xref: /openbmc/qemu/hw/intc/arm_gicv3_redist.c (revision 0806b30c8dff64e944456aa15bdc6957384e29a8)
1 /*
2  * ARM GICv3 emulation: Redistributor
3  *
4  * Copyright (c) 2015 Huawei.
5  * Copyright (c) 2016 Linaro Limited.
6  * Written by Shlomo Pongratz, Peter Maydell
7  *
8  * This code is licensed under the GPL, version 2 or (at your option)
9  * any later version.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "trace.h"
15 #include "gicv3_internal.h"
16 
17 static uint32_t mask_group(GICv3CPUState *cs, MemTxAttrs attrs)
18 {
19     /* Return a 32-bit mask which should be applied for this set of 32
20      * interrupts; each bit is 1 if access is permitted by the
21      * combination of attrs.secure and GICR_GROUPR. (GICR_NSACR does
22      * not affect config register accesses, unlike GICD_NSACR.)
23      */
24     if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
25         /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI */
26         return cs->gicr_igroupr0;
27     }
28     return 0xFFFFFFFFU;
29 }
30 
31 static int gicr_ns_access(GICv3CPUState *cs, int irq)
32 {
33     /* Return the 2 bit NSACR.NS_access field for this SGI */
34     assert(irq < 16);
35     return extract32(cs->gicr_nsacr, irq * 2, 2);
36 }
37 
38 static void gicr_write_set_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
39                                       uint32_t *reg, uint32_t val)
40 {
41     /* Helper routine to implement writing to a "set-bitmap" register */
42     val &= mask_group(cs, attrs);
43     *reg |= val;
44     gicv3_redist_update(cs);
45 }
46 
47 static void gicr_write_clear_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
48                                         uint32_t *reg, uint32_t val)
49 {
50     /* Helper routine to implement writing to a "clear-bitmap" register */
51     val &= mask_group(cs, attrs);
52     *reg &= ~val;
53     gicv3_redist_update(cs);
54 }
55 
56 static uint32_t gicr_read_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
57                                      uint32_t reg)
58 {
59     reg &= mask_group(cs, attrs);
60     return reg;
61 }
62 
63 static uint8_t gicr_read_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs,
64                                     int irq)
65 {
66     /* Read the value of GICR_IPRIORITYR<n> for the specified interrupt,
67      * honouring security state (these are RAZ/WI for Group 0 or Secure
68      * Group 1 interrupts).
69      */
70     uint32_t prio;
71 
72     prio = cs->gicr_ipriorityr[irq];
73 
74     if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
75         if (!(cs->gicr_igroupr0 & (1U << irq))) {
76             /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
77             return 0;
78         }
79         /* NS view of the interrupt priority */
80         prio = (prio << 1) & 0xff;
81     }
82     return prio;
83 }
84 
85 static void gicr_write_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs, int irq,
86                                   uint8_t value)
87 {
88     /* Write the value of GICD_IPRIORITYR<n> for the specified interrupt,
89      * honouring security state (these are RAZ/WI for Group 0 or Secure
90      * Group 1 interrupts).
91      */
92     if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
93         if (!(cs->gicr_igroupr0 & (1U << irq))) {
94             /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
95             return;
96         }
97         /* NS view of the interrupt priority */
98         value = 0x80 | (value >> 1);
99     }
100     cs->gicr_ipriorityr[irq] = value;
101 }
102 
103 static MemTxResult gicr_readb(GICv3CPUState *cs, hwaddr offset,
104                               uint64_t *data, MemTxAttrs attrs)
105 {
106     switch (offset) {
107     case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
108         *data = gicr_read_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR);
109         return MEMTX_OK;
110     default:
111         return MEMTX_ERROR;
112     }
113 }
114 
115 static MemTxResult gicr_writeb(GICv3CPUState *cs, hwaddr offset,
116                                uint64_t value, MemTxAttrs attrs)
117 {
118     switch (offset) {
119     case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
120         gicr_write_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR, value);
121         gicv3_redist_update(cs);
122         return MEMTX_OK;
123     default:
124         return MEMTX_ERROR;
125     }
126 }
127 
128 static MemTxResult gicr_readl(GICv3CPUState *cs, hwaddr offset,
129                               uint64_t *data, MemTxAttrs attrs)
130 {
131     switch (offset) {
132     case GICR_CTLR:
133         *data = cs->gicr_ctlr;
134         return MEMTX_OK;
135     case GICR_IIDR:
136         *data = gicv3_iidr();
137         return MEMTX_OK;
138     case GICR_TYPER:
139         *data = extract64(cs->gicr_typer, 0, 32);
140         return MEMTX_OK;
141     case GICR_TYPER + 4:
142         *data = extract64(cs->gicr_typer, 32, 32);
143         return MEMTX_OK;
144     case GICR_STATUSR:
145         /* RAZ/WI for us (this is an optional register and our implementation
146          * does not track RO/WO/reserved violations to report them to the guest)
147          */
148         *data = 0;
149         return MEMTX_OK;
150     case GICR_WAKER:
151         *data = cs->gicr_waker;
152         return MEMTX_OK;
153     case GICR_PROPBASER:
154         *data = extract64(cs->gicr_propbaser, 0, 32);
155         return MEMTX_OK;
156     case GICR_PROPBASER + 4:
157         *data = extract64(cs->gicr_propbaser, 32, 32);
158         return MEMTX_OK;
159     case GICR_PENDBASER:
160         *data = extract64(cs->gicr_pendbaser, 0, 32);
161         return MEMTX_OK;
162     case GICR_PENDBASER + 4:
163         *data = extract64(cs->gicr_pendbaser, 32, 32);
164         return MEMTX_OK;
165     case GICR_IGROUPR0:
166         if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
167             *data = 0;
168             return MEMTX_OK;
169         }
170         *data = cs->gicr_igroupr0;
171         return MEMTX_OK;
172     case GICR_ISENABLER0:
173     case GICR_ICENABLER0:
174         *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_ienabler0);
175         return MEMTX_OK;
176     case GICR_ISPENDR0:
177     case GICR_ICPENDR0:
178     {
179         /* The pending register reads as the logical OR of the pending
180          * latch and the input line level for level-triggered interrupts.
181          */
182         uint32_t val = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level);
183         *data = gicr_read_bitmap_reg(cs, attrs, val);
184         return MEMTX_OK;
185     }
186     case GICR_ISACTIVER0:
187     case GICR_ICACTIVER0:
188         *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_iactiver0);
189         return MEMTX_OK;
190     case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
191     {
192         int i, irq = offset - GICR_IPRIORITYR;
193         uint32_t value = 0;
194 
195         for (i = irq + 3; i >= irq; i--, value <<= 8) {
196             value |= gicr_read_ipriorityr(cs, attrs, i);
197         }
198         *data = value;
199         return MEMTX_OK;
200     }
201     case GICR_ICFGR0:
202     case GICR_ICFGR1:
203     {
204         /* Our edge_trigger bitmap is one bit per irq; take the correct
205          * half of it, and spread it out into the odd bits.
206          */
207         uint32_t value;
208 
209         value = cs->edge_trigger & mask_group(cs, attrs);
210         value = extract32(value, (offset == GICR_ICFGR1) ? 16 : 0, 16);
211         value = half_shuffle32(value) << 1;
212         *data = value;
213         return MEMTX_OK;
214     }
215     case GICR_IGRPMODR0:
216         if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
217             /* RAZ/WI if security disabled, or if
218              * security enabled and this is an NS access
219              */
220             *data = 0;
221             return MEMTX_OK;
222         }
223         *data = cs->gicr_igrpmodr0;
224         return MEMTX_OK;
225     case GICR_NSACR:
226         if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
227             /* RAZ/WI if security disabled, or if
228              * security enabled and this is an NS access
229              */
230             *data = 0;
231             return MEMTX_OK;
232         }
233         *data = cs->gicr_nsacr;
234         return MEMTX_OK;
235     case GICR_IDREGS ... GICR_IDREGS + 0x1f:
236         *data = gicv3_idreg(offset - GICR_IDREGS);
237         return MEMTX_OK;
238     default:
239         return MEMTX_ERROR;
240     }
241 }
242 
243 static MemTxResult gicr_writel(GICv3CPUState *cs, hwaddr offset,
244                                uint64_t value, MemTxAttrs attrs)
245 {
246     switch (offset) {
247     case GICR_CTLR:
248         /* For our implementation, GICR_TYPER.DPGS is 0 and so all
249          * the DPG bits are RAZ/WI. We don't do anything asynchronously,
250          * so UWP and RWP are RAZ/WI. And GICR_TYPER.LPIS is 0 (we don't
251          * implement LPIs) so Enable_LPIs is RES0. So there are no writable
252          * bits for us.
253          */
254         return MEMTX_OK;
255     case GICR_STATUSR:
256         /* RAZ/WI for our implementation */
257         return MEMTX_OK;
258     case GICR_WAKER:
259         /* Only the ProcessorSleep bit is writeable. When the guest sets
260          * it it requests that we transition the channel between the
261          * redistributor and the cpu interface to quiescent, and that
262          * we set the ChildrenAsleep bit once the inteface has reached the
263          * quiescent state.
264          * Setting the ProcessorSleep to 0 reverses the quiescing, and
265          * ChildrenAsleep is cleared once the transition is complete.
266          * Since our interface is not asynchronous, we complete these
267          * transitions instantaneously, so we set ChildrenAsleep to the
268          * same value as ProcessorSleep here.
269          */
270         value &= GICR_WAKER_ProcessorSleep;
271         if (value & GICR_WAKER_ProcessorSleep) {
272             value |= GICR_WAKER_ChildrenAsleep;
273         }
274         cs->gicr_waker = value;
275         return MEMTX_OK;
276     case GICR_PROPBASER:
277         cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 0, 32, value);
278         return MEMTX_OK;
279     case GICR_PROPBASER + 4:
280         cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 32, 32, value);
281         return MEMTX_OK;
282     case GICR_PENDBASER:
283         cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 0, 32, value);
284         return MEMTX_OK;
285     case GICR_PENDBASER + 4:
286         cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 32, 32, value);
287         return MEMTX_OK;
288     case GICR_IGROUPR0:
289         if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
290             return MEMTX_OK;
291         }
292         cs->gicr_igroupr0 = value;
293         gicv3_redist_update(cs);
294         return MEMTX_OK;
295     case GICR_ISENABLER0:
296         gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
297         return MEMTX_OK;
298     case GICR_ICENABLER0:
299         gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
300         return MEMTX_OK;
301     case GICR_ISPENDR0:
302         gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
303         return MEMTX_OK;
304     case GICR_ICPENDR0:
305         gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
306         return MEMTX_OK;
307     case GICR_ISACTIVER0:
308         gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
309         return MEMTX_OK;
310     case GICR_ICACTIVER0:
311         gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
312         return MEMTX_OK;
313     case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
314     {
315         int i, irq = offset - GICR_IPRIORITYR;
316 
317         for (i = irq; i < irq + 4; i++, value >>= 8) {
318             gicr_write_ipriorityr(cs, attrs, i, value);
319         }
320         gicv3_redist_update(cs);
321         return MEMTX_OK;
322     }
323     case GICR_ICFGR0:
324         /* Register is all RAZ/WI or RAO/WI bits */
325         return MEMTX_OK;
326     case GICR_ICFGR1:
327     {
328         uint32_t mask;
329 
330         /* Since our edge_trigger bitmap is one bit per irq, our input
331          * 32-bits will compress down into 16 bits which we need
332          * to write into the bitmap.
333          */
334         value = half_unshuffle32(value >> 1) << 16;
335         mask = mask_group(cs, attrs) & 0xffff0000U;
336 
337         cs->edge_trigger &= ~mask;
338         cs->edge_trigger |= (value & mask);
339 
340         gicv3_redist_update(cs);
341         return MEMTX_OK;
342     }
343     case GICR_IGRPMODR0:
344         if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
345             /* RAZ/WI if security disabled, or if
346              * security enabled and this is an NS access
347              */
348             return MEMTX_OK;
349         }
350         cs->gicr_igrpmodr0 = value;
351         gicv3_redist_update(cs);
352         return MEMTX_OK;
353     case GICR_NSACR:
354         if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
355             /* RAZ/WI if security disabled, or if
356              * security enabled and this is an NS access
357              */
358             return MEMTX_OK;
359         }
360         cs->gicr_nsacr = value;
361         /* no update required as this only affects access permission checks */
362         return MEMTX_OK;
363     case GICR_IIDR:
364     case GICR_TYPER:
365     case GICR_IDREGS ... GICR_IDREGS + 0x1f:
366         /* RO registers, ignore the write */
367         qemu_log_mask(LOG_GUEST_ERROR,
368                       "%s: invalid guest write to RO register at offset "
369                       TARGET_FMT_plx "\n", __func__, offset);
370         return MEMTX_OK;
371     default:
372         return MEMTX_ERROR;
373     }
374 }
375 
376 static MemTxResult gicr_readll(GICv3CPUState *cs, hwaddr offset,
377                                uint64_t *data, MemTxAttrs attrs)
378 {
379     switch (offset) {
380     case GICR_TYPER:
381         *data = cs->gicr_typer;
382         return MEMTX_OK;
383     case GICR_PROPBASER:
384         *data = cs->gicr_propbaser;
385         return MEMTX_OK;
386     case GICR_PENDBASER:
387         *data = cs->gicr_pendbaser;
388         return MEMTX_OK;
389     default:
390         return MEMTX_ERROR;
391     }
392 }
393 
394 static MemTxResult gicr_writell(GICv3CPUState *cs, hwaddr offset,
395                                 uint64_t value, MemTxAttrs attrs)
396 {
397     switch (offset) {
398     case GICR_PROPBASER:
399         cs->gicr_propbaser = value;
400         return MEMTX_OK;
401     case GICR_PENDBASER:
402         cs->gicr_pendbaser = value;
403         return MEMTX_OK;
404     case GICR_TYPER:
405         /* RO register, ignore the write */
406         qemu_log_mask(LOG_GUEST_ERROR,
407                       "%s: invalid guest write to RO register at offset "
408                       TARGET_FMT_plx "\n", __func__, offset);
409         return MEMTX_OK;
410     default:
411         return MEMTX_ERROR;
412     }
413 }
414 
415 MemTxResult gicv3_redist_read(void *opaque, hwaddr offset, uint64_t *data,
416                               unsigned size, MemTxAttrs attrs)
417 {
418     GICv3State *s = opaque;
419     GICv3CPUState *cs;
420     MemTxResult r;
421     int cpuidx;
422 
423     assert((offset & (size - 1)) == 0);
424 
425     /* This region covers all the redistributor pages; there are
426      * (for GICv3) two 64K pages per CPU. At the moment they are
427      * all contiguous (ie in this one region), though we might later
428      * want to allow splitting of redistributor pages into several
429      * blocks so we can support more CPUs.
430      */
431     cpuidx = offset / 0x20000;
432     offset %= 0x20000;
433     assert(cpuidx < s->num_cpu);
434 
435     cs = &s->cpu[cpuidx];
436 
437     switch (size) {
438     case 1:
439         r = gicr_readb(cs, offset, data, attrs);
440         break;
441     case 4:
442         r = gicr_readl(cs, offset, data, attrs);
443         break;
444     case 8:
445         r = gicr_readll(cs, offset, data, attrs);
446         break;
447     default:
448         r = MEMTX_ERROR;
449         break;
450     }
451 
452     if (r == MEMTX_ERROR) {
453         qemu_log_mask(LOG_GUEST_ERROR,
454                       "%s: invalid guest read at offset " TARGET_FMT_plx
455                       "size %u\n", __func__, offset, size);
456         trace_gicv3_redist_badread(gicv3_redist_affid(cs), offset,
457                                    size, attrs.secure);
458     } else {
459         trace_gicv3_redist_read(gicv3_redist_affid(cs), offset, *data,
460                                 size, attrs.secure);
461     }
462     return r;
463 }
464 
465 MemTxResult gicv3_redist_write(void *opaque, hwaddr offset, uint64_t data,
466                                unsigned size, MemTxAttrs attrs)
467 {
468     GICv3State *s = opaque;
469     GICv3CPUState *cs;
470     MemTxResult r;
471     int cpuidx;
472 
473     assert((offset & (size - 1)) == 0);
474 
475     /* This region covers all the redistributor pages; there are
476      * (for GICv3) two 64K pages per CPU. At the moment they are
477      * all contiguous (ie in this one region), though we might later
478      * want to allow splitting of redistributor pages into several
479      * blocks so we can support more CPUs.
480      */
481     cpuidx = offset / 0x20000;
482     offset %= 0x20000;
483     assert(cpuidx < s->num_cpu);
484 
485     cs = &s->cpu[cpuidx];
486 
487     switch (size) {
488     case 1:
489         r = gicr_writeb(cs, offset, data, attrs);
490         break;
491     case 4:
492         r = gicr_writel(cs, offset, data, attrs);
493         break;
494     case 8:
495         r = gicr_writell(cs, offset, data, attrs);
496         break;
497     default:
498         r = MEMTX_ERROR;
499         break;
500     }
501 
502     if (r == MEMTX_ERROR) {
503         qemu_log_mask(LOG_GUEST_ERROR,
504                       "%s: invalid guest write at offset " TARGET_FMT_plx
505                       "size %u\n", __func__, offset, size);
506         trace_gicv3_redist_badwrite(gicv3_redist_affid(cs), offset, data,
507                                     size, attrs.secure);
508     } else {
509         trace_gicv3_redist_write(gicv3_redist_affid(cs), offset, data,
510                                  size, attrs.secure);
511     }
512     return r;
513 }
514 
515 void gicv3_redist_set_irq(GICv3CPUState *cs, int irq, int level)
516 {
517     /* Update redistributor state for a change in an external PPI input line */
518     if (level == extract32(cs->level, irq, 1)) {
519         return;
520     }
521 
522     trace_gicv3_redist_set_irq(gicv3_redist_affid(cs), irq, level);
523 
524     cs->level = deposit32(cs->level, irq, 1, level);
525 
526     if (level) {
527         /* 0->1 edges latch the pending bit for edge-triggered interrupts */
528         if (extract32(cs->edge_trigger, irq, 1)) {
529             cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
530         }
531     }
532 
533     gicv3_redist_update(cs);
534 }
535 
536 void gicv3_redist_send_sgi(GICv3CPUState *cs, int grp, int irq, bool ns)
537 {
538     /* Update redistributor state for a generated SGI */
539     int irqgrp = gicv3_irq_group(cs->gic, cs, irq);
540 
541     /* If we are asked for a Secure Group 1 SGI and it's actually
542      * configured as Secure Group 0 this is OK (subject to the usual
543      * NSACR checks).
544      */
545     if (grp == GICV3_G1 && irqgrp == GICV3_G0) {
546         grp = GICV3_G0;
547     }
548 
549     if (grp != irqgrp) {
550         return;
551     }
552 
553     if (ns && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
554         /* If security is enabled we must test the NSACR bits */
555         int nsaccess = gicr_ns_access(cs, irq);
556 
557         if ((irqgrp == GICV3_G0 && nsaccess < 1) ||
558             (irqgrp == GICV3_G1 && nsaccess < 2)) {
559             return;
560         }
561     }
562 
563     /* OK, we can accept the SGI */
564     trace_gicv3_redist_send_sgi(gicv3_redist_affid(cs), irq);
565     cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
566     gicv3_redist_update(cs);
567 }
568