xref: /openbmc/qemu/hw/intc/arm_gicv3_kvm.c (revision f3fa412de28ae3cb31d38811d30a77e4e20456cc)
1 /*
2  * ARM Generic Interrupt Controller using KVM in-kernel support
3  *
4  * Copyright (c) 2015 Samsung Electronics Co., Ltd.
5  * Written by Pavel Fedin
6  * Based on vGICv2 code by Peter Maydell
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qapi/error.h"
24 #include "hw/intc/arm_gicv3_common.h"
25 #include "qemu/error-report.h"
26 #include "qemu/module.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/runstate.h"
29 #include "kvm_arm.h"
30 #include "gicv3_internal.h"
31 #include "vgic_common.h"
32 #include "migration/blocker.h"
33 #include "qom/object.h"
34 
35 #ifdef DEBUG_GICV3_KVM
36 #define DPRINTF(fmt, ...) \
37     do { fprintf(stderr, "kvm_gicv3: " fmt, ## __VA_ARGS__); } while (0)
38 #else
39 #define DPRINTF(fmt, ...) \
40     do { } while (0)
41 #endif
42 
43 #define TYPE_KVM_ARM_GICV3 "kvm-arm-gicv3"
44 typedef struct KVMARMGICv3Class KVMARMGICv3Class;
45 /* This is reusing the GICv3State typedef from ARM_GICV3_ITS_COMMON */
46 DECLARE_OBJ_CHECKERS(GICv3State, KVMARMGICv3Class,
47                      KVM_ARM_GICV3, TYPE_KVM_ARM_GICV3)
48 
49 #define   KVM_DEV_ARM_VGIC_SYSREG(op0, op1, crn, crm, op2)         \
50                              (ARM64_SYS_REG_SHIFT_MASK(op0, OP0) | \
51                               ARM64_SYS_REG_SHIFT_MASK(op1, OP1) | \
52                               ARM64_SYS_REG_SHIFT_MASK(crn, CRN) | \
53                               ARM64_SYS_REG_SHIFT_MASK(crm, CRM) | \
54                               ARM64_SYS_REG_SHIFT_MASK(op2, OP2))
55 
56 #define ICC_PMR_EL1     \
57     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 4, 6, 0)
58 #define ICC_BPR0_EL1    \
59     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 3)
60 #define ICC_AP0R_EL1(n) \
61     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 4 | n)
62 #define ICC_AP1R_EL1(n) \
63     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 9, n)
64 #define ICC_BPR1_EL1    \
65     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 3)
66 #define ICC_CTLR_EL1    \
67     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 4)
68 #define ICC_SRE_EL1 \
69     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 5)
70 #define ICC_IGRPEN0_EL1 \
71     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 6)
72 #define ICC_IGRPEN1_EL1 \
73     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 7)
74 
75 struct KVMARMGICv3Class {
76     ARMGICv3CommonClass parent_class;
77     DeviceRealize parent_realize;
78     void (*parent_reset)(DeviceState *dev);
79 };
80 
81 static void kvm_arm_gicv3_set_irq(void *opaque, int irq, int level)
82 {
83     GICv3State *s = (GICv3State *)opaque;
84 
85     kvm_arm_gic_set_irq(s->num_irq, irq, level);
86 }
87 
88 #define KVM_VGIC_ATTR(reg, typer) \
89     ((typer & KVM_DEV_ARM_VGIC_V3_MPIDR_MASK) | (reg))
90 
91 static inline void kvm_gicd_access(GICv3State *s, int offset,
92                                    uint32_t *val, bool write)
93 {
94     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
95                       KVM_VGIC_ATTR(offset, 0),
96                       val, write, &error_abort);
97 }
98 
99 static inline void kvm_gicr_access(GICv3State *s, int offset, int cpu,
100                                    uint32_t *val, bool write)
101 {
102     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS,
103                       KVM_VGIC_ATTR(offset, s->cpu[cpu].gicr_typer),
104                       val, write, &error_abort);
105 }
106 
107 static inline void kvm_gicc_access(GICv3State *s, uint64_t reg, int cpu,
108                                    uint64_t *val, bool write)
109 {
110     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
111                       KVM_VGIC_ATTR(reg, s->cpu[cpu].gicr_typer),
112                       val, write, &error_abort);
113 }
114 
115 static inline void kvm_gic_line_level_access(GICv3State *s, int irq, int cpu,
116                                              uint32_t *val, bool write)
117 {
118     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO,
119                       KVM_VGIC_ATTR(irq, s->cpu[cpu].gicr_typer) |
120                       (VGIC_LEVEL_INFO_LINE_LEVEL <<
121                        KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT),
122                       val, write, &error_abort);
123 }
124 
125 /* Loop through each distributor IRQ related register; since bits
126  * corresponding to SPIs and PPIs are RAZ/WI when affinity routing
127  * is enabled, we skip those.
128  */
129 #define for_each_dist_irq_reg(_irq, _max, _field_width) \
130     for (_irq = GIC_INTERNAL; _irq < _max; _irq += (32 / _field_width))
131 
132 static void kvm_dist_get_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
133 {
134     uint32_t reg, *field;
135     int irq;
136 
137     /* For the KVM GICv3, affinity routing is always enabled, and the first 8
138      * GICD_IPRIORITYR<n> registers are always RAZ/WI. The corresponding
139      * functionality is replaced by GICR_IPRIORITYR<n>. It doesn't need to
140      * sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and
141      * offset.
142      */
143     field = (uint32_t *)(bmp + GIC_INTERNAL);
144     offset += (GIC_INTERNAL * 8) / 8;
145     for_each_dist_irq_reg(irq, s->num_irq, 8) {
146         kvm_gicd_access(s, offset, &reg, false);
147         *field = reg;
148         offset += 4;
149         field++;
150     }
151 }
152 
153 static void kvm_dist_put_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
154 {
155     uint32_t reg, *field;
156     int irq;
157 
158     /* For the KVM GICv3, affinity routing is always enabled, and the first 8
159      * GICD_IPRIORITYR<n> registers are always RAZ/WI. The corresponding
160      * functionality is replaced by GICR_IPRIORITYR<n>. It doesn't need to
161      * sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and
162      * offset.
163      */
164     field = (uint32_t *)(bmp + GIC_INTERNAL);
165     offset += (GIC_INTERNAL * 8) / 8;
166     for_each_dist_irq_reg(irq, s->num_irq, 8) {
167         reg = *field;
168         kvm_gicd_access(s, offset, &reg, true);
169         offset += 4;
170         field++;
171     }
172 }
173 
174 static void kvm_dist_get_edge_trigger(GICv3State *s, uint32_t offset,
175                                       uint32_t *bmp)
176 {
177     uint32_t reg;
178     int irq;
179 
180     /* For the KVM GICv3, affinity routing is always enabled, and the first 2
181      * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
182      * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
183      * them. So it should increase the offset to skip GIC_INTERNAL irqs.
184      * This matches the for_each_dist_irq_reg() macro which also skips the
185      * first GIC_INTERNAL irqs.
186      */
187     offset += (GIC_INTERNAL * 2) / 8;
188     for_each_dist_irq_reg(irq, s->num_irq, 2) {
189         kvm_gicd_access(s, offset, &reg, false);
190         reg = half_unshuffle32(reg >> 1);
191         if (irq % 32 != 0) {
192             reg = (reg << 16);
193         }
194         *gic_bmp_ptr32(bmp, irq) |=  reg;
195         offset += 4;
196     }
197 }
198 
199 static void kvm_dist_put_edge_trigger(GICv3State *s, uint32_t offset,
200                                       uint32_t *bmp)
201 {
202     uint32_t reg;
203     int irq;
204 
205     /* For the KVM GICv3, affinity routing is always enabled, and the first 2
206      * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
207      * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
208      * them. So it should increase the offset to skip GIC_INTERNAL irqs.
209      * This matches the for_each_dist_irq_reg() macro which also skips the
210      * first GIC_INTERNAL irqs.
211      */
212     offset += (GIC_INTERNAL * 2) / 8;
213     for_each_dist_irq_reg(irq, s->num_irq, 2) {
214         reg = *gic_bmp_ptr32(bmp, irq);
215         if (irq % 32 != 0) {
216             reg = (reg & 0xffff0000) >> 16;
217         } else {
218             reg = reg & 0xffff;
219         }
220         reg = half_shuffle32(reg) << 1;
221         kvm_gicd_access(s, offset, &reg, true);
222         offset += 4;
223     }
224 }
225 
226 static void kvm_gic_get_line_level_bmp(GICv3State *s, uint32_t *bmp)
227 {
228     uint32_t reg;
229     int irq;
230 
231     for_each_dist_irq_reg(irq, s->num_irq, 1) {
232         kvm_gic_line_level_access(s, irq, 0, &reg, false);
233         *gic_bmp_ptr32(bmp, irq) = reg;
234     }
235 }
236 
237 static void kvm_gic_put_line_level_bmp(GICv3State *s, uint32_t *bmp)
238 {
239     uint32_t reg;
240     int irq;
241 
242     for_each_dist_irq_reg(irq, s->num_irq, 1) {
243         reg = *gic_bmp_ptr32(bmp, irq);
244         kvm_gic_line_level_access(s, irq, 0, &reg, true);
245     }
246 }
247 
248 /* Read a bitmap register group from the kernel VGIC. */
249 static void kvm_dist_getbmp(GICv3State *s, uint32_t offset, uint32_t *bmp)
250 {
251     uint32_t reg;
252     int irq;
253 
254     /* For the KVM GICv3, affinity routing is always enabled, and the
255      * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
256      * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
257      * functionality is replaced by the GICR registers. It doesn't need to sync
258      * them. So it should increase the offset to skip GIC_INTERNAL irqs.
259      * This matches the for_each_dist_irq_reg() macro which also skips the
260      * first GIC_INTERNAL irqs.
261      */
262     offset += (GIC_INTERNAL * 1) / 8;
263     for_each_dist_irq_reg(irq, s->num_irq, 1) {
264         kvm_gicd_access(s, offset, &reg, false);
265         *gic_bmp_ptr32(bmp, irq) = reg;
266         offset += 4;
267     }
268 }
269 
270 static void kvm_dist_putbmp(GICv3State *s, uint32_t offset,
271                             uint32_t clroffset, uint32_t *bmp)
272 {
273     uint32_t reg;
274     int irq;
275 
276     /* For the KVM GICv3, affinity routing is always enabled, and the
277      * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
278      * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
279      * functionality is replaced by the GICR registers. It doesn't need to sync
280      * them. So it should increase the offset and clroffset to skip GIC_INTERNAL
281      * irqs. This matches the for_each_dist_irq_reg() macro which also skips the
282      * first GIC_INTERNAL irqs.
283      */
284     offset += (GIC_INTERNAL * 1) / 8;
285     if (clroffset != 0) {
286         clroffset += (GIC_INTERNAL * 1) / 8;
287     }
288 
289     for_each_dist_irq_reg(irq, s->num_irq, 1) {
290         /* If this bitmap is a set/clear register pair, first write to the
291          * clear-reg to clear all bits before using the set-reg to write
292          * the 1 bits.
293          */
294         if (clroffset != 0) {
295             reg = 0;
296             kvm_gicd_access(s, clroffset, &reg, true);
297             clroffset += 4;
298         }
299         reg = *gic_bmp_ptr32(bmp, irq);
300         kvm_gicd_access(s, offset, &reg, true);
301         offset += 4;
302     }
303 }
304 
305 static void kvm_arm_gicv3_check(GICv3State *s)
306 {
307     uint32_t reg;
308     uint32_t num_irq;
309 
310     /* Sanity checking s->num_irq */
311     kvm_gicd_access(s, GICD_TYPER, &reg, false);
312     num_irq = ((reg & 0x1f) + 1) * 32;
313 
314     if (num_irq < s->num_irq) {
315         error_report("Model requests %u IRQs, but kernel supports max %u",
316                      s->num_irq, num_irq);
317         abort();
318     }
319 }
320 
321 static void kvm_arm_gicv3_put(GICv3State *s)
322 {
323     uint32_t regl, regh, reg;
324     uint64_t reg64, redist_typer;
325     int ncpu, i;
326 
327     kvm_arm_gicv3_check(s);
328 
329     kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
330     kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
331     redist_typer = ((uint64_t)regh << 32) | regl;
332 
333     reg = s->gicd_ctlr;
334     kvm_gicd_access(s, GICD_CTLR, &reg, true);
335 
336     if (redist_typer & GICR_TYPER_PLPIS) {
337         /*
338          * Restore base addresses before LPIs are potentially enabled by
339          * GICR_CTLR write
340          */
341         for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
342             GICv3CPUState *c = &s->cpu[ncpu];
343 
344             reg64 = c->gicr_propbaser;
345             regl = (uint32_t)reg64;
346             kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, true);
347             regh = (uint32_t)(reg64 >> 32);
348             kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, true);
349 
350             reg64 = c->gicr_pendbaser;
351             regl = (uint32_t)reg64;
352             kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, true);
353             regh = (uint32_t)(reg64 >> 32);
354             kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, true);
355         }
356     }
357 
358     /* Redistributor state (one per CPU) */
359 
360     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
361         GICv3CPUState *c = &s->cpu[ncpu];
362 
363         reg = c->gicr_ctlr;
364         kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, true);
365 
366         reg = c->gicr_statusr[GICV3_NS];
367         kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, true);
368 
369         reg = c->gicr_waker;
370         kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, true);
371 
372         reg = c->gicr_igroupr0;
373         kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, true);
374 
375         reg = ~0;
376         kvm_gicr_access(s, GICR_ICENABLER0, ncpu, &reg, true);
377         reg = c->gicr_ienabler0;
378         kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, true);
379 
380         /* Restore config before pending so we treat level/edge correctly */
381         reg = half_shuffle32(c->edge_trigger >> 16) << 1;
382         kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, true);
383 
384         reg = c->level;
385         kvm_gic_line_level_access(s, 0, ncpu, &reg, true);
386 
387         reg = ~0;
388         kvm_gicr_access(s, GICR_ICPENDR0, ncpu, &reg, true);
389         reg = c->gicr_ipendr0;
390         kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, true);
391 
392         reg = ~0;
393         kvm_gicr_access(s, GICR_ICACTIVER0, ncpu, &reg, true);
394         reg = c->gicr_iactiver0;
395         kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, true);
396 
397         for (i = 0; i < GIC_INTERNAL; i += 4) {
398             reg = c->gicr_ipriorityr[i] |
399                 (c->gicr_ipriorityr[i + 1] << 8) |
400                 (c->gicr_ipriorityr[i + 2] << 16) |
401                 (c->gicr_ipriorityr[i + 3] << 24);
402             kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, true);
403         }
404     }
405 
406     /* Distributor state (shared between all CPUs */
407     reg = s->gicd_statusr[GICV3_NS];
408     kvm_gicd_access(s, GICD_STATUSR, &reg, true);
409 
410     /* s->enable bitmap -> GICD_ISENABLERn */
411     kvm_dist_putbmp(s, GICD_ISENABLER, GICD_ICENABLER, s->enabled);
412 
413     /* s->group bitmap -> GICD_IGROUPRn */
414     kvm_dist_putbmp(s, GICD_IGROUPR, 0, s->group);
415 
416     /* Restore targets before pending to ensure the pending state is set on
417      * the appropriate CPU interfaces in the kernel
418      */
419 
420     /* s->gicd_irouter[irq] -> GICD_IROUTERn
421      * We can't use kvm_dist_put() here because the registers are 64-bit
422      */
423     for (i = GIC_INTERNAL; i < s->num_irq; i++) {
424         uint32_t offset;
425 
426         offset = GICD_IROUTER + (sizeof(uint32_t) * i);
427         reg = (uint32_t)s->gicd_irouter[i];
428         kvm_gicd_access(s, offset, &reg, true);
429 
430         offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
431         reg = (uint32_t)(s->gicd_irouter[i] >> 32);
432         kvm_gicd_access(s, offset, &reg, true);
433     }
434 
435     /* s->trigger bitmap -> GICD_ICFGRn
436      * (restore configuration registers before pending IRQs so we treat
437      * level/edge correctly)
438      */
439     kvm_dist_put_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
440 
441     /* s->level bitmap ->  line_level */
442     kvm_gic_put_line_level_bmp(s, s->level);
443 
444     /* s->pending bitmap -> GICD_ISPENDRn */
445     kvm_dist_putbmp(s, GICD_ISPENDR, GICD_ICPENDR, s->pending);
446 
447     /* s->active bitmap -> GICD_ISACTIVERn */
448     kvm_dist_putbmp(s, GICD_ISACTIVER, GICD_ICACTIVER, s->active);
449 
450     /* s->gicd_ipriority[] -> GICD_IPRIORITYRn */
451     kvm_dist_put_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
452 
453     /* CPU Interface state (one per CPU) */
454 
455     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
456         GICv3CPUState *c = &s->cpu[ncpu];
457         int num_pri_bits;
458 
459         kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, true);
460         kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
461                         &c->icc_ctlr_el1[GICV3_NS], true);
462         kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
463                         &c->icc_igrpen[GICV3_G0], true);
464         kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
465                         &c->icc_igrpen[GICV3_G1NS], true);
466         kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, true);
467         kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], true);
468         kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], true);
469 
470         num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
471                         ICC_CTLR_EL1_PRIBITS_MASK) >>
472                         ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
473 
474         switch (num_pri_bits) {
475         case 7:
476             reg64 = c->icc_apr[GICV3_G0][3];
477             kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, true);
478             reg64 = c->icc_apr[GICV3_G0][2];
479             kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, true);
480             /* fall through */
481         case 6:
482             reg64 = c->icc_apr[GICV3_G0][1];
483             kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, true);
484             /* fall through */
485         default:
486             reg64 = c->icc_apr[GICV3_G0][0];
487             kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, true);
488         }
489 
490         switch (num_pri_bits) {
491         case 7:
492             reg64 = c->icc_apr[GICV3_G1NS][3];
493             kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, true);
494             reg64 = c->icc_apr[GICV3_G1NS][2];
495             kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, true);
496             /* fall through */
497         case 6:
498             reg64 = c->icc_apr[GICV3_G1NS][1];
499             kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, true);
500             /* fall through */
501         default:
502             reg64 = c->icc_apr[GICV3_G1NS][0];
503             kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, true);
504         }
505     }
506 }
507 
508 static void kvm_arm_gicv3_get(GICv3State *s)
509 {
510     uint32_t regl, regh, reg;
511     uint64_t reg64, redist_typer;
512     int ncpu, i;
513 
514     kvm_arm_gicv3_check(s);
515 
516     kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
517     kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
518     redist_typer = ((uint64_t)regh << 32) | regl;
519 
520     kvm_gicd_access(s, GICD_CTLR, &reg, false);
521     s->gicd_ctlr = reg;
522 
523     /* Redistributor state (one per CPU) */
524 
525     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
526         GICv3CPUState *c = &s->cpu[ncpu];
527 
528         kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, false);
529         c->gicr_ctlr = reg;
530 
531         kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, false);
532         c->gicr_statusr[GICV3_NS] = reg;
533 
534         kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, false);
535         c->gicr_waker = reg;
536 
537         kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, false);
538         c->gicr_igroupr0 = reg;
539         kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, false);
540         c->gicr_ienabler0 = reg;
541         kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, false);
542         c->edge_trigger = half_unshuffle32(reg >> 1) << 16;
543         kvm_gic_line_level_access(s, 0, ncpu, &reg, false);
544         c->level = reg;
545         kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, false);
546         c->gicr_ipendr0 = reg;
547         kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, false);
548         c->gicr_iactiver0 = reg;
549 
550         for (i = 0; i < GIC_INTERNAL; i += 4) {
551             kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, false);
552             c->gicr_ipriorityr[i] = extract32(reg, 0, 8);
553             c->gicr_ipriorityr[i + 1] = extract32(reg, 8, 8);
554             c->gicr_ipriorityr[i + 2] = extract32(reg, 16, 8);
555             c->gicr_ipriorityr[i + 3] = extract32(reg, 24, 8);
556         }
557     }
558 
559     if (redist_typer & GICR_TYPER_PLPIS) {
560         for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
561             GICv3CPUState *c = &s->cpu[ncpu];
562 
563             kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, false);
564             kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, false);
565             c->gicr_propbaser = ((uint64_t)regh << 32) | regl;
566 
567             kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, false);
568             kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, false);
569             c->gicr_pendbaser = ((uint64_t)regh << 32) | regl;
570         }
571     }
572 
573     /* Distributor state (shared between all CPUs */
574 
575     kvm_gicd_access(s, GICD_STATUSR, &reg, false);
576     s->gicd_statusr[GICV3_NS] = reg;
577 
578     /* GICD_IGROUPRn -> s->group bitmap */
579     kvm_dist_getbmp(s, GICD_IGROUPR, s->group);
580 
581     /* GICD_ISENABLERn -> s->enabled bitmap */
582     kvm_dist_getbmp(s, GICD_ISENABLER, s->enabled);
583 
584     /* Line level of irq */
585     kvm_gic_get_line_level_bmp(s, s->level);
586     /* GICD_ISPENDRn -> s->pending bitmap */
587     kvm_dist_getbmp(s, GICD_ISPENDR, s->pending);
588 
589     /* GICD_ISACTIVERn -> s->active bitmap */
590     kvm_dist_getbmp(s, GICD_ISACTIVER, s->active);
591 
592     /* GICD_ICFGRn -> s->trigger bitmap */
593     kvm_dist_get_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
594 
595     /* GICD_IPRIORITYRn -> s->gicd_ipriority[] */
596     kvm_dist_get_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
597 
598     /* GICD_IROUTERn -> s->gicd_irouter[irq] */
599     for (i = GIC_INTERNAL; i < s->num_irq; i++) {
600         uint32_t offset;
601 
602         offset = GICD_IROUTER + (sizeof(uint32_t) * i);
603         kvm_gicd_access(s, offset, &regl, false);
604         offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
605         kvm_gicd_access(s, offset, &regh, false);
606         s->gicd_irouter[i] = ((uint64_t)regh << 32) | regl;
607     }
608 
609     /*****************************************************************
610      * CPU Interface(s) State
611      */
612 
613     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
614         GICv3CPUState *c = &s->cpu[ncpu];
615         int num_pri_bits;
616 
617         kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, false);
618         kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
619                         &c->icc_ctlr_el1[GICV3_NS], false);
620         kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
621                         &c->icc_igrpen[GICV3_G0], false);
622         kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
623                         &c->icc_igrpen[GICV3_G1NS], false);
624         kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, false);
625         kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], false);
626         kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], false);
627         num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
628                         ICC_CTLR_EL1_PRIBITS_MASK) >>
629                         ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
630 
631         switch (num_pri_bits) {
632         case 7:
633             kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, false);
634             c->icc_apr[GICV3_G0][3] = reg64;
635             kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, false);
636             c->icc_apr[GICV3_G0][2] = reg64;
637             /* fall through */
638         case 6:
639             kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, false);
640             c->icc_apr[GICV3_G0][1] = reg64;
641             /* fall through */
642         default:
643             kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, false);
644             c->icc_apr[GICV3_G0][0] = reg64;
645         }
646 
647         switch (num_pri_bits) {
648         case 7:
649             kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, false);
650             c->icc_apr[GICV3_G1NS][3] = reg64;
651             kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, false);
652             c->icc_apr[GICV3_G1NS][2] = reg64;
653             /* fall through */
654         case 6:
655             kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, false);
656             c->icc_apr[GICV3_G1NS][1] = reg64;
657             /* fall through */
658         default:
659             kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, false);
660             c->icc_apr[GICV3_G1NS][0] = reg64;
661         }
662     }
663 }
664 
665 static void arm_gicv3_icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
666 {
667     GICv3State *s;
668     GICv3CPUState *c;
669 
670     c = (GICv3CPUState *)env->gicv3state;
671     s = c->gic;
672 
673     c->icc_pmr_el1 = 0;
674     c->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
675     c->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
676     c->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR;
677 
678     c->icc_sre_el1 = 0x7;
679     memset(c->icc_apr, 0, sizeof(c->icc_apr));
680     memset(c->icc_igrpen, 0, sizeof(c->icc_igrpen));
681 
682     if (s->migration_blocker) {
683         return;
684     }
685 
686     /* Initialize to actual HW supported configuration */
687     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
688                       KVM_VGIC_ATTR(ICC_CTLR_EL1, c->gicr_typer),
689                       &c->icc_ctlr_el1[GICV3_NS], false, &error_abort);
690 
691     c->icc_ctlr_el1[GICV3_S] = c->icc_ctlr_el1[GICV3_NS];
692 }
693 
694 static void kvm_arm_gicv3_reset(DeviceState *dev)
695 {
696     GICv3State *s = ARM_GICV3_COMMON(dev);
697     KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
698 
699     DPRINTF("Reset\n");
700 
701     kgc->parent_reset(dev);
702 
703     if (s->migration_blocker) {
704         DPRINTF("Cannot put kernel gic state, no kernel interface\n");
705         return;
706     }
707 
708     kvm_arm_gicv3_put(s);
709 }
710 
711 /*
712  * CPU interface registers of GIC needs to be reset on CPU reset.
713  * For the calling arm_gicv3_icc_reset() on CPU reset, we register
714  * below ARMCPRegInfo. As we reset the whole cpu interface under single
715  * register reset, we define only one register of CPU interface instead
716  * of defining all the registers.
717  */
718 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
719     { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
720       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
721       /*
722        * If ARM_CP_NOP is used, resetfn is not called,
723        * So ARM_CP_NO_RAW is appropriate type.
724        */
725       .type = ARM_CP_NO_RAW,
726       .access = PL1_RW,
727       .readfn = arm_cp_read_zero,
728       .writefn = arm_cp_write_ignore,
729       /*
730        * We hang the whole cpu interface reset routine off here
731        * rather than parcelling it out into one little function
732        * per register
733        */
734       .resetfn = arm_gicv3_icc_reset,
735     },
736     REGINFO_SENTINEL
737 };
738 
739 /**
740  * vm_change_state_handler - VM change state callback aiming at flushing
741  * RDIST pending tables into guest RAM
742  *
743  * The tables get flushed to guest RAM whenever the VM gets stopped.
744  */
745 static void vm_change_state_handler(void *opaque, bool running,
746                                     RunState state)
747 {
748     GICv3State *s = (GICv3State *)opaque;
749     Error *err = NULL;
750     int ret;
751 
752     if (running) {
753         return;
754     }
755 
756     ret = kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
757                            KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES,
758                            NULL, true, &err);
759     if (err) {
760         error_report_err(err);
761     }
762     if (ret < 0 && ret != -EFAULT) {
763         abort();
764     }
765 }
766 
767 
768 static void kvm_arm_gicv3_realize(DeviceState *dev, Error **errp)
769 {
770     GICv3State *s = KVM_ARM_GICV3(dev);
771     KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
772     bool multiple_redist_region_allowed;
773     Error *local_err = NULL;
774     int i;
775 
776     DPRINTF("kvm_arm_gicv3_realize\n");
777 
778     kgc->parent_realize(dev, &local_err);
779     if (local_err) {
780         error_propagate(errp, local_err);
781         return;
782     }
783 
784     if (s->security_extn) {
785         error_setg(errp, "the in-kernel VGICv3 does not implement the "
786                    "security extensions");
787         return;
788     }
789 
790     gicv3_init_irqs_and_mmio(s, kvm_arm_gicv3_set_irq, NULL, &local_err);
791     if (local_err) {
792         error_propagate(errp, local_err);
793         return;
794     }
795 
796     for (i = 0; i < s->num_cpu; i++) {
797         ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
798 
799         define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
800     }
801 
802     /* Try to create the device via the device control API */
803     s->dev_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V3, false);
804     if (s->dev_fd < 0) {
805         error_setg_errno(errp, -s->dev_fd, "error creating in-kernel VGIC");
806         return;
807     }
808 
809     multiple_redist_region_allowed =
810         kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
811                               KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION);
812 
813     if (!multiple_redist_region_allowed && s->nb_redist_regions > 1) {
814         error_setg(errp, "Multiple VGICv3 redistributor regions are not "
815                    "supported by this host kernel");
816         error_append_hint(errp, "A maximum of %d VCPUs can be used",
817                           s->redist_region_count[0]);
818         return;
819     }
820 
821     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS,
822                       0, &s->num_irq, true, &error_abort);
823 
824     /* Tell the kernel to complete VGIC initialization now */
825     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
826                       KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true, &error_abort);
827 
828     kvm_arm_register_device(&s->iomem_dist, -1, KVM_DEV_ARM_VGIC_GRP_ADDR,
829                             KVM_VGIC_V3_ADDR_TYPE_DIST, s->dev_fd, 0);
830 
831     if (!multiple_redist_region_allowed) {
832         kvm_arm_register_device(&s->iomem_redist[0], -1,
833                                 KVM_DEV_ARM_VGIC_GRP_ADDR,
834                                 KVM_VGIC_V3_ADDR_TYPE_REDIST, s->dev_fd, 0);
835     } else {
836         /* we register regions in reverse order as "devices" are inserted at
837          * the head of a QSLIST and the list is then popped from the head
838          * onwards by kvm_arm_machine_init_done()
839          */
840         for (i = s->nb_redist_regions - 1; i >= 0; i--) {
841             /* Address mask made of the rdist region index and count */
842             uint64_t addr_ormask =
843                         i | ((uint64_t)s->redist_region_count[i] << 52);
844 
845             kvm_arm_register_device(&s->iomem_redist[i], -1,
846                                     KVM_DEV_ARM_VGIC_GRP_ADDR,
847                                     KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION,
848                                     s->dev_fd, addr_ormask);
849         }
850     }
851 
852     if (kvm_has_gsi_routing()) {
853         /* set up irq routing */
854         for (i = 0; i < s->num_irq - GIC_INTERNAL; ++i) {
855             kvm_irqchip_add_irq_route(kvm_state, i, 0, i);
856         }
857 
858         kvm_gsi_routing_allowed = true;
859 
860         kvm_irqchip_commit_routes(kvm_state);
861     }
862 
863     if (!kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
864                                GICD_CTLR)) {
865         error_setg(&s->migration_blocker, "This operating system kernel does "
866                                           "not support vGICv3 migration");
867         if (migrate_add_blocker(s->migration_blocker, errp) < 0) {
868             error_free(s->migration_blocker);
869             return;
870         }
871     }
872     if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
873                               KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES)) {
874         qemu_add_vm_change_state_handler(vm_change_state_handler, s);
875     }
876 }
877 
878 static void kvm_arm_gicv3_class_init(ObjectClass *klass, void *data)
879 {
880     DeviceClass *dc = DEVICE_CLASS(klass);
881     ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass);
882     KVMARMGICv3Class *kgc = KVM_ARM_GICV3_CLASS(klass);
883 
884     agcc->pre_save = kvm_arm_gicv3_get;
885     agcc->post_load = kvm_arm_gicv3_put;
886     device_class_set_parent_realize(dc, kvm_arm_gicv3_realize,
887                                     &kgc->parent_realize);
888     device_class_set_parent_reset(dc, kvm_arm_gicv3_reset, &kgc->parent_reset);
889 }
890 
891 static const TypeInfo kvm_arm_gicv3_info = {
892     .name = TYPE_KVM_ARM_GICV3,
893     .parent = TYPE_ARM_GICV3_COMMON,
894     .instance_size = sizeof(GICv3State),
895     .class_init = kvm_arm_gicv3_class_init,
896     .class_size = sizeof(KVMARMGICv3Class),
897 };
898 
899 static void kvm_arm_gicv3_register_types(void)
900 {
901     type_register_static(&kvm_arm_gicv3_info);
902 }
903 
904 type_init(kvm_arm_gicv3_register_types)
905