs = nvic_sysreg_write, 2453 .endianness = DEVICE_NATIVE_ENDIAN, 2454 }; 2455 2456 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr, 2457 uint64_t value, unsigned size, 2458 MemTxAttrs attrs) 2459 { 2460 MemoryRegion *mr = opaque; 2461 2462 if (attrs.secure) { 2463 /* S accesses to the alias act like NS accesses to the real region */ 2464 attrs.secure = 0; 2465 return memory_region_dispatch_write(mr, addr, value, 2466 size_memop(size) | MO_TE, attrs); 2467 } else { 2468 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 2469 if (attrs.user) { 2470 return MEMTX_ERROR; 2471 } 2472 return MEMTX_OK; 2473 } 2474 } 2475 2476 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr, 2477 uint64_t *data, unsigned size, 2478 MemTxAttrs attrs) 2479 { 2480 MemoryRegion *mr = opaque; 2481 2482 if (attrs.secure) { 2483 /* S accesses to the alias act like NS accesses to the real region */ 2484 attrs.secure = 0; 2485 return memory_region_dispatch_read(mr, addr, data, 2486 size_memop(size) | MO_TE, attrs); 2487 } else { 2488 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 2489 if (attrs.user) { 2490 return MEMTX_ERROR; 2491 } 2492 *data = 0; 2493 return MEMTX_OK; 2494 } 2495 } 2496 2497 static const MemoryRegionOps nvic_sysreg_ns_ops = { 2498 .read_with_attrs = nvic_sysreg_ns_read, 2499 .write_with_attrs = nvic_sysreg_ns_write, 2500 .endianness = DEVICE_NATIVE_ENDIAN, 2501 }; 2502 2503 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr, 2504 uint64_t value, unsigned size, 2505 MemTxAttrs attrs) 2506 { 2507 NVICState *s = opaque; 2508 MemoryRegion *mr; 2509 2510 /* Direct the access to the correct systick */ 2511 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); 2512 return memory_region_dispatch_write(mr, addr, value, 2513 size_memop(size) | MO_TE, attrs); 2514 } 2515 2516 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr, 2517 uint64_t *data, unsigned size, 2518 MemTxAttrs attrs) 2519 { 2520 NVICState *s = opaque; 2521 MemoryRegion *mr; 2522 2523 /* Direct the access to the correct systick */ 2524 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); 2525 return memory_region_dispatch_read(mr, addr, data, size_memop(size) | MO_TE, 2526 attrs); 2527 } 2528 2529 static const MemoryRegionOps nvic_systick_ops = { 2530 .read_with_attrs = nvic_systick_read, 2531 .write_with_attrs = nvic_systick_write, 2532 .endianness = DEVICE_NATIVE_ENDIAN, 2533 }; 2534 2535 2536 static MemTxResult ras_read(void *opaque, hwaddr addr, 2537 uint64_t *data, unsigned size, 2538 MemTxAttrs attrs) 2539 { 2540 if (attrs.user) { 2541 return MEMTX_ERROR; 2542 } 2543 2544 switch (addr) { 2545 case 0xe10: /* ERRIIDR */ 2546 /* architect field = Arm; product/variant/revision 0 */ 2547 *data = 0x43b; 2548 break; 2549 case 0xfc8: /* ERRDEVID */ 2550 /* Minimal RAS: we implement 0 error record indexes */ 2551 *data = 0; 2552 break; 2553 default: 2554 qemu_log_mask(LOG_UNIMP, "Read RAS register offset 0x%x\n", 2555 (uint32_t)addr); 2556 *data = 0; 2557 break; 2558 } 2559 return MEMTX_OK; 2560 } 2561 2562 static MemTxResult ras_write(void *opaque, hwaddr addr, 2563 uint64_t value, unsigned size, 2564 MemTxAttrs attrs) 2565 { 2566 if (attrs.user) { 2567 return MEMTX_ERROR; 2568 } 2569 2570 switch (addr) { 2571 default: 2572 qemu_log_mask(LOG_UNIMP, "Write to RAS register offset 0x%x\n", 2573 (uint32_t)addr); 2574 break; 2575 } 2576 return MEMTX_OK; 2577 } 2578 2579 static const MemoryRegionOps ras_ops = { 2580 .read_with_attrs = ras_read, 2581 .write_with_attrs = ras_write, 2582 .endianness = DEVICE_NATIVE_ENDIAN, 2583 }; 2584 2585 /* 2586 * Unassigned portions of the PPB space are RAZ/WI for privileged 2587 * accesses, and fault for non-privileged accesses. 2588 */ 2589 static MemTxResult ppb_default_read(void *opaque, hwaddr addr, 2590 uint64_t *data, unsigned size, 2591 MemTxAttrs attrs) 2592 { 2593 qemu_log_mask(LOG_UNIMP, "Read of unassigned area of PPB: offset 0x%x\n", 2594 (uint32_t)addr); 2595 if (attrs.user) { 2596 return MEMTX_ERROR; 2597 } 2598 *data = 0; 2599 return MEMTX_OK; 2600 } 2601 2602 static MemTxResult ppb_default_write(void *opaque, hwaddr addr, 2603 uint64_t value, unsigned size, 2604 MemTxAttrs attrs) 2605 { 2606 qemu_log_mask(LOG_UNIMP, "Write of unassigned area of PPB: offset 0x%x\n", 2607 (uint32_t)addr); 2608 if (attrs.user) { 2609 return MEMTX_ERROR; 2610 } 2611 return MEMTX_OK; 2612 } 2613 2614 static const MemoryRegionOps ppb_default_ops = { 2615 .read_with_attrs = ppb_default_read, 2616 .write_with_attrs = ppb_default_write, 2617 .endianness = DEVICE_NATIVE_ENDIAN, 2618 .valid.min_access_size = 1, 2619 .valid.max_access_size = 8, 2620 }; 2621 2622 static int nvic_post_load(void *opaque, int version_id) 2623 { 2624 NVICState *s = opaque; 2625 unsigned i; 2626 int resetprio; 2627 2628 /* Check for out of range priority settings */ 2629 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 2630 2631 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio || 2632 s->vectors[ARMV7M_EXCP_NMI].prio != -2 || 2633 s->vectors[ARMV7M_EXCP_HARD].prio != -1) { 2634 return 1; 2635 } 2636 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) { 2637 if (s->vectors[i].prio & ~0xff) { 2638 return 1; 2639 } 2640 } 2641 2642 nvic_recompute_state(s); 2643 2644 return 0; 2645 } 2646 2647 static const VMStateDescription vmstate_VecInfo = { 2648 .name = "armv7m_nvic_info", 2649 .version_id = 1, 2650 .minimum_version_id = 1, 2651 .fields = (VMStateField[]) { 2652 VMSTATE_INT16(prio, VecInfo), 2653 VMSTATE_UINT8(enabled, VecInfo), 2654 VMSTATE_UINT8(pending, VecInfo), 2655 VMSTATE_UINT8(active, VecInfo), 2656 VMSTATE_UINT8(level, VecInfo), 2657 VMSTATE_END_OF_LIST() 2658 } 2659 }; 2660 2661 static bool nvic_security_needed(void *opaque) 2662 { 2663 NVICState *s = opaque; 2664 2665 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 2666 } 2667 2668 static int nvic_security_post_load(void *opaque, int version_id) 2669 { 2670 NVICState *s = opaque; 2671 int i; 2672 2673 /* Check for out of range priority settings */ 2674 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1 2675 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) { 2676 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know 2677 * if the CPU state has been migrated yet; a mismatch won't 2678 * cause the emulation to blow up, though. 2679 */ 2680 return 1; 2681 } 2682 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) { 2683 if (s->sec_vectors[i].prio & ~0xff) { 2684 return 1; 2685 } 2686 } 2687 return 0; 2688 } 2689 2690 static const VMStateDescription vmstate_nvic_security = { 2691 .name = "armv7m_nvic/m-security", 2692 .version_id = 1, 2693 .minimum_version_id = 1, 2694 .needed = nvic_security_needed, 2695 .post_load = &nvic_security_post_load, 2696 .fields = (VMStateField[]) { 2697 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1, 2698 vmstate_VecInfo, VecInfo), 2699 VMSTATE_UINT32(prigroup[M_REG_S], NVICState), 2700 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS), 2701 VMSTATE_END_OF_LIST() 2702 } 2703 }; 2704 2705 static const VMStateDescription vmstate_nvic = { 2706 .name = "armv7m_nvic", 2707 .version_id = 4, 2708 .minimum_version_id = 4, 2709 .post_load = &nvic_post_load, 2710 .fields = (VMStateField[]) { 2711 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1, 2712 vmstate_VecInfo, VecInfo), 2713 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState), 2714 VMSTATE_END_OF_LIST() 2715 }, 2716 .subsections = (const VMStateDescription*[]) { 2717 &vmstate_nvic_security, 2718 NULL 2719 } 2720 }; 2721 2722 static Property props_nvic[] = { 2723 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */ 2724 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64), 2725 DEFINE_PROP_END_OF_LIST() 2726 }; 2727 2728 static void armv7m_nvic_reset(DeviceState *dev) 2729 { 2730 int resetprio; 2731 NVICState *s = NVIC(dev); 2732 2733 memset(s->vectors, 0, sizeof(s->vectors)); 2734 memset(s->sec_vectors, 0, sizeof(s->sec_vectors)); 2735 s->prigroup[M_REG_NS] = 0; 2736 s->prigroup[M_REG_S] = 0; 2737 2738 s->vectors[ARMV7M_EXCP_NMI].enabled = 1; 2739 /* MEM, BUS, and USAGE are enabled through 2740 * the System Handler Control register 2741 */ 2742 s->vectors[ARMV7M_EXCP_SVC].enabled = 1; 2743 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2744 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2745 2746 /* DebugMonitor is enabled via DEMCR.MON_EN */ 2747 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0; 2748 2749 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 2750 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio; 2751 s->vectors[ARMV7M_EXCP_NMI].prio = -2; 2752 s->vectors[ARMV7M_EXCP_HARD].prio = -1; 2753 2754 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2755 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1; 2756 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1; 2757 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2758 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2759 2760 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */ 2761 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 2762 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */ 2763 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 2764 } else { 2765 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 2766 } 2767 2768 /* Strictly speaking the reset handler should be enabled. 2769 * However, we don't simulate soft resets through the NVIC, 2770 * and the reset vector should never be pended. 2771 * So we leave it disabled to catch logic errors. 2772 */ 2773 2774 s->exception_prio = NVIC_NOEXC_PRIO; 2775 s->vectpending = 0; 2776 s->vectpending_is_s_banked = false; 2777 s->vectpending_prio = NVIC_NOEXC_PRIO; 2778 2779 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2780 memset(s->itns, 0, sizeof(s->itns)); 2781 } else { 2782 /* This state is constant and not guest accessible in a non-security 2783 * NVIC; we set the bits to true to avoid having to do a feature 2784 * bit check in the NVIC enable/pend/etc register accessors. 2785 */ 2786 int i; 2787 2788 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) { 2789 s->itns[i] = true; 2790 } 2791 } 2792 2793 /* 2794 * We updated state that affects the CPU's MMUidx and thus its hflags; 2795 * and we can't guarantee that we run before the CPU reset function. 2796 */ 2797 arm_rebuild_hflags(&s->cpu->env); 2798 } 2799 2800 static void nvic_systick_trigger(void *opaque, int n, int level) 2801 { 2802 NVICState *s = opaque; 2803 2804 if (level) { 2805 /* SysTick just asked us to pend its exception. 2806 * (This is different from an external interrupt line's 2807 * behaviour.) 2808 * n == 0 : NonSecure systick 2809 * n == 1 : Secure systick 2810 */ 2811 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n); 2812 } 2813 } 2814 2815 static void armv7m_nvic_realize(DeviceState *dev, Error **errp) 2816 { 2817 NVICState *s = NVIC(dev); 2818 2819 /* The armv7m container object will have set our CPU pointer */ 2820 if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) { 2821 error_setg(errp, "The NVIC can only be used with a Cortex-M CPU"); 2822 return; 2823 } 2824 2825 if (s->num_irq > NVIC_MAX_IRQ) { 2826 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq); 2827 return; 2828 } 2829 2830 qdev_init_gpio_in(dev, set_irq_level, s->num_irq); 2831 2832 /* include space for internal exception vectors */ 2833 s->num_irq += NVIC_FIRST_IRQ; 2834 2835 s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2; 2836 2837 if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), errp)) { 2838 return; 2839 } 2840 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0, 2841 qdev_get_gpio_in_named(dev, "systick-trigger", 2842 M_REG_NS)); 2843 2844 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2845 /* We couldn't init the secure systick device in instance_init 2846 * as we didn't know then if the CPU had the security extensions; 2847 * so we have to do it here. 2848 */ 2849 object_initialize_child(OBJECT(dev), "systick-reg-s", 2850 &s->systick[M_REG_S], TYPE_SYSTICK); 2851 2852 if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_S]), errp)) { 2853 return; 2854 } 2855 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0, 2856 qdev_get_gpio_in_named(dev, "systick-trigger", 2857 M_REG_S)); 2858 } 2859 2860 /* 2861 * This device provides a single sysbus memory region which 2862 * represents the whole of the "System PPB" space. This is the 2863 * range from 0xe0000000 to 0xe00fffff and includes the NVIC, 2864 * the System Control Space (system registers), the systick timer, 2865 * and for CPUs with the Security extension an NS banked version 2866 * of all of these. 2867 * 2868 * The default behaviour for unimplemented registers/ranges 2869 * (for instance the Data Watchpoint and Trace unit at 0xe0001000) 2870 * is to RAZ/WI for privileged access and BusFault for non-privileged 2871 * access. 2872 * 2873 * The NVIC and System Control Space (SCS) starts at 0xe000e000 2874 * and looks like this: 2875 * 0x004 - ICTR 2876 * 0x010 - 0xff - systick 2877 * 0x100..0x7ec - NVIC 2878 * 0x7f0..0xcff - Reserved 2879 * 0xd00..0xd3c - SCS registers 2880 * 0xd40..0xeff - Reserved or Not implemented 2881 * 0xf00 - STIR 2882 * 2883 * Some registers within this space are banked between security states. 2884 * In v8M there is a second range 0xe002e000..0xe002efff which is the 2885 * NonSecure alias SCS; secure accesses to this behave like NS accesses 2886 * to the main SCS range, and non-secure accesses (including when 2887 * the security extension is not implemented) are RAZ/WI. 2888 * Note that both the main SCS range and the alias range are defined 2889 * to be exempt from memory attribution (R_BLJT) and so the memory 2890 * transaction attribute always matches the current CPU security 2891 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops 2892 * wrappers we change attrs.secure to indicate the NS access; so 2893 * generally code determining which banked register to use should 2894 * use attrs.secure; code determining actual behaviour of the system 2895 * should use env->v7m.secure. 2896 * 2897 * The container covers the whole PPB space. Within it the priority 2898 * of overlapping regions is: 2899 * - default region (for RAZ/WI and BusFault) : -1 2900 * - system register regions : 0 2901 * - systick : 1 2902 * This is because the systick device is a small block of registers 2903 * in the middle of the other system control registers. 2904 */ 2905 memory_region_init(&s->container, OBJECT(s), "nvic", 0x100000); 2906 memory_region_init_io(&s->defaultmem, OBJECT(s), &ppb_default_ops, s, 2907 "nvic-default", 0x100000); 2908 memory_region_add_subregion_overlap(&s->container, 0, &s->defaultmem, -1); 2909 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s, 2910 "nvic_sysregs", 0x1000); 2911 memory_region_add_subregion(&s->container, 0xe000, &s->sysregmem); 2912 2913 memory_region_init_io(&s->systickmem, OBJECT(s), 2914 &nvic_systick_ops, s, 2915 "nvic_systick", 0xe0); 2916 2917 memory_region_add_subregion_overlap(&s->container, 0xe010, 2918 &s->systickmem, 1); 2919 2920 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { 2921 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s), 2922 &nvic_sysreg_ns_ops, &s->sysregmem, 2923 "nvic_sysregs_ns", 0x1000); 2924 memory_region_add_subregion(&s->container, 0x2e000, &s->sysreg_ns_mem); 2925 memory_region_init_io(&s->systick_ns_mem, OBJECT(s), 2926 &nvic_sysreg_ns_ops, &s->systickmem, 2927 "nvic_systick_ns", 0xe0); 2928 memory_region_add_subregion_overlap(&s->container, 0x2e010, 2929 &s->systick_ns_mem, 1); 2930 } 2931 2932 if (cpu_isar_feature(aa32_ras, s->cpu)) { 2933 memory_region_init_io(&s->ras_mem, OBJECT(s), 2934 &ras_ops, s, "nvic_ras", 0x1000); 2935 memory_region_add_subregion(&s->container, 0x5000, &s->ras_mem); 2936 } 2937 2938 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container); 2939 } 2940 2941 static void armv7m_nvic_instance_init(Object *obj) 2942 { 2943 DeviceState *dev = DEVICE(obj); 2944 NVICState *nvic = NVIC(obj); 2945 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 2946 2947 object_initialize_child(obj, "systick-reg-ns", &nvic->systick[M_REG_NS], 2948 TYPE_SYSTICK); 2949 /* We can't initialize the secure systick here, as we don't know 2950 * yet if we need it. 2951 */ 2952 2953 sysbus_init_irq(sbd, &nvic->excpout); 2954 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1); 2955 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", 2956 M_REG_NUM_BANKS); 2957 qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1); 2958 } 2959 2960 static void armv7m_nvic_class_init(ObjectClass *klass, void *data) 2961 { 2962 DeviceClass *dc = DEVICE_CLASS(klass); 2963 2964 dc->vmsd = &vmstate_nvic; 2965 device_class_set_props(dc, props_nvic); 2966 dc->reset = armv7m_nvic_reset; 2967 dc->realize = armv7m_nvic_realize; 2968 } 2969 2970 static const TypeInfo armv7m_nvic_info = { 2971 .name = TYPE_NVIC, 2972 .parent = TYPE_SYS_BUS_DEVICE, 2973 .instance_init = armv7m_nvic_instance_init, 2974 .instance_size = sizeof(NVICState), 2975 .class_init = armv7m_nvic_class_init, 2976 .class_size = sizeof(SysBusDeviceClass), 2977 }; 2978 2979 static void armv7m_nvic_register_types(void) 2980 { 2981 type_register_static(&armv7m_nvic_info); 2982 } 2983 2984 type_init(armv7m_nvic_register_types) 2985