xref: /openbmc/qemu/hw/intc/armv7m_nvic.c (revision 0e83f905fb043cedb0282f77b97c50292e148faa)
1 /*
2  * ARM Nested Vectored Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  *
9  * The ARMv7M System controller is fairly tightly tied in with the
10  * NVIC.  Much of that is also implemented here.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "cpu.h"
16 #include "hw/sysbus.h"
17 #include "migration/vmstate.h"
18 #include "qemu/timer.h"
19 #include "hw/intc/armv7m_nvic.h"
20 #include "hw/irq.h"
21 #include "hw/qdev-properties.h"
22 #include "sysemu/runstate.h"
23 #include "target/arm/cpu.h"
24 #include "exec/exec-all.h"
25 #include "exec/memop.h"
26 #include "qemu/log.h"
27 #include "qemu/module.h"
28 #include "trace.h"
29 
30 /* IRQ number counting:
31  *
32  * the num-irq property counts the number of external IRQ lines
33  *
34  * NVICState::num_irq counts the total number of exceptions
35  * (external IRQs, the 15 internal exceptions including reset,
36  * and one for the unused exception number 0).
37  *
38  * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
39  *
40  * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
41  *
42  * Iterating through all exceptions should typically be done with
43  * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
44  *
45  * The external qemu_irq lines are the NVIC's external IRQ lines,
46  * so line 0 is exception 16.
47  *
48  * In the terminology of the architecture manual, "interrupts" are
49  * a subcategory of exception referring to the external interrupts
50  * (which are exception numbers NVIC_FIRST_IRQ and upward).
51  * For historical reasons QEMU tends to use "interrupt" and
52  * "exception" more or less interchangeably.
53  */
54 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
55 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
56 
57 /* Effective running priority of the CPU when no exception is active
58  * (higher than the highest possible priority value)
59  */
60 #define NVIC_NOEXC_PRIO 0x100
61 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
62 #define NVIC_NS_PRIO_LIMIT 0x80
63 
64 static const uint8_t nvic_id[] = {
65     0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
66 };
67 
68 static void signal_sysresetreq(NVICState *s)
69 {
70     if (qemu_irq_is_connected(s->sysresetreq)) {
71         qemu_irq_pulse(s->sysresetreq);
72     } else {
73         /*
74          * Default behaviour if the SoC doesn't need to wire up
75          * SYSRESETREQ (eg to a system reset controller of some kind):
76          * perform a system reset via the usual QEMU API.
77          */
78         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
79     }
80 }
81 
82 static int nvic_pending_prio(NVICState *s)
83 {
84     /* return the group priority of the current pending interrupt,
85      * or NVIC_NOEXC_PRIO if no interrupt is pending
86      */
87     return s->vectpending_prio;
88 }
89 
90 /* Return the value of the ISCR RETTOBASE bit:
91  * 1 if there is exactly one active exception
92  * 0 if there is more than one active exception
93  * UNKNOWN if there are no active exceptions (we choose 1,
94  * which matches the choice Cortex-M3 is documented as making).
95  *
96  * NB: some versions of the documentation talk about this
97  * counting "active exceptions other than the one shown by IPSR";
98  * this is only different in the obscure corner case where guest
99  * code has manually deactivated an exception and is about
100  * to fail an exception-return integrity check. The definition
101  * above is the one from the v8M ARM ARM and is also in line
102  * with the behaviour documented for the Cortex-M3.
103  */
104 static bool nvic_rettobase(NVICState *s)
105 {
106     int irq, nhand = 0;
107     bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
108 
109     for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
110         if (s->vectors[irq].active ||
111             (check_sec && irq < NVIC_INTERNAL_VECTORS &&
112              s->sec_vectors[irq].active)) {
113             nhand++;
114             if (nhand == 2) {
115                 return 0;
116             }
117         }
118     }
119 
120     return 1;
121 }
122 
123 /* Return the value of the ISCR ISRPENDING bit:
124  * 1 if an external interrupt is pending
125  * 0 if no external interrupt is pending
126  */
127 static bool nvic_isrpending(NVICState *s)
128 {
129     int irq;
130 
131     /* We can shortcut if the highest priority pending interrupt
132      * happens to be external or if there is nothing pending.
133      */
134     if (s->vectpending > NVIC_FIRST_IRQ) {
135         return true;
136     }
137     if (s->vectpending == 0) {
138         return false;
139     }
140 
141     for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
142         if (s->vectors[irq].pending) {
143             return true;
144         }
145     }
146     return false;
147 }
148 
149 static bool exc_is_banked(int exc)
150 {
151     /* Return true if this is one of the limited set of exceptions which
152      * are banked (and thus have state in sec_vectors[])
153      */
154     return exc == ARMV7M_EXCP_HARD ||
155         exc == ARMV7M_EXCP_MEM ||
156         exc == ARMV7M_EXCP_USAGE ||
157         exc == ARMV7M_EXCP_SVC ||
158         exc == ARMV7M_EXCP_PENDSV ||
159         exc == ARMV7M_EXCP_SYSTICK;
160 }
161 
162 /* Return a mask word which clears the subpriority bits from
163  * a priority value for an M-profile exception, leaving only
164  * the group priority.
165  */
166 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
167 {
168     return ~0U << (s->prigroup[secure] + 1);
169 }
170 
171 static bool exc_targets_secure(NVICState *s, int exc)
172 {
173     /* Return true if this non-banked exception targets Secure state. */
174     if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
175         return false;
176     }
177 
178     if (exc >= NVIC_FIRST_IRQ) {
179         return !s->itns[exc];
180     }
181 
182     /* Function shouldn't be called for banked exceptions. */
183     assert(!exc_is_banked(exc));
184 
185     switch (exc) {
186     case ARMV7M_EXCP_NMI:
187     case ARMV7M_EXCP_BUS:
188         return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
189     case ARMV7M_EXCP_SECURE:
190         return true;
191     case ARMV7M_EXCP_DEBUG:
192         /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
193         return false;
194     default:
195         /* reset, and reserved (unused) low exception numbers.
196          * We'll get called by code that loops through all the exception
197          * numbers, but it doesn't matter what we return here as these
198          * non-existent exceptions will never be pended or active.
199          */
200         return true;
201     }
202 }
203 
204 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
205 {
206     /* Return the group priority for this exception, given its raw
207      * (group-and-subgroup) priority value and whether it is targeting
208      * secure state or not.
209      */
210     if (rawprio < 0) {
211         return rawprio;
212     }
213     rawprio &= nvic_gprio_mask(s, targets_secure);
214     /* AIRCR.PRIS causes us to squash all NS priorities into the
215      * lower half of the total range
216      */
217     if (!targets_secure &&
218         (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
219         rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
220     }
221     return rawprio;
222 }
223 
224 /* Recompute vectpending and exception_prio for a CPU which implements
225  * the Security extension
226  */
227 static void nvic_recompute_state_secure(NVICState *s)
228 {
229     int i, bank;
230     int pend_prio = NVIC_NOEXC_PRIO;
231     int active_prio = NVIC_NOEXC_PRIO;
232     int pend_irq = 0;
233     bool pending_is_s_banked = false;
234     int pend_subprio = 0;
235 
236     /* R_CQRV: precedence is by:
237      *  - lowest group priority; if both the same then
238      *  - lowest subpriority; if both the same then
239      *  - lowest exception number; if both the same (ie banked) then
240      *  - secure exception takes precedence
241      * Compare pseudocode RawExecutionPriority.
242      * Annoyingly, now we have two prigroup values (for S and NS)
243      * we can't do the loop comparison on raw priority values.
244      */
245     for (i = 1; i < s->num_irq; i++) {
246         for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
247             VecInfo *vec;
248             int prio, subprio;
249             bool targets_secure;
250 
251             if (bank == M_REG_S) {
252                 if (!exc_is_banked(i)) {
253                     continue;
254                 }
255                 vec = &s->sec_vectors[i];
256                 targets_secure = true;
257             } else {
258                 vec = &s->vectors[i];
259                 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
260             }
261 
262             prio = exc_group_prio(s, vec->prio, targets_secure);
263             subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure);
264             if (vec->enabled && vec->pending &&
265                 ((prio < pend_prio) ||
266                  (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) {
267                 pend_prio = prio;
268                 pend_subprio = subprio;
269                 pend_irq = i;
270                 pending_is_s_banked = (bank == M_REG_S);
271             }
272             if (vec->active && prio < active_prio) {
273                 active_prio = prio;
274             }
275         }
276     }
277 
278     s->vectpending_is_s_banked = pending_is_s_banked;
279     s->vectpending = pend_irq;
280     s->vectpending_prio = pend_prio;
281     s->exception_prio = active_prio;
282 
283     trace_nvic_recompute_state_secure(s->vectpending,
284                                       s->vectpending_is_s_banked,
285                                       s->vectpending_prio,
286                                       s->exception_prio);
287 }
288 
289 /* Recompute vectpending and exception_prio */
290 static void nvic_recompute_state(NVICState *s)
291 {
292     int i;
293     int pend_prio = NVIC_NOEXC_PRIO;
294     int active_prio = NVIC_NOEXC_PRIO;
295     int pend_irq = 0;
296 
297     /* In theory we could write one function that handled both
298      * the "security extension present" and "not present"; however
299      * the security related changes significantly complicate the
300      * recomputation just by themselves and mixing both cases together
301      * would be even worse, so we retain a separate non-secure-only
302      * version for CPUs which don't implement the security extension.
303      */
304     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
305         nvic_recompute_state_secure(s);
306         return;
307     }
308 
309     for (i = 1; i < s->num_irq; i++) {
310         VecInfo *vec = &s->vectors[i];
311 
312         if (vec->enabled && vec->pending && vec->prio < pend_prio) {
313             pend_prio = vec->prio;
314             pend_irq = i;
315         }
316         if (vec->active && vec->prio < active_prio) {
317             active_prio = vec->prio;
318         }
319     }
320 
321     if (active_prio > 0) {
322         active_prio &= nvic_gprio_mask(s, false);
323     }
324 
325     if (pend_prio > 0) {
326         pend_prio &= nvic_gprio_mask(s, false);
327     }
328 
329     s->vectpending = pend_irq;
330     s->vectpending_prio = pend_prio;
331     s->exception_prio = active_prio;
332 
333     trace_nvic_recompute_state(s->vectpending,
334                                s->vectpending_prio,
335                                s->exception_prio);
336 }
337 
338 /* Return the current execution priority of the CPU
339  * (equivalent to the pseudocode ExecutionPriority function).
340  * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
341  */
342 static inline int nvic_exec_prio(NVICState *s)
343 {
344     CPUARMState *env = &s->cpu->env;
345     int running = NVIC_NOEXC_PRIO;
346 
347     if (env->v7m.basepri[M_REG_NS] > 0) {
348         running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
349     }
350 
351     if (env->v7m.basepri[M_REG_S] > 0) {
352         int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
353         if (running > basepri) {
354             running = basepri;
355         }
356     }
357 
358     if (env->v7m.primask[M_REG_NS]) {
359         if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
360             if (running > NVIC_NS_PRIO_LIMIT) {
361                 running = NVIC_NS_PRIO_LIMIT;
362             }
363         } else {
364             running = 0;
365         }
366     }
367 
368     if (env->v7m.primask[M_REG_S]) {
369         running = 0;
370     }
371 
372     if (env->v7m.faultmask[M_REG_NS]) {
373         if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
374             running = -1;
375         } else {
376             if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
377                 if (running > NVIC_NS_PRIO_LIMIT) {
378                     running = NVIC_NS_PRIO_LIMIT;
379                 }
380             } else {
381                 running = 0;
382             }
383         }
384     }
385 
386     if (env->v7m.faultmask[M_REG_S]) {
387         running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
388     }
389 
390     /* consider priority of active handler */
391     return MIN(running, s->exception_prio);
392 }
393 
394 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
395 {
396     /* Return true if the requested execution priority is negative
397      * for the specified security state, ie that security state
398      * has an active NMI or HardFault or has set its FAULTMASK.
399      * Note that this is not the same as whether the execution
400      * priority is actually negative (for instance AIRCR.PRIS may
401      * mean we don't allow FAULTMASK_NS to actually make the execution
402      * priority negative). Compare pseudocode IsReqExcPriNeg().
403      */
404     NVICState *s = opaque;
405 
406     if (s->cpu->env.v7m.faultmask[secure]) {
407         return true;
408     }
409 
410     if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
411         s->vectors[ARMV7M_EXCP_HARD].active) {
412         return true;
413     }
414 
415     if (s->vectors[ARMV7M_EXCP_NMI].active &&
416         exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
417         return true;
418     }
419 
420     return false;
421 }
422 
423 bool armv7m_nvic_can_take_pending_exception(void *opaque)
424 {
425     NVICState *s = opaque;
426 
427     return nvic_exec_prio(s) > nvic_pending_prio(s);
428 }
429 
430 int armv7m_nvic_raw_execution_priority(void *opaque)
431 {
432     NVICState *s = opaque;
433 
434     return s->exception_prio;
435 }
436 
437 /* caller must call nvic_irq_update() after this.
438  * secure indicates the bank to use for banked exceptions (we assert if
439  * we are passed secure=true for a non-banked exception).
440  */
441 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
442 {
443     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
444     assert(irq < s->num_irq);
445 
446     prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits);
447 
448     if (secure) {
449         assert(exc_is_banked(irq));
450         s->sec_vectors[irq].prio = prio;
451     } else {
452         s->vectors[irq].prio = prio;
453     }
454 
455     trace_nvic_set_prio(irq, secure, prio);
456 }
457 
458 /* Return the current raw priority register value.
459  * secure indicates the bank to use for banked exceptions (we assert if
460  * we are passed secure=true for a non-banked exception).
461  */
462 static int get_prio(NVICState *s, unsigned irq, bool secure)
463 {
464     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
465     assert(irq < s->num_irq);
466 
467     if (secure) {
468         assert(exc_is_banked(irq));
469         return s->sec_vectors[irq].prio;
470     } else {
471         return s->vectors[irq].prio;
472     }
473 }
474 
475 /* Recompute state and assert irq line accordingly.
476  * Must be called after changes to:
477  *  vec->active, vec->enabled, vec->pending or vec->prio for any vector
478  *  prigroup
479  */
480 static void nvic_irq_update(NVICState *s)
481 {
482     int lvl;
483     int pend_prio;
484 
485     nvic_recompute_state(s);
486     pend_prio = nvic_pending_prio(s);
487 
488     /* Raise NVIC output if this IRQ would be taken, except that we
489      * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
490      * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
491      * to those CPU registers don't cause us to recalculate the NVIC
492      * pending info.
493      */
494     lvl = (pend_prio < s->exception_prio);
495     trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
496     qemu_set_irq(s->excpout, lvl);
497 }
498 
499 /**
500  * armv7m_nvic_clear_pending: mark the specified exception as not pending
501  * @opaque: the NVIC
502  * @irq: the exception number to mark as not pending
503  * @secure: false for non-banked exceptions or for the nonsecure
504  * version of a banked exception, true for the secure version of a banked
505  * exception.
506  *
507  * Marks the specified exception as not pending. Note that we will assert()
508  * if @secure is true and @irq does not specify one of the fixed set
509  * of architecturally banked exceptions.
510  */
511 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
512 {
513     NVICState *s = (NVICState *)opaque;
514     VecInfo *vec;
515 
516     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
517 
518     if (secure) {
519         assert(exc_is_banked(irq));
520         vec = &s->sec_vectors[irq];
521     } else {
522         vec = &s->vectors[irq];
523     }
524     trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
525     if (vec->pending) {
526         vec->pending = 0;
527         nvic_irq_update(s);
528     }
529 }
530 
531 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
532                                        bool derived)
533 {
534     /* Pend an exception, including possibly escalating it to HardFault.
535      *
536      * This function handles both "normal" pending of interrupts and
537      * exceptions, and also derived exceptions (ones which occur as
538      * a result of trying to take some other exception).
539      *
540      * If derived == true, the caller guarantees that we are part way through
541      * trying to take an exception (but have not yet called
542      * armv7m_nvic_acknowledge_irq() to make it active), and so:
543      *  - s->vectpending is the "original exception" we were trying to take
544      *  - irq is the "derived exception"
545      *  - nvic_exec_prio(s) gives the priority before exception entry
546      * Here we handle the prioritization logic which the pseudocode puts
547      * in the DerivedLateArrival() function.
548      */
549 
550     NVICState *s = (NVICState *)opaque;
551     bool banked = exc_is_banked(irq);
552     VecInfo *vec;
553     bool targets_secure;
554 
555     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
556     assert(!secure || banked);
557 
558     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
559 
560     targets_secure = banked ? secure : exc_targets_secure(s, irq);
561 
562     trace_nvic_set_pending(irq, secure, targets_secure,
563                            derived, vec->enabled, vec->prio);
564 
565     if (derived) {
566         /* Derived exceptions are always synchronous. */
567         assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
568 
569         if (irq == ARMV7M_EXCP_DEBUG &&
570             exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
571             /* DebugMonitorFault, but its priority is lower than the
572              * preempted exception priority: just ignore it.
573              */
574             return;
575         }
576 
577         if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
578             /* If this is a terminal exception (one which means we cannot
579              * take the original exception, like a failure to read its
580              * vector table entry), then we must take the derived exception.
581              * If the derived exception can't take priority over the
582              * original exception, then we go into Lockup.
583              *
584              * For QEMU, we rely on the fact that a derived exception is
585              * terminal if and only if it's reported to us as HardFault,
586              * which saves having to have an extra argument is_terminal
587              * that we'd only use in one place.
588              */
589             cpu_abort(&s->cpu->parent_obj,
590                       "Lockup: can't take terminal derived exception "
591                       "(original exception priority %d)\n",
592                       s->vectpending_prio);
593         }
594         /* We now continue with the same code as for a normal pending
595          * exception, which will cause us to pend the derived exception.
596          * We'll then take either the original or the derived exception
597          * based on which is higher priority by the usual mechanism
598          * for selecting the highest priority pending interrupt.
599          */
600     }
601 
602     if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
603         /* If a synchronous exception is pending then it may be
604          * escalated to HardFault if:
605          *  * it is equal or lower priority to current execution
606          *  * it is disabled
607          * (ie we need to take it immediately but we can't do so).
608          * Asynchronous exceptions (and interrupts) simply remain pending.
609          *
610          * For QEMU, we don't have any imprecise (asynchronous) faults,
611          * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
612          * synchronous.
613          * Debug exceptions are awkward because only Debug exceptions
614          * resulting from the BKPT instruction should be escalated,
615          * but we don't currently implement any Debug exceptions other
616          * than those that result from BKPT, so we treat all debug exceptions
617          * as needing escalation.
618          *
619          * This all means we can identify whether to escalate based only on
620          * the exception number and don't (yet) need the caller to explicitly
621          * tell us whether this exception is synchronous or not.
622          */
623         int running = nvic_exec_prio(s);
624         bool escalate = false;
625 
626         if (exc_group_prio(s, vec->prio, secure) >= running) {
627             trace_nvic_escalate_prio(irq, vec->prio, running);
628             escalate = true;
629         } else if (!vec->enabled) {
630             trace_nvic_escalate_disabled(irq);
631             escalate = true;
632         }
633 
634         if (escalate) {
635 
636             /* We need to escalate this exception to a synchronous HardFault.
637              * If BFHFNMINS is set then we escalate to the banked HF for
638              * the target security state of the original exception; otherwise
639              * we take a Secure HardFault.
640              */
641             irq = ARMV7M_EXCP_HARD;
642             if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
643                 (targets_secure ||
644                  !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
645                 vec = &s->sec_vectors[irq];
646             } else {
647                 vec = &s->vectors[irq];
648             }
649             if (running <= vec->prio) {
650                 /* We want to escalate to HardFault but we can't take the
651                  * synchronous HardFault at this point either. This is a
652                  * Lockup condition due to a guest bug. We don't model
653                  * Lockup, so report via cpu_abort() instead.
654                  */
655                 cpu_abort(&s->cpu->parent_obj,
656                           "Lockup: can't escalate %d to HardFault "
657                           "(current priority %d)\n", irq, running);
658             }
659 
660             /* HF may be banked but there is only one shared HFSR */
661             s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
662         }
663     }
664 
665     if (!vec->pending) {
666         vec->pending = 1;
667         nvic_irq_update(s);
668     }
669 }
670 
671 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
672 {
673     do_armv7m_nvic_set_pending(opaque, irq, secure, false);
674 }
675 
676 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
677 {
678     do_armv7m_nvic_set_pending(opaque, irq, secure, true);
679 }
680 
681 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure)
682 {
683     /*
684      * Pend an exception during lazy FP stacking. This differs
685      * from the usual exception pending because the logic for
686      * whether we should escalate depends on the saved context
687      * in the FPCCR register, not on the current state of the CPU/NVIC.
688      */
689     NVICState *s = (NVICState *)opaque;
690     bool banked = exc_is_banked(irq);
691     VecInfo *vec;
692     bool targets_secure;
693     bool escalate = false;
694     /*
695      * We will only look at bits in fpccr if this is a banked exception
696      * (in which case 'secure' tells us whether it is the S or NS version).
697      * All the bits for the non-banked exceptions are in fpccr_s.
698      */
699     uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S];
700     uint32_t fpccr = s->cpu->env.v7m.fpccr[secure];
701 
702     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
703     assert(!secure || banked);
704 
705     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
706 
707     targets_secure = banked ? secure : exc_targets_secure(s, irq);
708 
709     switch (irq) {
710     case ARMV7M_EXCP_DEBUG:
711         if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) {
712             /* Ignore DebugMonitor exception */
713             return;
714         }
715         break;
716     case ARMV7M_EXCP_MEM:
717         escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK);
718         break;
719     case ARMV7M_EXCP_USAGE:
720         escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK);
721         break;
722     case ARMV7M_EXCP_BUS:
723         escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK);
724         break;
725     case ARMV7M_EXCP_SECURE:
726         escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK);
727         break;
728     default:
729         g_assert_not_reached();
730     }
731 
732     if (escalate) {
733         /*
734          * Escalate to HardFault: faults that initially targeted Secure
735          * continue to do so, even if HF normally targets NonSecure.
736          */
737         irq = ARMV7M_EXCP_HARD;
738         if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
739             (targets_secure ||
740              !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
741             vec = &s->sec_vectors[irq];
742         } else {
743             vec = &s->vectors[irq];
744         }
745     }
746 
747     if (!vec->enabled ||
748         nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) {
749         if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) {
750             /*
751              * We want to escalate to HardFault but the context the
752              * FP state belongs to prevents the exception pre-empting.
753              */
754             cpu_abort(&s->cpu->parent_obj,
755                       "Lockup: can't escalate to HardFault during "
756                       "lazy FP register stacking\n");
757         }
758     }
759 
760     if (escalate) {
761         s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
762     }
763     if (!vec->pending) {
764         vec->pending = 1;
765         /*
766          * We do not call nvic_irq_update(), because we know our caller
767          * is going to handle causing us to take the exception by
768          * raising EXCP_LAZYFP, so raising the IRQ line would be
769          * pointless extra work. We just need to recompute the
770          * priorities so that armv7m_nvic_can_take_pending_exception()
771          * returns the right answer.
772          */
773         nvic_recompute_state(s);
774     }
775 }
776 
777 /* Make pending IRQ active.  */
778 void armv7m_nvic_acknowledge_irq(void *opaque)
779 {
780     NVICState *s = (NVICState *)opaque;
781     CPUARMState *env = &s->cpu->env;
782     const int pending = s->vectpending;
783     const int running = nvic_exec_prio(s);
784     VecInfo *vec;
785 
786     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
787 
788     if (s->vectpending_is_s_banked) {
789         vec = &s->sec_vectors[pending];
790     } else {
791         vec = &s->vectors[pending];
792     }
793 
794     assert(vec->enabled);
795     assert(vec->pending);
796 
797     assert(s->vectpending_prio < running);
798 
799     trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
800 
801     vec->active = 1;
802     vec->pending = 0;
803 
804     write_v7m_exception(env, s->vectpending);
805 
806     nvic_irq_update(s);
807 }
808 
809 void armv7m_nvic_get_pending_irq_info(void *opaque,
810                                       int *pirq, bool *ptargets_secure)
811 {
812     NVICState *s = (NVICState *)opaque;
813     const int pending = s->vectpending;
814     bool targets_secure;
815 
816     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
817 
818     if (s->vectpending_is_s_banked) {
819         targets_secure = true;
820     } else {
821         targets_secure = !exc_is_banked(pending) &&
822             exc_targets_secure(s, pending);
823     }
824 
825     trace_nvic_get_pending_irq_info(pending, targets_secure);
826 
827     *ptargets_secure = targets_secure;
828     *pirq = pending;
829 }
830 
831 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
832 {
833     NVICState *s = (NVICState *)opaque;
834     VecInfo *vec = NULL;
835     int ret;
836 
837     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
838 
839     /*
840      * For negative priorities, v8M will forcibly deactivate the appropriate
841      * NMI or HardFault regardless of what interrupt we're being asked to
842      * deactivate (compare the DeActivate() pseudocode). This is a guard
843      * against software returning from NMI or HardFault with a corrupted
844      * IPSR and leaving the CPU in a negative-priority state.
845      * v7M does not do this, but simply deactivates the requested interrupt.
846      */
847     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
848         switch (armv7m_nvic_raw_execution_priority(s)) {
849         case -1:
850             if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
851                 vec = &s->vectors[ARMV7M_EXCP_HARD];
852             } else {
853                 vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
854             }
855             break;
856         case -2:
857             vec = &s->vectors[ARMV7M_EXCP_NMI];
858             break;
859         case -3:
860             vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
861             break;
862         default:
863             break;
864         }
865     }
866 
867     if (!vec) {
868         if (secure && exc_is_banked(irq)) {
869             vec = &s->sec_vectors[irq];
870         } else {
871             vec = &s->vectors[irq];
872         }
873     }
874 
875     trace_nvic_complete_irq(irq, secure);
876 
877     if (!vec->active) {
878         /* Tell the caller this was an illegal exception return */
879         return -1;
880     }
881 
882     /*
883      * If this is a configurable exception and it is currently
884      * targeting the opposite security state from the one we're trying
885      * to complete it for, this counts as an illegal exception return.
886      * We still need to deactivate whatever vector the logic above has
887      * selected, though, as it might not be the same as the one for the
888      * requested exception number.
889      */
890     if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) {
891         ret = -1;
892     } else {
893         ret = nvic_rettobase(s);
894     }
895 
896     vec->active = 0;
897     if (vec->level) {
898         /* Re-pend the exception if it's still held high; only
899          * happens for extenal IRQs
900          */
901         assert(irq >= NVIC_FIRST_IRQ);
902         vec->pending = 1;
903     }
904 
905     nvic_irq_update(s);
906 
907     return ret;
908 }
909 
910 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
911 {
912     /*
913      * Return whether an exception is "ready", i.e. it is enabled and is
914      * configured at a priority which would allow it to interrupt the
915      * current execution priority.
916      *
917      * irq and secure have the same semantics as for armv7m_nvic_set_pending():
918      * for non-banked exceptions secure is always false; for banked exceptions
919      * it indicates which of the exceptions is required.
920      */
921     NVICState *s = (NVICState *)opaque;
922     bool banked = exc_is_banked(irq);
923     VecInfo *vec;
924     int running = nvic_exec_prio(s);
925 
926     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
927     assert(!secure || banked);
928 
929     /*
930      * HardFault is an odd special case: we always check against -1,
931      * even if we're secure and HardFault has priority -3; we never
932      * need to check for enabled state.
933      */
934     if (irq == ARMV7M_EXCP_HARD) {
935         return running > -1;
936     }
937 
938     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
939 
940     return vec->enabled &&
941         exc_group_prio(s, vec->prio, secure) < running;
942 }
943 
944 /* callback when external interrupt line is changed */
945 static void set_irq_level(void *opaque, int n, int level)
946 {
947     NVICState *s = opaque;
948     VecInfo *vec;
949 
950     n += NVIC_FIRST_IRQ;
951 
952     assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
953 
954     trace_nvic_set_irq_level(n, level);
955 
956     /* The pending status of an external interrupt is
957      * latched on rising edge and exception handler return.
958      *
959      * Pulsing the IRQ will always run the handler
960      * once, and the handler will re-run until the
961      * level is low when the handler completes.
962      */
963     vec = &s->vectors[n];
964     if (level != vec->level) {
965         vec->level = level;
966         if (level) {
967             armv7m_nvic_set_pending(s, n, false);
968         }
969     }
970 }
971 
972 /* callback when external NMI line is changed */
973 static void nvic_nmi_trigger(void *opaque, int n, int level)
974 {
975     NVICState *s = opaque;
976 
977     trace_nvic_set_nmi_level(level);
978 
979     /*
980      * The architecture doesn't specify whether NMI should share
981      * the normal-interrupt behaviour of being resampled on
982      * exception handler return. We choose not to, so just
983      * set NMI pending here and don't track the current level.
984      */
985     if (level) {
986         armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
987     }
988 }
989 
990 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
991 {
992     ARMCPU *cpu = s->cpu;
993     uint32_t val;
994 
995     switch (offset) {
996     case 4: /* Interrupt Control Type.  */
997         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
998             goto bad_offset;
999         }
1000         return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
1001     case 0xc: /* CPPWR */
1002         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1003             goto bad_offset;
1004         }
1005         /* We make the IMPDEF choice that nothing can ever go into a
1006          * non-retentive power state, which allows us to RAZ/WI this.
1007          */
1008         return 0;
1009     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1010     {
1011         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1012         int i;
1013 
1014         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1015             goto bad_offset;
1016         }
1017         if (!attrs.secure) {
1018             return 0;
1019         }
1020         val = 0;
1021         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1022             if (s->itns[startvec + i]) {
1023                 val |= (1 << i);
1024             }
1025         }
1026         return val;
1027     }
1028     case 0xcfc:
1029         if (!arm_feature(&cpu->env, ARM_FEATURE_V8_1M)) {
1030             goto bad_offset;
1031         }
1032         return cpu->revidr;
1033     case 0xd00: /* CPUID Base.  */
1034         return cpu->midr;
1035     case 0xd04: /* Interrupt Control State (ICSR) */
1036         /* VECTACTIVE */
1037         val = cpu->env.v7m.exception;
1038         /* VECTPENDING */
1039         val |= (s->vectpending & 0xff) << 12;
1040         /* ISRPENDING - set if any external IRQ is pending */
1041         if (nvic_isrpending(s)) {
1042             val |= (1 << 22);
1043         }
1044         /* RETTOBASE - set if only one handler is active */
1045         if (nvic_rettobase(s)) {
1046             val |= (1 << 11);
1047         }
1048         if (attrs.secure) {
1049             /* PENDSTSET */
1050             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
1051                 val |= (1 << 26);
1052             }
1053             /* PENDSVSET */
1054             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
1055                 val |= (1 << 28);
1056             }
1057         } else {
1058             /* PENDSTSET */
1059             if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
1060                 val |= (1 << 26);
1061             }
1062             /* PENDSVSET */
1063             if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
1064                 val |= (1 << 28);
1065             }
1066         }
1067         /* NMIPENDSET */
1068         if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
1069             && s->vectors[ARMV7M_EXCP_NMI].pending) {
1070             val |= (1 << 31);
1071         }
1072         /* ISRPREEMPT: RES0 when halting debug not implemented */
1073         /* STTNS: RES0 for the Main Extension */
1074         return val;
1075     case 0xd08: /* Vector Table Offset.  */
1076         return cpu->env.v7m.vecbase[attrs.secure];
1077     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1078         val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
1079         if (attrs.secure) {
1080             /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
1081             val |= cpu->env.v7m.aircr;
1082         } else {
1083             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1084                 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
1085                  * security isn't supported then BFHFNMINS is RAO (and
1086                  * the bit in env.v7m.aircr is always set).
1087                  */
1088                 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
1089             }
1090         }
1091         return val;
1092     case 0xd10: /* System Control.  */
1093         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1094             goto bad_offset;
1095         }
1096         return cpu->env.v7m.scr[attrs.secure];
1097     case 0xd14: /* Configuration Control.  */
1098         /*
1099          * Non-banked bits: BFHFNMIGN (stored in the NS copy of the register)
1100          * and TRD (stored in the S copy of the register)
1101          */
1102         val = cpu->env.v7m.ccr[attrs.secure];
1103         val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
1104         return val;
1105     case 0xd24: /* System Handler Control and State (SHCSR) */
1106         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1107             goto bad_offset;
1108         }
1109         val = 0;
1110         if (attrs.secure) {
1111             if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
1112                 val |= (1 << 0);
1113             }
1114             if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
1115                 val |= (1 << 2);
1116             }
1117             if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
1118                 val |= (1 << 3);
1119             }
1120             if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
1121                 val |= (1 << 7);
1122             }
1123             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
1124                 val |= (1 << 10);
1125             }
1126             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
1127                 val |= (1 << 11);
1128             }
1129             if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
1130                 val |= (1 << 12);
1131             }
1132             if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
1133                 val |= (1 << 13);
1134             }
1135             if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
1136                 val |= (1 << 15);
1137             }
1138             if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
1139                 val |= (1 << 16);
1140             }
1141             if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
1142                 val |= (1 << 18);
1143             }
1144             if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
1145                 val |= (1 << 21);
1146             }
1147             /* SecureFault is not banked but is always RAZ/WI to NS */
1148             if (s->vectors[ARMV7M_EXCP_SECURE].active) {
1149                 val |= (1 << 4);
1150             }
1151             if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
1152                 val |= (1 << 19);
1153             }
1154             if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
1155                 val |= (1 << 20);
1156             }
1157         } else {
1158             if (s->vectors[ARMV7M_EXCP_MEM].active) {
1159                 val |= (1 << 0);
1160             }
1161             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1162                 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
1163                 if (s->vectors[ARMV7M_EXCP_HARD].active) {
1164                     val |= (1 << 2);
1165                 }
1166                 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
1167                     val |= (1 << 21);
1168                 }
1169             }
1170             if (s->vectors[ARMV7M_EXCP_USAGE].active) {
1171                 val |= (1 << 3);
1172             }
1173             if (s->vectors[ARMV7M_EXCP_SVC].active) {
1174                 val |= (1 << 7);
1175             }
1176             if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
1177                 val |= (1 << 10);
1178             }
1179             if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
1180                 val |= (1 << 11);
1181             }
1182             if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
1183                 val |= (1 << 12);
1184             }
1185             if (s->vectors[ARMV7M_EXCP_MEM].pending) {
1186                 val |= (1 << 13);
1187             }
1188             if (s->vectors[ARMV7M_EXCP_SVC].pending) {
1189                 val |= (1 << 15);
1190             }
1191             if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
1192                 val |= (1 << 16);
1193             }
1194             if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
1195                 val |= (1 << 18);
1196             }
1197         }
1198         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1199             if (s->vectors[ARMV7M_EXCP_BUS].active) {
1200                 val |= (1 << 1);
1201             }
1202             if (s->vectors[ARMV7M_EXCP_BUS].pending) {
1203                 val |= (1 << 14);
1204             }
1205             if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
1206                 val |= (1 << 17);
1207             }
1208             if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
1209                 s->vectors[ARMV7M_EXCP_NMI].active) {
1210                 /* NMIACT is not present in v7M */
1211                 val |= (1 << 5);
1212             }
1213         }
1214 
1215         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1216         if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
1217             val |= (1 << 8);
1218         }
1219         return val;
1220     case 0xd2c: /* Hard Fault Status.  */
1221         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1222             goto bad_offset;
1223         }
1224         return cpu->env.v7m.hfsr;
1225     case 0xd30: /* Debug Fault Status.  */
1226         return cpu->env.v7m.dfsr;
1227     case 0xd34: /* MMFAR MemManage Fault Address */
1228         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1229             goto bad_offset;
1230         }
1231         return cpu->env.v7m.mmfar[attrs.secure];
1232     case 0xd38: /* Bus Fault Address.  */
1233         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1234             goto bad_offset;
1235         }
1236         if (!attrs.secure &&
1237             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1238             return 0;
1239         }
1240         return cpu->env.v7m.bfar;
1241     case 0xd3c: /* Aux Fault Status.  */
1242         /* TODO: Implement fault status registers.  */
1243         qemu_log_mask(LOG_UNIMP,
1244                       "Aux Fault status registers unimplemented\n");
1245         return 0;
1246     case 0xd40: /* PFR0.  */
1247         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1248             goto bad_offset;
1249         }
1250         return cpu->isar.id_pfr0;
1251     case 0xd44: /* PFR1.  */
1252         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1253             goto bad_offset;
1254         }
1255         return cpu->isar.id_pfr1;
1256     case 0xd48: /* DFR0.  */
1257         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1258             goto bad_offset;
1259         }
1260         return cpu->isar.id_dfr0;
1261     case 0xd4c: /* AFR0.  */
1262         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1263             goto bad_offset;
1264         }
1265         return cpu->id_afr0;
1266     case 0xd50: /* MMFR0.  */
1267         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1268             goto bad_offset;
1269         }
1270         return cpu->isar.id_mmfr0;
1271     case 0xd54: /* MMFR1.  */
1272         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1273             goto bad_offset;
1274         }
1275         return cpu->isar.id_mmfr1;
1276     case 0xd58: /* MMFR2.  */
1277         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1278             goto bad_offset;
1279         }
1280         return cpu->isar.id_mmfr2;
1281     case 0xd5c: /* MMFR3.  */
1282         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1283             goto bad_offset;
1284         }
1285         return cpu->isar.id_mmfr3;
1286     case 0xd60: /* ISAR0.  */
1287         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1288             goto bad_offset;
1289         }
1290         return cpu->isar.id_isar0;
1291     case 0xd64: /* ISAR1.  */
1292         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1293             goto bad_offset;
1294         }
1295         return cpu->isar.id_isar1;
1296     case 0xd68: /* ISAR2.  */
1297         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1298             goto bad_offset;
1299         }
1300         return cpu->isar.id_isar2;
1301     case 0xd6c: /* ISAR3.  */
1302         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1303             goto bad_offset;
1304         }
1305         return cpu->isar.id_isar3;
1306     case 0xd70: /* ISAR4.  */
1307         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1308             goto bad_offset;
1309         }
1310         return cpu->isar.id_isar4;
1311     case 0xd74: /* ISAR5.  */
1312         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1313             goto bad_offset;
1314         }
1315         return cpu->isar.id_isar5;
1316     case 0xd78: /* CLIDR */
1317         return cpu->clidr;
1318     case 0xd7c: /* CTR */
1319         return cpu->ctr;
1320     case 0xd80: /* CSSIDR */
1321     {
1322         int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
1323         return cpu->ccsidr[idx];
1324     }
1325     case 0xd84: /* CSSELR */
1326         return cpu->env.v7m.csselr[attrs.secure];
1327     case 0xd88: /* CPACR */
1328         if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1329             return 0;
1330         }
1331         return cpu->env.v7m.cpacr[attrs.secure];
1332     case 0xd8c: /* NSACR */
1333         if (!attrs.secure || !cpu_isar_feature(aa32_vfp_simd, cpu)) {
1334             return 0;
1335         }
1336         return cpu->env.v7m.nsacr;
1337     /* TODO: Implement debug registers.  */
1338     case 0xd90: /* MPU_TYPE */
1339         /* Unified MPU; if the MPU is not present this value is zero */
1340         return cpu->pmsav7_dregion << 8;
1341     case 0xd94: /* MPU_CTRL */
1342         return cpu->env.v7m.mpu_ctrl[attrs.secure];
1343     case 0xd98: /* MPU_RNR */
1344         return cpu->env.pmsav7.rnr[attrs.secure];
1345     case 0xd9c: /* MPU_RBAR */
1346     case 0xda4: /* MPU_RBAR_A1 */
1347     case 0xdac: /* MPU_RBAR_A2 */
1348     case 0xdb4: /* MPU_RBAR_A3 */
1349     {
1350         int region = cpu->env.pmsav7.rnr[attrs.secure];
1351 
1352         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1353             /* PMSAv8M handling of the aliases is different from v7M:
1354              * aliases A1, A2, A3 override the low two bits of the region
1355              * number in MPU_RNR, and there is no 'region' field in the
1356              * RBAR register.
1357              */
1358             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1359             if (aliasno) {
1360                 region = deposit32(region, 0, 2, aliasno);
1361             }
1362             if (region >= cpu->pmsav7_dregion) {
1363                 return 0;
1364             }
1365             return cpu->env.pmsav8.rbar[attrs.secure][region];
1366         }
1367 
1368         if (region >= cpu->pmsav7_dregion) {
1369             return 0;
1370         }
1371         return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
1372     }
1373     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1374     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1375     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1376     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1377     {
1378         int region = cpu->env.pmsav7.rnr[attrs.secure];
1379 
1380         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1381             /* PMSAv8M handling of the aliases is different from v7M:
1382              * aliases A1, A2, A3 override the low two bits of the region
1383              * number in MPU_RNR.
1384              */
1385             int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1386             if (aliasno) {
1387                 region = deposit32(region, 0, 2, aliasno);
1388             }
1389             if (region >= cpu->pmsav7_dregion) {
1390                 return 0;
1391             }
1392             return cpu->env.pmsav8.rlar[attrs.secure][region];
1393         }
1394 
1395         if (region >= cpu->pmsav7_dregion) {
1396             return 0;
1397         }
1398         return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1399             (cpu->env.pmsav7.drsr[region] & 0xffff);
1400     }
1401     case 0xdc0: /* MPU_MAIR0 */
1402         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1403             goto bad_offset;
1404         }
1405         return cpu->env.pmsav8.mair0[attrs.secure];
1406     case 0xdc4: /* MPU_MAIR1 */
1407         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1408             goto bad_offset;
1409         }
1410         return cpu->env.pmsav8.mair1[attrs.secure];
1411     case 0xdd0: /* SAU_CTRL */
1412         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1413             goto bad_offset;
1414         }
1415         if (!attrs.secure) {
1416             return 0;
1417         }
1418         return cpu->env.sau.ctrl;
1419     case 0xdd4: /* SAU_TYPE */
1420         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1421             goto bad_offset;
1422         }
1423         if (!attrs.secure) {
1424             return 0;
1425         }
1426         return cpu->sau_sregion;
1427     case 0xdd8: /* SAU_RNR */
1428         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1429             goto bad_offset;
1430         }
1431         if (!attrs.secure) {
1432             return 0;
1433         }
1434         return cpu->env.sau.rnr;
1435     case 0xddc: /* SAU_RBAR */
1436     {
1437         int region = cpu->env.sau.rnr;
1438 
1439         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1440             goto bad_offset;
1441         }
1442         if (!attrs.secure) {
1443             return 0;
1444         }
1445         if (region >= cpu->sau_sregion) {
1446             return 0;
1447         }
1448         return cpu->env.sau.rbar[region];
1449     }
1450     case 0xde0: /* SAU_RLAR */
1451     {
1452         int region = cpu->env.sau.rnr;
1453 
1454         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1455             goto bad_offset;
1456         }
1457         if (!attrs.secure) {
1458             return 0;
1459         }
1460         if (region >= cpu->sau_sregion) {
1461             return 0;
1462         }
1463         return cpu->env.sau.rlar[region];
1464     }
1465     case 0xde4: /* SFSR */
1466         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1467             goto bad_offset;
1468         }
1469         if (!attrs.secure) {
1470             return 0;
1471         }
1472         return cpu->env.v7m.sfsr;
1473     case 0xde8: /* SFAR */
1474         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1475             goto bad_offset;
1476         }
1477         if (!attrs.secure) {
1478             return 0;
1479         }
1480         return cpu->env.v7m.sfar;
1481     case 0xf34: /* FPCCR */
1482         if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1483             return 0;
1484         }
1485         if (attrs.secure) {
1486             return cpu->env.v7m.fpccr[M_REG_S];
1487         } else {
1488             /*
1489              * NS can read LSPEN, CLRONRET and MONRDY. It can read
1490              * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0;
1491              * other non-banked bits RAZ.
1492              * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set.
1493              */
1494             uint32_t value = cpu->env.v7m.fpccr[M_REG_S];
1495             uint32_t mask = R_V7M_FPCCR_LSPEN_MASK |
1496                 R_V7M_FPCCR_CLRONRET_MASK |
1497                 R_V7M_FPCCR_MONRDY_MASK;
1498 
1499             if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1500                 mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK;
1501             }
1502 
1503             value &= mask;
1504 
1505             value |= cpu->env.v7m.fpccr[M_REG_NS];
1506             return value;
1507         }
1508     case 0xf38: /* FPCAR */
1509         if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1510             return 0;
1511         }
1512         return cpu->env.v7m.fpcar[attrs.secure];
1513     case 0xf3c: /* FPDSCR */
1514         if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1515             return 0;
1516         }
1517         return cpu->env.v7m.fpdscr[attrs.secure];
1518     case 0xf40: /* MVFR0 */
1519         return cpu->isar.mvfr0;
1520     case 0xf44: /* MVFR1 */
1521         return cpu->isar.mvfr1;
1522     case 0xf48: /* MVFR2 */
1523         return cpu->isar.mvfr2;
1524     default:
1525     bad_offset:
1526         qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1527         return 0;
1528     }
1529 }
1530 
1531 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1532                         MemTxAttrs attrs)
1533 {
1534     ARMCPU *cpu = s->cpu;
1535 
1536     switch (offset) {
1537     case 0xc: /* CPPWR */
1538         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1539             goto bad_offset;
1540         }
1541         /* Make the IMPDEF choice to RAZ/WI this. */
1542         break;
1543     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1544     {
1545         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1546         int i;
1547 
1548         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1549             goto bad_offset;
1550         }
1551         if (!attrs.secure) {
1552             break;
1553         }
1554         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1555             s->itns[startvec + i] = (value >> i) & 1;
1556         }
1557         nvic_irq_update(s);
1558         break;
1559     }
1560     case 0xd04: /* Interrupt Control State (ICSR) */
1561         if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1562             if (value & (1 << 31)) {
1563                 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1564             } else if (value & (1 << 30) &&
1565                        arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1566                 /* PENDNMICLR didn't exist in v7M */
1567                 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1568             }
1569         }
1570         if (value & (1 << 28)) {
1571             armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1572         } else if (value & (1 << 27)) {
1573             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1574         }
1575         if (value & (1 << 26)) {
1576             armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1577         } else if (value & (1 << 25)) {
1578             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1579         }
1580         break;
1581     case 0xd08: /* Vector Table Offset.  */
1582         cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1583         break;
1584     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1585         if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1586             if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1587                 if (attrs.secure ||
1588                     !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1589                     signal_sysresetreq(s);
1590                 }
1591             }
1592             if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1593                 qemu_log_mask(LOG_GUEST_ERROR,
1594                               "Setting VECTCLRACTIVE when not in DEBUG mode "
1595                               "is UNPREDICTABLE\n");
1596             }
1597             if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1598                 /* NB: this bit is RES0 in v8M */
1599                 qemu_log_mask(LOG_GUEST_ERROR,
1600                               "Setting VECTRESET when not in DEBUG mode "
1601                               "is UNPREDICTABLE\n");
1602             }
1603             if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1604                 s->prigroup[attrs.secure] =
1605                     extract32(value,
1606                               R_V7M_AIRCR_PRIGROUP_SHIFT,
1607                               R_V7M_AIRCR_PRIGROUP_LENGTH);
1608             }
1609             if (attrs.secure) {
1610                 /* These bits are only writable by secure */
1611                 cpu->env.v7m.aircr = value &
1612                     (R_V7M_AIRCR_SYSRESETREQS_MASK |
1613                      R_V7M_AIRCR_BFHFNMINS_MASK |
1614                      R_V7M_AIRCR_PRIS_MASK);
1615                 /* BFHFNMINS changes the priority of Secure HardFault, and
1616                  * allows a pending Non-secure HardFault to preempt (which
1617                  * we implement by marking it enabled).
1618                  */
1619                 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1620                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1621                     s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1622                 } else {
1623                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1624                     s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1625                 }
1626             }
1627             nvic_irq_update(s);
1628         }
1629         break;
1630     case 0xd10: /* System Control.  */
1631         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1632             goto bad_offset;
1633         }
1634         /* We don't implement deep-sleep so these bits are RAZ/WI.
1635          * The other bits in the register are banked.
1636          * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
1637          * is architecturally permitted.
1638          */
1639         value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
1640         cpu->env.v7m.scr[attrs.secure] = value;
1641         break;
1642     case 0xd14: /* Configuration Control.  */
1643     {
1644         uint32_t mask;
1645 
1646         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1647             goto bad_offset;
1648         }
1649 
1650         /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1651         mask = R_V7M_CCR_STKALIGN_MASK |
1652             R_V7M_CCR_BFHFNMIGN_MASK |
1653             R_V7M_CCR_DIV_0_TRP_MASK |
1654             R_V7M_CCR_UNALIGN_TRP_MASK |
1655             R_V7M_CCR_USERSETMPEND_MASK |
1656             R_V7M_CCR_NONBASETHRDENA_MASK;
1657         if (arm_feature(&cpu->env, ARM_FEATURE_V8_1M) && attrs.secure) {
1658             /* TRD is always RAZ/WI from NS */
1659             mask |= R_V7M_CCR_TRD_MASK;
1660         }
1661         value &= mask;
1662 
1663         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1664             /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1665             value |= R_V7M_CCR_NONBASETHRDENA_MASK
1666                 | R_V7M_CCR_STKALIGN_MASK;
1667         }
1668         if (attrs.secure) {
1669             /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1670             cpu->env.v7m.ccr[M_REG_NS] =
1671                 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1672                 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1673             value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1674         }
1675 
1676         cpu->env.v7m.ccr[attrs.secure] = value;
1677         break;
1678     }
1679     case 0xd24: /* System Handler Control and State (SHCSR) */
1680         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1681             goto bad_offset;
1682         }
1683         if (attrs.secure) {
1684             s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1685             /* Secure HardFault active bit cannot be written */
1686             s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1687             s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1688             s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1689                 (value & (1 << 10)) != 0;
1690             s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1691                 (value & (1 << 11)) != 0;
1692             s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1693                 (value & (1 << 12)) != 0;
1694             s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1695             s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1696             s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1697             s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1698             s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1699                 (value & (1 << 18)) != 0;
1700             s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1701             /* SecureFault not banked, but RAZ/WI to NS */
1702             s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1703             s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1704             s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1705         } else {
1706             s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1707             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1708                 /* HARDFAULTPENDED is not present in v7M */
1709                 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1710             }
1711             s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1712             s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1713             s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1714             s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1715             s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1716             s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1717             s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1718             s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1719             s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1720         }
1721         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1722             s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1723             s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1724             s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1725         }
1726         /* NMIACT can only be written if the write is of a zero, with
1727          * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1728          */
1729         if (!attrs.secure && cpu->env.v7m.secure &&
1730             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1731             (value & (1 << 5)) == 0) {
1732             s->vectors[ARMV7M_EXCP_NMI].active = 0;
1733         }
1734         /* HARDFAULTACT can only be written if the write is of a zero
1735          * to the non-secure HardFault state by the CPU in secure state.
1736          * The only case where we can be targeting the non-secure HF state
1737          * when in secure state is if this is a write via the NS alias
1738          * and BFHFNMINS is 1.
1739          */
1740         if (!attrs.secure && cpu->env.v7m.secure &&
1741             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1742             (value & (1 << 2)) == 0) {
1743             s->vectors[ARMV7M_EXCP_HARD].active = 0;
1744         }
1745 
1746         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1747         s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1748         nvic_irq_update(s);
1749         break;
1750     case 0xd2c: /* Hard Fault Status.  */
1751         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1752             goto bad_offset;
1753         }
1754         cpu->env.v7m.hfsr &= ~value; /* W1C */
1755         break;
1756     case 0xd30: /* Debug Fault Status.  */
1757         cpu->env.v7m.dfsr &= ~value; /* W1C */
1758         break;
1759     case 0xd34: /* Mem Manage Address.  */
1760         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1761             goto bad_offset;
1762         }
1763         cpu->env.v7m.mmfar[attrs.secure] = value;
1764         return;
1765     case 0xd38: /* Bus Fault Address.  */
1766         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1767             goto bad_offset;
1768         }
1769         if (!attrs.secure &&
1770             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1771             return;
1772         }
1773         cpu->env.v7m.bfar = value;
1774         return;
1775     case 0xd3c: /* Aux Fault Status.  */
1776         qemu_log_mask(LOG_UNIMP,
1777                       "NVIC: Aux fault status registers unimplemented\n");
1778         break;
1779     case 0xd84: /* CSSELR */
1780         if (!arm_v7m_csselr_razwi(cpu)) {
1781             cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
1782         }
1783         break;
1784     case 0xd88: /* CPACR */
1785         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1786             /* We implement only the Floating Point extension's CP10/CP11 */
1787             cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20);
1788         }
1789         break;
1790     case 0xd8c: /* NSACR */
1791         if (attrs.secure && cpu_isar_feature(aa32_vfp_simd, cpu)) {
1792             /* We implement only the Floating Point extension's CP10/CP11 */
1793             cpu->env.v7m.nsacr = value & (3 << 10);
1794         }
1795         break;
1796     case 0xd90: /* MPU_TYPE */
1797         return; /* RO */
1798     case 0xd94: /* MPU_CTRL */
1799         if ((value &
1800              (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1801             == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1802             qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1803                           "UNPREDICTABLE\n");
1804         }
1805         cpu->env.v7m.mpu_ctrl[attrs.secure]
1806             = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1807                        R_V7M_MPU_CTRL_HFNMIENA_MASK |
1808                        R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1809         tlb_flush(CPU(cpu));
1810         break;
1811     case 0xd98: /* MPU_RNR */
1812         if (value >= cpu->pmsav7_dregion) {
1813             qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1814                           PRIu32 "/%" PRIu32 "\n",
1815                           value, cpu->pmsav7_dregion);
1816         } else {
1817             cpu->env.pmsav7.rnr[attrs.secure] = value;
1818         }
1819         break;
1820     case 0xd9c: /* MPU_RBAR */
1821     case 0xda4: /* MPU_RBAR_A1 */
1822     case 0xdac: /* MPU_RBAR_A2 */
1823     case 0xdb4: /* MPU_RBAR_A3 */
1824     {
1825         int region;
1826 
1827         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1828             /* PMSAv8M handling of the aliases is different from v7M:
1829              * aliases A1, A2, A3 override the low two bits of the region
1830              * number in MPU_RNR, and there is no 'region' field in the
1831              * RBAR register.
1832              */
1833             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1834 
1835             region = cpu->env.pmsav7.rnr[attrs.secure];
1836             if (aliasno) {
1837                 region = deposit32(region, 0, 2, aliasno);
1838             }
1839             if (region >= cpu->pmsav7_dregion) {
1840                 return;
1841             }
1842             cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1843             tlb_flush(CPU(cpu));
1844             return;
1845         }
1846 
1847         if (value & (1 << 4)) {
1848             /* VALID bit means use the region number specified in this
1849              * value and also update MPU_RNR.REGION with that value.
1850              */
1851             region = extract32(value, 0, 4);
1852             if (region >= cpu->pmsav7_dregion) {
1853                 qemu_log_mask(LOG_GUEST_ERROR,
1854                               "MPU region out of range %u/%" PRIu32 "\n",
1855                               region, cpu->pmsav7_dregion);
1856                 return;
1857             }
1858             cpu->env.pmsav7.rnr[attrs.secure] = region;
1859         } else {
1860             region = cpu->env.pmsav7.rnr[attrs.secure];
1861         }
1862 
1863         if (region >= cpu->pmsav7_dregion) {
1864             return;
1865         }
1866 
1867         cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1868         tlb_flush(CPU(cpu));
1869         break;
1870     }
1871     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1872     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1873     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1874     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1875     {
1876         int region = cpu->env.pmsav7.rnr[attrs.secure];
1877 
1878         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1879             /* PMSAv8M handling of the aliases is different from v7M:
1880              * aliases A1, A2, A3 override the low two bits of the region
1881              * number in MPU_RNR.
1882              */
1883             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1884 
1885             region = cpu->env.pmsav7.rnr[attrs.secure];
1886             if (aliasno) {
1887                 region = deposit32(region, 0, 2, aliasno);
1888             }
1889             if (region >= cpu->pmsav7_dregion) {
1890                 return;
1891             }
1892             cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1893             tlb_flush(CPU(cpu));
1894             return;
1895         }
1896 
1897         if (region >= cpu->pmsav7_dregion) {
1898             return;
1899         }
1900 
1901         cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1902         cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1903         tlb_flush(CPU(cpu));
1904         break;
1905     }
1906     case 0xdc0: /* MPU_MAIR0 */
1907         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1908             goto bad_offset;
1909         }
1910         if (cpu->pmsav7_dregion) {
1911             /* Register is RES0 if no MPU regions are implemented */
1912             cpu->env.pmsav8.mair0[attrs.secure] = value;
1913         }
1914         /* We don't need to do anything else because memory attributes
1915          * only affect cacheability, and we don't implement caching.
1916          */
1917         break;
1918     case 0xdc4: /* MPU_MAIR1 */
1919         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1920             goto bad_offset;
1921         }
1922         if (cpu->pmsav7_dregion) {
1923             /* Register is RES0 if no MPU regions are implemented */
1924             cpu->env.pmsav8.mair1[attrs.secure] = value;
1925         }
1926         /* We don't need to do anything else because memory attributes
1927          * only affect cacheability, and we don't implement caching.
1928          */
1929         break;
1930     case 0xdd0: /* SAU_CTRL */
1931         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1932             goto bad_offset;
1933         }
1934         if (!attrs.secure) {
1935             return;
1936         }
1937         cpu->env.sau.ctrl = value & 3;
1938         break;
1939     case 0xdd4: /* SAU_TYPE */
1940         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1941             goto bad_offset;
1942         }
1943         break;
1944     case 0xdd8: /* SAU_RNR */
1945         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1946             goto bad_offset;
1947         }
1948         if (!attrs.secure) {
1949             return;
1950         }
1951         if (value >= cpu->sau_sregion) {
1952             qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1953                           PRIu32 "/%" PRIu32 "\n",
1954                           value, cpu->sau_sregion);
1955         } else {
1956             cpu->env.sau.rnr = value;
1957         }
1958         break;
1959     case 0xddc: /* SAU_RBAR */
1960     {
1961         int region = cpu->env.sau.rnr;
1962 
1963         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1964             goto bad_offset;
1965         }
1966         if (!attrs.secure) {
1967             return;
1968         }
1969         if (region >= cpu->sau_sregion) {
1970             return;
1971         }
1972         cpu->env.sau.rbar[region] = value & ~0x1f;
1973         tlb_flush(CPU(cpu));
1974         break;
1975     }
1976     case 0xde0: /* SAU_RLAR */
1977     {
1978         int region = cpu->env.sau.rnr;
1979 
1980         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1981             goto bad_offset;
1982         }
1983         if (!attrs.secure) {
1984             return;
1985         }
1986         if (region >= cpu->sau_sregion) {
1987             return;
1988         }
1989         cpu->env.sau.rlar[region] = value & ~0x1c;
1990         tlb_flush(CPU(cpu));
1991         break;
1992     }
1993     case 0xde4: /* SFSR */
1994         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1995             goto bad_offset;
1996         }
1997         if (!attrs.secure) {
1998             return;
1999         }
2000         cpu->env.v7m.sfsr &= ~value; /* W1C */
2001         break;
2002     case 0xde8: /* SFAR */
2003         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2004             goto bad_offset;
2005         }
2006         if (!attrs.secure) {
2007             return;
2008         }
2009         cpu->env.v7m.sfsr = value;
2010         break;
2011     case 0xf00: /* Software Triggered Interrupt Register */
2012     {
2013         int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
2014 
2015         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
2016             goto bad_offset;
2017         }
2018 
2019         if (excnum < s->num_irq) {
2020             armv7m_nvic_set_pending(s, excnum, false);
2021         }
2022         break;
2023     }
2024     case 0xf34: /* FPCCR */
2025         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2026             /* Not all bits here are banked. */
2027             uint32_t fpccr_s;
2028 
2029             if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2030                 /* Don't allow setting of bits not present in v7M */
2031                 value &= (R_V7M_FPCCR_LSPACT_MASK |
2032                           R_V7M_FPCCR_USER_MASK |
2033                           R_V7M_FPCCR_THREAD_MASK |
2034                           R_V7M_FPCCR_HFRDY_MASK |
2035                           R_V7M_FPCCR_MMRDY_MASK |
2036                           R_V7M_FPCCR_BFRDY_MASK |
2037                           R_V7M_FPCCR_MONRDY_MASK |
2038                           R_V7M_FPCCR_LSPEN_MASK |
2039                           R_V7M_FPCCR_ASPEN_MASK);
2040             }
2041             value &= ~R_V7M_FPCCR_RES0_MASK;
2042 
2043             if (!attrs.secure) {
2044                 /* Some non-banked bits are configurably writable by NS */
2045                 fpccr_s = cpu->env.v7m.fpccr[M_REG_S];
2046                 if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) {
2047                     uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN);
2048                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen);
2049                 }
2050                 if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) {
2051                     uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET);
2052                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor);
2053                 }
2054                 if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2055                     uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY);
2056                     uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY);
2057                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
2058                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
2059                 }
2060                 /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */
2061                 {
2062                     uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY);
2063                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy);
2064                 }
2065 
2066                 /*
2067                  * All other non-banked bits are RAZ/WI from NS; write
2068                  * just the banked bits to fpccr[M_REG_NS].
2069                  */
2070                 value &= R_V7M_FPCCR_BANKED_MASK;
2071                 cpu->env.v7m.fpccr[M_REG_NS] = value;
2072             } else {
2073                 fpccr_s = value;
2074             }
2075             cpu->env.v7m.fpccr[M_REG_S] = fpccr_s;
2076         }
2077         break;
2078     case 0xf38: /* FPCAR */
2079         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2080             value &= ~7;
2081             cpu->env.v7m.fpcar[attrs.secure] = value;
2082         }
2083         break;
2084     case 0xf3c: /* FPDSCR */
2085         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2086             uint32_t mask = FPCR_AHP | FPCR_DN | FPCR_FZ | FPCR_RMODE_MASK;
2087             if (cpu_isar_feature(any_fp16, cpu)) {
2088                 mask |= FPCR_FZ16;
2089             }
2090             value &= mask;
2091             if (cpu_isar_feature(aa32_lob, cpu)) {
2092                 value |= 4 << FPCR_LTPSIZE_SHIFT;
2093             }
2094             cpu->env.v7m.fpdscr[attrs.secure] = value;
2095         }
2096         break;
2097     case 0xf50: /* ICIALLU */
2098     case 0xf58: /* ICIMVAU */
2099     case 0xf5c: /* DCIMVAC */
2100     case 0xf60: /* DCISW */
2101     case 0xf64: /* DCCMVAU */
2102     case 0xf68: /* DCCMVAC */
2103     case 0xf6c: /* DCCSW */
2104     case 0xf70: /* DCCIMVAC */
2105     case 0xf74: /* DCCISW */
2106     case 0xf78: /* BPIALL */
2107         /* Cache and branch predictor maintenance: for QEMU these always NOP */
2108         break;
2109     default:
2110     bad_offset:
2111         qemu_log_mask(LOG_GUEST_ERROR,
2112                       "NVIC: Bad write offset 0x%x\n", offset);
2113     }
2114 }
2115 
2116 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
2117 {
2118     /* Return true if unprivileged access to this register is permitted. */
2119     switch (offset) {
2120     case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
2121         /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
2122          * controls access even though the CPU is in Secure state (I_QDKX).
2123          */
2124         return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
2125     default:
2126         /* All other user accesses cause a BusFault unconditionally */
2127         return false;
2128     }
2129 }
2130 
2131 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
2132 {
2133     /* Behaviour for the SHPR register field for this exception:
2134      * return M_REG_NS to use the nonsecure vector (including for
2135      * non-banked exceptions), M_REG_S for the secure version of
2136      * a banked exception, and -1 if this field should RAZ/WI.
2137      */
2138     switch (exc) {
2139     case ARMV7M_EXCP_MEM:
2140     case ARMV7M_EXCP_USAGE:
2141     case ARMV7M_EXCP_SVC:
2142     case ARMV7M_EXCP_PENDSV:
2143     case ARMV7M_EXCP_SYSTICK:
2144         /* Banked exceptions */
2145         return attrs.secure;
2146     case ARMV7M_EXCP_BUS:
2147         /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
2148         if (!attrs.secure &&
2149             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2150             return -1;
2151         }
2152         return M_REG_NS;
2153     case ARMV7M_EXCP_SECURE:
2154         /* Not banked, RAZ/WI from nonsecure */
2155         if (!attrs.secure) {
2156             return -1;
2157         }
2158         return M_REG_NS;
2159     case ARMV7M_EXCP_DEBUG:
2160         /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
2161         return M_REG_NS;
2162     case 8 ... 10:
2163     case 13:
2164         /* RES0 */
2165         return -1;
2166     default:
2167         /* Not reachable due to decode of SHPR register addresses */
2168         g_assert_not_reached();
2169     }
2170 }
2171 
2172 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
2173                                     uint64_t *data, unsigned size,
2174                                     MemTxAttrs attrs)
2175 {
2176     NVICState *s = (NVICState *)opaque;
2177     uint32_t offset = addr;
2178     unsigned i, startvec, end;
2179     uint32_t val;
2180 
2181     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2182         /* Generate BusFault for unprivileged accesses */
2183         return MEMTX_ERROR;
2184     }
2185 
2186     switch (offset) {
2187     /* reads of set and clear both return the status */
2188     case 0x100 ... 0x13f: /* NVIC Set enable */
2189         offset += 0x80;
2190         /* fall through */
2191     case 0x180 ... 0x1bf: /* NVIC Clear enable */
2192         val = 0;
2193         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
2194 
2195         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2196             if (s->vectors[startvec + i].enabled &&
2197                 (attrs.secure || s->itns[startvec + i])) {
2198                 val |= (1 << i);
2199             }
2200         }
2201         break;
2202     case 0x200 ... 0x23f: /* NVIC Set pend */
2203         offset += 0x80;
2204         /* fall through */
2205     case 0x280 ... 0x2bf: /* NVIC Clear pend */
2206         val = 0;
2207         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2208         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2209             if (s->vectors[startvec + i].pending &&
2210                 (attrs.secure || s->itns[startvec + i])) {
2211                 val |= (1 << i);
2212             }
2213         }
2214         break;
2215     case 0x300 ... 0x33f: /* NVIC Active */
2216         val = 0;
2217 
2218         if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) {
2219             break;
2220         }
2221 
2222         startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
2223 
2224         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2225             if (s->vectors[startvec + i].active &&
2226                 (attrs.secure || s->itns[startvec + i])) {
2227                 val |= (1 << i);
2228             }
2229         }
2230         break;
2231     case 0x400 ... 0x5ef: /* NVIC Priority */
2232         val = 0;
2233         startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
2234 
2235         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2236             if (attrs.secure || s->itns[startvec + i]) {
2237                 val |= s->vectors[startvec + i].prio << (8 * i);
2238             }
2239         }
2240         break;
2241     case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2242         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2243             val = 0;
2244             break;
2245         }
2246         /* fall through */
2247     case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2248         val = 0;
2249         for (i = 0; i < size; i++) {
2250             unsigned hdlidx = (offset - 0xd14) + i;
2251             int sbank = shpr_bank(s, hdlidx, attrs);
2252 
2253             if (sbank < 0) {
2254                 continue;
2255             }
2256             val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
2257         }
2258         break;
2259     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2260         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2261             val = 0;
2262             break;
2263         };
2264         /*
2265          * The BFSR bits [15:8] are shared between security states
2266          * and we store them in the NS copy. They are RAZ/WI for
2267          * NS code if AIRCR.BFHFNMINS is 0.
2268          */
2269         val = s->cpu->env.v7m.cfsr[attrs.secure];
2270         if (!attrs.secure &&
2271             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2272             val &= ~R_V7M_CFSR_BFSR_MASK;
2273         } else {
2274             val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
2275         }
2276         val = extract32(val, (offset - 0xd28) * 8, size * 8);
2277         break;
2278     case 0xfe0 ... 0xfff: /* ID.  */
2279         if (offset & 3) {
2280             val = 0;
2281         } else {
2282             val = nvic_id[(offset - 0xfe0) >> 2];
2283         }
2284         break;
2285     default:
2286         if (size == 4) {
2287             val = nvic_readl(s, offset, attrs);
2288         } else {
2289             qemu_log_mask(LOG_GUEST_ERROR,
2290                           "NVIC: Bad read of size %d at offset 0x%x\n",
2291                           size, offset);
2292             val = 0;
2293         }
2294     }
2295 
2296     trace_nvic_sysreg_read(addr, val, size);
2297     *data = val;
2298     return MEMTX_OK;
2299 }
2300 
2301 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
2302                                      uint64_t value, unsigned size,
2303                                      MemTxAttrs attrs)
2304 {
2305     NVICState *s = (NVICState *)opaque;
2306     uint32_t offset = addr;
2307     unsigned i, startvec, end;
2308     unsigned setval = 0;
2309 
2310     trace_nvic_sysreg_write(addr, value, size);
2311 
2312     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2313         /* Generate BusFault for unprivileged accesses */
2314         return MEMTX_ERROR;
2315     }
2316 
2317     switch (offset) {
2318     case 0x100 ... 0x13f: /* NVIC Set enable */
2319         offset += 0x80;
2320         setval = 1;
2321         /* fall through */
2322     case 0x180 ... 0x1bf: /* NVIC Clear enable */
2323         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
2324 
2325         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2326             if (value & (1 << i) &&
2327                 (attrs.secure || s->itns[startvec + i])) {
2328                 s->vectors[startvec + i].enabled = setval;
2329             }
2330         }
2331         nvic_irq_update(s);
2332         goto exit_ok;
2333     case 0x200 ... 0x23f: /* NVIC Set pend */
2334         /* the special logic in armv7m_nvic_set_pending()
2335          * is not needed since IRQs are never escalated
2336          */
2337         offset += 0x80;
2338         setval = 1;
2339         /* fall through */
2340     case 0x280 ... 0x2bf: /* NVIC Clear pend */
2341         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2342 
2343         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2344             if (value & (1 << i) &&
2345                 (attrs.secure || s->itns[startvec + i])) {
2346                 s->vectors[startvec + i].pending = setval;
2347             }
2348         }
2349         nvic_irq_update(s);
2350         goto exit_ok;
2351     case 0x300 ... 0x33f: /* NVIC Active */
2352         goto exit_ok; /* R/O */
2353     case 0x400 ... 0x5ef: /* NVIC Priority */
2354         startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
2355 
2356         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2357             if (attrs.secure || s->itns[startvec + i]) {
2358                 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
2359             }
2360         }
2361         nvic_irq_update(s);
2362         goto exit_ok;
2363     case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2364         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2365             goto exit_ok;
2366         }
2367         /* fall through */
2368     case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2369         for (i = 0; i < size; i++) {
2370             unsigned hdlidx = (offset - 0xd14) + i;
2371             int newprio = extract32(value, i * 8, 8);
2372             int sbank = shpr_bank(s, hdlidx, attrs);
2373 
2374             if (sbank < 0) {
2375                 continue;
2376             }
2377             set_prio(s, hdlidx, sbank, newprio);
2378         }
2379         nvic_irq_update(s);
2380         goto exit_ok;
2381     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2382         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2383             goto exit_ok;
2384         }
2385         /* All bits are W1C, so construct 32 bit value with 0s in
2386          * the parts not written by the access size
2387          */
2388         value <<= ((offset - 0xd28) * 8);
2389 
2390         if (!attrs.secure &&
2391             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2392             /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */
2393             value &= ~R_V7M_CFSR_BFSR_MASK;
2394         }
2395 
2396         s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
2397         if (attrs.secure) {
2398             /* The BFSR bits [15:8] are shared between security states
2399              * and we store them in the NS copy.
2400              */
2401             s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
2402         }
2403         goto exit_ok;
2404     }
2405     if (size == 4) {
2406         nvic_writel(s, offset, value, attrs);
2407         goto exit_ok;
2408     }
2409     qemu_log_mask(LOG_GUEST_ERROR,
2410                   "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
2411     /* This is UNPREDICTABLE; treat as RAZ/WI */
2412 
2413  exit_ok:
2414     /* Ensure any changes made are reflected in the cached hflags.  */
2415     arm_rebuild_hflags(&s->cpu->env);
2416     return MEMTX_OK;
2417 }
2418 
2419 static const MemoryRegionOps nvic_sysreg_ops = {
2420     .read_with_attrs = nvic_sysreg_read,
2421     .write_with_attrs = nvic_sysreg_write,
2422     .endianness = DEVICE_NATIVE_ENDIAN,
2423 };
2424 
2425 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
2426                                         uint64_t value, unsigned size,
2427                                         MemTxAttrs attrs)
2428 {
2429     MemoryRegion *mr = opaque;
2430 
2431     if (attrs.secure) {
2432         /* S accesses to the alias act like NS accesses to the real region */
2433         attrs.secure = 0;
2434         return memory_region_dispatch_write(mr, addr, value,
2435                                             size_memop(size) | MO_TE, attrs);
2436     } else {
2437         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2438         if (attrs.user) {
2439             return MEMTX_ERROR;
2440         }
2441         return MEMTX_OK;
2442     }
2443 }
2444 
2445 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
2446                                        uint64_t *data, unsigned size,
2447                                        MemTxAttrs attrs)
2448 {
2449     MemoryRegion *mr = opaque;
2450 
2451     if (attrs.secure) {
2452         /* S accesses to the alias act like NS accesses to the real region */
2453         attrs.secure = 0;
2454         return memory_region_dispatch_read(mr, addr, data,
2455                                            size_memop(size) | MO_TE, attrs);
2456     } else {
2457         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2458         if (attrs.user) {
2459             return MEMTX_ERROR;
2460         }
2461         *data = 0;
2462         return MEMTX_OK;
2463     }
2464 }
2465 
2466 static const MemoryRegionOps nvic_sysreg_ns_ops = {
2467     .read_with_attrs = nvic_sysreg_ns_read,
2468     .write_with_attrs = nvic_sysreg_ns_write,
2469     .endianness = DEVICE_NATIVE_ENDIAN,
2470 };
2471 
2472 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
2473                                       uint64_t value, unsigned size,
2474                                       MemTxAttrs attrs)
2475 {
2476     NVICState *s = opaque;
2477     MemoryRegion *mr;
2478 
2479     /* Direct the access to the correct systick */
2480     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2481     return memory_region_dispatch_write(mr, addr, value,
2482                                         size_memop(size) | MO_TE, attrs);
2483 }
2484 
2485 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
2486                                      uint64_t *data, unsigned size,
2487                                      MemTxAttrs attrs)
2488 {
2489     NVICState *s = opaque;
2490     MemoryRegion *mr;
2491 
2492     /* Direct the access to the correct systick */
2493     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2494     return memory_region_dispatch_read(mr, addr, data, size_memop(size) | MO_TE,
2495                                        attrs);
2496 }
2497 
2498 static const MemoryRegionOps nvic_systick_ops = {
2499     .read_with_attrs = nvic_systick_read,
2500     .write_with_attrs = nvic_systick_write,
2501     .endianness = DEVICE_NATIVE_ENDIAN,
2502 };
2503 
2504 /*
2505  * Unassigned portions of the PPB space are RAZ/WI for privileged
2506  * accesses, and fault for non-privileged accesses.
2507  */
2508 static MemTxResult ppb_default_read(void *opaque, hwaddr addr,
2509                                     uint64_t *data, unsigned size,
2510                                     MemTxAttrs attrs)
2511 {
2512     qemu_log_mask(LOG_UNIMP, "Read of unassigned area of PPB: offset 0x%x\n",
2513                   (uint32_t)addr);
2514     if (attrs.user) {
2515         return MEMTX_ERROR;
2516     }
2517     *data = 0;
2518     return MEMTX_OK;
2519 }
2520 
2521 static MemTxResult ppb_default_write(void *opaque, hwaddr addr,
2522                                      uint64_t value, unsigned size,
2523                                      MemTxAttrs attrs)
2524 {
2525     qemu_log_mask(LOG_UNIMP, "Write of unassigned area of PPB: offset 0x%x\n",
2526                   (uint32_t)addr);
2527     if (attrs.user) {
2528         return MEMTX_ERROR;
2529     }
2530     return MEMTX_OK;
2531 }
2532 
2533 static const MemoryRegionOps ppb_default_ops = {
2534     .read_with_attrs = ppb_default_read,
2535     .write_with_attrs = ppb_default_write,
2536     .endianness = DEVICE_NATIVE_ENDIAN,
2537     .valid.min_access_size = 1,
2538     .valid.max_access_size = 8,
2539 };
2540 
2541 static int nvic_post_load(void *opaque, int version_id)
2542 {
2543     NVICState *s = opaque;
2544     unsigned i;
2545     int resetprio;
2546 
2547     /* Check for out of range priority settings */
2548     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2549 
2550     if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
2551         s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
2552         s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
2553         return 1;
2554     }
2555     for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
2556         if (s->vectors[i].prio & ~0xff) {
2557             return 1;
2558         }
2559     }
2560 
2561     nvic_recompute_state(s);
2562 
2563     return 0;
2564 }
2565 
2566 static const VMStateDescription vmstate_VecInfo = {
2567     .name = "armv7m_nvic_info",
2568     .version_id = 1,
2569     .minimum_version_id = 1,
2570     .fields = (VMStateField[]) {
2571         VMSTATE_INT16(prio, VecInfo),
2572         VMSTATE_UINT8(enabled, VecInfo),
2573         VMSTATE_UINT8(pending, VecInfo),
2574         VMSTATE_UINT8(active, VecInfo),
2575         VMSTATE_UINT8(level, VecInfo),
2576         VMSTATE_END_OF_LIST()
2577     }
2578 };
2579 
2580 static bool nvic_security_needed(void *opaque)
2581 {
2582     NVICState *s = opaque;
2583 
2584     return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2585 }
2586 
2587 static int nvic_security_post_load(void *opaque, int version_id)
2588 {
2589     NVICState *s = opaque;
2590     int i;
2591 
2592     /* Check for out of range priority settings */
2593     if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2594         && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2595         /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2596          * if the CPU state has been migrated yet; a mismatch won't
2597          * cause the emulation to blow up, though.
2598          */
2599         return 1;
2600     }
2601     for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2602         if (s->sec_vectors[i].prio & ~0xff) {
2603             return 1;
2604         }
2605     }
2606     return 0;
2607 }
2608 
2609 static const VMStateDescription vmstate_nvic_security = {
2610     .name = "armv7m_nvic/m-security",
2611     .version_id = 1,
2612     .minimum_version_id = 1,
2613     .needed = nvic_security_needed,
2614     .post_load = &nvic_security_post_load,
2615     .fields = (VMStateField[]) {
2616         VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2617                              vmstate_VecInfo, VecInfo),
2618         VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
2619         VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
2620         VMSTATE_END_OF_LIST()
2621     }
2622 };
2623 
2624 static const VMStateDescription vmstate_nvic = {
2625     .name = "armv7m_nvic",
2626     .version_id = 4,
2627     .minimum_version_id = 4,
2628     .post_load = &nvic_post_load,
2629     .fields = (VMStateField[]) {
2630         VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2631                              vmstate_VecInfo, VecInfo),
2632         VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
2633         VMSTATE_END_OF_LIST()
2634     },
2635     .subsections = (const VMStateDescription*[]) {
2636         &vmstate_nvic_security,
2637         NULL
2638     }
2639 };
2640 
2641 static Property props_nvic[] = {
2642     /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2643     DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2644     DEFINE_PROP_END_OF_LIST()
2645 };
2646 
2647 static void armv7m_nvic_reset(DeviceState *dev)
2648 {
2649     int resetprio;
2650     NVICState *s = NVIC(dev);
2651 
2652     memset(s->vectors, 0, sizeof(s->vectors));
2653     memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2654     s->prigroup[M_REG_NS] = 0;
2655     s->prigroup[M_REG_S] = 0;
2656 
2657     s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
2658     /* MEM, BUS, and USAGE are enabled through
2659      * the System Handler Control register
2660      */
2661     s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2662     s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2663     s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2664 
2665     /* DebugMonitor is enabled via DEMCR.MON_EN */
2666     s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0;
2667 
2668     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2669     s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
2670     s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2671     s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2672 
2673     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2674         s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2675         s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2676         s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2677         s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2678 
2679         /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2680         s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
2681         /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2682         s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2683     } else {
2684         s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
2685     }
2686 
2687     /* Strictly speaking the reset handler should be enabled.
2688      * However, we don't simulate soft resets through the NVIC,
2689      * and the reset vector should never be pended.
2690      * So we leave it disabled to catch logic errors.
2691      */
2692 
2693     s->exception_prio = NVIC_NOEXC_PRIO;
2694     s->vectpending = 0;
2695     s->vectpending_is_s_banked = false;
2696     s->vectpending_prio = NVIC_NOEXC_PRIO;
2697 
2698     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2699         memset(s->itns, 0, sizeof(s->itns));
2700     } else {
2701         /* This state is constant and not guest accessible in a non-security
2702          * NVIC; we set the bits to true to avoid having to do a feature
2703          * bit check in the NVIC enable/pend/etc register accessors.
2704          */
2705         int i;
2706 
2707         for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2708             s->itns[i] = true;
2709         }
2710     }
2711 
2712     /*
2713      * We updated state that affects the CPU's MMUidx and thus its hflags;
2714      * and we can't guarantee that we run before the CPU reset function.
2715      */
2716     arm_rebuild_hflags(&s->cpu->env);
2717 }
2718 
2719 static void nvic_systick_trigger(void *opaque, int n, int level)
2720 {
2721     NVICState *s = opaque;
2722 
2723     if (level) {
2724         /* SysTick just asked us to pend its exception.
2725          * (This is different from an external interrupt line's
2726          * behaviour.)
2727          * n == 0 : NonSecure systick
2728          * n == 1 : Secure systick
2729          */
2730         armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
2731     }
2732 }
2733 
2734 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2735 {
2736     NVICState *s = NVIC(dev);
2737 
2738     /* The armv7m container object will have set our CPU pointer */
2739     if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
2740         error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
2741         return;
2742     }
2743 
2744     if (s->num_irq > NVIC_MAX_IRQ) {
2745         error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2746         return;
2747     }
2748 
2749     qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2750 
2751     /* include space for internal exception vectors */
2752     s->num_irq += NVIC_FIRST_IRQ;
2753 
2754     s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
2755 
2756     if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), errp)) {
2757         return;
2758     }
2759     sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2760                        qdev_get_gpio_in_named(dev, "systick-trigger",
2761                                               M_REG_NS));
2762 
2763     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2764         /* We couldn't init the secure systick device in instance_init
2765          * as we didn't know then if the CPU had the security extensions;
2766          * so we have to do it here.
2767          */
2768         object_initialize_child(OBJECT(dev), "systick-reg-s",
2769                                 &s->systick[M_REG_S], TYPE_SYSTICK);
2770 
2771         if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_S]), errp)) {
2772             return;
2773         }
2774         sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2775                            qdev_get_gpio_in_named(dev, "systick-trigger",
2776                                                   M_REG_S));
2777     }
2778 
2779     /*
2780      * This device provides a single sysbus memory region which
2781      * represents the whole of the "System PPB" space. This is the
2782      * range from 0xe0000000 to 0xe00fffff and includes the NVIC,
2783      * the System Control Space (system registers), the systick timer,
2784      * and for CPUs with the Security extension an NS banked version
2785      * of all of these.
2786      *
2787      * The default behaviour for unimplemented registers/ranges
2788      * (for instance the Data Watchpoint and Trace unit at 0xe0001000)
2789      * is to RAZ/WI for privileged access and BusFault for non-privileged
2790      * access.
2791      *
2792      * The NVIC and System Control Space (SCS) starts at 0xe000e000
2793      * and looks like this:
2794      *  0x004 - ICTR
2795      *  0x010 - 0xff - systick
2796      *  0x100..0x7ec - NVIC
2797      *  0x7f0..0xcff - Reserved
2798      *  0xd00..0xd3c - SCS registers
2799      *  0xd40..0xeff - Reserved or Not implemented
2800      *  0xf00 - STIR
2801      *
2802      * Some registers within this space are banked between security states.
2803      * In v8M there is a second range 0xe002e000..0xe002efff which is the
2804      * NonSecure alias SCS; secure accesses to this behave like NS accesses
2805      * to the main SCS range, and non-secure accesses (including when
2806      * the security extension is not implemented) are RAZ/WI.
2807      * Note that both the main SCS range and the alias range are defined
2808      * to be exempt from memory attribution (R_BLJT) and so the memory
2809      * transaction attribute always matches the current CPU security
2810      * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2811      * wrappers we change attrs.secure to indicate the NS access; so
2812      * generally code determining which banked register to use should
2813      * use attrs.secure; code determining actual behaviour of the system
2814      * should use env->v7m.secure.
2815      *
2816      * The container covers the whole PPB space. Within it the priority
2817      * of overlapping regions is:
2818      *  - default region (for RAZ/WI and BusFault) : -1
2819      *  - system register regions : 0
2820      *  - systick : 1
2821      * This is because the systick device is a small block of registers
2822      * in the middle of the other system control registers.
2823      */
2824     memory_region_init(&s->container, OBJECT(s), "nvic", 0x100000);
2825     memory_region_init_io(&s->defaultmem, OBJECT(s), &ppb_default_ops, s,
2826                           "nvic-default", 0x100000);
2827     memory_region_add_subregion_overlap(&s->container, 0, &s->defaultmem, -1);
2828     memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2829                           "nvic_sysregs", 0x1000);
2830     memory_region_add_subregion(&s->container, 0xe000, &s->sysregmem);
2831 
2832     memory_region_init_io(&s->systickmem, OBJECT(s),
2833                           &nvic_systick_ops, s,
2834                           "nvic_systick", 0xe0);
2835 
2836     memory_region_add_subregion_overlap(&s->container, 0xe010,
2837                                         &s->systickmem, 1);
2838 
2839     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2840         memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
2841                               &nvic_sysreg_ns_ops, &s->sysregmem,
2842                               "nvic_sysregs_ns", 0x1000);
2843         memory_region_add_subregion(&s->container, 0x2e000, &s->sysreg_ns_mem);
2844         memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2845                               &nvic_sysreg_ns_ops, &s->systickmem,
2846                               "nvic_systick_ns", 0xe0);
2847         memory_region_add_subregion_overlap(&s->container, 0x2e010,
2848                                             &s->systick_ns_mem, 1);
2849     }
2850 
2851     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
2852 }
2853 
2854 static void armv7m_nvic_instance_init(Object *obj)
2855 {
2856     /* We have a different default value for the num-irq property
2857      * than our superclass. This function runs after qdev init
2858      * has set the defaults from the Property array and before
2859      * any user-specified property setting, so just modify the
2860      * value in the GICState struct.
2861      */
2862     DeviceState *dev = DEVICE(obj);
2863     NVICState *nvic = NVIC(obj);
2864     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2865 
2866     object_initialize_child(obj, "systick-reg-ns", &nvic->systick[M_REG_NS],
2867                             TYPE_SYSTICK);
2868     /* We can't initialize the secure systick here, as we don't know
2869      * yet if we need it.
2870      */
2871 
2872     sysbus_init_irq(sbd, &nvic->excpout);
2873     qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2874     qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2875                             M_REG_NUM_BANKS);
2876     qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1);
2877 }
2878 
2879 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2880 {
2881     DeviceClass *dc = DEVICE_CLASS(klass);
2882 
2883     dc->vmsd  = &vmstate_nvic;
2884     device_class_set_props(dc, props_nvic);
2885     dc->reset = armv7m_nvic_reset;
2886     dc->realize = armv7m_nvic_realize;
2887 }
2888 
2889 static const TypeInfo armv7m_nvic_info = {
2890     .name          = TYPE_NVIC,
2891     .parent        = TYPE_SYS_BUS_DEVICE,
2892     .instance_init = armv7m_nvic_instance_init,
2893     .instance_size = sizeof(NVICState),
2894     .class_init    = armv7m_nvic_class_init,
2895     .class_size    = sizeof(SysBusDeviceClass),
2896 };
2897 
2898 static void armv7m_nvic_register_types(void)
2899 {
2900     type_register_static(&armv7m_nvic_info);
2901 }
2902 
2903 type_init(armv7m_nvic_register_types)
2904