xref: /openbmc/qemu/hw/intc/armv7m_nvic.c (revision 2f9db77ea8330db9d038603055e0543512365283)
1 /*
2  * ARM Nested Vectored Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  *
9  * The ARMv7M System controller is fairly tightly tied in with the
10  * NVIC.  Much of that is also implemented here.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "hw/sysbus.h"
16 #include "migration/vmstate.h"
17 #include "qemu/timer.h"
18 #include "hw/intc/armv7m_nvic.h"
19 #include "hw/irq.h"
20 #include "hw/qdev-properties.h"
21 #include "sysemu/runstate.h"
22 #include "target/arm/cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/memop.h"
25 #include "qemu/log.h"
26 #include "qemu/module.h"
27 #include "trace.h"
28 
29 /* IRQ number counting:
30  *
31  * the num-irq property counts the number of external IRQ lines
32  *
33  * NVICState::num_irq counts the total number of exceptions
34  * (external IRQs, the 15 internal exceptions including reset,
35  * and one for the unused exception number 0).
36  *
37  * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
38  *
39  * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
40  *
41  * Iterating through all exceptions should typically be done with
42  * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
43  *
44  * The external qemu_irq lines are the NVIC's external IRQ lines,
45  * so line 0 is exception 16.
46  *
47  * In the terminology of the architecture manual, "interrupts" are
48  * a subcategory of exception referring to the external interrupts
49  * (which are exception numbers NVIC_FIRST_IRQ and upward).
50  * For historical reasons QEMU tends to use "interrupt" and
51  * "exception" more or less interchangeably.
52  */
53 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
54 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
55 
56 /* Effective running priority of the CPU when no exception is active
57  * (higher than the highest possible priority value)
58  */
59 #define NVIC_NOEXC_PRIO 0x100
60 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
61 #define NVIC_NS_PRIO_LIMIT 0x80
62 
63 static const uint8_t nvic_id[] = {
64     0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
65 };
66 
67 static void signal_sysresetreq(NVICState *s)
68 {
69     if (qemu_irq_is_connected(s->sysresetreq)) {
70         qemu_irq_pulse(s->sysresetreq);
71     } else {
72         /*
73          * Default behaviour if the SoC doesn't need to wire up
74          * SYSRESETREQ (eg to a system reset controller of some kind):
75          * perform a system reset via the usual QEMU API.
76          */
77         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
78     }
79 }
80 
81 static int nvic_pending_prio(NVICState *s)
82 {
83     /* return the group priority of the current pending interrupt,
84      * or NVIC_NOEXC_PRIO if no interrupt is pending
85      */
86     return s->vectpending_prio;
87 }
88 
89 /* Return the value of the ISCR RETTOBASE bit:
90  * 1 if there is exactly one active exception
91  * 0 if there is more than one active exception
92  * UNKNOWN if there are no active exceptions (we choose 1,
93  * which matches the choice Cortex-M3 is documented as making).
94  *
95  * NB: some versions of the documentation talk about this
96  * counting "active exceptions other than the one shown by IPSR";
97  * this is only different in the obscure corner case where guest
98  * code has manually deactivated an exception and is about
99  * to fail an exception-return integrity check. The definition
100  * above is the one from the v8M ARM ARM and is also in line
101  * with the behaviour documented for the Cortex-M3.
102  */
103 static bool nvic_rettobase(NVICState *s)
104 {
105     int irq, nhand = 0;
106     bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
107 
108     for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
109         if (s->vectors[irq].active ||
110             (check_sec && irq < NVIC_INTERNAL_VECTORS &&
111              s->sec_vectors[irq].active)) {
112             nhand++;
113             if (nhand == 2) {
114                 return 0;
115             }
116         }
117     }
118 
119     return 1;
120 }
121 
122 /* Return the value of the ISCR ISRPENDING bit:
123  * 1 if an external interrupt is pending
124  * 0 if no external interrupt is pending
125  */
126 static bool nvic_isrpending(NVICState *s)
127 {
128     int irq;
129 
130     /*
131      * We can shortcut if the highest priority pending interrupt
132      * happens to be external; if not we need to check the whole
133      * vectors[] array.
134      */
135     if (s->vectpending > NVIC_FIRST_IRQ) {
136         return true;
137     }
138 
139     for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
140         if (s->vectors[irq].pending) {
141             return true;
142         }
143     }
144     return false;
145 }
146 
147 static bool exc_is_banked(int exc)
148 {
149     /* Return true if this is one of the limited set of exceptions which
150      * are banked (and thus have state in sec_vectors[])
151      */
152     return exc == ARMV7M_EXCP_HARD ||
153         exc == ARMV7M_EXCP_MEM ||
154         exc == ARMV7M_EXCP_USAGE ||
155         exc == ARMV7M_EXCP_SVC ||
156         exc == ARMV7M_EXCP_PENDSV ||
157         exc == ARMV7M_EXCP_SYSTICK;
158 }
159 
160 /* Return a mask word which clears the subpriority bits from
161  * a priority value for an M-profile exception, leaving only
162  * the group priority.
163  */
164 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
165 {
166     return ~0U << (s->prigroup[secure] + 1);
167 }
168 
169 static bool exc_targets_secure(NVICState *s, int exc)
170 {
171     /* Return true if this non-banked exception targets Secure state. */
172     if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
173         return false;
174     }
175 
176     if (exc >= NVIC_FIRST_IRQ) {
177         return !s->itns[exc];
178     }
179 
180     /* Function shouldn't be called for banked exceptions. */
181     assert(!exc_is_banked(exc));
182 
183     switch (exc) {
184     case ARMV7M_EXCP_NMI:
185     case ARMV7M_EXCP_BUS:
186         return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
187     case ARMV7M_EXCP_SECURE:
188         return true;
189     case ARMV7M_EXCP_DEBUG:
190         /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
191         return false;
192     default:
193         /* reset, and reserved (unused) low exception numbers.
194          * We'll get called by code that loops through all the exception
195          * numbers, but it doesn't matter what we return here as these
196          * non-existent exceptions will never be pended or active.
197          */
198         return true;
199     }
200 }
201 
202 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
203 {
204     /* Return the group priority for this exception, given its raw
205      * (group-and-subgroup) priority value and whether it is targeting
206      * secure state or not.
207      */
208     if (rawprio < 0) {
209         return rawprio;
210     }
211     rawprio &= nvic_gprio_mask(s, targets_secure);
212     /* AIRCR.PRIS causes us to squash all NS priorities into the
213      * lower half of the total range
214      */
215     if (!targets_secure &&
216         (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
217         rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
218     }
219     return rawprio;
220 }
221 
222 /* Recompute vectpending and exception_prio for a CPU which implements
223  * the Security extension
224  */
225 static void nvic_recompute_state_secure(NVICState *s)
226 {
227     int i, bank;
228     int pend_prio = NVIC_NOEXC_PRIO;
229     int active_prio = NVIC_NOEXC_PRIO;
230     int pend_irq = 0;
231     bool pending_is_s_banked = false;
232     int pend_subprio = 0;
233 
234     /* R_CQRV: precedence is by:
235      *  - lowest group priority; if both the same then
236      *  - lowest subpriority; if both the same then
237      *  - lowest exception number; if both the same (ie banked) then
238      *  - secure exception takes precedence
239      * Compare pseudocode RawExecutionPriority.
240      * Annoyingly, now we have two prigroup values (for S and NS)
241      * we can't do the loop comparison on raw priority values.
242      */
243     for (i = 1; i < s->num_irq; i++) {
244         for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
245             VecInfo *vec;
246             int prio, subprio;
247             bool targets_secure;
248 
249             if (bank == M_REG_S) {
250                 if (!exc_is_banked(i)) {
251                     continue;
252                 }
253                 vec = &s->sec_vectors[i];
254                 targets_secure = true;
255             } else {
256                 vec = &s->vectors[i];
257                 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
258             }
259 
260             prio = exc_group_prio(s, vec->prio, targets_secure);
261             subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure);
262             if (vec->enabled && vec->pending &&
263                 ((prio < pend_prio) ||
264                  (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) {
265                 pend_prio = prio;
266                 pend_subprio = subprio;
267                 pend_irq = i;
268                 pending_is_s_banked = (bank == M_REG_S);
269             }
270             if (vec->active && prio < active_prio) {
271                 active_prio = prio;
272             }
273         }
274     }
275 
276     s->vectpending_is_s_banked = pending_is_s_banked;
277     s->vectpending = pend_irq;
278     s->vectpending_prio = pend_prio;
279     s->exception_prio = active_prio;
280 
281     trace_nvic_recompute_state_secure(s->vectpending,
282                                       s->vectpending_is_s_banked,
283                                       s->vectpending_prio,
284                                       s->exception_prio);
285 }
286 
287 /* Recompute vectpending and exception_prio */
288 static void nvic_recompute_state(NVICState *s)
289 {
290     int i;
291     int pend_prio = NVIC_NOEXC_PRIO;
292     int active_prio = NVIC_NOEXC_PRIO;
293     int pend_irq = 0;
294 
295     /* In theory we could write one function that handled both
296      * the "security extension present" and "not present"; however
297      * the security related changes significantly complicate the
298      * recomputation just by themselves and mixing both cases together
299      * would be even worse, so we retain a separate non-secure-only
300      * version for CPUs which don't implement the security extension.
301      */
302     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
303         nvic_recompute_state_secure(s);
304         return;
305     }
306 
307     for (i = 1; i < s->num_irq; i++) {
308         VecInfo *vec = &s->vectors[i];
309 
310         if (vec->enabled && vec->pending && vec->prio < pend_prio) {
311             pend_prio = vec->prio;
312             pend_irq = i;
313         }
314         if (vec->active && vec->prio < active_prio) {
315             active_prio = vec->prio;
316         }
317     }
318 
319     if (active_prio > 0) {
320         active_prio &= nvic_gprio_mask(s, false);
321     }
322 
323     if (pend_prio > 0) {
324         pend_prio &= nvic_gprio_mask(s, false);
325     }
326 
327     s->vectpending = pend_irq;
328     s->vectpending_prio = pend_prio;
329     s->exception_prio = active_prio;
330 
331     trace_nvic_recompute_state(s->vectpending,
332                                s->vectpending_prio,
333                                s->exception_prio);
334 }
335 
336 /* Return the current execution priority of the CPU
337  * (equivalent to the pseudocode ExecutionPriority function).
338  * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
339  */
340 static inline int nvic_exec_prio(NVICState *s)
341 {
342     CPUARMState *env = &s->cpu->env;
343     int running = NVIC_NOEXC_PRIO;
344 
345     if (env->v7m.basepri[M_REG_NS] > 0) {
346         running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
347     }
348 
349     if (env->v7m.basepri[M_REG_S] > 0) {
350         int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
351         if (running > basepri) {
352             running = basepri;
353         }
354     }
355 
356     if (env->v7m.primask[M_REG_NS]) {
357         if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
358             if (running > NVIC_NS_PRIO_LIMIT) {
359                 running = NVIC_NS_PRIO_LIMIT;
360             }
361         } else {
362             running = 0;
363         }
364     }
365 
366     if (env->v7m.primask[M_REG_S]) {
367         running = 0;
368     }
369 
370     if (env->v7m.faultmask[M_REG_NS]) {
371         if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
372             running = -1;
373         } else {
374             if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
375                 if (running > NVIC_NS_PRIO_LIMIT) {
376                     running = NVIC_NS_PRIO_LIMIT;
377                 }
378             } else {
379                 running = 0;
380             }
381         }
382     }
383 
384     if (env->v7m.faultmask[M_REG_S]) {
385         running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
386     }
387 
388     /* consider priority of active handler */
389     return MIN(running, s->exception_prio);
390 }
391 
392 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
393 {
394     /* Return true if the requested execution priority is negative
395      * for the specified security state, ie that security state
396      * has an active NMI or HardFault or has set its FAULTMASK.
397      * Note that this is not the same as whether the execution
398      * priority is actually negative (for instance AIRCR.PRIS may
399      * mean we don't allow FAULTMASK_NS to actually make the execution
400      * priority negative). Compare pseudocode IsReqExcPriNeg().
401      */
402     NVICState *s = opaque;
403 
404     if (s->cpu->env.v7m.faultmask[secure]) {
405         return true;
406     }
407 
408     if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
409         s->vectors[ARMV7M_EXCP_HARD].active) {
410         return true;
411     }
412 
413     if (s->vectors[ARMV7M_EXCP_NMI].active &&
414         exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
415         return true;
416     }
417 
418     return false;
419 }
420 
421 bool armv7m_nvic_can_take_pending_exception(void *opaque)
422 {
423     NVICState *s = opaque;
424 
425     return nvic_exec_prio(s) > nvic_pending_prio(s);
426 }
427 
428 int armv7m_nvic_raw_execution_priority(void *opaque)
429 {
430     NVICState *s = opaque;
431 
432     return s->exception_prio;
433 }
434 
435 /* caller must call nvic_irq_update() after this.
436  * secure indicates the bank to use for banked exceptions (we assert if
437  * we are passed secure=true for a non-banked exception).
438  */
439 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
440 {
441     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
442     assert(irq < s->num_irq);
443 
444     prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits);
445 
446     if (secure) {
447         assert(exc_is_banked(irq));
448         s->sec_vectors[irq].prio = prio;
449     } else {
450         s->vectors[irq].prio = prio;
451     }
452 
453     trace_nvic_set_prio(irq, secure, prio);
454 }
455 
456 /* Return the current raw priority register value.
457  * secure indicates the bank to use for banked exceptions (we assert if
458  * we are passed secure=true for a non-banked exception).
459  */
460 static int get_prio(NVICState *s, unsigned irq, bool secure)
461 {
462     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
463     assert(irq < s->num_irq);
464 
465     if (secure) {
466         assert(exc_is_banked(irq));
467         return s->sec_vectors[irq].prio;
468     } else {
469         return s->vectors[irq].prio;
470     }
471 }
472 
473 /* Recompute state and assert irq line accordingly.
474  * Must be called after changes to:
475  *  vec->active, vec->enabled, vec->pending or vec->prio for any vector
476  *  prigroup
477  */
478 static void nvic_irq_update(NVICState *s)
479 {
480     int lvl;
481     int pend_prio;
482 
483     nvic_recompute_state(s);
484     pend_prio = nvic_pending_prio(s);
485 
486     /* Raise NVIC output if this IRQ would be taken, except that we
487      * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
488      * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
489      * to those CPU registers don't cause us to recalculate the NVIC
490      * pending info.
491      */
492     lvl = (pend_prio < s->exception_prio);
493     trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
494     qemu_set_irq(s->excpout, lvl);
495 }
496 
497 /**
498  * armv7m_nvic_clear_pending: mark the specified exception as not pending
499  * @opaque: the NVIC
500  * @irq: the exception number to mark as not pending
501  * @secure: false for non-banked exceptions or for the nonsecure
502  * version of a banked exception, true for the secure version of a banked
503  * exception.
504  *
505  * Marks the specified exception as not pending. Note that we will assert()
506  * if @secure is true and @irq does not specify one of the fixed set
507  * of architecturally banked exceptions.
508  */
509 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
510 {
511     NVICState *s = (NVICState *)opaque;
512     VecInfo *vec;
513 
514     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
515 
516     if (secure) {
517         assert(exc_is_banked(irq));
518         vec = &s->sec_vectors[irq];
519     } else {
520         vec = &s->vectors[irq];
521     }
522     trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
523     if (vec->pending) {
524         vec->pending = 0;
525         nvic_irq_update(s);
526     }
527 }
528 
529 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
530                                        bool derived)
531 {
532     /* Pend an exception, including possibly escalating it to HardFault.
533      *
534      * This function handles both "normal" pending of interrupts and
535      * exceptions, and also derived exceptions (ones which occur as
536      * a result of trying to take some other exception).
537      *
538      * If derived == true, the caller guarantees that we are part way through
539      * trying to take an exception (but have not yet called
540      * armv7m_nvic_acknowledge_irq() to make it active), and so:
541      *  - s->vectpending is the "original exception" we were trying to take
542      *  - irq is the "derived exception"
543      *  - nvic_exec_prio(s) gives the priority before exception entry
544      * Here we handle the prioritization logic which the pseudocode puts
545      * in the DerivedLateArrival() function.
546      */
547 
548     NVICState *s = (NVICState *)opaque;
549     bool banked = exc_is_banked(irq);
550     VecInfo *vec;
551     bool targets_secure;
552 
553     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
554     assert(!secure || banked);
555 
556     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
557 
558     targets_secure = banked ? secure : exc_targets_secure(s, irq);
559 
560     trace_nvic_set_pending(irq, secure, targets_secure,
561                            derived, vec->enabled, vec->prio);
562 
563     if (derived) {
564         /* Derived exceptions are always synchronous. */
565         assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
566 
567         if (irq == ARMV7M_EXCP_DEBUG &&
568             exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
569             /* DebugMonitorFault, but its priority is lower than the
570              * preempted exception priority: just ignore it.
571              */
572             return;
573         }
574 
575         if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
576             /* If this is a terminal exception (one which means we cannot
577              * take the original exception, like a failure to read its
578              * vector table entry), then we must take the derived exception.
579              * If the derived exception can't take priority over the
580              * original exception, then we go into Lockup.
581              *
582              * For QEMU, we rely on the fact that a derived exception is
583              * terminal if and only if it's reported to us as HardFault,
584              * which saves having to have an extra argument is_terminal
585              * that we'd only use in one place.
586              */
587             cpu_abort(&s->cpu->parent_obj,
588                       "Lockup: can't take terminal derived exception "
589                       "(original exception priority %d)\n",
590                       s->vectpending_prio);
591         }
592         /* We now continue with the same code as for a normal pending
593          * exception, which will cause us to pend the derived exception.
594          * We'll then take either the original or the derived exception
595          * based on which is higher priority by the usual mechanism
596          * for selecting the highest priority pending interrupt.
597          */
598     }
599 
600     if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
601         /* If a synchronous exception is pending then it may be
602          * escalated to HardFault if:
603          *  * it is equal or lower priority to current execution
604          *  * it is disabled
605          * (ie we need to take it immediately but we can't do so).
606          * Asynchronous exceptions (and interrupts) simply remain pending.
607          *
608          * For QEMU, we don't have any imprecise (asynchronous) faults,
609          * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
610          * synchronous.
611          * Debug exceptions are awkward because only Debug exceptions
612          * resulting from the BKPT instruction should be escalated,
613          * but we don't currently implement any Debug exceptions other
614          * than those that result from BKPT, so we treat all debug exceptions
615          * as needing escalation.
616          *
617          * This all means we can identify whether to escalate based only on
618          * the exception number and don't (yet) need the caller to explicitly
619          * tell us whether this exception is synchronous or not.
620          */
621         int running = nvic_exec_prio(s);
622         bool escalate = false;
623 
624         if (exc_group_prio(s, vec->prio, secure) >= running) {
625             trace_nvic_escalate_prio(irq, vec->prio, running);
626             escalate = true;
627         } else if (!vec->enabled) {
628             trace_nvic_escalate_disabled(irq);
629             escalate = true;
630         }
631 
632         if (escalate) {
633 
634             /* We need to escalate this exception to a synchronous HardFault.
635              * If BFHFNMINS is set then we escalate to the banked HF for
636              * the target security state of the original exception; otherwise
637              * we take a Secure HardFault.
638              */
639             irq = ARMV7M_EXCP_HARD;
640             if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
641                 (targets_secure ||
642                  !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
643                 vec = &s->sec_vectors[irq];
644             } else {
645                 vec = &s->vectors[irq];
646             }
647             if (running <= vec->prio) {
648                 /* We want to escalate to HardFault but we can't take the
649                  * synchronous HardFault at this point either. This is a
650                  * Lockup condition due to a guest bug. We don't model
651                  * Lockup, so report via cpu_abort() instead.
652                  */
653                 cpu_abort(&s->cpu->parent_obj,
654                           "Lockup: can't escalate %d to HardFault "
655                           "(current priority %d)\n", irq, running);
656             }
657 
658             /* HF may be banked but there is only one shared HFSR */
659             s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
660         }
661     }
662 
663     if (!vec->pending) {
664         vec->pending = 1;
665         nvic_irq_update(s);
666     }
667 }
668 
669 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
670 {
671     do_armv7m_nvic_set_pending(opaque, irq, secure, false);
672 }
673 
674 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
675 {
676     do_armv7m_nvic_set_pending(opaque, irq, secure, true);
677 }
678 
679 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure)
680 {
681     /*
682      * Pend an exception during lazy FP stacking. This differs
683      * from the usual exception pending because the logic for
684      * whether we should escalate depends on the saved context
685      * in the FPCCR register, not on the current state of the CPU/NVIC.
686      */
687     NVICState *s = (NVICState *)opaque;
688     bool banked = exc_is_banked(irq);
689     VecInfo *vec;
690     bool targets_secure;
691     bool escalate = false;
692     /*
693      * We will only look at bits in fpccr if this is a banked exception
694      * (in which case 'secure' tells us whether it is the S or NS version).
695      * All the bits for the non-banked exceptions are in fpccr_s.
696      */
697     uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S];
698     uint32_t fpccr = s->cpu->env.v7m.fpccr[secure];
699 
700     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
701     assert(!secure || banked);
702 
703     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
704 
705     targets_secure = banked ? secure : exc_targets_secure(s, irq);
706 
707     switch (irq) {
708     case ARMV7M_EXCP_DEBUG:
709         if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) {
710             /* Ignore DebugMonitor exception */
711             return;
712         }
713         break;
714     case ARMV7M_EXCP_MEM:
715         escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK);
716         break;
717     case ARMV7M_EXCP_USAGE:
718         escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK);
719         break;
720     case ARMV7M_EXCP_BUS:
721         escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK);
722         break;
723     case ARMV7M_EXCP_SECURE:
724         escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK);
725         break;
726     default:
727         g_assert_not_reached();
728     }
729 
730     if (escalate) {
731         /*
732          * Escalate to HardFault: faults that initially targeted Secure
733          * continue to do so, even if HF normally targets NonSecure.
734          */
735         irq = ARMV7M_EXCP_HARD;
736         if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
737             (targets_secure ||
738              !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
739             vec = &s->sec_vectors[irq];
740         } else {
741             vec = &s->vectors[irq];
742         }
743     }
744 
745     if (!vec->enabled ||
746         nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) {
747         if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) {
748             /*
749              * We want to escalate to HardFault but the context the
750              * FP state belongs to prevents the exception pre-empting.
751              */
752             cpu_abort(&s->cpu->parent_obj,
753                       "Lockup: can't escalate to HardFault during "
754                       "lazy FP register stacking\n");
755         }
756     }
757 
758     if (escalate) {
759         s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
760     }
761     if (!vec->pending) {
762         vec->pending = 1;
763         /*
764          * We do not call nvic_irq_update(), because we know our caller
765          * is going to handle causing us to take the exception by
766          * raising EXCP_LAZYFP, so raising the IRQ line would be
767          * pointless extra work. We just need to recompute the
768          * priorities so that armv7m_nvic_can_take_pending_exception()
769          * returns the right answer.
770          */
771         nvic_recompute_state(s);
772     }
773 }
774 
775 /* Make pending IRQ active.  */
776 void armv7m_nvic_acknowledge_irq(void *opaque)
777 {
778     NVICState *s = (NVICState *)opaque;
779     CPUARMState *env = &s->cpu->env;
780     const int pending = s->vectpending;
781     const int running = nvic_exec_prio(s);
782     VecInfo *vec;
783 
784     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
785 
786     if (s->vectpending_is_s_banked) {
787         vec = &s->sec_vectors[pending];
788     } else {
789         vec = &s->vectors[pending];
790     }
791 
792     assert(vec->enabled);
793     assert(vec->pending);
794 
795     assert(s->vectpending_prio < running);
796 
797     trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
798 
799     vec->active = 1;
800     vec->pending = 0;
801 
802     write_v7m_exception(env, s->vectpending);
803 
804     nvic_irq_update(s);
805 }
806 
807 static bool vectpending_targets_secure(NVICState *s)
808 {
809     /* Return true if s->vectpending targets Secure state */
810     if (s->vectpending_is_s_banked) {
811         return true;
812     }
813     return !exc_is_banked(s->vectpending) &&
814         exc_targets_secure(s, s->vectpending);
815 }
816 
817 void armv7m_nvic_get_pending_irq_info(void *opaque,
818                                       int *pirq, bool *ptargets_secure)
819 {
820     NVICState *s = (NVICState *)opaque;
821     const int pending = s->vectpending;
822     bool targets_secure;
823 
824     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
825 
826     targets_secure = vectpending_targets_secure(s);
827 
828     trace_nvic_get_pending_irq_info(pending, targets_secure);
829 
830     *ptargets_secure = targets_secure;
831     *pirq = pending;
832 }
833 
834 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
835 {
836     NVICState *s = (NVICState *)opaque;
837     VecInfo *vec = NULL;
838     int ret = 0;
839 
840     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
841 
842     trace_nvic_complete_irq(irq, secure);
843 
844     if (secure && exc_is_banked(irq)) {
845         vec = &s->sec_vectors[irq];
846     } else {
847         vec = &s->vectors[irq];
848     }
849 
850     /*
851      * Identify illegal exception return cases. We can't immediately
852      * return at this point because we still need to deactivate
853      * (either this exception or NMI/HardFault) first.
854      */
855     if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) {
856         /*
857          * Return from a configurable exception targeting the opposite
858          * security state from the one we're trying to complete it for.
859          * Clear vec because it's not really the VecInfo for this
860          * (irq, secstate) so we mustn't deactivate it.
861          */
862         ret = -1;
863         vec = NULL;
864     } else if (!vec->active) {
865         /* Return from an inactive interrupt */
866         ret = -1;
867     } else {
868         /* Legal return, we will return the RETTOBASE bit value to the caller */
869         ret = nvic_rettobase(s);
870     }
871 
872     /*
873      * For negative priorities, v8M will forcibly deactivate the appropriate
874      * NMI or HardFault regardless of what interrupt we're being asked to
875      * deactivate (compare the DeActivate() pseudocode). This is a guard
876      * against software returning from NMI or HardFault with a corrupted
877      * IPSR and leaving the CPU in a negative-priority state.
878      * v7M does not do this, but simply deactivates the requested interrupt.
879      */
880     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
881         switch (armv7m_nvic_raw_execution_priority(s)) {
882         case -1:
883             if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
884                 vec = &s->vectors[ARMV7M_EXCP_HARD];
885             } else {
886                 vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
887             }
888             break;
889         case -2:
890             vec = &s->vectors[ARMV7M_EXCP_NMI];
891             break;
892         case -3:
893             vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
894             break;
895         default:
896             break;
897         }
898     }
899 
900     if (!vec) {
901         return ret;
902     }
903 
904     vec->active = 0;
905     if (vec->level) {
906         /* Re-pend the exception if it's still held high; only
907          * happens for extenal IRQs
908          */
909         assert(irq >= NVIC_FIRST_IRQ);
910         vec->pending = 1;
911     }
912 
913     nvic_irq_update(s);
914 
915     return ret;
916 }
917 
918 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
919 {
920     /*
921      * Return whether an exception is "ready", i.e. it is enabled and is
922      * configured at a priority which would allow it to interrupt the
923      * current execution priority.
924      *
925      * irq and secure have the same semantics as for armv7m_nvic_set_pending():
926      * for non-banked exceptions secure is always false; for banked exceptions
927      * it indicates which of the exceptions is required.
928      */
929     NVICState *s = (NVICState *)opaque;
930     bool banked = exc_is_banked(irq);
931     VecInfo *vec;
932     int running = nvic_exec_prio(s);
933 
934     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
935     assert(!secure || banked);
936 
937     /*
938      * HardFault is an odd special case: we always check against -1,
939      * even if we're secure and HardFault has priority -3; we never
940      * need to check for enabled state.
941      */
942     if (irq == ARMV7M_EXCP_HARD) {
943         return running > -1;
944     }
945 
946     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
947 
948     return vec->enabled &&
949         exc_group_prio(s, vec->prio, secure) < running;
950 }
951 
952 /* callback when external interrupt line is changed */
953 static void set_irq_level(void *opaque, int n, int level)
954 {
955     NVICState *s = opaque;
956     VecInfo *vec;
957 
958     n += NVIC_FIRST_IRQ;
959 
960     assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
961 
962     trace_nvic_set_irq_level(n, level);
963 
964     /* The pending status of an external interrupt is
965      * latched on rising edge and exception handler return.
966      *
967      * Pulsing the IRQ will always run the handler
968      * once, and the handler will re-run until the
969      * level is low when the handler completes.
970      */
971     vec = &s->vectors[n];
972     if (level != vec->level) {
973         vec->level = level;
974         if (level) {
975             armv7m_nvic_set_pending(s, n, false);
976         }
977     }
978 }
979 
980 /* callback when external NMI line is changed */
981 static void nvic_nmi_trigger(void *opaque, int n, int level)
982 {
983     NVICState *s = opaque;
984 
985     trace_nvic_set_nmi_level(level);
986 
987     /*
988      * The architecture doesn't specify whether NMI should share
989      * the normal-interrupt behaviour of being resampled on
990      * exception handler return. We choose not to, so just
991      * set NMI pending here and don't track the current level.
992      */
993     if (level) {
994         armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
995     }
996 }
997 
998 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
999 {
1000     ARMCPU *cpu = s->cpu;
1001     uint32_t val;
1002 
1003     switch (offset) {
1004     case 4: /* Interrupt Control Type.  */
1005         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1006             goto bad_offset;
1007         }
1008         return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
1009     case 0xc: /* CPPWR */
1010         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1011             goto bad_offset;
1012         }
1013         /* We make the IMPDEF choice that nothing can ever go into a
1014          * non-retentive power state, which allows us to RAZ/WI this.
1015          */
1016         return 0;
1017     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1018     {
1019         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1020         int i;
1021 
1022         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1023             goto bad_offset;
1024         }
1025         if (!attrs.secure) {
1026             return 0;
1027         }
1028         val = 0;
1029         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1030             if (s->itns[startvec + i]) {
1031                 val |= (1 << i);
1032             }
1033         }
1034         return val;
1035     }
1036     case 0xcfc:
1037         if (!arm_feature(&cpu->env, ARM_FEATURE_V8_1M)) {
1038             goto bad_offset;
1039         }
1040         return cpu->revidr;
1041     case 0xd00: /* CPUID Base.  */
1042         return cpu->midr;
1043     case 0xd04: /* Interrupt Control State (ICSR) */
1044         /* VECTACTIVE */
1045         val = cpu->env.v7m.exception;
1046         /* VECTPENDING */
1047         if (s->vectpending) {
1048             /*
1049              * From v8.1M VECTPENDING must read as 1 if accessed as
1050              * NonSecure and the highest priority pending and enabled
1051              * exception targets Secure.
1052              */
1053             int vp = s->vectpending;
1054             if (!attrs.secure && arm_feature(&cpu->env, ARM_FEATURE_V8_1M) &&
1055                 vectpending_targets_secure(s)) {
1056                 vp = 1;
1057             }
1058             val |= (vp & 0x1ff) << 12;
1059         }
1060         /* ISRPENDING - set if any external IRQ is pending */
1061         if (nvic_isrpending(s)) {
1062             val |= (1 << 22);
1063         }
1064         /* RETTOBASE - set if only one handler is active */
1065         if (nvic_rettobase(s)) {
1066             val |= (1 << 11);
1067         }
1068         if (attrs.secure) {
1069             /* PENDSTSET */
1070             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
1071                 val |= (1 << 26);
1072             }
1073             /* PENDSVSET */
1074             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
1075                 val |= (1 << 28);
1076             }
1077         } else {
1078             /* PENDSTSET */
1079             if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
1080                 val |= (1 << 26);
1081             }
1082             /* PENDSVSET */
1083             if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
1084                 val |= (1 << 28);
1085             }
1086         }
1087         /* NMIPENDSET */
1088         if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
1089             && s->vectors[ARMV7M_EXCP_NMI].pending) {
1090             val |= (1 << 31);
1091         }
1092         /* ISRPREEMPT: RES0 when halting debug not implemented */
1093         /* STTNS: RES0 for the Main Extension */
1094         return val;
1095     case 0xd08: /* Vector Table Offset.  */
1096         return cpu->env.v7m.vecbase[attrs.secure];
1097     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1098         val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
1099         if (attrs.secure) {
1100             /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
1101             val |= cpu->env.v7m.aircr;
1102         } else {
1103             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1104                 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
1105                  * security isn't supported then BFHFNMINS is RAO (and
1106                  * the bit in env.v7m.aircr is always set).
1107                  */
1108                 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
1109             }
1110         }
1111         return val;
1112     case 0xd10: /* System Control.  */
1113         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1114             goto bad_offset;
1115         }
1116         return cpu->env.v7m.scr[attrs.secure];
1117     case 0xd14: /* Configuration Control.  */
1118         /*
1119          * Non-banked bits: BFHFNMIGN (stored in the NS copy of the register)
1120          * and TRD (stored in the S copy of the register)
1121          */
1122         val = cpu->env.v7m.ccr[attrs.secure];
1123         val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
1124         /* BFHFNMIGN is RAZ/WI from NS if AIRCR.BFHFNMINS is 0 */
1125         if (!attrs.secure) {
1126             if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1127                 val &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1128             }
1129         }
1130         return val;
1131     case 0xd24: /* System Handler Control and State (SHCSR) */
1132         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1133             goto bad_offset;
1134         }
1135         val = 0;
1136         if (attrs.secure) {
1137             if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
1138                 val |= (1 << 0);
1139             }
1140             if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
1141                 val |= (1 << 2);
1142             }
1143             if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
1144                 val |= (1 << 3);
1145             }
1146             if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
1147                 val |= (1 << 7);
1148             }
1149             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
1150                 val |= (1 << 10);
1151             }
1152             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
1153                 val |= (1 << 11);
1154             }
1155             if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
1156                 val |= (1 << 12);
1157             }
1158             if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
1159                 val |= (1 << 13);
1160             }
1161             if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
1162                 val |= (1 << 15);
1163             }
1164             if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
1165                 val |= (1 << 16);
1166             }
1167             if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
1168                 val |= (1 << 18);
1169             }
1170             if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
1171                 val |= (1 << 21);
1172             }
1173             /* SecureFault is not banked but is always RAZ/WI to NS */
1174             if (s->vectors[ARMV7M_EXCP_SECURE].active) {
1175                 val |= (1 << 4);
1176             }
1177             if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
1178                 val |= (1 << 19);
1179             }
1180             if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
1181                 val |= (1 << 20);
1182             }
1183         } else {
1184             if (s->vectors[ARMV7M_EXCP_MEM].active) {
1185                 val |= (1 << 0);
1186             }
1187             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1188                 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
1189                 if (s->vectors[ARMV7M_EXCP_HARD].active) {
1190                     val |= (1 << 2);
1191                 }
1192                 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
1193                     val |= (1 << 21);
1194                 }
1195             }
1196             if (s->vectors[ARMV7M_EXCP_USAGE].active) {
1197                 val |= (1 << 3);
1198             }
1199             if (s->vectors[ARMV7M_EXCP_SVC].active) {
1200                 val |= (1 << 7);
1201             }
1202             if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
1203                 val |= (1 << 10);
1204             }
1205             if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
1206                 val |= (1 << 11);
1207             }
1208             if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
1209                 val |= (1 << 12);
1210             }
1211             if (s->vectors[ARMV7M_EXCP_MEM].pending) {
1212                 val |= (1 << 13);
1213             }
1214             if (s->vectors[ARMV7M_EXCP_SVC].pending) {
1215                 val |= (1 << 15);
1216             }
1217             if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
1218                 val |= (1 << 16);
1219             }
1220             if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
1221                 val |= (1 << 18);
1222             }
1223         }
1224         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1225             if (s->vectors[ARMV7M_EXCP_BUS].active) {
1226                 val |= (1 << 1);
1227             }
1228             if (s->vectors[ARMV7M_EXCP_BUS].pending) {
1229                 val |= (1 << 14);
1230             }
1231             if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
1232                 val |= (1 << 17);
1233             }
1234             if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
1235                 s->vectors[ARMV7M_EXCP_NMI].active) {
1236                 /* NMIACT is not present in v7M */
1237                 val |= (1 << 5);
1238             }
1239         }
1240 
1241         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1242         if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
1243             val |= (1 << 8);
1244         }
1245         return val;
1246     case 0xd2c: /* Hard Fault Status.  */
1247         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1248             goto bad_offset;
1249         }
1250         return cpu->env.v7m.hfsr;
1251     case 0xd30: /* Debug Fault Status.  */
1252         return cpu->env.v7m.dfsr;
1253     case 0xd34: /* MMFAR MemManage Fault Address */
1254         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1255             goto bad_offset;
1256         }
1257         return cpu->env.v7m.mmfar[attrs.secure];
1258     case 0xd38: /* Bus Fault Address.  */
1259         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1260             goto bad_offset;
1261         }
1262         if (!attrs.secure &&
1263             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1264             return 0;
1265         }
1266         return cpu->env.v7m.bfar;
1267     case 0xd3c: /* Aux Fault Status.  */
1268         /* TODO: Implement fault status registers.  */
1269         qemu_log_mask(LOG_UNIMP,
1270                       "Aux Fault status registers unimplemented\n");
1271         return 0;
1272     case 0xd40: /* PFR0.  */
1273         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1274             goto bad_offset;
1275         }
1276         return cpu->isar.id_pfr0;
1277     case 0xd44: /* PFR1.  */
1278         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1279             goto bad_offset;
1280         }
1281         return cpu->isar.id_pfr1;
1282     case 0xd48: /* DFR0.  */
1283         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1284             goto bad_offset;
1285         }
1286         return cpu->isar.id_dfr0;
1287     case 0xd4c: /* AFR0.  */
1288         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1289             goto bad_offset;
1290         }
1291         return cpu->id_afr0;
1292     case 0xd50: /* MMFR0.  */
1293         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1294             goto bad_offset;
1295         }
1296         return cpu->isar.id_mmfr0;
1297     case 0xd54: /* MMFR1.  */
1298         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1299             goto bad_offset;
1300         }
1301         return cpu->isar.id_mmfr1;
1302     case 0xd58: /* MMFR2.  */
1303         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1304             goto bad_offset;
1305         }
1306         return cpu->isar.id_mmfr2;
1307     case 0xd5c: /* MMFR3.  */
1308         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1309             goto bad_offset;
1310         }
1311         return cpu->isar.id_mmfr3;
1312     case 0xd60: /* ISAR0.  */
1313         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1314             goto bad_offset;
1315         }
1316         return cpu->isar.id_isar0;
1317     case 0xd64: /* ISAR1.  */
1318         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1319             goto bad_offset;
1320         }
1321         return cpu->isar.id_isar1;
1322     case 0xd68: /* ISAR2.  */
1323         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1324             goto bad_offset;
1325         }
1326         return cpu->isar.id_isar2;
1327     case 0xd6c: /* ISAR3.  */
1328         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1329             goto bad_offset;
1330         }
1331         return cpu->isar.id_isar3;
1332     case 0xd70: /* ISAR4.  */
1333         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1334             goto bad_offset;
1335         }
1336         return cpu->isar.id_isar4;
1337     case 0xd74: /* ISAR5.  */
1338         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1339             goto bad_offset;
1340         }
1341         return cpu->isar.id_isar5;
1342     case 0xd78: /* CLIDR */
1343         return cpu->clidr;
1344     case 0xd7c: /* CTR */
1345         return cpu->ctr;
1346     case 0xd80: /* CSSIDR */
1347     {
1348         int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
1349         return cpu->ccsidr[idx];
1350     }
1351     case 0xd84: /* CSSELR */
1352         return cpu->env.v7m.csselr[attrs.secure];
1353     case 0xd88: /* CPACR */
1354         if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1355             return 0;
1356         }
1357         return cpu->env.v7m.cpacr[attrs.secure];
1358     case 0xd8c: /* NSACR */
1359         if (!attrs.secure || !cpu_isar_feature(aa32_vfp_simd, cpu)) {
1360             return 0;
1361         }
1362         return cpu->env.v7m.nsacr;
1363     /* TODO: Implement debug registers.  */
1364     case 0xd90: /* MPU_TYPE */
1365         /* Unified MPU; if the MPU is not present this value is zero */
1366         return cpu->pmsav7_dregion << 8;
1367     case 0xd94: /* MPU_CTRL */
1368         return cpu->env.v7m.mpu_ctrl[attrs.secure];
1369     case 0xd98: /* MPU_RNR */
1370         return cpu->env.pmsav7.rnr[attrs.secure];
1371     case 0xd9c: /* MPU_RBAR */
1372     case 0xda4: /* MPU_RBAR_A1 */
1373     case 0xdac: /* MPU_RBAR_A2 */
1374     case 0xdb4: /* MPU_RBAR_A3 */
1375     {
1376         int region = cpu->env.pmsav7.rnr[attrs.secure];
1377 
1378         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1379             /* PMSAv8M handling of the aliases is different from v7M:
1380              * aliases A1, A2, A3 override the low two bits of the region
1381              * number in MPU_RNR, and there is no 'region' field in the
1382              * RBAR register.
1383              */
1384             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1385             if (aliasno) {
1386                 region = deposit32(region, 0, 2, aliasno);
1387             }
1388             if (region >= cpu->pmsav7_dregion) {
1389                 return 0;
1390             }
1391             return cpu->env.pmsav8.rbar[attrs.secure][region];
1392         }
1393 
1394         if (region >= cpu->pmsav7_dregion) {
1395             return 0;
1396         }
1397         return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
1398     }
1399     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1400     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1401     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1402     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1403     {
1404         int region = cpu->env.pmsav7.rnr[attrs.secure];
1405 
1406         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1407             /* PMSAv8M handling of the aliases is different from v7M:
1408              * aliases A1, A2, A3 override the low two bits of the region
1409              * number in MPU_RNR.
1410              */
1411             int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1412             if (aliasno) {
1413                 region = deposit32(region, 0, 2, aliasno);
1414             }
1415             if (region >= cpu->pmsav7_dregion) {
1416                 return 0;
1417             }
1418             return cpu->env.pmsav8.rlar[attrs.secure][region];
1419         }
1420 
1421         if (region >= cpu->pmsav7_dregion) {
1422             return 0;
1423         }
1424         return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1425             (cpu->env.pmsav7.drsr[region] & 0xffff);
1426     }
1427     case 0xdc0: /* MPU_MAIR0 */
1428         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1429             goto bad_offset;
1430         }
1431         return cpu->env.pmsav8.mair0[attrs.secure];
1432     case 0xdc4: /* MPU_MAIR1 */
1433         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1434             goto bad_offset;
1435         }
1436         return cpu->env.pmsav8.mair1[attrs.secure];
1437     case 0xdd0: /* SAU_CTRL */
1438         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1439             goto bad_offset;
1440         }
1441         if (!attrs.secure) {
1442             return 0;
1443         }
1444         return cpu->env.sau.ctrl;
1445     case 0xdd4: /* SAU_TYPE */
1446         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1447             goto bad_offset;
1448         }
1449         if (!attrs.secure) {
1450             return 0;
1451         }
1452         return cpu->sau_sregion;
1453     case 0xdd8: /* SAU_RNR */
1454         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1455             goto bad_offset;
1456         }
1457         if (!attrs.secure) {
1458             return 0;
1459         }
1460         return cpu->env.sau.rnr;
1461     case 0xddc: /* SAU_RBAR */
1462     {
1463         int region = cpu->env.sau.rnr;
1464 
1465         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1466             goto bad_offset;
1467         }
1468         if (!attrs.secure) {
1469             return 0;
1470         }
1471         if (region >= cpu->sau_sregion) {
1472             return 0;
1473         }
1474         return cpu->env.sau.rbar[region];
1475     }
1476     case 0xde0: /* SAU_RLAR */
1477     {
1478         int region = cpu->env.sau.rnr;
1479 
1480         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1481             goto bad_offset;
1482         }
1483         if (!attrs.secure) {
1484             return 0;
1485         }
1486         if (region >= cpu->sau_sregion) {
1487             return 0;
1488         }
1489         return cpu->env.sau.rlar[region];
1490     }
1491     case 0xde4: /* SFSR */
1492         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1493             goto bad_offset;
1494         }
1495         if (!attrs.secure) {
1496             return 0;
1497         }
1498         return cpu->env.v7m.sfsr;
1499     case 0xde8: /* SFAR */
1500         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1501             goto bad_offset;
1502         }
1503         if (!attrs.secure) {
1504             return 0;
1505         }
1506         return cpu->env.v7m.sfar;
1507     case 0xf04: /* RFSR */
1508         if (!cpu_isar_feature(aa32_ras, cpu)) {
1509             goto bad_offset;
1510         }
1511         /* We provide minimal-RAS only: RFSR is RAZ/WI */
1512         return 0;
1513     case 0xf34: /* FPCCR */
1514         if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1515             return 0;
1516         }
1517         if (attrs.secure) {
1518             return cpu->env.v7m.fpccr[M_REG_S];
1519         } else {
1520             /*
1521              * NS can read LSPEN, CLRONRET and MONRDY. It can read
1522              * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0;
1523              * other non-banked bits RAZ.
1524              * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set.
1525              */
1526             uint32_t value = cpu->env.v7m.fpccr[M_REG_S];
1527             uint32_t mask = R_V7M_FPCCR_LSPEN_MASK |
1528                 R_V7M_FPCCR_CLRONRET_MASK |
1529                 R_V7M_FPCCR_MONRDY_MASK;
1530 
1531             if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1532                 mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK;
1533             }
1534 
1535             value &= mask;
1536 
1537             value |= cpu->env.v7m.fpccr[M_REG_NS];
1538             return value;
1539         }
1540     case 0xf38: /* FPCAR */
1541         if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1542             return 0;
1543         }
1544         return cpu->env.v7m.fpcar[attrs.secure];
1545     case 0xf3c: /* FPDSCR */
1546         if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1547             return 0;
1548         }
1549         return cpu->env.v7m.fpdscr[attrs.secure];
1550     case 0xf40: /* MVFR0 */
1551         return cpu->isar.mvfr0;
1552     case 0xf44: /* MVFR1 */
1553         return cpu->isar.mvfr1;
1554     case 0xf48: /* MVFR2 */
1555         return cpu->isar.mvfr2;
1556     default:
1557     bad_offset:
1558         qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1559         return 0;
1560     }
1561 }
1562 
1563 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1564                         MemTxAttrs attrs)
1565 {
1566     ARMCPU *cpu = s->cpu;
1567 
1568     switch (offset) {
1569     case 0xc: /* CPPWR */
1570         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1571             goto bad_offset;
1572         }
1573         /* Make the IMPDEF choice to RAZ/WI this. */
1574         break;
1575     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1576     {
1577         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1578         int i;
1579 
1580         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1581             goto bad_offset;
1582         }
1583         if (!attrs.secure) {
1584             break;
1585         }
1586         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1587             s->itns[startvec + i] = (value >> i) & 1;
1588         }
1589         nvic_irq_update(s);
1590         break;
1591     }
1592     case 0xd04: /* Interrupt Control State (ICSR) */
1593         if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1594             if (value & (1 << 31)) {
1595                 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1596             } else if (value & (1 << 30) &&
1597                        arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1598                 /* PENDNMICLR didn't exist in v7M */
1599                 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1600             }
1601         }
1602         if (value & (1 << 28)) {
1603             armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1604         } else if (value & (1 << 27)) {
1605             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1606         }
1607         if (value & (1 << 26)) {
1608             armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1609         } else if (value & (1 << 25)) {
1610             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1611         }
1612         break;
1613     case 0xd08: /* Vector Table Offset.  */
1614         cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1615         break;
1616     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1617         if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1618             if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1619                 if (attrs.secure ||
1620                     !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1621                     signal_sysresetreq(s);
1622                 }
1623             }
1624             if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1625                 qemu_log_mask(LOG_GUEST_ERROR,
1626                               "Setting VECTCLRACTIVE when not in DEBUG mode "
1627                               "is UNPREDICTABLE\n");
1628             }
1629             if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1630                 /* NB: this bit is RES0 in v8M */
1631                 qemu_log_mask(LOG_GUEST_ERROR,
1632                               "Setting VECTRESET when not in DEBUG mode "
1633                               "is UNPREDICTABLE\n");
1634             }
1635             if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1636                 s->prigroup[attrs.secure] =
1637                     extract32(value,
1638                               R_V7M_AIRCR_PRIGROUP_SHIFT,
1639                               R_V7M_AIRCR_PRIGROUP_LENGTH);
1640             }
1641             /* AIRCR.IESB is RAZ/WI because we implement only minimal RAS */
1642             if (attrs.secure) {
1643                 /* These bits are only writable by secure */
1644                 cpu->env.v7m.aircr = value &
1645                     (R_V7M_AIRCR_SYSRESETREQS_MASK |
1646                      R_V7M_AIRCR_BFHFNMINS_MASK |
1647                      R_V7M_AIRCR_PRIS_MASK);
1648                 /* BFHFNMINS changes the priority of Secure HardFault, and
1649                  * allows a pending Non-secure HardFault to preempt (which
1650                  * we implement by marking it enabled).
1651                  */
1652                 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1653                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1654                     s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1655                 } else {
1656                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1657                     s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1658                 }
1659             }
1660             nvic_irq_update(s);
1661         }
1662         break;
1663     case 0xd10: /* System Control.  */
1664         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1665             goto bad_offset;
1666         }
1667         /* We don't implement deep-sleep so these bits are RAZ/WI.
1668          * The other bits in the register are banked.
1669          * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
1670          * is architecturally permitted.
1671          */
1672         value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
1673         cpu->env.v7m.scr[attrs.secure] = value;
1674         break;
1675     case 0xd14: /* Configuration Control.  */
1676     {
1677         uint32_t mask;
1678 
1679         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1680             goto bad_offset;
1681         }
1682 
1683         /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1684         mask = R_V7M_CCR_STKALIGN_MASK |
1685             R_V7M_CCR_BFHFNMIGN_MASK |
1686             R_V7M_CCR_DIV_0_TRP_MASK |
1687             R_V7M_CCR_UNALIGN_TRP_MASK |
1688             R_V7M_CCR_USERSETMPEND_MASK |
1689             R_V7M_CCR_NONBASETHRDENA_MASK;
1690         if (arm_feature(&cpu->env, ARM_FEATURE_V8_1M) && attrs.secure) {
1691             /* TRD is always RAZ/WI from NS */
1692             mask |= R_V7M_CCR_TRD_MASK;
1693         }
1694         value &= mask;
1695 
1696         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1697             /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1698             value |= R_V7M_CCR_NONBASETHRDENA_MASK
1699                 | R_V7M_CCR_STKALIGN_MASK;
1700         }
1701         if (attrs.secure) {
1702             /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1703             cpu->env.v7m.ccr[M_REG_NS] =
1704                 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1705                 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1706             value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1707         } else {
1708             /*
1709              * BFHFNMIGN is RAZ/WI from NS if AIRCR.BFHFNMINS is 0, so
1710              * preserve the state currently in the NS element of the array
1711              */
1712             if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1713                 value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1714                 value |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
1715             }
1716         }
1717 
1718         cpu->env.v7m.ccr[attrs.secure] = value;
1719         break;
1720     }
1721     case 0xd24: /* System Handler Control and State (SHCSR) */
1722         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1723             goto bad_offset;
1724         }
1725         if (attrs.secure) {
1726             s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1727             /* Secure HardFault active bit cannot be written */
1728             s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1729             s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1730             s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1731                 (value & (1 << 10)) != 0;
1732             s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1733                 (value & (1 << 11)) != 0;
1734             s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1735                 (value & (1 << 12)) != 0;
1736             s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1737             s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1738             s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1739             s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1740             s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1741                 (value & (1 << 18)) != 0;
1742             s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1743             /* SecureFault not banked, but RAZ/WI to NS */
1744             s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1745             s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1746             s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1747         } else {
1748             s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1749             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1750                 /* HARDFAULTPENDED is not present in v7M */
1751                 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1752             }
1753             s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1754             s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1755             s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1756             s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1757             s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1758             s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1759             s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1760             s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1761             s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1762         }
1763         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1764             s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1765             s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1766             s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1767         }
1768         /* NMIACT can only be written if the write is of a zero, with
1769          * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1770          */
1771         if (!attrs.secure && cpu->env.v7m.secure &&
1772             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1773             (value & (1 << 5)) == 0) {
1774             s->vectors[ARMV7M_EXCP_NMI].active = 0;
1775         }
1776         /* HARDFAULTACT can only be written if the write is of a zero
1777          * to the non-secure HardFault state by the CPU in secure state.
1778          * The only case where we can be targeting the non-secure HF state
1779          * when in secure state is if this is a write via the NS alias
1780          * and BFHFNMINS is 1.
1781          */
1782         if (!attrs.secure && cpu->env.v7m.secure &&
1783             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1784             (value & (1 << 2)) == 0) {
1785             s->vectors[ARMV7M_EXCP_HARD].active = 0;
1786         }
1787 
1788         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1789         s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1790         nvic_irq_update(s);
1791         break;
1792     case 0xd2c: /* Hard Fault Status.  */
1793         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1794             goto bad_offset;
1795         }
1796         cpu->env.v7m.hfsr &= ~value; /* W1C */
1797         break;
1798     case 0xd30: /* Debug Fault Status.  */
1799         cpu->env.v7m.dfsr &= ~value; /* W1C */
1800         break;
1801     case 0xd34: /* Mem Manage Address.  */
1802         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1803             goto bad_offset;
1804         }
1805         cpu->env.v7m.mmfar[attrs.secure] = value;
1806         return;
1807     case 0xd38: /* Bus Fault Address.  */
1808         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1809             goto bad_offset;
1810         }
1811         if (!attrs.secure &&
1812             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1813             return;
1814         }
1815         cpu->env.v7m.bfar = value;
1816         return;
1817     case 0xd3c: /* Aux Fault Status.  */
1818         qemu_log_mask(LOG_UNIMP,
1819                       "NVIC: Aux fault status registers unimplemented\n");
1820         break;
1821     case 0xd84: /* CSSELR */
1822         if (!arm_v7m_csselr_razwi(cpu)) {
1823             cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
1824         }
1825         break;
1826     case 0xd88: /* CPACR */
1827         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1828             /* We implement only the Floating Point extension's CP10/CP11 */
1829             cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20);
1830         }
1831         break;
1832     case 0xd8c: /* NSACR */
1833         if (attrs.secure && cpu_isar_feature(aa32_vfp_simd, cpu)) {
1834             /* We implement only the Floating Point extension's CP10/CP11 */
1835             cpu->env.v7m.nsacr = value & (3 << 10);
1836         }
1837         break;
1838     case 0xd90: /* MPU_TYPE */
1839         return; /* RO */
1840     case 0xd94: /* MPU_CTRL */
1841         if ((value &
1842              (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1843             == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1844             qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1845                           "UNPREDICTABLE\n");
1846         }
1847         cpu->env.v7m.mpu_ctrl[attrs.secure]
1848             = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1849                        R_V7M_MPU_CTRL_HFNMIENA_MASK |
1850                        R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1851         tlb_flush(CPU(cpu));
1852         break;
1853     case 0xd98: /* MPU_RNR */
1854         if (value >= cpu->pmsav7_dregion) {
1855             qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1856                           PRIu32 "/%" PRIu32 "\n",
1857                           value, cpu->pmsav7_dregion);
1858         } else {
1859             cpu->env.pmsav7.rnr[attrs.secure] = value;
1860         }
1861         break;
1862     case 0xd9c: /* MPU_RBAR */
1863     case 0xda4: /* MPU_RBAR_A1 */
1864     case 0xdac: /* MPU_RBAR_A2 */
1865     case 0xdb4: /* MPU_RBAR_A3 */
1866     {
1867         int region;
1868 
1869         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1870             /* PMSAv8M handling of the aliases is different from v7M:
1871              * aliases A1, A2, A3 override the low two bits of the region
1872              * number in MPU_RNR, and there is no 'region' field in the
1873              * RBAR register.
1874              */
1875             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1876 
1877             region = cpu->env.pmsav7.rnr[attrs.secure];
1878             if (aliasno) {
1879                 region = deposit32(region, 0, 2, aliasno);
1880             }
1881             if (region >= cpu->pmsav7_dregion) {
1882                 return;
1883             }
1884             cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1885             tlb_flush(CPU(cpu));
1886             return;
1887         }
1888 
1889         if (value & (1 << 4)) {
1890             /* VALID bit means use the region number specified in this
1891              * value and also update MPU_RNR.REGION with that value.
1892              */
1893             region = extract32(value, 0, 4);
1894             if (region >= cpu->pmsav7_dregion) {
1895                 qemu_log_mask(LOG_GUEST_ERROR,
1896                               "MPU region out of range %u/%" PRIu32 "\n",
1897                               region, cpu->pmsav7_dregion);
1898                 return;
1899             }
1900             cpu->env.pmsav7.rnr[attrs.secure] = region;
1901         } else {
1902             region = cpu->env.pmsav7.rnr[attrs.secure];
1903         }
1904 
1905         if (region >= cpu->pmsav7_dregion) {
1906             return;
1907         }
1908 
1909         cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1910         tlb_flush(CPU(cpu));
1911         break;
1912     }
1913     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1914     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1915     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1916     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1917     {
1918         int region = cpu->env.pmsav7.rnr[attrs.secure];
1919 
1920         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1921             /* PMSAv8M handling of the aliases is different from v7M:
1922              * aliases A1, A2, A3 override the low two bits of the region
1923              * number in MPU_RNR.
1924              */
1925             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1926 
1927             region = cpu->env.pmsav7.rnr[attrs.secure];
1928             if (aliasno) {
1929                 region = deposit32(region, 0, 2, aliasno);
1930             }
1931             if (region >= cpu->pmsav7_dregion) {
1932                 return;
1933             }
1934             cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1935             tlb_flush(CPU(cpu));
1936             return;
1937         }
1938 
1939         if (region >= cpu->pmsav7_dregion) {
1940             return;
1941         }
1942 
1943         cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1944         cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1945         tlb_flush(CPU(cpu));
1946         break;
1947     }
1948     case 0xdc0: /* MPU_MAIR0 */
1949         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1950             goto bad_offset;
1951         }
1952         if (cpu->pmsav7_dregion) {
1953             /* Register is RES0 if no MPU regions are implemented */
1954             cpu->env.pmsav8.mair0[attrs.secure] = value;
1955         }
1956         /* We don't need to do anything else because memory attributes
1957          * only affect cacheability, and we don't implement caching.
1958          */
1959         break;
1960     case 0xdc4: /* MPU_MAIR1 */
1961         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1962             goto bad_offset;
1963         }
1964         if (cpu->pmsav7_dregion) {
1965             /* Register is RES0 if no MPU regions are implemented */
1966             cpu->env.pmsav8.mair1[attrs.secure] = value;
1967         }
1968         /* We don't need to do anything else because memory attributes
1969          * only affect cacheability, and we don't implement caching.
1970          */
1971         break;
1972     case 0xdd0: /* SAU_CTRL */
1973         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1974             goto bad_offset;
1975         }
1976         if (!attrs.secure) {
1977             return;
1978         }
1979         cpu->env.sau.ctrl = value & 3;
1980         break;
1981     case 0xdd4: /* SAU_TYPE */
1982         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1983             goto bad_offset;
1984         }
1985         break;
1986     case 0xdd8: /* SAU_RNR */
1987         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1988             goto bad_offset;
1989         }
1990         if (!attrs.secure) {
1991             return;
1992         }
1993         if (value >= cpu->sau_sregion) {
1994             qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1995                           PRIu32 "/%" PRIu32 "\n",
1996                           value, cpu->sau_sregion);
1997         } else {
1998             cpu->env.sau.rnr = value;
1999         }
2000         break;
2001     case 0xddc: /* SAU_RBAR */
2002     {
2003         int region = cpu->env.sau.rnr;
2004 
2005         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2006             goto bad_offset;
2007         }
2008         if (!attrs.secure) {
2009             return;
2010         }
2011         if (region >= cpu->sau_sregion) {
2012             return;
2013         }
2014         cpu->env.sau.rbar[region] = value & ~0x1f;
2015         tlb_flush(CPU(cpu));
2016         break;
2017     }
2018     case 0xde0: /* SAU_RLAR */
2019     {
2020         int region = cpu->env.sau.rnr;
2021 
2022         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2023             goto bad_offset;
2024         }
2025         if (!attrs.secure) {
2026             return;
2027         }
2028         if (region >= cpu->sau_sregion) {
2029             return;
2030         }
2031         cpu->env.sau.rlar[region] = value & ~0x1c;
2032         tlb_flush(CPU(cpu));
2033         break;
2034     }
2035     case 0xde4: /* SFSR */
2036         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2037             goto bad_offset;
2038         }
2039         if (!attrs.secure) {
2040             return;
2041         }
2042         cpu->env.v7m.sfsr &= ~value; /* W1C */
2043         break;
2044     case 0xde8: /* SFAR */
2045         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2046             goto bad_offset;
2047         }
2048         if (!attrs.secure) {
2049             return;
2050         }
2051         cpu->env.v7m.sfsr = value;
2052         break;
2053     case 0xf00: /* Software Triggered Interrupt Register */
2054     {
2055         int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
2056 
2057         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
2058             goto bad_offset;
2059         }
2060 
2061         if (excnum < s->num_irq) {
2062             armv7m_nvic_set_pending(s, excnum, false);
2063         }
2064         break;
2065     }
2066     case 0xf04: /* RFSR */
2067         if (!cpu_isar_feature(aa32_ras, cpu)) {
2068             goto bad_offset;
2069         }
2070         /* We provide minimal-RAS only: RFSR is RAZ/WI */
2071         break;
2072     case 0xf34: /* FPCCR */
2073         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2074             /* Not all bits here are banked. */
2075             uint32_t fpccr_s;
2076 
2077             if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2078                 /* Don't allow setting of bits not present in v7M */
2079                 value &= (R_V7M_FPCCR_LSPACT_MASK |
2080                           R_V7M_FPCCR_USER_MASK |
2081                           R_V7M_FPCCR_THREAD_MASK |
2082                           R_V7M_FPCCR_HFRDY_MASK |
2083                           R_V7M_FPCCR_MMRDY_MASK |
2084                           R_V7M_FPCCR_BFRDY_MASK |
2085                           R_V7M_FPCCR_MONRDY_MASK |
2086                           R_V7M_FPCCR_LSPEN_MASK |
2087                           R_V7M_FPCCR_ASPEN_MASK);
2088             }
2089             value &= ~R_V7M_FPCCR_RES0_MASK;
2090 
2091             if (!attrs.secure) {
2092                 /* Some non-banked bits are configurably writable by NS */
2093                 fpccr_s = cpu->env.v7m.fpccr[M_REG_S];
2094                 if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) {
2095                     uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN);
2096                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen);
2097                 }
2098                 if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) {
2099                     uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET);
2100                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor);
2101                 }
2102                 if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2103                     uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY);
2104                     uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY);
2105                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
2106                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
2107                 }
2108                 /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */
2109                 {
2110                     uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY);
2111                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy);
2112                 }
2113 
2114                 /*
2115                  * All other non-banked bits are RAZ/WI from NS; write
2116                  * just the banked bits to fpccr[M_REG_NS].
2117                  */
2118                 value &= R_V7M_FPCCR_BANKED_MASK;
2119                 cpu->env.v7m.fpccr[M_REG_NS] = value;
2120             } else {
2121                 fpccr_s = value;
2122             }
2123             cpu->env.v7m.fpccr[M_REG_S] = fpccr_s;
2124         }
2125         break;
2126     case 0xf38: /* FPCAR */
2127         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2128             value &= ~7;
2129             cpu->env.v7m.fpcar[attrs.secure] = value;
2130         }
2131         break;
2132     case 0xf3c: /* FPDSCR */
2133         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2134             uint32_t mask = FPCR_AHP | FPCR_DN | FPCR_FZ | FPCR_RMODE_MASK;
2135             if (cpu_isar_feature(any_fp16, cpu)) {
2136                 mask |= FPCR_FZ16;
2137             }
2138             value &= mask;
2139             if (cpu_isar_feature(aa32_lob, cpu)) {
2140                 value |= 4 << FPCR_LTPSIZE_SHIFT;
2141             }
2142             cpu->env.v7m.fpdscr[attrs.secure] = value;
2143         }
2144         break;
2145     case 0xf50: /* ICIALLU */
2146     case 0xf58: /* ICIMVAU */
2147     case 0xf5c: /* DCIMVAC */
2148     case 0xf60: /* DCISW */
2149     case 0xf64: /* DCCMVAU */
2150     case 0xf68: /* DCCMVAC */
2151     case 0xf6c: /* DCCSW */
2152     case 0xf70: /* DCCIMVAC */
2153     case 0xf74: /* DCCISW */
2154     case 0xf78: /* BPIALL */
2155         /* Cache and branch predictor maintenance: for QEMU these always NOP */
2156         break;
2157     default:
2158     bad_offset:
2159         qemu_log_mask(LOG_GUEST_ERROR,
2160                       "NVIC: Bad write offset 0x%x\n", offset);
2161     }
2162 }
2163 
2164 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
2165 {
2166     /* Return true if unprivileged access to this register is permitted. */
2167     switch (offset) {
2168     case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
2169         /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
2170          * controls access even though the CPU is in Secure state (I_QDKX).
2171          */
2172         return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
2173     default:
2174         /* All other user accesses cause a BusFault unconditionally */
2175         return false;
2176     }
2177 }
2178 
2179 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
2180 {
2181     /* Behaviour for the SHPR register field for this exception:
2182      * return M_REG_NS to use the nonsecure vector (including for
2183      * non-banked exceptions), M_REG_S for the secure version of
2184      * a banked exception, and -1 if this field should RAZ/WI.
2185      */
2186     switch (exc) {
2187     case ARMV7M_EXCP_MEM:
2188     case ARMV7M_EXCP_USAGE:
2189     case ARMV7M_EXCP_SVC:
2190     case ARMV7M_EXCP_PENDSV:
2191     case ARMV7M_EXCP_SYSTICK:
2192         /* Banked exceptions */
2193         return attrs.secure;
2194     case ARMV7M_EXCP_BUS:
2195         /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
2196         if (!attrs.secure &&
2197             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2198             return -1;
2199         }
2200         return M_REG_NS;
2201     case ARMV7M_EXCP_SECURE:
2202         /* Not banked, RAZ/WI from nonsecure */
2203         if (!attrs.secure) {
2204             return -1;
2205         }
2206         return M_REG_NS;
2207     case ARMV7M_EXCP_DEBUG:
2208         /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
2209         return M_REG_NS;
2210     case 8 ... 10:
2211     case 13:
2212         /* RES0 */
2213         return -1;
2214     default:
2215         /* Not reachable due to decode of SHPR register addresses */
2216         g_assert_not_reached();
2217     }
2218 }
2219 
2220 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
2221                                     uint64_t *data, unsigned size,
2222                                     MemTxAttrs attrs)
2223 {
2224     NVICState *s = (NVICState *)opaque;
2225     uint32_t offset = addr;
2226     unsigned i, startvec, end;
2227     uint32_t val;
2228 
2229     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2230         /* Generate BusFault for unprivileged accesses */
2231         return MEMTX_ERROR;
2232     }
2233 
2234     switch (offset) {
2235     /* reads of set and clear both return the status */
2236     case 0x100 ... 0x13f: /* NVIC Set enable */
2237         offset += 0x80;
2238         /* fall through */
2239     case 0x180 ... 0x1bf: /* NVIC Clear enable */
2240         val = 0;
2241         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
2242 
2243         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2244             if (s->vectors[startvec + i].enabled &&
2245                 (attrs.secure || s->itns[startvec + i])) {
2246                 val |= (1 << i);
2247             }
2248         }
2249         break;
2250     case 0x200 ... 0x23f: /* NVIC Set pend */
2251         offset += 0x80;
2252         /* fall through */
2253     case 0x280 ... 0x2bf: /* NVIC Clear pend */
2254         val = 0;
2255         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2256         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2257             if (s->vectors[startvec + i].pending &&
2258                 (attrs.secure || s->itns[startvec + i])) {
2259                 val |= (1 << i);
2260             }
2261         }
2262         break;
2263     case 0x300 ... 0x33f: /* NVIC Active */
2264         val = 0;
2265 
2266         if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) {
2267             break;
2268         }
2269 
2270         startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
2271 
2272         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2273             if (s->vectors[startvec + i].active &&
2274                 (attrs.secure || s->itns[startvec + i])) {
2275                 val |= (1 << i);
2276             }
2277         }
2278         break;
2279     case 0x400 ... 0x5ef: /* NVIC Priority */
2280         val = 0;
2281         startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
2282 
2283         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2284             if (attrs.secure || s->itns[startvec + i]) {
2285                 val |= s->vectors[startvec + i].prio << (8 * i);
2286             }
2287         }
2288         break;
2289     case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2290         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2291             val = 0;
2292             break;
2293         }
2294         /* fall through */
2295     case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2296         val = 0;
2297         for (i = 0; i < size; i++) {
2298             unsigned hdlidx = (offset - 0xd14) + i;
2299             int sbank = shpr_bank(s, hdlidx, attrs);
2300 
2301             if (sbank < 0) {
2302                 continue;
2303             }
2304             val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
2305         }
2306         break;
2307     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2308         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2309             val = 0;
2310             break;
2311         };
2312         /*
2313          * The BFSR bits [15:8] are shared between security states
2314          * and we store them in the NS copy. They are RAZ/WI for
2315          * NS code if AIRCR.BFHFNMINS is 0.
2316          */
2317         val = s->cpu->env.v7m.cfsr[attrs.secure];
2318         if (!attrs.secure &&
2319             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2320             val &= ~R_V7M_CFSR_BFSR_MASK;
2321         } else {
2322             val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
2323         }
2324         val = extract32(val, (offset - 0xd28) * 8, size * 8);
2325         break;
2326     case 0xfe0 ... 0xfff: /* ID.  */
2327         if (offset & 3) {
2328             val = 0;
2329         } else {
2330             val = nvic_id[(offset - 0xfe0) >> 2];
2331         }
2332         break;
2333     default:
2334         if (size == 4) {
2335             val = nvic_readl(s, offset, attrs);
2336         } else {
2337             qemu_log_mask(LOG_GUEST_ERROR,
2338                           "NVIC: Bad read of size %d at offset 0x%x\n",
2339                           size, offset);
2340             val = 0;
2341         }
2342     }
2343 
2344     trace_nvic_sysreg_read(addr, val, size);
2345     *data = val;
2346     return MEMTX_OK;
2347 }
2348 
2349 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
2350                                      uint64_t value, unsigned size,
2351                                      MemTxAttrs attrs)
2352 {
2353     NVICState *s = (NVICState *)opaque;
2354     uint32_t offset = addr;
2355     unsigned i, startvec, end;
2356     unsigned setval = 0;
2357 
2358     trace_nvic_sysreg_write(addr, value, size);
2359 
2360     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2361         /* Generate BusFault for unprivileged accesses */
2362         return MEMTX_ERROR;
2363     }
2364 
2365     switch (offset) {
2366     case 0x100 ... 0x13f: /* NVIC Set enable */
2367         offset += 0x80;
2368         setval = 1;
2369         /* fall through */
2370     case 0x180 ... 0x1bf: /* NVIC Clear enable */
2371         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
2372 
2373         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2374             if (value & (1 << i) &&
2375                 (attrs.secure || s->itns[startvec + i])) {
2376                 s->vectors[startvec + i].enabled = setval;
2377             }
2378         }
2379         nvic_irq_update(s);
2380         goto exit_ok;
2381     case 0x200 ... 0x23f: /* NVIC Set pend */
2382         /* the special logic in armv7m_nvic_set_pending()
2383          * is not needed since IRQs are never escalated
2384          */
2385         offset += 0x80;
2386         setval = 1;
2387         /* fall through */
2388     case 0x280 ... 0x2bf: /* NVIC Clear pend */
2389         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2390 
2391         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2392             if (value & (1 << i) &&
2393                 (attrs.secure || s->itns[startvec + i])) {
2394                 s->vectors[startvec + i].pending = setval;
2395             }
2396         }
2397         nvic_irq_update(s);
2398         goto exit_ok;
2399     case 0x300 ... 0x33f: /* NVIC Active */
2400         goto exit_ok; /* R/O */
2401     case 0x400 ... 0x5ef: /* NVIC Priority */
2402         startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
2403 
2404         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2405             if (attrs.secure || s->itns[startvec + i]) {
2406                 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
2407             }
2408         }
2409         nvic_irq_update(s);
2410         goto exit_ok;
2411     case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2412         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2413             goto exit_ok;
2414         }
2415         /* fall through */
2416     case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2417         for (i = 0; i < size; i++) {
2418             unsigned hdlidx = (offset - 0xd14) + i;
2419             int newprio = extract32(value, i * 8, 8);
2420             int sbank = shpr_bank(s, hdlidx, attrs);
2421 
2422             if (sbank < 0) {
2423                 continue;
2424             }
2425             set_prio(s, hdlidx, sbank, newprio);
2426         }
2427         nvic_irq_update(s);
2428         goto exit_ok;
2429     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2430         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2431             goto exit_ok;
2432         }
2433         /* All bits are W1C, so construct 32 bit value with 0s in
2434          * the parts not written by the access size
2435          */
2436         value <<= ((offset - 0xd28) * 8);
2437 
2438         if (!attrs.secure &&
2439             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2440             /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */
2441             value &= ~R_V7M_CFSR_BFSR_MASK;
2442         }
2443 
2444         s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
2445         if (attrs.secure) {
2446             /* The BFSR bits [15:8] are shared between security states
2447              * and we store them in the NS copy.
2448              */
2449             s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
2450         }
2451         goto exit_ok;
2452     }
2453     if (size == 4) {
2454         nvic_writel(s, offset, value, attrs);
2455         goto exit_ok;
2456     }
2457     qemu_log_mask(LOG_GUEST_ERROR,
2458                   "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
2459     /* This is UNPREDICTABLE; treat as RAZ/WI */
2460 
2461  exit_ok:
2462     /* Ensure any changes made are reflected in the cached hflags.  */
2463     arm_rebuild_hflags(&s->cpu->env);
2464     return MEMTX_OK;
2465 }
2466 
2467 static const MemoryRegionOps nvic_sysreg_ops = {
2468     .read_with_attrs = nvic_sysreg_read,
2469     .write_with_attrs = nvic_sysreg_write,
2470     .endianness = DEVICE_NATIVE_ENDIAN,
2471 };
2472 
2473 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
2474                                         uint64_t value, unsigned size,
2475                                         MemTxAttrs attrs)
2476 {
2477     MemoryRegion *mr = opaque;
2478 
2479     if (attrs.secure) {
2480         /* S accesses to the alias act like NS accesses to the real region */
2481         attrs.secure = 0;
2482         return memory_region_dispatch_write(mr, addr, value,
2483                                             size_memop(size) | MO_TE, attrs);
2484     } else {
2485         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2486         if (attrs.user) {
2487             return MEMTX_ERROR;
2488         }
2489         return MEMTX_OK;
2490     }
2491 }
2492 
2493 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
2494                                        uint64_t *data, unsigned size,
2495                                        MemTxAttrs attrs)
2496 {
2497     MemoryRegion *mr = opaque;
2498 
2499     if (attrs.secure) {
2500         /* S accesses to the alias act like NS accesses to the real region */
2501         attrs.secure = 0;
2502         return memory_region_dispatch_read(mr, addr, data,
2503                                            size_memop(size) | MO_TE, attrs);
2504     } else {
2505         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2506         if (attrs.user) {
2507             return MEMTX_ERROR;
2508         }
2509         *data = 0;
2510         return MEMTX_OK;
2511     }
2512 }
2513 
2514 static const MemoryRegionOps nvic_sysreg_ns_ops = {
2515     .read_with_attrs = nvic_sysreg_ns_read,
2516     .write_with_attrs = nvic_sysreg_ns_write,
2517     .endianness = DEVICE_NATIVE_ENDIAN,
2518 };
2519 
2520 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
2521                                       uint64_t value, unsigned size,
2522                                       MemTxAttrs attrs)
2523 {
2524     NVICState *s = opaque;
2525     MemoryRegion *mr;
2526 
2527     /* Direct the access to the correct systick */
2528     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2529     return memory_region_dispatch_write(mr, addr, value,
2530                                         size_memop(size) | MO_TE, attrs);
2531 }
2532 
2533 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
2534                                      uint64_t *data, unsigned size,
2535                                      MemTxAttrs attrs)
2536 {
2537     NVICState *s = opaque;
2538     MemoryRegion *mr;
2539 
2540     /* Direct the access to the correct systick */
2541     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2542     return memory_region_dispatch_read(mr, addr, data, size_memop(size) | MO_TE,
2543                                        attrs);
2544 }
2545 
2546 static const MemoryRegionOps nvic_systick_ops = {
2547     .read_with_attrs = nvic_systick_read,
2548     .write_with_attrs = nvic_systick_write,
2549     .endianness = DEVICE_NATIVE_ENDIAN,
2550 };
2551 
2552 /*
2553  * Unassigned portions of the PPB space are RAZ/WI for privileged
2554  * accesses, and fault for non-privileged accesses.
2555  */
2556 static MemTxResult ppb_default_read(void *opaque, hwaddr addr,
2557                                     uint64_t *data, unsigned size,
2558                                     MemTxAttrs attrs)
2559 {
2560     qemu_log_mask(LOG_UNIMP, "Read of unassigned area of PPB: offset 0x%x\n",
2561                   (uint32_t)addr);
2562     if (attrs.user) {
2563         return MEMTX_ERROR;
2564     }
2565     *data = 0;
2566     return MEMTX_OK;
2567 }
2568 
2569 static MemTxResult ppb_default_write(void *opaque, hwaddr addr,
2570                                      uint64_t value, unsigned size,
2571                                      MemTxAttrs attrs)
2572 {
2573     qemu_log_mask(LOG_UNIMP, "Write of unassigned area of PPB: offset 0x%x\n",
2574                   (uint32_t)addr);
2575     if (attrs.user) {
2576         return MEMTX_ERROR;
2577     }
2578     return MEMTX_OK;
2579 }
2580 
2581 static const MemoryRegionOps ppb_default_ops = {
2582     .read_with_attrs = ppb_default_read,
2583     .write_with_attrs = ppb_default_write,
2584     .endianness = DEVICE_NATIVE_ENDIAN,
2585     .valid.min_access_size = 1,
2586     .valid.max_access_size = 8,
2587 };
2588 
2589 static int nvic_post_load(void *opaque, int version_id)
2590 {
2591     NVICState *s = opaque;
2592     unsigned i;
2593     int resetprio;
2594 
2595     /* Check for out of range priority settings */
2596     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2597 
2598     if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
2599         s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
2600         s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
2601         return 1;
2602     }
2603     for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
2604         if (s->vectors[i].prio & ~0xff) {
2605             return 1;
2606         }
2607     }
2608 
2609     nvic_recompute_state(s);
2610 
2611     return 0;
2612 }
2613 
2614 static const VMStateDescription vmstate_VecInfo = {
2615     .name = "armv7m_nvic_info",
2616     .version_id = 1,
2617     .minimum_version_id = 1,
2618     .fields = (VMStateField[]) {
2619         VMSTATE_INT16(prio, VecInfo),
2620         VMSTATE_UINT8(enabled, VecInfo),
2621         VMSTATE_UINT8(pending, VecInfo),
2622         VMSTATE_UINT8(active, VecInfo),
2623         VMSTATE_UINT8(level, VecInfo),
2624         VMSTATE_END_OF_LIST()
2625     }
2626 };
2627 
2628 static bool nvic_security_needed(void *opaque)
2629 {
2630     NVICState *s = opaque;
2631 
2632     return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2633 }
2634 
2635 static int nvic_security_post_load(void *opaque, int version_id)
2636 {
2637     NVICState *s = opaque;
2638     int i;
2639 
2640     /* Check for out of range priority settings */
2641     if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2642         && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2643         /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2644          * if the CPU state has been migrated yet; a mismatch won't
2645          * cause the emulation to blow up, though.
2646          */
2647         return 1;
2648     }
2649     for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2650         if (s->sec_vectors[i].prio & ~0xff) {
2651             return 1;
2652         }
2653     }
2654     return 0;
2655 }
2656 
2657 static const VMStateDescription vmstate_nvic_security = {
2658     .name = "armv7m_nvic/m-security",
2659     .version_id = 1,
2660     .minimum_version_id = 1,
2661     .needed = nvic_security_needed,
2662     .post_load = &nvic_security_post_load,
2663     .fields = (VMStateField[]) {
2664         VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2665                              vmstate_VecInfo, VecInfo),
2666         VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
2667         VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
2668         VMSTATE_END_OF_LIST()
2669     }
2670 };
2671 
2672 static const VMStateDescription vmstate_nvic = {
2673     .name = "armv7m_nvic",
2674     .version_id = 4,
2675     .minimum_version_id = 4,
2676     .post_load = &nvic_post_load,
2677     .fields = (VMStateField[]) {
2678         VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2679                              vmstate_VecInfo, VecInfo),
2680         VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
2681         VMSTATE_END_OF_LIST()
2682     },
2683     .subsections = (const VMStateDescription*[]) {
2684         &vmstate_nvic_security,
2685         NULL
2686     }
2687 };
2688 
2689 static Property props_nvic[] = {
2690     /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2691     DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2692     DEFINE_PROP_END_OF_LIST()
2693 };
2694 
2695 static void armv7m_nvic_reset(DeviceState *dev)
2696 {
2697     int resetprio;
2698     NVICState *s = NVIC(dev);
2699 
2700     memset(s->vectors, 0, sizeof(s->vectors));
2701     memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2702     s->prigroup[M_REG_NS] = 0;
2703     s->prigroup[M_REG_S] = 0;
2704 
2705     s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
2706     /* MEM, BUS, and USAGE are enabled through
2707      * the System Handler Control register
2708      */
2709     s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2710     s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2711     s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2712 
2713     /* DebugMonitor is enabled via DEMCR.MON_EN */
2714     s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0;
2715 
2716     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2717     s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
2718     s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2719     s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2720 
2721     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2722         s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2723         s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2724         s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2725         s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2726 
2727         /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2728         s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
2729         /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2730         s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2731     } else {
2732         s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
2733     }
2734 
2735     /* Strictly speaking the reset handler should be enabled.
2736      * However, we don't simulate soft resets through the NVIC,
2737      * and the reset vector should never be pended.
2738      * So we leave it disabled to catch logic errors.
2739      */
2740 
2741     s->exception_prio = NVIC_NOEXC_PRIO;
2742     s->vectpending = 0;
2743     s->vectpending_is_s_banked = false;
2744     s->vectpending_prio = NVIC_NOEXC_PRIO;
2745 
2746     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2747         memset(s->itns, 0, sizeof(s->itns));
2748     } else {
2749         /* This state is constant and not guest accessible in a non-security
2750          * NVIC; we set the bits to true to avoid having to do a feature
2751          * bit check in the NVIC enable/pend/etc register accessors.
2752          */
2753         int i;
2754 
2755         for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2756             s->itns[i] = true;
2757         }
2758     }
2759 
2760     /*
2761      * We updated state that affects the CPU's MMUidx and thus its hflags;
2762      * and we can't guarantee that we run before the CPU reset function.
2763      */
2764     arm_rebuild_hflags(&s->cpu->env);
2765 }
2766 
2767 static void nvic_systick_trigger(void *opaque, int n, int level)
2768 {
2769     NVICState *s = opaque;
2770 
2771     if (level) {
2772         /* SysTick just asked us to pend its exception.
2773          * (This is different from an external interrupt line's
2774          * behaviour.)
2775          * n == 0 : NonSecure systick
2776          * n == 1 : Secure systick
2777          */
2778         armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
2779     }
2780 }
2781 
2782 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2783 {
2784     NVICState *s = NVIC(dev);
2785 
2786     /* The armv7m container object will have set our CPU pointer */
2787     if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
2788         error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
2789         return;
2790     }
2791 
2792     if (s->num_irq > NVIC_MAX_IRQ) {
2793         error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2794         return;
2795     }
2796 
2797     qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2798 
2799     /* include space for internal exception vectors */
2800     s->num_irq += NVIC_FIRST_IRQ;
2801 
2802     s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
2803 
2804     if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), errp)) {
2805         return;
2806     }
2807     sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2808                        qdev_get_gpio_in_named(dev, "systick-trigger",
2809                                               M_REG_NS));
2810 
2811     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2812         /* We couldn't init the secure systick device in instance_init
2813          * as we didn't know then if the CPU had the security extensions;
2814          * so we have to do it here.
2815          */
2816         object_initialize_child(OBJECT(dev), "systick-reg-s",
2817                                 &s->systick[M_REG_S], TYPE_SYSTICK);
2818 
2819         if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_S]), errp)) {
2820             return;
2821         }
2822         sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2823                            qdev_get_gpio_in_named(dev, "systick-trigger",
2824                                                   M_REG_S));
2825     }
2826 
2827     /*
2828      * This device provides a single sysbus memory region which
2829      * represents the whole of the "System PPB" space. This is the
2830      * range from 0xe0000000 to 0xe00fffff and includes the NVIC,
2831      * the System Control Space (system registers), the systick timer,
2832      * and for CPUs with the Security extension an NS banked version
2833      * of all of these.
2834      *
2835      * The default behaviour for unimplemented registers/ranges
2836      * (for instance the Data Watchpoint and Trace unit at 0xe0001000)
2837      * is to RAZ/WI for privileged access and BusFault for non-privileged
2838      * access.
2839      *
2840      * The NVIC and System Control Space (SCS) starts at 0xe000e000
2841      * and looks like this:
2842      *  0x004 - ICTR
2843      *  0x010 - 0xff - systick
2844      *  0x100..0x7ec - NVIC
2845      *  0x7f0..0xcff - Reserved
2846      *  0xd00..0xd3c - SCS registers
2847      *  0xd40..0xeff - Reserved or Not implemented
2848      *  0xf00 - STIR
2849      *
2850      * Some registers within this space are banked between security states.
2851      * In v8M there is a second range 0xe002e000..0xe002efff which is the
2852      * NonSecure alias SCS; secure accesses to this behave like NS accesses
2853      * to the main SCS range, and non-secure accesses (including when
2854      * the security extension is not implemented) are RAZ/WI.
2855      * Note that both the main SCS range and the alias range are defined
2856      * to be exempt from memory attribution (R_BLJT) and so the memory
2857      * transaction attribute always matches the current CPU security
2858      * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2859      * wrappers we change attrs.secure to indicate the NS access; so
2860      * generally code determining which banked register to use should
2861      * use attrs.secure; code determining actual behaviour of the system
2862      * should use env->v7m.secure.
2863      *
2864      * The container covers the whole PPB space. Within it the priority
2865      * of overlapping regions is:
2866      *  - default region (for RAZ/WI and BusFault) : -1
2867      *  - system register regions : 0
2868      *  - systick : 1
2869      * This is because the systick device is a small block of registers
2870      * in the middle of the other system control registers.
2871      */
2872     memory_region_init(&s->container, OBJECT(s), "nvic", 0x100000);
2873     memory_region_init_io(&s->defaultmem, OBJECT(s), &ppb_default_ops, s,
2874                           "nvic-default", 0x100000);
2875     memory_region_add_subregion_overlap(&s->container, 0, &s->defaultmem, -1);
2876     memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2877                           "nvic_sysregs", 0x1000);
2878     memory_region_add_subregion(&s->container, 0xe000, &s->sysregmem);
2879 
2880     memory_region_init_io(&s->systickmem, OBJECT(s),
2881                           &nvic_systick_ops, s,
2882                           "nvic_systick", 0xe0);
2883 
2884     memory_region_add_subregion_overlap(&s->container, 0xe010,
2885                                         &s->systickmem, 1);
2886 
2887     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2888         memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
2889                               &nvic_sysreg_ns_ops, &s->sysregmem,
2890                               "nvic_sysregs_ns", 0x1000);
2891         memory_region_add_subregion(&s->container, 0x2e000, &s->sysreg_ns_mem);
2892         memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2893                               &nvic_sysreg_ns_ops, &s->systickmem,
2894                               "nvic_systick_ns", 0xe0);
2895         memory_region_add_subregion_overlap(&s->container, 0x2e010,
2896                                             &s->systick_ns_mem, 1);
2897     }
2898 
2899     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
2900 }
2901 
2902 static void armv7m_nvic_instance_init(Object *obj)
2903 {
2904     DeviceState *dev = DEVICE(obj);
2905     NVICState *nvic = NVIC(obj);
2906     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2907 
2908     object_initialize_child(obj, "systick-reg-ns", &nvic->systick[M_REG_NS],
2909                             TYPE_SYSTICK);
2910     /* We can't initialize the secure systick here, as we don't know
2911      * yet if we need it.
2912      */
2913 
2914     sysbus_init_irq(sbd, &nvic->excpout);
2915     qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2916     qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2917                             M_REG_NUM_BANKS);
2918     qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1);
2919 }
2920 
2921 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2922 {
2923     DeviceClass *dc = DEVICE_CLASS(klass);
2924 
2925     dc->vmsd  = &vmstate_nvic;
2926     device_class_set_props(dc, props_nvic);
2927     dc->reset = armv7m_nvic_reset;
2928     dc->realize = armv7m_nvic_realize;
2929 }
2930 
2931 static const TypeInfo armv7m_nvic_info = {
2932     .name          = TYPE_NVIC,
2933     .parent        = TYPE_SYS_BUS_DEVICE,
2934     .instance_init = armv7m_nvic_instance_init,
2935     .instance_size = sizeof(NVICState),
2936     .class_init    = armv7m_nvic_class_init,
2937     .class_size    = sizeof(SysBusDeviceClass),
2938 };
2939 
2940 static void armv7m_nvic_register_types(void)
2941 {
2942     type_register_static(&armv7m_nvic_info);
2943 }
2944 
2945 type_init(armv7m_nvic_register_types)
2946