xref: /openbmc/qemu/hw/intc/armv7m_nvic.c (revision 194cde6df20d139dbb952ef6c8c011f2126d03a4)
1 /*
2  * ARM Nested Vectored Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  *
9  * The ARMv7M System controller is fairly tightly tied in with the
10  * NVIC.  Much of that is also implemented here.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "cpu.h"
16 #include "hw/sysbus.h"
17 #include "migration/vmstate.h"
18 #include "qemu/timer.h"
19 #include "hw/intc/armv7m_nvic.h"
20 #include "hw/irq.h"
21 #include "hw/qdev-properties.h"
22 #include "sysemu/runstate.h"
23 #include "target/arm/cpu.h"
24 #include "exec/exec-all.h"
25 #include "exec/memop.h"
26 #include "qemu/log.h"
27 #include "qemu/module.h"
28 #include "trace.h"
29 
30 /* IRQ number counting:
31  *
32  * the num-irq property counts the number of external IRQ lines
33  *
34  * NVICState::num_irq counts the total number of exceptions
35  * (external IRQs, the 15 internal exceptions including reset,
36  * and one for the unused exception number 0).
37  *
38  * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
39  *
40  * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
41  *
42  * Iterating through all exceptions should typically be done with
43  * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
44  *
45  * The external qemu_irq lines are the NVIC's external IRQ lines,
46  * so line 0 is exception 16.
47  *
48  * In the terminology of the architecture manual, "interrupts" are
49  * a subcategory of exception referring to the external interrupts
50  * (which are exception numbers NVIC_FIRST_IRQ and upward).
51  * For historical reasons QEMU tends to use "interrupt" and
52  * "exception" more or less interchangeably.
53  */
54 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
55 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
56 
57 /* Effective running priority of the CPU when no exception is active
58  * (higher than the highest possible priority value)
59  */
60 #define NVIC_NOEXC_PRIO 0x100
61 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
62 #define NVIC_NS_PRIO_LIMIT 0x80
63 
64 static const uint8_t nvic_id[] = {
65     0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
66 };
67 
68 static void signal_sysresetreq(NVICState *s)
69 {
70     if (qemu_irq_is_connected(s->sysresetreq)) {
71         qemu_irq_pulse(s->sysresetreq);
72     } else {
73         /*
74          * Default behaviour if the SoC doesn't need to wire up
75          * SYSRESETREQ (eg to a system reset controller of some kind):
76          * perform a system reset via the usual QEMU API.
77          */
78         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
79     }
80 }
81 
82 static int nvic_pending_prio(NVICState *s)
83 {
84     /* return the group priority of the current pending interrupt,
85      * or NVIC_NOEXC_PRIO if no interrupt is pending
86      */
87     return s->vectpending_prio;
88 }
89 
90 /* Return the value of the ISCR RETTOBASE bit:
91  * 1 if there is exactly one active exception
92  * 0 if there is more than one active exception
93  * UNKNOWN if there are no active exceptions (we choose 1,
94  * which matches the choice Cortex-M3 is documented as making).
95  *
96  * NB: some versions of the documentation talk about this
97  * counting "active exceptions other than the one shown by IPSR";
98  * this is only different in the obscure corner case where guest
99  * code has manually deactivated an exception and is about
100  * to fail an exception-return integrity check. The definition
101  * above is the one from the v8M ARM ARM and is also in line
102  * with the behaviour documented for the Cortex-M3.
103  */
104 static bool nvic_rettobase(NVICState *s)
105 {
106     int irq, nhand = 0;
107     bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
108 
109     for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
110         if (s->vectors[irq].active ||
111             (check_sec && irq < NVIC_INTERNAL_VECTORS &&
112              s->sec_vectors[irq].active)) {
113             nhand++;
114             if (nhand == 2) {
115                 return 0;
116             }
117         }
118     }
119 
120     return 1;
121 }
122 
123 /* Return the value of the ISCR ISRPENDING bit:
124  * 1 if an external interrupt is pending
125  * 0 if no external interrupt is pending
126  */
127 static bool nvic_isrpending(NVICState *s)
128 {
129     int irq;
130 
131     /* We can shortcut if the highest priority pending interrupt
132      * happens to be external or if there is nothing pending.
133      */
134     if (s->vectpending > NVIC_FIRST_IRQ) {
135         return true;
136     }
137     if (s->vectpending == 0) {
138         return false;
139     }
140 
141     for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
142         if (s->vectors[irq].pending) {
143             return true;
144         }
145     }
146     return false;
147 }
148 
149 static bool exc_is_banked(int exc)
150 {
151     /* Return true if this is one of the limited set of exceptions which
152      * are banked (and thus have state in sec_vectors[])
153      */
154     return exc == ARMV7M_EXCP_HARD ||
155         exc == ARMV7M_EXCP_MEM ||
156         exc == ARMV7M_EXCP_USAGE ||
157         exc == ARMV7M_EXCP_SVC ||
158         exc == ARMV7M_EXCP_PENDSV ||
159         exc == ARMV7M_EXCP_SYSTICK;
160 }
161 
162 /* Return a mask word which clears the subpriority bits from
163  * a priority value for an M-profile exception, leaving only
164  * the group priority.
165  */
166 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
167 {
168     return ~0U << (s->prigroup[secure] + 1);
169 }
170 
171 static bool exc_targets_secure(NVICState *s, int exc)
172 {
173     /* Return true if this non-banked exception targets Secure state. */
174     if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
175         return false;
176     }
177 
178     if (exc >= NVIC_FIRST_IRQ) {
179         return !s->itns[exc];
180     }
181 
182     /* Function shouldn't be called for banked exceptions. */
183     assert(!exc_is_banked(exc));
184 
185     switch (exc) {
186     case ARMV7M_EXCP_NMI:
187     case ARMV7M_EXCP_BUS:
188         return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
189     case ARMV7M_EXCP_SECURE:
190         return true;
191     case ARMV7M_EXCP_DEBUG:
192         /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
193         return false;
194     default:
195         /* reset, and reserved (unused) low exception numbers.
196          * We'll get called by code that loops through all the exception
197          * numbers, but it doesn't matter what we return here as these
198          * non-existent exceptions will never be pended or active.
199          */
200         return true;
201     }
202 }
203 
204 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
205 {
206     /* Return the group priority for this exception, given its raw
207      * (group-and-subgroup) priority value and whether it is targeting
208      * secure state or not.
209      */
210     if (rawprio < 0) {
211         return rawprio;
212     }
213     rawprio &= nvic_gprio_mask(s, targets_secure);
214     /* AIRCR.PRIS causes us to squash all NS priorities into the
215      * lower half of the total range
216      */
217     if (!targets_secure &&
218         (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
219         rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
220     }
221     return rawprio;
222 }
223 
224 /* Recompute vectpending and exception_prio for a CPU which implements
225  * the Security extension
226  */
227 static void nvic_recompute_state_secure(NVICState *s)
228 {
229     int i, bank;
230     int pend_prio = NVIC_NOEXC_PRIO;
231     int active_prio = NVIC_NOEXC_PRIO;
232     int pend_irq = 0;
233     bool pending_is_s_banked = false;
234     int pend_subprio = 0;
235 
236     /* R_CQRV: precedence is by:
237      *  - lowest group priority; if both the same then
238      *  - lowest subpriority; if both the same then
239      *  - lowest exception number; if both the same (ie banked) then
240      *  - secure exception takes precedence
241      * Compare pseudocode RawExecutionPriority.
242      * Annoyingly, now we have two prigroup values (for S and NS)
243      * we can't do the loop comparison on raw priority values.
244      */
245     for (i = 1; i < s->num_irq; i++) {
246         for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
247             VecInfo *vec;
248             int prio, subprio;
249             bool targets_secure;
250 
251             if (bank == M_REG_S) {
252                 if (!exc_is_banked(i)) {
253                     continue;
254                 }
255                 vec = &s->sec_vectors[i];
256                 targets_secure = true;
257             } else {
258                 vec = &s->vectors[i];
259                 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
260             }
261 
262             prio = exc_group_prio(s, vec->prio, targets_secure);
263             subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure);
264             if (vec->enabled && vec->pending &&
265                 ((prio < pend_prio) ||
266                  (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) {
267                 pend_prio = prio;
268                 pend_subprio = subprio;
269                 pend_irq = i;
270                 pending_is_s_banked = (bank == M_REG_S);
271             }
272             if (vec->active && prio < active_prio) {
273                 active_prio = prio;
274             }
275         }
276     }
277 
278     s->vectpending_is_s_banked = pending_is_s_banked;
279     s->vectpending = pend_irq;
280     s->vectpending_prio = pend_prio;
281     s->exception_prio = active_prio;
282 
283     trace_nvic_recompute_state_secure(s->vectpending,
284                                       s->vectpending_is_s_banked,
285                                       s->vectpending_prio,
286                                       s->exception_prio);
287 }
288 
289 /* Recompute vectpending and exception_prio */
290 static void nvic_recompute_state(NVICState *s)
291 {
292     int i;
293     int pend_prio = NVIC_NOEXC_PRIO;
294     int active_prio = NVIC_NOEXC_PRIO;
295     int pend_irq = 0;
296 
297     /* In theory we could write one function that handled both
298      * the "security extension present" and "not present"; however
299      * the security related changes significantly complicate the
300      * recomputation just by themselves and mixing both cases together
301      * would be even worse, so we retain a separate non-secure-only
302      * version for CPUs which don't implement the security extension.
303      */
304     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
305         nvic_recompute_state_secure(s);
306         return;
307     }
308 
309     for (i = 1; i < s->num_irq; i++) {
310         VecInfo *vec = &s->vectors[i];
311 
312         if (vec->enabled && vec->pending && vec->prio < pend_prio) {
313             pend_prio = vec->prio;
314             pend_irq = i;
315         }
316         if (vec->active && vec->prio < active_prio) {
317             active_prio = vec->prio;
318         }
319     }
320 
321     if (active_prio > 0) {
322         active_prio &= nvic_gprio_mask(s, false);
323     }
324 
325     if (pend_prio > 0) {
326         pend_prio &= nvic_gprio_mask(s, false);
327     }
328 
329     s->vectpending = pend_irq;
330     s->vectpending_prio = pend_prio;
331     s->exception_prio = active_prio;
332 
333     trace_nvic_recompute_state(s->vectpending,
334                                s->vectpending_prio,
335                                s->exception_prio);
336 }
337 
338 /* Return the current execution priority of the CPU
339  * (equivalent to the pseudocode ExecutionPriority function).
340  * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
341  */
342 static inline int nvic_exec_prio(NVICState *s)
343 {
344     CPUARMState *env = &s->cpu->env;
345     int running = NVIC_NOEXC_PRIO;
346 
347     if (env->v7m.basepri[M_REG_NS] > 0) {
348         running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
349     }
350 
351     if (env->v7m.basepri[M_REG_S] > 0) {
352         int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
353         if (running > basepri) {
354             running = basepri;
355         }
356     }
357 
358     if (env->v7m.primask[M_REG_NS]) {
359         if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
360             if (running > NVIC_NS_PRIO_LIMIT) {
361                 running = NVIC_NS_PRIO_LIMIT;
362             }
363         } else {
364             running = 0;
365         }
366     }
367 
368     if (env->v7m.primask[M_REG_S]) {
369         running = 0;
370     }
371 
372     if (env->v7m.faultmask[M_REG_NS]) {
373         if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
374             running = -1;
375         } else {
376             if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
377                 if (running > NVIC_NS_PRIO_LIMIT) {
378                     running = NVIC_NS_PRIO_LIMIT;
379                 }
380             } else {
381                 running = 0;
382             }
383         }
384     }
385 
386     if (env->v7m.faultmask[M_REG_S]) {
387         running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
388     }
389 
390     /* consider priority of active handler */
391     return MIN(running, s->exception_prio);
392 }
393 
394 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
395 {
396     /* Return true if the requested execution priority is negative
397      * for the specified security state, ie that security state
398      * has an active NMI or HardFault or has set its FAULTMASK.
399      * Note that this is not the same as whether the execution
400      * priority is actually negative (for instance AIRCR.PRIS may
401      * mean we don't allow FAULTMASK_NS to actually make the execution
402      * priority negative). Compare pseudocode IsReqExcPriNeg().
403      */
404     NVICState *s = opaque;
405 
406     if (s->cpu->env.v7m.faultmask[secure]) {
407         return true;
408     }
409 
410     if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
411         s->vectors[ARMV7M_EXCP_HARD].active) {
412         return true;
413     }
414 
415     if (s->vectors[ARMV7M_EXCP_NMI].active &&
416         exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
417         return true;
418     }
419 
420     return false;
421 }
422 
423 bool armv7m_nvic_can_take_pending_exception(void *opaque)
424 {
425     NVICState *s = opaque;
426 
427     return nvic_exec_prio(s) > nvic_pending_prio(s);
428 }
429 
430 int armv7m_nvic_raw_execution_priority(void *opaque)
431 {
432     NVICState *s = opaque;
433 
434     return s->exception_prio;
435 }
436 
437 /* caller must call nvic_irq_update() after this.
438  * secure indicates the bank to use for banked exceptions (we assert if
439  * we are passed secure=true for a non-banked exception).
440  */
441 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
442 {
443     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
444     assert(irq < s->num_irq);
445 
446     prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits);
447 
448     if (secure) {
449         assert(exc_is_banked(irq));
450         s->sec_vectors[irq].prio = prio;
451     } else {
452         s->vectors[irq].prio = prio;
453     }
454 
455     trace_nvic_set_prio(irq, secure, prio);
456 }
457 
458 /* Return the current raw priority register value.
459  * secure indicates the bank to use for banked exceptions (we assert if
460  * we are passed secure=true for a non-banked exception).
461  */
462 static int get_prio(NVICState *s, unsigned irq, bool secure)
463 {
464     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
465     assert(irq < s->num_irq);
466 
467     if (secure) {
468         assert(exc_is_banked(irq));
469         return s->sec_vectors[irq].prio;
470     } else {
471         return s->vectors[irq].prio;
472     }
473 }
474 
475 /* Recompute state and assert irq line accordingly.
476  * Must be called after changes to:
477  *  vec->active, vec->enabled, vec->pending or vec->prio for any vector
478  *  prigroup
479  */
480 static void nvic_irq_update(NVICState *s)
481 {
482     int lvl;
483     int pend_prio;
484 
485     nvic_recompute_state(s);
486     pend_prio = nvic_pending_prio(s);
487 
488     /* Raise NVIC output if this IRQ would be taken, except that we
489      * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
490      * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
491      * to those CPU registers don't cause us to recalculate the NVIC
492      * pending info.
493      */
494     lvl = (pend_prio < s->exception_prio);
495     trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
496     qemu_set_irq(s->excpout, lvl);
497 }
498 
499 /**
500  * armv7m_nvic_clear_pending: mark the specified exception as not pending
501  * @opaque: the NVIC
502  * @irq: the exception number to mark as not pending
503  * @secure: false for non-banked exceptions or for the nonsecure
504  * version of a banked exception, true for the secure version of a banked
505  * exception.
506  *
507  * Marks the specified exception as not pending. Note that we will assert()
508  * if @secure is true and @irq does not specify one of the fixed set
509  * of architecturally banked exceptions.
510  */
511 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
512 {
513     NVICState *s = (NVICState *)opaque;
514     VecInfo *vec;
515 
516     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
517 
518     if (secure) {
519         assert(exc_is_banked(irq));
520         vec = &s->sec_vectors[irq];
521     } else {
522         vec = &s->vectors[irq];
523     }
524     trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
525     if (vec->pending) {
526         vec->pending = 0;
527         nvic_irq_update(s);
528     }
529 }
530 
531 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
532                                        bool derived)
533 {
534     /* Pend an exception, including possibly escalating it to HardFault.
535      *
536      * This function handles both "normal" pending of interrupts and
537      * exceptions, and also derived exceptions (ones which occur as
538      * a result of trying to take some other exception).
539      *
540      * If derived == true, the caller guarantees that we are part way through
541      * trying to take an exception (but have not yet called
542      * armv7m_nvic_acknowledge_irq() to make it active), and so:
543      *  - s->vectpending is the "original exception" we were trying to take
544      *  - irq is the "derived exception"
545      *  - nvic_exec_prio(s) gives the priority before exception entry
546      * Here we handle the prioritization logic which the pseudocode puts
547      * in the DerivedLateArrival() function.
548      */
549 
550     NVICState *s = (NVICState *)opaque;
551     bool banked = exc_is_banked(irq);
552     VecInfo *vec;
553     bool targets_secure;
554 
555     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
556     assert(!secure || banked);
557 
558     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
559 
560     targets_secure = banked ? secure : exc_targets_secure(s, irq);
561 
562     trace_nvic_set_pending(irq, secure, targets_secure,
563                            derived, vec->enabled, vec->prio);
564 
565     if (derived) {
566         /* Derived exceptions are always synchronous. */
567         assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
568 
569         if (irq == ARMV7M_EXCP_DEBUG &&
570             exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
571             /* DebugMonitorFault, but its priority is lower than the
572              * preempted exception priority: just ignore it.
573              */
574             return;
575         }
576 
577         if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
578             /* If this is a terminal exception (one which means we cannot
579              * take the original exception, like a failure to read its
580              * vector table entry), then we must take the derived exception.
581              * If the derived exception can't take priority over the
582              * original exception, then we go into Lockup.
583              *
584              * For QEMU, we rely on the fact that a derived exception is
585              * terminal if and only if it's reported to us as HardFault,
586              * which saves having to have an extra argument is_terminal
587              * that we'd only use in one place.
588              */
589             cpu_abort(&s->cpu->parent_obj,
590                       "Lockup: can't take terminal derived exception "
591                       "(original exception priority %d)\n",
592                       s->vectpending_prio);
593         }
594         /* We now continue with the same code as for a normal pending
595          * exception, which will cause us to pend the derived exception.
596          * We'll then take either the original or the derived exception
597          * based on which is higher priority by the usual mechanism
598          * for selecting the highest priority pending interrupt.
599          */
600     }
601 
602     if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
603         /* If a synchronous exception is pending then it may be
604          * escalated to HardFault if:
605          *  * it is equal or lower priority to current execution
606          *  * it is disabled
607          * (ie we need to take it immediately but we can't do so).
608          * Asynchronous exceptions (and interrupts) simply remain pending.
609          *
610          * For QEMU, we don't have any imprecise (asynchronous) faults,
611          * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
612          * synchronous.
613          * Debug exceptions are awkward because only Debug exceptions
614          * resulting from the BKPT instruction should be escalated,
615          * but we don't currently implement any Debug exceptions other
616          * than those that result from BKPT, so we treat all debug exceptions
617          * as needing escalation.
618          *
619          * This all means we can identify whether to escalate based only on
620          * the exception number and don't (yet) need the caller to explicitly
621          * tell us whether this exception is synchronous or not.
622          */
623         int running = nvic_exec_prio(s);
624         bool escalate = false;
625 
626         if (exc_group_prio(s, vec->prio, secure) >= running) {
627             trace_nvic_escalate_prio(irq, vec->prio, running);
628             escalate = true;
629         } else if (!vec->enabled) {
630             trace_nvic_escalate_disabled(irq);
631             escalate = true;
632         }
633 
634         if (escalate) {
635 
636             /* We need to escalate this exception to a synchronous HardFault.
637              * If BFHFNMINS is set then we escalate to the banked HF for
638              * the target security state of the original exception; otherwise
639              * we take a Secure HardFault.
640              */
641             irq = ARMV7M_EXCP_HARD;
642             if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
643                 (targets_secure ||
644                  !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
645                 vec = &s->sec_vectors[irq];
646             } else {
647                 vec = &s->vectors[irq];
648             }
649             if (running <= vec->prio) {
650                 /* We want to escalate to HardFault but we can't take the
651                  * synchronous HardFault at this point either. This is a
652                  * Lockup condition due to a guest bug. We don't model
653                  * Lockup, so report via cpu_abort() instead.
654                  */
655                 cpu_abort(&s->cpu->parent_obj,
656                           "Lockup: can't escalate %d to HardFault "
657                           "(current priority %d)\n", irq, running);
658             }
659 
660             /* HF may be banked but there is only one shared HFSR */
661             s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
662         }
663     }
664 
665     if (!vec->pending) {
666         vec->pending = 1;
667         nvic_irq_update(s);
668     }
669 }
670 
671 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
672 {
673     do_armv7m_nvic_set_pending(opaque, irq, secure, false);
674 }
675 
676 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
677 {
678     do_armv7m_nvic_set_pending(opaque, irq, secure, true);
679 }
680 
681 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure)
682 {
683     /*
684      * Pend an exception during lazy FP stacking. This differs
685      * from the usual exception pending because the logic for
686      * whether we should escalate depends on the saved context
687      * in the FPCCR register, not on the current state of the CPU/NVIC.
688      */
689     NVICState *s = (NVICState *)opaque;
690     bool banked = exc_is_banked(irq);
691     VecInfo *vec;
692     bool targets_secure;
693     bool escalate = false;
694     /*
695      * We will only look at bits in fpccr if this is a banked exception
696      * (in which case 'secure' tells us whether it is the S or NS version).
697      * All the bits for the non-banked exceptions are in fpccr_s.
698      */
699     uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S];
700     uint32_t fpccr = s->cpu->env.v7m.fpccr[secure];
701 
702     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
703     assert(!secure || banked);
704 
705     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
706 
707     targets_secure = banked ? secure : exc_targets_secure(s, irq);
708 
709     switch (irq) {
710     case ARMV7M_EXCP_DEBUG:
711         if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) {
712             /* Ignore DebugMonitor exception */
713             return;
714         }
715         break;
716     case ARMV7M_EXCP_MEM:
717         escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK);
718         break;
719     case ARMV7M_EXCP_USAGE:
720         escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK);
721         break;
722     case ARMV7M_EXCP_BUS:
723         escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK);
724         break;
725     case ARMV7M_EXCP_SECURE:
726         escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK);
727         break;
728     default:
729         g_assert_not_reached();
730     }
731 
732     if (escalate) {
733         /*
734          * Escalate to HardFault: faults that initially targeted Secure
735          * continue to do so, even if HF normally targets NonSecure.
736          */
737         irq = ARMV7M_EXCP_HARD;
738         if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
739             (targets_secure ||
740              !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
741             vec = &s->sec_vectors[irq];
742         } else {
743             vec = &s->vectors[irq];
744         }
745     }
746 
747     if (!vec->enabled ||
748         nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) {
749         if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) {
750             /*
751              * We want to escalate to HardFault but the context the
752              * FP state belongs to prevents the exception pre-empting.
753              */
754             cpu_abort(&s->cpu->parent_obj,
755                       "Lockup: can't escalate to HardFault during "
756                       "lazy FP register stacking\n");
757         }
758     }
759 
760     if (escalate) {
761         s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
762     }
763     if (!vec->pending) {
764         vec->pending = 1;
765         /*
766          * We do not call nvic_irq_update(), because we know our caller
767          * is going to handle causing us to take the exception by
768          * raising EXCP_LAZYFP, so raising the IRQ line would be
769          * pointless extra work. We just need to recompute the
770          * priorities so that armv7m_nvic_can_take_pending_exception()
771          * returns the right answer.
772          */
773         nvic_recompute_state(s);
774     }
775 }
776 
777 /* Make pending IRQ active.  */
778 void armv7m_nvic_acknowledge_irq(void *opaque)
779 {
780     NVICState *s = (NVICState *)opaque;
781     CPUARMState *env = &s->cpu->env;
782     const int pending = s->vectpending;
783     const int running = nvic_exec_prio(s);
784     VecInfo *vec;
785 
786     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
787 
788     if (s->vectpending_is_s_banked) {
789         vec = &s->sec_vectors[pending];
790     } else {
791         vec = &s->vectors[pending];
792     }
793 
794     assert(vec->enabled);
795     assert(vec->pending);
796 
797     assert(s->vectpending_prio < running);
798 
799     trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
800 
801     vec->active = 1;
802     vec->pending = 0;
803 
804     write_v7m_exception(env, s->vectpending);
805 
806     nvic_irq_update(s);
807 }
808 
809 void armv7m_nvic_get_pending_irq_info(void *opaque,
810                                       int *pirq, bool *ptargets_secure)
811 {
812     NVICState *s = (NVICState *)opaque;
813     const int pending = s->vectpending;
814     bool targets_secure;
815 
816     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
817 
818     if (s->vectpending_is_s_banked) {
819         targets_secure = true;
820     } else {
821         targets_secure = !exc_is_banked(pending) &&
822             exc_targets_secure(s, pending);
823     }
824 
825     trace_nvic_get_pending_irq_info(pending, targets_secure);
826 
827     *ptargets_secure = targets_secure;
828     *pirq = pending;
829 }
830 
831 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
832 {
833     NVICState *s = (NVICState *)opaque;
834     VecInfo *vec = NULL;
835     int ret = 0;
836 
837     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
838 
839     trace_nvic_complete_irq(irq, secure);
840 
841     if (secure && exc_is_banked(irq)) {
842         vec = &s->sec_vectors[irq];
843     } else {
844         vec = &s->vectors[irq];
845     }
846 
847     /*
848      * Identify illegal exception return cases. We can't immediately
849      * return at this point because we still need to deactivate
850      * (either this exception or NMI/HardFault) first.
851      */
852     if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) {
853         /*
854          * Return from a configurable exception targeting the opposite
855          * security state from the one we're trying to complete it for.
856          * Clear vec because it's not really the VecInfo for this
857          * (irq, secstate) so we mustn't deactivate it.
858          */
859         ret = -1;
860         vec = NULL;
861     } else if (!vec->active) {
862         /* Return from an inactive interrupt */
863         ret = -1;
864     } else {
865         /* Legal return, we will return the RETTOBASE bit value to the caller */
866         ret = nvic_rettobase(s);
867     }
868 
869     /*
870      * For negative priorities, v8M will forcibly deactivate the appropriate
871      * NMI or HardFault regardless of what interrupt we're being asked to
872      * deactivate (compare the DeActivate() pseudocode). This is a guard
873      * against software returning from NMI or HardFault with a corrupted
874      * IPSR and leaving the CPU in a negative-priority state.
875      * v7M does not do this, but simply deactivates the requested interrupt.
876      */
877     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
878         switch (armv7m_nvic_raw_execution_priority(s)) {
879         case -1:
880             if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
881                 vec = &s->vectors[ARMV7M_EXCP_HARD];
882             } else {
883                 vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
884             }
885             break;
886         case -2:
887             vec = &s->vectors[ARMV7M_EXCP_NMI];
888             break;
889         case -3:
890             vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
891             break;
892         default:
893             break;
894         }
895     }
896 
897     if (!vec) {
898         return ret;
899     }
900 
901     vec->active = 0;
902     if (vec->level) {
903         /* Re-pend the exception if it's still held high; only
904          * happens for extenal IRQs
905          */
906         assert(irq >= NVIC_FIRST_IRQ);
907         vec->pending = 1;
908     }
909 
910     nvic_irq_update(s);
911 
912     return ret;
913 }
914 
915 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
916 {
917     /*
918      * Return whether an exception is "ready", i.e. it is enabled and is
919      * configured at a priority which would allow it to interrupt the
920      * current execution priority.
921      *
922      * irq and secure have the same semantics as for armv7m_nvic_set_pending():
923      * for non-banked exceptions secure is always false; for banked exceptions
924      * it indicates which of the exceptions is required.
925      */
926     NVICState *s = (NVICState *)opaque;
927     bool banked = exc_is_banked(irq);
928     VecInfo *vec;
929     int running = nvic_exec_prio(s);
930 
931     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
932     assert(!secure || banked);
933 
934     /*
935      * HardFault is an odd special case: we always check against -1,
936      * even if we're secure and HardFault has priority -3; we never
937      * need to check for enabled state.
938      */
939     if (irq == ARMV7M_EXCP_HARD) {
940         return running > -1;
941     }
942 
943     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
944 
945     return vec->enabled &&
946         exc_group_prio(s, vec->prio, secure) < running;
947 }
948 
949 /* callback when external interrupt line is changed */
950 static void set_irq_level(void *opaque, int n, int level)
951 {
952     NVICState *s = opaque;
953     VecInfo *vec;
954 
955     n += NVIC_FIRST_IRQ;
956 
957     assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
958 
959     trace_nvic_set_irq_level(n, level);
960 
961     /* The pending status of an external interrupt is
962      * latched on rising edge and exception handler return.
963      *
964      * Pulsing the IRQ will always run the handler
965      * once, and the handler will re-run until the
966      * level is low when the handler completes.
967      */
968     vec = &s->vectors[n];
969     if (level != vec->level) {
970         vec->level = level;
971         if (level) {
972             armv7m_nvic_set_pending(s, n, false);
973         }
974     }
975 }
976 
977 /* callback when external NMI line is changed */
978 static void nvic_nmi_trigger(void *opaque, int n, int level)
979 {
980     NVICState *s = opaque;
981 
982     trace_nvic_set_nmi_level(level);
983 
984     /*
985      * The architecture doesn't specify whether NMI should share
986      * the normal-interrupt behaviour of being resampled on
987      * exception handler return. We choose not to, so just
988      * set NMI pending here and don't track the current level.
989      */
990     if (level) {
991         armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
992     }
993 }
994 
995 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
996 {
997     ARMCPU *cpu = s->cpu;
998     uint32_t val;
999 
1000     switch (offset) {
1001     case 4: /* Interrupt Control Type.  */
1002         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1003             goto bad_offset;
1004         }
1005         return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
1006     case 0xc: /* CPPWR */
1007         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1008             goto bad_offset;
1009         }
1010         /* We make the IMPDEF choice that nothing can ever go into a
1011          * non-retentive power state, which allows us to RAZ/WI this.
1012          */
1013         return 0;
1014     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1015     {
1016         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1017         int i;
1018 
1019         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1020             goto bad_offset;
1021         }
1022         if (!attrs.secure) {
1023             return 0;
1024         }
1025         val = 0;
1026         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1027             if (s->itns[startvec + i]) {
1028                 val |= (1 << i);
1029             }
1030         }
1031         return val;
1032     }
1033     case 0xcfc:
1034         if (!arm_feature(&cpu->env, ARM_FEATURE_V8_1M)) {
1035             goto bad_offset;
1036         }
1037         return cpu->revidr;
1038     case 0xd00: /* CPUID Base.  */
1039         return cpu->midr;
1040     case 0xd04: /* Interrupt Control State (ICSR) */
1041         /* VECTACTIVE */
1042         val = cpu->env.v7m.exception;
1043         /* VECTPENDING */
1044         val |= (s->vectpending & 0xff) << 12;
1045         /* ISRPENDING - set if any external IRQ is pending */
1046         if (nvic_isrpending(s)) {
1047             val |= (1 << 22);
1048         }
1049         /* RETTOBASE - set if only one handler is active */
1050         if (nvic_rettobase(s)) {
1051             val |= (1 << 11);
1052         }
1053         if (attrs.secure) {
1054             /* PENDSTSET */
1055             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
1056                 val |= (1 << 26);
1057             }
1058             /* PENDSVSET */
1059             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
1060                 val |= (1 << 28);
1061             }
1062         } else {
1063             /* PENDSTSET */
1064             if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
1065                 val |= (1 << 26);
1066             }
1067             /* PENDSVSET */
1068             if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
1069                 val |= (1 << 28);
1070             }
1071         }
1072         /* NMIPENDSET */
1073         if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
1074             && s->vectors[ARMV7M_EXCP_NMI].pending) {
1075             val |= (1 << 31);
1076         }
1077         /* ISRPREEMPT: RES0 when halting debug not implemented */
1078         /* STTNS: RES0 for the Main Extension */
1079         return val;
1080     case 0xd08: /* Vector Table Offset.  */
1081         return cpu->env.v7m.vecbase[attrs.secure];
1082     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1083         val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
1084         if (attrs.secure) {
1085             /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
1086             val |= cpu->env.v7m.aircr;
1087         } else {
1088             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1089                 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
1090                  * security isn't supported then BFHFNMINS is RAO (and
1091                  * the bit in env.v7m.aircr is always set).
1092                  */
1093                 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
1094             }
1095         }
1096         return val;
1097     case 0xd10: /* System Control.  */
1098         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1099             goto bad_offset;
1100         }
1101         return cpu->env.v7m.scr[attrs.secure];
1102     case 0xd14: /* Configuration Control.  */
1103         /*
1104          * Non-banked bits: BFHFNMIGN (stored in the NS copy of the register)
1105          * and TRD (stored in the S copy of the register)
1106          */
1107         val = cpu->env.v7m.ccr[attrs.secure];
1108         val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
1109         return val;
1110     case 0xd24: /* System Handler Control and State (SHCSR) */
1111         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1112             goto bad_offset;
1113         }
1114         val = 0;
1115         if (attrs.secure) {
1116             if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
1117                 val |= (1 << 0);
1118             }
1119             if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
1120                 val |= (1 << 2);
1121             }
1122             if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
1123                 val |= (1 << 3);
1124             }
1125             if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
1126                 val |= (1 << 7);
1127             }
1128             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
1129                 val |= (1 << 10);
1130             }
1131             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
1132                 val |= (1 << 11);
1133             }
1134             if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
1135                 val |= (1 << 12);
1136             }
1137             if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
1138                 val |= (1 << 13);
1139             }
1140             if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
1141                 val |= (1 << 15);
1142             }
1143             if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
1144                 val |= (1 << 16);
1145             }
1146             if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
1147                 val |= (1 << 18);
1148             }
1149             if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
1150                 val |= (1 << 21);
1151             }
1152             /* SecureFault is not banked but is always RAZ/WI to NS */
1153             if (s->vectors[ARMV7M_EXCP_SECURE].active) {
1154                 val |= (1 << 4);
1155             }
1156             if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
1157                 val |= (1 << 19);
1158             }
1159             if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
1160                 val |= (1 << 20);
1161             }
1162         } else {
1163             if (s->vectors[ARMV7M_EXCP_MEM].active) {
1164                 val |= (1 << 0);
1165             }
1166             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1167                 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
1168                 if (s->vectors[ARMV7M_EXCP_HARD].active) {
1169                     val |= (1 << 2);
1170                 }
1171                 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
1172                     val |= (1 << 21);
1173                 }
1174             }
1175             if (s->vectors[ARMV7M_EXCP_USAGE].active) {
1176                 val |= (1 << 3);
1177             }
1178             if (s->vectors[ARMV7M_EXCP_SVC].active) {
1179                 val |= (1 << 7);
1180             }
1181             if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
1182                 val |= (1 << 10);
1183             }
1184             if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
1185                 val |= (1 << 11);
1186             }
1187             if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
1188                 val |= (1 << 12);
1189             }
1190             if (s->vectors[ARMV7M_EXCP_MEM].pending) {
1191                 val |= (1 << 13);
1192             }
1193             if (s->vectors[ARMV7M_EXCP_SVC].pending) {
1194                 val |= (1 << 15);
1195             }
1196             if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
1197                 val |= (1 << 16);
1198             }
1199             if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
1200                 val |= (1 << 18);
1201             }
1202         }
1203         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1204             if (s->vectors[ARMV7M_EXCP_BUS].active) {
1205                 val |= (1 << 1);
1206             }
1207             if (s->vectors[ARMV7M_EXCP_BUS].pending) {
1208                 val |= (1 << 14);
1209             }
1210             if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
1211                 val |= (1 << 17);
1212             }
1213             if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
1214                 s->vectors[ARMV7M_EXCP_NMI].active) {
1215                 /* NMIACT is not present in v7M */
1216                 val |= (1 << 5);
1217             }
1218         }
1219 
1220         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1221         if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
1222             val |= (1 << 8);
1223         }
1224         return val;
1225     case 0xd2c: /* Hard Fault Status.  */
1226         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1227             goto bad_offset;
1228         }
1229         return cpu->env.v7m.hfsr;
1230     case 0xd30: /* Debug Fault Status.  */
1231         return cpu->env.v7m.dfsr;
1232     case 0xd34: /* MMFAR MemManage Fault Address */
1233         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1234             goto bad_offset;
1235         }
1236         return cpu->env.v7m.mmfar[attrs.secure];
1237     case 0xd38: /* Bus Fault Address.  */
1238         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1239             goto bad_offset;
1240         }
1241         if (!attrs.secure &&
1242             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1243             return 0;
1244         }
1245         return cpu->env.v7m.bfar;
1246     case 0xd3c: /* Aux Fault Status.  */
1247         /* TODO: Implement fault status registers.  */
1248         qemu_log_mask(LOG_UNIMP,
1249                       "Aux Fault status registers unimplemented\n");
1250         return 0;
1251     case 0xd40: /* PFR0.  */
1252         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1253             goto bad_offset;
1254         }
1255         return cpu->isar.id_pfr0;
1256     case 0xd44: /* PFR1.  */
1257         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1258             goto bad_offset;
1259         }
1260         return cpu->isar.id_pfr1;
1261     case 0xd48: /* DFR0.  */
1262         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1263             goto bad_offset;
1264         }
1265         return cpu->isar.id_dfr0;
1266     case 0xd4c: /* AFR0.  */
1267         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1268             goto bad_offset;
1269         }
1270         return cpu->id_afr0;
1271     case 0xd50: /* MMFR0.  */
1272         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1273             goto bad_offset;
1274         }
1275         return cpu->isar.id_mmfr0;
1276     case 0xd54: /* MMFR1.  */
1277         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1278             goto bad_offset;
1279         }
1280         return cpu->isar.id_mmfr1;
1281     case 0xd58: /* MMFR2.  */
1282         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1283             goto bad_offset;
1284         }
1285         return cpu->isar.id_mmfr2;
1286     case 0xd5c: /* MMFR3.  */
1287         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1288             goto bad_offset;
1289         }
1290         return cpu->isar.id_mmfr3;
1291     case 0xd60: /* ISAR0.  */
1292         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1293             goto bad_offset;
1294         }
1295         return cpu->isar.id_isar0;
1296     case 0xd64: /* ISAR1.  */
1297         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1298             goto bad_offset;
1299         }
1300         return cpu->isar.id_isar1;
1301     case 0xd68: /* ISAR2.  */
1302         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1303             goto bad_offset;
1304         }
1305         return cpu->isar.id_isar2;
1306     case 0xd6c: /* ISAR3.  */
1307         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1308             goto bad_offset;
1309         }
1310         return cpu->isar.id_isar3;
1311     case 0xd70: /* ISAR4.  */
1312         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1313             goto bad_offset;
1314         }
1315         return cpu->isar.id_isar4;
1316     case 0xd74: /* ISAR5.  */
1317         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1318             goto bad_offset;
1319         }
1320         return cpu->isar.id_isar5;
1321     case 0xd78: /* CLIDR */
1322         return cpu->clidr;
1323     case 0xd7c: /* CTR */
1324         return cpu->ctr;
1325     case 0xd80: /* CSSIDR */
1326     {
1327         int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
1328         return cpu->ccsidr[idx];
1329     }
1330     case 0xd84: /* CSSELR */
1331         return cpu->env.v7m.csselr[attrs.secure];
1332     case 0xd88: /* CPACR */
1333         if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1334             return 0;
1335         }
1336         return cpu->env.v7m.cpacr[attrs.secure];
1337     case 0xd8c: /* NSACR */
1338         if (!attrs.secure || !cpu_isar_feature(aa32_vfp_simd, cpu)) {
1339             return 0;
1340         }
1341         return cpu->env.v7m.nsacr;
1342     /* TODO: Implement debug registers.  */
1343     case 0xd90: /* MPU_TYPE */
1344         /* Unified MPU; if the MPU is not present this value is zero */
1345         return cpu->pmsav7_dregion << 8;
1346     case 0xd94: /* MPU_CTRL */
1347         return cpu->env.v7m.mpu_ctrl[attrs.secure];
1348     case 0xd98: /* MPU_RNR */
1349         return cpu->env.pmsav7.rnr[attrs.secure];
1350     case 0xd9c: /* MPU_RBAR */
1351     case 0xda4: /* MPU_RBAR_A1 */
1352     case 0xdac: /* MPU_RBAR_A2 */
1353     case 0xdb4: /* MPU_RBAR_A3 */
1354     {
1355         int region = cpu->env.pmsav7.rnr[attrs.secure];
1356 
1357         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1358             /* PMSAv8M handling of the aliases is different from v7M:
1359              * aliases A1, A2, A3 override the low two bits of the region
1360              * number in MPU_RNR, and there is no 'region' field in the
1361              * RBAR register.
1362              */
1363             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1364             if (aliasno) {
1365                 region = deposit32(region, 0, 2, aliasno);
1366             }
1367             if (region >= cpu->pmsav7_dregion) {
1368                 return 0;
1369             }
1370             return cpu->env.pmsav8.rbar[attrs.secure][region];
1371         }
1372 
1373         if (region >= cpu->pmsav7_dregion) {
1374             return 0;
1375         }
1376         return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
1377     }
1378     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1379     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1380     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1381     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1382     {
1383         int region = cpu->env.pmsav7.rnr[attrs.secure];
1384 
1385         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1386             /* PMSAv8M handling of the aliases is different from v7M:
1387              * aliases A1, A2, A3 override the low two bits of the region
1388              * number in MPU_RNR.
1389              */
1390             int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1391             if (aliasno) {
1392                 region = deposit32(region, 0, 2, aliasno);
1393             }
1394             if (region >= cpu->pmsav7_dregion) {
1395                 return 0;
1396             }
1397             return cpu->env.pmsav8.rlar[attrs.secure][region];
1398         }
1399 
1400         if (region >= cpu->pmsav7_dregion) {
1401             return 0;
1402         }
1403         return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1404             (cpu->env.pmsav7.drsr[region] & 0xffff);
1405     }
1406     case 0xdc0: /* MPU_MAIR0 */
1407         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1408             goto bad_offset;
1409         }
1410         return cpu->env.pmsav8.mair0[attrs.secure];
1411     case 0xdc4: /* MPU_MAIR1 */
1412         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1413             goto bad_offset;
1414         }
1415         return cpu->env.pmsav8.mair1[attrs.secure];
1416     case 0xdd0: /* SAU_CTRL */
1417         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1418             goto bad_offset;
1419         }
1420         if (!attrs.secure) {
1421             return 0;
1422         }
1423         return cpu->env.sau.ctrl;
1424     case 0xdd4: /* SAU_TYPE */
1425         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1426             goto bad_offset;
1427         }
1428         if (!attrs.secure) {
1429             return 0;
1430         }
1431         return cpu->sau_sregion;
1432     case 0xdd8: /* SAU_RNR */
1433         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1434             goto bad_offset;
1435         }
1436         if (!attrs.secure) {
1437             return 0;
1438         }
1439         return cpu->env.sau.rnr;
1440     case 0xddc: /* SAU_RBAR */
1441     {
1442         int region = cpu->env.sau.rnr;
1443 
1444         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1445             goto bad_offset;
1446         }
1447         if (!attrs.secure) {
1448             return 0;
1449         }
1450         if (region >= cpu->sau_sregion) {
1451             return 0;
1452         }
1453         return cpu->env.sau.rbar[region];
1454     }
1455     case 0xde0: /* SAU_RLAR */
1456     {
1457         int region = cpu->env.sau.rnr;
1458 
1459         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1460             goto bad_offset;
1461         }
1462         if (!attrs.secure) {
1463             return 0;
1464         }
1465         if (region >= cpu->sau_sregion) {
1466             return 0;
1467         }
1468         return cpu->env.sau.rlar[region];
1469     }
1470     case 0xde4: /* SFSR */
1471         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1472             goto bad_offset;
1473         }
1474         if (!attrs.secure) {
1475             return 0;
1476         }
1477         return cpu->env.v7m.sfsr;
1478     case 0xde8: /* SFAR */
1479         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1480             goto bad_offset;
1481         }
1482         if (!attrs.secure) {
1483             return 0;
1484         }
1485         return cpu->env.v7m.sfar;
1486     case 0xf34: /* FPCCR */
1487         if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1488             return 0;
1489         }
1490         if (attrs.secure) {
1491             return cpu->env.v7m.fpccr[M_REG_S];
1492         } else {
1493             /*
1494              * NS can read LSPEN, CLRONRET and MONRDY. It can read
1495              * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0;
1496              * other non-banked bits RAZ.
1497              * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set.
1498              */
1499             uint32_t value = cpu->env.v7m.fpccr[M_REG_S];
1500             uint32_t mask = R_V7M_FPCCR_LSPEN_MASK |
1501                 R_V7M_FPCCR_CLRONRET_MASK |
1502                 R_V7M_FPCCR_MONRDY_MASK;
1503 
1504             if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1505                 mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK;
1506             }
1507 
1508             value &= mask;
1509 
1510             value |= cpu->env.v7m.fpccr[M_REG_NS];
1511             return value;
1512         }
1513     case 0xf38: /* FPCAR */
1514         if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1515             return 0;
1516         }
1517         return cpu->env.v7m.fpcar[attrs.secure];
1518     case 0xf3c: /* FPDSCR */
1519         if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1520             return 0;
1521         }
1522         return cpu->env.v7m.fpdscr[attrs.secure];
1523     case 0xf40: /* MVFR0 */
1524         return cpu->isar.mvfr0;
1525     case 0xf44: /* MVFR1 */
1526         return cpu->isar.mvfr1;
1527     case 0xf48: /* MVFR2 */
1528         return cpu->isar.mvfr2;
1529     default:
1530     bad_offset:
1531         qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1532         return 0;
1533     }
1534 }
1535 
1536 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1537                         MemTxAttrs attrs)
1538 {
1539     ARMCPU *cpu = s->cpu;
1540 
1541     switch (offset) {
1542     case 0xc: /* CPPWR */
1543         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1544             goto bad_offset;
1545         }
1546         /* Make the IMPDEF choice to RAZ/WI this. */
1547         break;
1548     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1549     {
1550         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1551         int i;
1552 
1553         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1554             goto bad_offset;
1555         }
1556         if (!attrs.secure) {
1557             break;
1558         }
1559         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1560             s->itns[startvec + i] = (value >> i) & 1;
1561         }
1562         nvic_irq_update(s);
1563         break;
1564     }
1565     case 0xd04: /* Interrupt Control State (ICSR) */
1566         if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1567             if (value & (1 << 31)) {
1568                 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1569             } else if (value & (1 << 30) &&
1570                        arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1571                 /* PENDNMICLR didn't exist in v7M */
1572                 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1573             }
1574         }
1575         if (value & (1 << 28)) {
1576             armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1577         } else if (value & (1 << 27)) {
1578             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1579         }
1580         if (value & (1 << 26)) {
1581             armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1582         } else if (value & (1 << 25)) {
1583             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1584         }
1585         break;
1586     case 0xd08: /* Vector Table Offset.  */
1587         cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1588         break;
1589     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1590         if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1591             if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1592                 if (attrs.secure ||
1593                     !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1594                     signal_sysresetreq(s);
1595                 }
1596             }
1597             if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1598                 qemu_log_mask(LOG_GUEST_ERROR,
1599                               "Setting VECTCLRACTIVE when not in DEBUG mode "
1600                               "is UNPREDICTABLE\n");
1601             }
1602             if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1603                 /* NB: this bit is RES0 in v8M */
1604                 qemu_log_mask(LOG_GUEST_ERROR,
1605                               "Setting VECTRESET when not in DEBUG mode "
1606                               "is UNPREDICTABLE\n");
1607             }
1608             if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1609                 s->prigroup[attrs.secure] =
1610                     extract32(value,
1611                               R_V7M_AIRCR_PRIGROUP_SHIFT,
1612                               R_V7M_AIRCR_PRIGROUP_LENGTH);
1613             }
1614             if (attrs.secure) {
1615                 /* These bits are only writable by secure */
1616                 cpu->env.v7m.aircr = value &
1617                     (R_V7M_AIRCR_SYSRESETREQS_MASK |
1618                      R_V7M_AIRCR_BFHFNMINS_MASK |
1619                      R_V7M_AIRCR_PRIS_MASK);
1620                 /* BFHFNMINS changes the priority of Secure HardFault, and
1621                  * allows a pending Non-secure HardFault to preempt (which
1622                  * we implement by marking it enabled).
1623                  */
1624                 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1625                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1626                     s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1627                 } else {
1628                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1629                     s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1630                 }
1631             }
1632             nvic_irq_update(s);
1633         }
1634         break;
1635     case 0xd10: /* System Control.  */
1636         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1637             goto bad_offset;
1638         }
1639         /* We don't implement deep-sleep so these bits are RAZ/WI.
1640          * The other bits in the register are banked.
1641          * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
1642          * is architecturally permitted.
1643          */
1644         value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
1645         cpu->env.v7m.scr[attrs.secure] = value;
1646         break;
1647     case 0xd14: /* Configuration Control.  */
1648     {
1649         uint32_t mask;
1650 
1651         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1652             goto bad_offset;
1653         }
1654 
1655         /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1656         mask = R_V7M_CCR_STKALIGN_MASK |
1657             R_V7M_CCR_BFHFNMIGN_MASK |
1658             R_V7M_CCR_DIV_0_TRP_MASK |
1659             R_V7M_CCR_UNALIGN_TRP_MASK |
1660             R_V7M_CCR_USERSETMPEND_MASK |
1661             R_V7M_CCR_NONBASETHRDENA_MASK;
1662         if (arm_feature(&cpu->env, ARM_FEATURE_V8_1M) && attrs.secure) {
1663             /* TRD is always RAZ/WI from NS */
1664             mask |= R_V7M_CCR_TRD_MASK;
1665         }
1666         value &= mask;
1667 
1668         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1669             /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1670             value |= R_V7M_CCR_NONBASETHRDENA_MASK
1671                 | R_V7M_CCR_STKALIGN_MASK;
1672         }
1673         if (attrs.secure) {
1674             /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1675             cpu->env.v7m.ccr[M_REG_NS] =
1676                 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1677                 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1678             value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1679         }
1680 
1681         cpu->env.v7m.ccr[attrs.secure] = value;
1682         break;
1683     }
1684     case 0xd24: /* System Handler Control and State (SHCSR) */
1685         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1686             goto bad_offset;
1687         }
1688         if (attrs.secure) {
1689             s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1690             /* Secure HardFault active bit cannot be written */
1691             s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1692             s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1693             s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1694                 (value & (1 << 10)) != 0;
1695             s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1696                 (value & (1 << 11)) != 0;
1697             s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1698                 (value & (1 << 12)) != 0;
1699             s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1700             s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1701             s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1702             s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1703             s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1704                 (value & (1 << 18)) != 0;
1705             s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1706             /* SecureFault not banked, but RAZ/WI to NS */
1707             s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1708             s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1709             s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1710         } else {
1711             s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1712             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1713                 /* HARDFAULTPENDED is not present in v7M */
1714                 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1715             }
1716             s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1717             s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1718             s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1719             s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1720             s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1721             s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1722             s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1723             s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1724             s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1725         }
1726         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1727             s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1728             s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1729             s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1730         }
1731         /* NMIACT can only be written if the write is of a zero, with
1732          * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1733          */
1734         if (!attrs.secure && cpu->env.v7m.secure &&
1735             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1736             (value & (1 << 5)) == 0) {
1737             s->vectors[ARMV7M_EXCP_NMI].active = 0;
1738         }
1739         /* HARDFAULTACT can only be written if the write is of a zero
1740          * to the non-secure HardFault state by the CPU in secure state.
1741          * The only case where we can be targeting the non-secure HF state
1742          * when in secure state is if this is a write via the NS alias
1743          * and BFHFNMINS is 1.
1744          */
1745         if (!attrs.secure && cpu->env.v7m.secure &&
1746             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1747             (value & (1 << 2)) == 0) {
1748             s->vectors[ARMV7M_EXCP_HARD].active = 0;
1749         }
1750 
1751         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1752         s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1753         nvic_irq_update(s);
1754         break;
1755     case 0xd2c: /* Hard Fault Status.  */
1756         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1757             goto bad_offset;
1758         }
1759         cpu->env.v7m.hfsr &= ~value; /* W1C */
1760         break;
1761     case 0xd30: /* Debug Fault Status.  */
1762         cpu->env.v7m.dfsr &= ~value; /* W1C */
1763         break;
1764     case 0xd34: /* Mem Manage Address.  */
1765         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1766             goto bad_offset;
1767         }
1768         cpu->env.v7m.mmfar[attrs.secure] = value;
1769         return;
1770     case 0xd38: /* Bus Fault Address.  */
1771         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1772             goto bad_offset;
1773         }
1774         if (!attrs.secure &&
1775             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1776             return;
1777         }
1778         cpu->env.v7m.bfar = value;
1779         return;
1780     case 0xd3c: /* Aux Fault Status.  */
1781         qemu_log_mask(LOG_UNIMP,
1782                       "NVIC: Aux fault status registers unimplemented\n");
1783         break;
1784     case 0xd84: /* CSSELR */
1785         if (!arm_v7m_csselr_razwi(cpu)) {
1786             cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
1787         }
1788         break;
1789     case 0xd88: /* CPACR */
1790         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1791             /* We implement only the Floating Point extension's CP10/CP11 */
1792             cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20);
1793         }
1794         break;
1795     case 0xd8c: /* NSACR */
1796         if (attrs.secure && cpu_isar_feature(aa32_vfp_simd, cpu)) {
1797             /* We implement only the Floating Point extension's CP10/CP11 */
1798             cpu->env.v7m.nsacr = value & (3 << 10);
1799         }
1800         break;
1801     case 0xd90: /* MPU_TYPE */
1802         return; /* RO */
1803     case 0xd94: /* MPU_CTRL */
1804         if ((value &
1805              (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1806             == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1807             qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1808                           "UNPREDICTABLE\n");
1809         }
1810         cpu->env.v7m.mpu_ctrl[attrs.secure]
1811             = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1812                        R_V7M_MPU_CTRL_HFNMIENA_MASK |
1813                        R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1814         tlb_flush(CPU(cpu));
1815         break;
1816     case 0xd98: /* MPU_RNR */
1817         if (value >= cpu->pmsav7_dregion) {
1818             qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1819                           PRIu32 "/%" PRIu32 "\n",
1820                           value, cpu->pmsav7_dregion);
1821         } else {
1822             cpu->env.pmsav7.rnr[attrs.secure] = value;
1823         }
1824         break;
1825     case 0xd9c: /* MPU_RBAR */
1826     case 0xda4: /* MPU_RBAR_A1 */
1827     case 0xdac: /* MPU_RBAR_A2 */
1828     case 0xdb4: /* MPU_RBAR_A3 */
1829     {
1830         int region;
1831 
1832         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1833             /* PMSAv8M handling of the aliases is different from v7M:
1834              * aliases A1, A2, A3 override the low two bits of the region
1835              * number in MPU_RNR, and there is no 'region' field in the
1836              * RBAR register.
1837              */
1838             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1839 
1840             region = cpu->env.pmsav7.rnr[attrs.secure];
1841             if (aliasno) {
1842                 region = deposit32(region, 0, 2, aliasno);
1843             }
1844             if (region >= cpu->pmsav7_dregion) {
1845                 return;
1846             }
1847             cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1848             tlb_flush(CPU(cpu));
1849             return;
1850         }
1851 
1852         if (value & (1 << 4)) {
1853             /* VALID bit means use the region number specified in this
1854              * value and also update MPU_RNR.REGION with that value.
1855              */
1856             region = extract32(value, 0, 4);
1857             if (region >= cpu->pmsav7_dregion) {
1858                 qemu_log_mask(LOG_GUEST_ERROR,
1859                               "MPU region out of range %u/%" PRIu32 "\n",
1860                               region, cpu->pmsav7_dregion);
1861                 return;
1862             }
1863             cpu->env.pmsav7.rnr[attrs.secure] = region;
1864         } else {
1865             region = cpu->env.pmsav7.rnr[attrs.secure];
1866         }
1867 
1868         if (region >= cpu->pmsav7_dregion) {
1869             return;
1870         }
1871 
1872         cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1873         tlb_flush(CPU(cpu));
1874         break;
1875     }
1876     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1877     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1878     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1879     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1880     {
1881         int region = cpu->env.pmsav7.rnr[attrs.secure];
1882 
1883         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1884             /* PMSAv8M handling of the aliases is different from v7M:
1885              * aliases A1, A2, A3 override the low two bits of the region
1886              * number in MPU_RNR.
1887              */
1888             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1889 
1890             region = cpu->env.pmsav7.rnr[attrs.secure];
1891             if (aliasno) {
1892                 region = deposit32(region, 0, 2, aliasno);
1893             }
1894             if (region >= cpu->pmsav7_dregion) {
1895                 return;
1896             }
1897             cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1898             tlb_flush(CPU(cpu));
1899             return;
1900         }
1901 
1902         if (region >= cpu->pmsav7_dregion) {
1903             return;
1904         }
1905 
1906         cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1907         cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1908         tlb_flush(CPU(cpu));
1909         break;
1910     }
1911     case 0xdc0: /* MPU_MAIR0 */
1912         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1913             goto bad_offset;
1914         }
1915         if (cpu->pmsav7_dregion) {
1916             /* Register is RES0 if no MPU regions are implemented */
1917             cpu->env.pmsav8.mair0[attrs.secure] = value;
1918         }
1919         /* We don't need to do anything else because memory attributes
1920          * only affect cacheability, and we don't implement caching.
1921          */
1922         break;
1923     case 0xdc4: /* MPU_MAIR1 */
1924         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1925             goto bad_offset;
1926         }
1927         if (cpu->pmsav7_dregion) {
1928             /* Register is RES0 if no MPU regions are implemented */
1929             cpu->env.pmsav8.mair1[attrs.secure] = value;
1930         }
1931         /* We don't need to do anything else because memory attributes
1932          * only affect cacheability, and we don't implement caching.
1933          */
1934         break;
1935     case 0xdd0: /* SAU_CTRL */
1936         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1937             goto bad_offset;
1938         }
1939         if (!attrs.secure) {
1940             return;
1941         }
1942         cpu->env.sau.ctrl = value & 3;
1943         break;
1944     case 0xdd4: /* SAU_TYPE */
1945         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1946             goto bad_offset;
1947         }
1948         break;
1949     case 0xdd8: /* SAU_RNR */
1950         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1951             goto bad_offset;
1952         }
1953         if (!attrs.secure) {
1954             return;
1955         }
1956         if (value >= cpu->sau_sregion) {
1957             qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1958                           PRIu32 "/%" PRIu32 "\n",
1959                           value, cpu->sau_sregion);
1960         } else {
1961             cpu->env.sau.rnr = value;
1962         }
1963         break;
1964     case 0xddc: /* SAU_RBAR */
1965     {
1966         int region = cpu->env.sau.rnr;
1967 
1968         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1969             goto bad_offset;
1970         }
1971         if (!attrs.secure) {
1972             return;
1973         }
1974         if (region >= cpu->sau_sregion) {
1975             return;
1976         }
1977         cpu->env.sau.rbar[region] = value & ~0x1f;
1978         tlb_flush(CPU(cpu));
1979         break;
1980     }
1981     case 0xde0: /* SAU_RLAR */
1982     {
1983         int region = cpu->env.sau.rnr;
1984 
1985         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1986             goto bad_offset;
1987         }
1988         if (!attrs.secure) {
1989             return;
1990         }
1991         if (region >= cpu->sau_sregion) {
1992             return;
1993         }
1994         cpu->env.sau.rlar[region] = value & ~0x1c;
1995         tlb_flush(CPU(cpu));
1996         break;
1997     }
1998     case 0xde4: /* SFSR */
1999         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2000             goto bad_offset;
2001         }
2002         if (!attrs.secure) {
2003             return;
2004         }
2005         cpu->env.v7m.sfsr &= ~value; /* W1C */
2006         break;
2007     case 0xde8: /* SFAR */
2008         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2009             goto bad_offset;
2010         }
2011         if (!attrs.secure) {
2012             return;
2013         }
2014         cpu->env.v7m.sfsr = value;
2015         break;
2016     case 0xf00: /* Software Triggered Interrupt Register */
2017     {
2018         int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
2019 
2020         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
2021             goto bad_offset;
2022         }
2023 
2024         if (excnum < s->num_irq) {
2025             armv7m_nvic_set_pending(s, excnum, false);
2026         }
2027         break;
2028     }
2029     case 0xf34: /* FPCCR */
2030         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2031             /* Not all bits here are banked. */
2032             uint32_t fpccr_s;
2033 
2034             if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2035                 /* Don't allow setting of bits not present in v7M */
2036                 value &= (R_V7M_FPCCR_LSPACT_MASK |
2037                           R_V7M_FPCCR_USER_MASK |
2038                           R_V7M_FPCCR_THREAD_MASK |
2039                           R_V7M_FPCCR_HFRDY_MASK |
2040                           R_V7M_FPCCR_MMRDY_MASK |
2041                           R_V7M_FPCCR_BFRDY_MASK |
2042                           R_V7M_FPCCR_MONRDY_MASK |
2043                           R_V7M_FPCCR_LSPEN_MASK |
2044                           R_V7M_FPCCR_ASPEN_MASK);
2045             }
2046             value &= ~R_V7M_FPCCR_RES0_MASK;
2047 
2048             if (!attrs.secure) {
2049                 /* Some non-banked bits are configurably writable by NS */
2050                 fpccr_s = cpu->env.v7m.fpccr[M_REG_S];
2051                 if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) {
2052                     uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN);
2053                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen);
2054                 }
2055                 if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) {
2056                     uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET);
2057                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor);
2058                 }
2059                 if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2060                     uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY);
2061                     uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY);
2062                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
2063                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
2064                 }
2065                 /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */
2066                 {
2067                     uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY);
2068                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy);
2069                 }
2070 
2071                 /*
2072                  * All other non-banked bits are RAZ/WI from NS; write
2073                  * just the banked bits to fpccr[M_REG_NS].
2074                  */
2075                 value &= R_V7M_FPCCR_BANKED_MASK;
2076                 cpu->env.v7m.fpccr[M_REG_NS] = value;
2077             } else {
2078                 fpccr_s = value;
2079             }
2080             cpu->env.v7m.fpccr[M_REG_S] = fpccr_s;
2081         }
2082         break;
2083     case 0xf38: /* FPCAR */
2084         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2085             value &= ~7;
2086             cpu->env.v7m.fpcar[attrs.secure] = value;
2087         }
2088         break;
2089     case 0xf3c: /* FPDSCR */
2090         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2091             uint32_t mask = FPCR_AHP | FPCR_DN | FPCR_FZ | FPCR_RMODE_MASK;
2092             if (cpu_isar_feature(any_fp16, cpu)) {
2093                 mask |= FPCR_FZ16;
2094             }
2095             value &= mask;
2096             if (cpu_isar_feature(aa32_lob, cpu)) {
2097                 value |= 4 << FPCR_LTPSIZE_SHIFT;
2098             }
2099             cpu->env.v7m.fpdscr[attrs.secure] = value;
2100         }
2101         break;
2102     case 0xf50: /* ICIALLU */
2103     case 0xf58: /* ICIMVAU */
2104     case 0xf5c: /* DCIMVAC */
2105     case 0xf60: /* DCISW */
2106     case 0xf64: /* DCCMVAU */
2107     case 0xf68: /* DCCMVAC */
2108     case 0xf6c: /* DCCSW */
2109     case 0xf70: /* DCCIMVAC */
2110     case 0xf74: /* DCCISW */
2111     case 0xf78: /* BPIALL */
2112         /* Cache and branch predictor maintenance: for QEMU these always NOP */
2113         break;
2114     default:
2115     bad_offset:
2116         qemu_log_mask(LOG_GUEST_ERROR,
2117                       "NVIC: Bad write offset 0x%x\n", offset);
2118     }
2119 }
2120 
2121 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
2122 {
2123     /* Return true if unprivileged access to this register is permitted. */
2124     switch (offset) {
2125     case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
2126         /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
2127          * controls access even though the CPU is in Secure state (I_QDKX).
2128          */
2129         return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
2130     default:
2131         /* All other user accesses cause a BusFault unconditionally */
2132         return false;
2133     }
2134 }
2135 
2136 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
2137 {
2138     /* Behaviour for the SHPR register field for this exception:
2139      * return M_REG_NS to use the nonsecure vector (including for
2140      * non-banked exceptions), M_REG_S for the secure version of
2141      * a banked exception, and -1 if this field should RAZ/WI.
2142      */
2143     switch (exc) {
2144     case ARMV7M_EXCP_MEM:
2145     case ARMV7M_EXCP_USAGE:
2146     case ARMV7M_EXCP_SVC:
2147     case ARMV7M_EXCP_PENDSV:
2148     case ARMV7M_EXCP_SYSTICK:
2149         /* Banked exceptions */
2150         return attrs.secure;
2151     case ARMV7M_EXCP_BUS:
2152         /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
2153         if (!attrs.secure &&
2154             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2155             return -1;
2156         }
2157         return M_REG_NS;
2158     case ARMV7M_EXCP_SECURE:
2159         /* Not banked, RAZ/WI from nonsecure */
2160         if (!attrs.secure) {
2161             return -1;
2162         }
2163         return M_REG_NS;
2164     case ARMV7M_EXCP_DEBUG:
2165         /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
2166         return M_REG_NS;
2167     case 8 ... 10:
2168     case 13:
2169         /* RES0 */
2170         return -1;
2171     default:
2172         /* Not reachable due to decode of SHPR register addresses */
2173         g_assert_not_reached();
2174     }
2175 }
2176 
2177 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
2178                                     uint64_t *data, unsigned size,
2179                                     MemTxAttrs attrs)
2180 {
2181     NVICState *s = (NVICState *)opaque;
2182     uint32_t offset = addr;
2183     unsigned i, startvec, end;
2184     uint32_t val;
2185 
2186     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2187         /* Generate BusFault for unprivileged accesses */
2188         return MEMTX_ERROR;
2189     }
2190 
2191     switch (offset) {
2192     /* reads of set and clear both return the status */
2193     case 0x100 ... 0x13f: /* NVIC Set enable */
2194         offset += 0x80;
2195         /* fall through */
2196     case 0x180 ... 0x1bf: /* NVIC Clear enable */
2197         val = 0;
2198         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
2199 
2200         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2201             if (s->vectors[startvec + i].enabled &&
2202                 (attrs.secure || s->itns[startvec + i])) {
2203                 val |= (1 << i);
2204             }
2205         }
2206         break;
2207     case 0x200 ... 0x23f: /* NVIC Set pend */
2208         offset += 0x80;
2209         /* fall through */
2210     case 0x280 ... 0x2bf: /* NVIC Clear pend */
2211         val = 0;
2212         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2213         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2214             if (s->vectors[startvec + i].pending &&
2215                 (attrs.secure || s->itns[startvec + i])) {
2216                 val |= (1 << i);
2217             }
2218         }
2219         break;
2220     case 0x300 ... 0x33f: /* NVIC Active */
2221         val = 0;
2222 
2223         if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) {
2224             break;
2225         }
2226 
2227         startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
2228 
2229         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2230             if (s->vectors[startvec + i].active &&
2231                 (attrs.secure || s->itns[startvec + i])) {
2232                 val |= (1 << i);
2233             }
2234         }
2235         break;
2236     case 0x400 ... 0x5ef: /* NVIC Priority */
2237         val = 0;
2238         startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
2239 
2240         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2241             if (attrs.secure || s->itns[startvec + i]) {
2242                 val |= s->vectors[startvec + i].prio << (8 * i);
2243             }
2244         }
2245         break;
2246     case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2247         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2248             val = 0;
2249             break;
2250         }
2251         /* fall through */
2252     case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2253         val = 0;
2254         for (i = 0; i < size; i++) {
2255             unsigned hdlidx = (offset - 0xd14) + i;
2256             int sbank = shpr_bank(s, hdlidx, attrs);
2257 
2258             if (sbank < 0) {
2259                 continue;
2260             }
2261             val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
2262         }
2263         break;
2264     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2265         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2266             val = 0;
2267             break;
2268         };
2269         /*
2270          * The BFSR bits [15:8] are shared between security states
2271          * and we store them in the NS copy. They are RAZ/WI for
2272          * NS code if AIRCR.BFHFNMINS is 0.
2273          */
2274         val = s->cpu->env.v7m.cfsr[attrs.secure];
2275         if (!attrs.secure &&
2276             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2277             val &= ~R_V7M_CFSR_BFSR_MASK;
2278         } else {
2279             val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
2280         }
2281         val = extract32(val, (offset - 0xd28) * 8, size * 8);
2282         break;
2283     case 0xfe0 ... 0xfff: /* ID.  */
2284         if (offset & 3) {
2285             val = 0;
2286         } else {
2287             val = nvic_id[(offset - 0xfe0) >> 2];
2288         }
2289         break;
2290     default:
2291         if (size == 4) {
2292             val = nvic_readl(s, offset, attrs);
2293         } else {
2294             qemu_log_mask(LOG_GUEST_ERROR,
2295                           "NVIC: Bad read of size %d at offset 0x%x\n",
2296                           size, offset);
2297             val = 0;
2298         }
2299     }
2300 
2301     trace_nvic_sysreg_read(addr, val, size);
2302     *data = val;
2303     return MEMTX_OK;
2304 }
2305 
2306 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
2307                                      uint64_t value, unsigned size,
2308                                      MemTxAttrs attrs)
2309 {
2310     NVICState *s = (NVICState *)opaque;
2311     uint32_t offset = addr;
2312     unsigned i, startvec, end;
2313     unsigned setval = 0;
2314 
2315     trace_nvic_sysreg_write(addr, value, size);
2316 
2317     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2318         /* Generate BusFault for unprivileged accesses */
2319         return MEMTX_ERROR;
2320     }
2321 
2322     switch (offset) {
2323     case 0x100 ... 0x13f: /* NVIC Set enable */
2324         offset += 0x80;
2325         setval = 1;
2326         /* fall through */
2327     case 0x180 ... 0x1bf: /* NVIC Clear enable */
2328         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
2329 
2330         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2331             if (value & (1 << i) &&
2332                 (attrs.secure || s->itns[startvec + i])) {
2333                 s->vectors[startvec + i].enabled = setval;
2334             }
2335         }
2336         nvic_irq_update(s);
2337         goto exit_ok;
2338     case 0x200 ... 0x23f: /* NVIC Set pend */
2339         /* the special logic in armv7m_nvic_set_pending()
2340          * is not needed since IRQs are never escalated
2341          */
2342         offset += 0x80;
2343         setval = 1;
2344         /* fall through */
2345     case 0x280 ... 0x2bf: /* NVIC Clear pend */
2346         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2347 
2348         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2349             if (value & (1 << i) &&
2350                 (attrs.secure || s->itns[startvec + i])) {
2351                 s->vectors[startvec + i].pending = setval;
2352             }
2353         }
2354         nvic_irq_update(s);
2355         goto exit_ok;
2356     case 0x300 ... 0x33f: /* NVIC Active */
2357         goto exit_ok; /* R/O */
2358     case 0x400 ... 0x5ef: /* NVIC Priority */
2359         startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
2360 
2361         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2362             if (attrs.secure || s->itns[startvec + i]) {
2363                 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
2364             }
2365         }
2366         nvic_irq_update(s);
2367         goto exit_ok;
2368     case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2369         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2370             goto exit_ok;
2371         }
2372         /* fall through */
2373     case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2374         for (i = 0; i < size; i++) {
2375             unsigned hdlidx = (offset - 0xd14) + i;
2376             int newprio = extract32(value, i * 8, 8);
2377             int sbank = shpr_bank(s, hdlidx, attrs);
2378 
2379             if (sbank < 0) {
2380                 continue;
2381             }
2382             set_prio(s, hdlidx, sbank, newprio);
2383         }
2384         nvic_irq_update(s);
2385         goto exit_ok;
2386     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2387         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2388             goto exit_ok;
2389         }
2390         /* All bits are W1C, so construct 32 bit value with 0s in
2391          * the parts not written by the access size
2392          */
2393         value <<= ((offset - 0xd28) * 8);
2394 
2395         if (!attrs.secure &&
2396             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2397             /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */
2398             value &= ~R_V7M_CFSR_BFSR_MASK;
2399         }
2400 
2401         s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
2402         if (attrs.secure) {
2403             /* The BFSR bits [15:8] are shared between security states
2404              * and we store them in the NS copy.
2405              */
2406             s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
2407         }
2408         goto exit_ok;
2409     }
2410     if (size == 4) {
2411         nvic_writel(s, offset, value, attrs);
2412         goto exit_ok;
2413     }
2414     qemu_log_mask(LOG_GUEST_ERROR,
2415                   "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
2416     /* This is UNPREDICTABLE; treat as RAZ/WI */
2417 
2418  exit_ok:
2419     /* Ensure any changes made are reflected in the cached hflags.  */
2420     arm_rebuild_hflags(&s->cpu->env);
2421     return MEMTX_OK;
2422 }
2423 
2424 static const MemoryRegionOps nvic_sysreg_ops = {
2425     .read_with_attrs = nvic_sysreg_read,
2426     .write_with_attrs = nvic_sysreg_write,
2427     .endianness = DEVICE_NATIVE_ENDIAN,
2428 };
2429 
2430 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
2431                                         uint64_t value, unsigned size,
2432                                         MemTxAttrs attrs)
2433 {
2434     MemoryRegion *mr = opaque;
2435 
2436     if (attrs.secure) {
2437         /* S accesses to the alias act like NS accesses to the real region */
2438         attrs.secure = 0;
2439         return memory_region_dispatch_write(mr, addr, value,
2440                                             size_memop(size) | MO_TE, attrs);
2441     } else {
2442         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2443         if (attrs.user) {
2444             return MEMTX_ERROR;
2445         }
2446         return MEMTX_OK;
2447     }
2448 }
2449 
2450 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
2451                                        uint64_t *data, unsigned size,
2452                                        MemTxAttrs attrs)
2453 {
2454     MemoryRegion *mr = opaque;
2455 
2456     if (attrs.secure) {
2457         /* S accesses to the alias act like NS accesses to the real region */
2458         attrs.secure = 0;
2459         return memory_region_dispatch_read(mr, addr, data,
2460                                            size_memop(size) | MO_TE, attrs);
2461     } else {
2462         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2463         if (attrs.user) {
2464             return MEMTX_ERROR;
2465         }
2466         *data = 0;
2467         return MEMTX_OK;
2468     }
2469 }
2470 
2471 static const MemoryRegionOps nvic_sysreg_ns_ops = {
2472     .read_with_attrs = nvic_sysreg_ns_read,
2473     .write_with_attrs = nvic_sysreg_ns_write,
2474     .endianness = DEVICE_NATIVE_ENDIAN,
2475 };
2476 
2477 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
2478                                       uint64_t value, unsigned size,
2479                                       MemTxAttrs attrs)
2480 {
2481     NVICState *s = opaque;
2482     MemoryRegion *mr;
2483 
2484     /* Direct the access to the correct systick */
2485     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2486     return memory_region_dispatch_write(mr, addr, value,
2487                                         size_memop(size) | MO_TE, attrs);
2488 }
2489 
2490 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
2491                                      uint64_t *data, unsigned size,
2492                                      MemTxAttrs attrs)
2493 {
2494     NVICState *s = opaque;
2495     MemoryRegion *mr;
2496 
2497     /* Direct the access to the correct systick */
2498     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2499     return memory_region_dispatch_read(mr, addr, data, size_memop(size) | MO_TE,
2500                                        attrs);
2501 }
2502 
2503 static const MemoryRegionOps nvic_systick_ops = {
2504     .read_with_attrs = nvic_systick_read,
2505     .write_with_attrs = nvic_systick_write,
2506     .endianness = DEVICE_NATIVE_ENDIAN,
2507 };
2508 
2509 /*
2510  * Unassigned portions of the PPB space are RAZ/WI for privileged
2511  * accesses, and fault for non-privileged accesses.
2512  */
2513 static MemTxResult ppb_default_read(void *opaque, hwaddr addr,
2514                                     uint64_t *data, unsigned size,
2515                                     MemTxAttrs attrs)
2516 {
2517     qemu_log_mask(LOG_UNIMP, "Read of unassigned area of PPB: offset 0x%x\n",
2518                   (uint32_t)addr);
2519     if (attrs.user) {
2520         return MEMTX_ERROR;
2521     }
2522     *data = 0;
2523     return MEMTX_OK;
2524 }
2525 
2526 static MemTxResult ppb_default_write(void *opaque, hwaddr addr,
2527                                      uint64_t value, unsigned size,
2528                                      MemTxAttrs attrs)
2529 {
2530     qemu_log_mask(LOG_UNIMP, "Write of unassigned area of PPB: offset 0x%x\n",
2531                   (uint32_t)addr);
2532     if (attrs.user) {
2533         return MEMTX_ERROR;
2534     }
2535     return MEMTX_OK;
2536 }
2537 
2538 static const MemoryRegionOps ppb_default_ops = {
2539     .read_with_attrs = ppb_default_read,
2540     .write_with_attrs = ppb_default_write,
2541     .endianness = DEVICE_NATIVE_ENDIAN,
2542     .valid.min_access_size = 1,
2543     .valid.max_access_size = 8,
2544 };
2545 
2546 static int nvic_post_load(void *opaque, int version_id)
2547 {
2548     NVICState *s = opaque;
2549     unsigned i;
2550     int resetprio;
2551 
2552     /* Check for out of range priority settings */
2553     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2554 
2555     if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
2556         s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
2557         s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
2558         return 1;
2559     }
2560     for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
2561         if (s->vectors[i].prio & ~0xff) {
2562             return 1;
2563         }
2564     }
2565 
2566     nvic_recompute_state(s);
2567 
2568     return 0;
2569 }
2570 
2571 static const VMStateDescription vmstate_VecInfo = {
2572     .name = "armv7m_nvic_info",
2573     .version_id = 1,
2574     .minimum_version_id = 1,
2575     .fields = (VMStateField[]) {
2576         VMSTATE_INT16(prio, VecInfo),
2577         VMSTATE_UINT8(enabled, VecInfo),
2578         VMSTATE_UINT8(pending, VecInfo),
2579         VMSTATE_UINT8(active, VecInfo),
2580         VMSTATE_UINT8(level, VecInfo),
2581         VMSTATE_END_OF_LIST()
2582     }
2583 };
2584 
2585 static bool nvic_security_needed(void *opaque)
2586 {
2587     NVICState *s = opaque;
2588 
2589     return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2590 }
2591 
2592 static int nvic_security_post_load(void *opaque, int version_id)
2593 {
2594     NVICState *s = opaque;
2595     int i;
2596 
2597     /* Check for out of range priority settings */
2598     if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2599         && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2600         /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2601          * if the CPU state has been migrated yet; a mismatch won't
2602          * cause the emulation to blow up, though.
2603          */
2604         return 1;
2605     }
2606     for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2607         if (s->sec_vectors[i].prio & ~0xff) {
2608             return 1;
2609         }
2610     }
2611     return 0;
2612 }
2613 
2614 static const VMStateDescription vmstate_nvic_security = {
2615     .name = "armv7m_nvic/m-security",
2616     .version_id = 1,
2617     .minimum_version_id = 1,
2618     .needed = nvic_security_needed,
2619     .post_load = &nvic_security_post_load,
2620     .fields = (VMStateField[]) {
2621         VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2622                              vmstate_VecInfo, VecInfo),
2623         VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
2624         VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
2625         VMSTATE_END_OF_LIST()
2626     }
2627 };
2628 
2629 static const VMStateDescription vmstate_nvic = {
2630     .name = "armv7m_nvic",
2631     .version_id = 4,
2632     .minimum_version_id = 4,
2633     .post_load = &nvic_post_load,
2634     .fields = (VMStateField[]) {
2635         VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2636                              vmstate_VecInfo, VecInfo),
2637         VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
2638         VMSTATE_END_OF_LIST()
2639     },
2640     .subsections = (const VMStateDescription*[]) {
2641         &vmstate_nvic_security,
2642         NULL
2643     }
2644 };
2645 
2646 static Property props_nvic[] = {
2647     /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2648     DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2649     DEFINE_PROP_END_OF_LIST()
2650 };
2651 
2652 static void armv7m_nvic_reset(DeviceState *dev)
2653 {
2654     int resetprio;
2655     NVICState *s = NVIC(dev);
2656 
2657     memset(s->vectors, 0, sizeof(s->vectors));
2658     memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2659     s->prigroup[M_REG_NS] = 0;
2660     s->prigroup[M_REG_S] = 0;
2661 
2662     s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
2663     /* MEM, BUS, and USAGE are enabled through
2664      * the System Handler Control register
2665      */
2666     s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2667     s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2668     s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2669 
2670     /* DebugMonitor is enabled via DEMCR.MON_EN */
2671     s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0;
2672 
2673     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2674     s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
2675     s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2676     s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2677 
2678     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2679         s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2680         s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2681         s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2682         s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2683 
2684         /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2685         s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
2686         /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2687         s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2688     } else {
2689         s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
2690     }
2691 
2692     /* Strictly speaking the reset handler should be enabled.
2693      * However, we don't simulate soft resets through the NVIC,
2694      * and the reset vector should never be pended.
2695      * So we leave it disabled to catch logic errors.
2696      */
2697 
2698     s->exception_prio = NVIC_NOEXC_PRIO;
2699     s->vectpending = 0;
2700     s->vectpending_is_s_banked = false;
2701     s->vectpending_prio = NVIC_NOEXC_PRIO;
2702 
2703     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2704         memset(s->itns, 0, sizeof(s->itns));
2705     } else {
2706         /* This state is constant and not guest accessible in a non-security
2707          * NVIC; we set the bits to true to avoid having to do a feature
2708          * bit check in the NVIC enable/pend/etc register accessors.
2709          */
2710         int i;
2711 
2712         for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2713             s->itns[i] = true;
2714         }
2715     }
2716 
2717     /*
2718      * We updated state that affects the CPU's MMUidx and thus its hflags;
2719      * and we can't guarantee that we run before the CPU reset function.
2720      */
2721     arm_rebuild_hflags(&s->cpu->env);
2722 }
2723 
2724 static void nvic_systick_trigger(void *opaque, int n, int level)
2725 {
2726     NVICState *s = opaque;
2727 
2728     if (level) {
2729         /* SysTick just asked us to pend its exception.
2730          * (This is different from an external interrupt line's
2731          * behaviour.)
2732          * n == 0 : NonSecure systick
2733          * n == 1 : Secure systick
2734          */
2735         armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
2736     }
2737 }
2738 
2739 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2740 {
2741     NVICState *s = NVIC(dev);
2742 
2743     /* The armv7m container object will have set our CPU pointer */
2744     if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
2745         error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
2746         return;
2747     }
2748 
2749     if (s->num_irq > NVIC_MAX_IRQ) {
2750         error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2751         return;
2752     }
2753 
2754     qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2755 
2756     /* include space for internal exception vectors */
2757     s->num_irq += NVIC_FIRST_IRQ;
2758 
2759     s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
2760 
2761     if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), errp)) {
2762         return;
2763     }
2764     sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2765                        qdev_get_gpio_in_named(dev, "systick-trigger",
2766                                               M_REG_NS));
2767 
2768     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2769         /* We couldn't init the secure systick device in instance_init
2770          * as we didn't know then if the CPU had the security extensions;
2771          * so we have to do it here.
2772          */
2773         object_initialize_child(OBJECT(dev), "systick-reg-s",
2774                                 &s->systick[M_REG_S], TYPE_SYSTICK);
2775 
2776         if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_S]), errp)) {
2777             return;
2778         }
2779         sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2780                            qdev_get_gpio_in_named(dev, "systick-trigger",
2781                                                   M_REG_S));
2782     }
2783 
2784     /*
2785      * This device provides a single sysbus memory region which
2786      * represents the whole of the "System PPB" space. This is the
2787      * range from 0xe0000000 to 0xe00fffff and includes the NVIC,
2788      * the System Control Space (system registers), the systick timer,
2789      * and for CPUs with the Security extension an NS banked version
2790      * of all of these.
2791      *
2792      * The default behaviour for unimplemented registers/ranges
2793      * (for instance the Data Watchpoint and Trace unit at 0xe0001000)
2794      * is to RAZ/WI for privileged access and BusFault for non-privileged
2795      * access.
2796      *
2797      * The NVIC and System Control Space (SCS) starts at 0xe000e000
2798      * and looks like this:
2799      *  0x004 - ICTR
2800      *  0x010 - 0xff - systick
2801      *  0x100..0x7ec - NVIC
2802      *  0x7f0..0xcff - Reserved
2803      *  0xd00..0xd3c - SCS registers
2804      *  0xd40..0xeff - Reserved or Not implemented
2805      *  0xf00 - STIR
2806      *
2807      * Some registers within this space are banked between security states.
2808      * In v8M there is a second range 0xe002e000..0xe002efff which is the
2809      * NonSecure alias SCS; secure accesses to this behave like NS accesses
2810      * to the main SCS range, and non-secure accesses (including when
2811      * the security extension is not implemented) are RAZ/WI.
2812      * Note that both the main SCS range and the alias range are defined
2813      * to be exempt from memory attribution (R_BLJT) and so the memory
2814      * transaction attribute always matches the current CPU security
2815      * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2816      * wrappers we change attrs.secure to indicate the NS access; so
2817      * generally code determining which banked register to use should
2818      * use attrs.secure; code determining actual behaviour of the system
2819      * should use env->v7m.secure.
2820      *
2821      * The container covers the whole PPB space. Within it the priority
2822      * of overlapping regions is:
2823      *  - default region (for RAZ/WI and BusFault) : -1
2824      *  - system register regions : 0
2825      *  - systick : 1
2826      * This is because the systick device is a small block of registers
2827      * in the middle of the other system control registers.
2828      */
2829     memory_region_init(&s->container, OBJECT(s), "nvic", 0x100000);
2830     memory_region_init_io(&s->defaultmem, OBJECT(s), &ppb_default_ops, s,
2831                           "nvic-default", 0x100000);
2832     memory_region_add_subregion_overlap(&s->container, 0, &s->defaultmem, -1);
2833     memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2834                           "nvic_sysregs", 0x1000);
2835     memory_region_add_subregion(&s->container, 0xe000, &s->sysregmem);
2836 
2837     memory_region_init_io(&s->systickmem, OBJECT(s),
2838                           &nvic_systick_ops, s,
2839                           "nvic_systick", 0xe0);
2840 
2841     memory_region_add_subregion_overlap(&s->container, 0xe010,
2842                                         &s->systickmem, 1);
2843 
2844     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2845         memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
2846                               &nvic_sysreg_ns_ops, &s->sysregmem,
2847                               "nvic_sysregs_ns", 0x1000);
2848         memory_region_add_subregion(&s->container, 0x2e000, &s->sysreg_ns_mem);
2849         memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2850                               &nvic_sysreg_ns_ops, &s->systickmem,
2851                               "nvic_systick_ns", 0xe0);
2852         memory_region_add_subregion_overlap(&s->container, 0x2e010,
2853                                             &s->systick_ns_mem, 1);
2854     }
2855 
2856     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
2857 }
2858 
2859 static void armv7m_nvic_instance_init(Object *obj)
2860 {
2861     /* We have a different default value for the num-irq property
2862      * than our superclass. This function runs after qdev init
2863      * has set the defaults from the Property array and before
2864      * any user-specified property setting, so just modify the
2865      * value in the GICState struct.
2866      */
2867     DeviceState *dev = DEVICE(obj);
2868     NVICState *nvic = NVIC(obj);
2869     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2870 
2871     object_initialize_child(obj, "systick-reg-ns", &nvic->systick[M_REG_NS],
2872                             TYPE_SYSTICK);
2873     /* We can't initialize the secure systick here, as we don't know
2874      * yet if we need it.
2875      */
2876 
2877     sysbus_init_irq(sbd, &nvic->excpout);
2878     qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2879     qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2880                             M_REG_NUM_BANKS);
2881     qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1);
2882 }
2883 
2884 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2885 {
2886     DeviceClass *dc = DEVICE_CLASS(klass);
2887 
2888     dc->vmsd  = &vmstate_nvic;
2889     device_class_set_props(dc, props_nvic);
2890     dc->reset = armv7m_nvic_reset;
2891     dc->realize = armv7m_nvic_realize;
2892 }
2893 
2894 static const TypeInfo armv7m_nvic_info = {
2895     .name          = TYPE_NVIC,
2896     .parent        = TYPE_SYS_BUS_DEVICE,
2897     .instance_init = armv7m_nvic_instance_init,
2898     .instance_size = sizeof(NVICState),
2899     .class_init    = armv7m_nvic_class_init,
2900     .class_size    = sizeof(SysBusDeviceClass),
2901 };
2902 
2903 static void armv7m_nvic_register_types(void)
2904 {
2905     type_register_static(&armv7m_nvic_info);
2906 }
2907 
2908 type_init(armv7m_nvic_register_types)
2909