xref: /openbmc/qemu/hw/intc/arm_gicv3_kvm.c (revision 083fab0290f2c40d3d04f7f22eed9c8f2d5b6787)
1 /*
2  * ARM Generic Interrupt Controller using KVM in-kernel support
3  *
4  * Copyright (c) 2015 Samsung Electronics Co., Ltd.
5  * Written by Pavel Fedin
6  * Based on vGICv2 code by Peter Maydell
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qapi/error.h"
24 #include "hw/intc/arm_gicv3_common.h"
25 #include "hw/sysbus.h"
26 #include "qemu/error-report.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/sysemu.h"
29 #include "kvm_arm.h"
30 #include "gicv3_internal.h"
31 #include "vgic_common.h"
32 #include "migration/blocker.h"
33 
34 #ifdef DEBUG_GICV3_KVM
35 #define DPRINTF(fmt, ...) \
36     do { fprintf(stderr, "kvm_gicv3: " fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define DPRINTF(fmt, ...) \
39     do { } while (0)
40 #endif
41 
42 #define TYPE_KVM_ARM_GICV3 "kvm-arm-gicv3"
43 #define KVM_ARM_GICV3(obj) \
44      OBJECT_CHECK(GICv3State, (obj), TYPE_KVM_ARM_GICV3)
45 #define KVM_ARM_GICV3_CLASS(klass) \
46      OBJECT_CLASS_CHECK(KVMARMGICv3Class, (klass), TYPE_KVM_ARM_GICV3)
47 #define KVM_ARM_GICV3_GET_CLASS(obj) \
48      OBJECT_GET_CLASS(KVMARMGICv3Class, (obj), TYPE_KVM_ARM_GICV3)
49 
50 #define   KVM_DEV_ARM_VGIC_SYSREG(op0, op1, crn, crm, op2)         \
51                              (ARM64_SYS_REG_SHIFT_MASK(op0, OP0) | \
52                               ARM64_SYS_REG_SHIFT_MASK(op1, OP1) | \
53                               ARM64_SYS_REG_SHIFT_MASK(crn, CRN) | \
54                               ARM64_SYS_REG_SHIFT_MASK(crm, CRM) | \
55                               ARM64_SYS_REG_SHIFT_MASK(op2, OP2))
56 
57 #define ICC_PMR_EL1     \
58     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 4, 6, 0)
59 #define ICC_BPR0_EL1    \
60     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 3)
61 #define ICC_AP0R_EL1(n) \
62     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 4 | n)
63 #define ICC_AP1R_EL1(n) \
64     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 9, n)
65 #define ICC_BPR1_EL1    \
66     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 3)
67 #define ICC_CTLR_EL1    \
68     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 4)
69 #define ICC_SRE_EL1 \
70     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 5)
71 #define ICC_IGRPEN0_EL1 \
72     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 6)
73 #define ICC_IGRPEN1_EL1 \
74     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 7)
75 
76 typedef struct KVMARMGICv3Class {
77     ARMGICv3CommonClass parent_class;
78     DeviceRealize parent_realize;
79     void (*parent_reset)(DeviceState *dev);
80 } KVMARMGICv3Class;
81 
82 static void kvm_arm_gicv3_set_irq(void *opaque, int irq, int level)
83 {
84     GICv3State *s = (GICv3State *)opaque;
85 
86     kvm_arm_gic_set_irq(s->num_irq, irq, level);
87 }
88 
89 #define KVM_VGIC_ATTR(reg, typer) \
90     ((typer & KVM_DEV_ARM_VGIC_V3_MPIDR_MASK) | (reg))
91 
92 static inline void kvm_gicd_access(GICv3State *s, int offset,
93                                    uint32_t *val, bool write)
94 {
95     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
96                       KVM_VGIC_ATTR(offset, 0),
97                       val, write, &error_abort);
98 }
99 
100 static inline void kvm_gicr_access(GICv3State *s, int offset, int cpu,
101                                    uint32_t *val, bool write)
102 {
103     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS,
104                       KVM_VGIC_ATTR(offset, s->cpu[cpu].gicr_typer),
105                       val, write, &error_abort);
106 }
107 
108 static inline void kvm_gicc_access(GICv3State *s, uint64_t reg, int cpu,
109                                    uint64_t *val, bool write)
110 {
111     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
112                       KVM_VGIC_ATTR(reg, s->cpu[cpu].gicr_typer),
113                       val, write, &error_abort);
114 }
115 
116 static inline void kvm_gic_line_level_access(GICv3State *s, int irq, int cpu,
117                                              uint32_t *val, bool write)
118 {
119     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO,
120                       KVM_VGIC_ATTR(irq, s->cpu[cpu].gicr_typer) |
121                       (VGIC_LEVEL_INFO_LINE_LEVEL <<
122                        KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT),
123                       val, write, &error_abort);
124 }
125 
126 /* Loop through each distributor IRQ related register; since bits
127  * corresponding to SPIs and PPIs are RAZ/WI when affinity routing
128  * is enabled, we skip those.
129  */
130 #define for_each_dist_irq_reg(_irq, _max, _field_width) \
131     for (_irq = GIC_INTERNAL; _irq < _max; _irq += (32 / _field_width))
132 
133 static void kvm_dist_get_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
134 {
135     uint32_t reg, *field;
136     int irq;
137 
138     field = (uint32_t *)bmp;
139     for_each_dist_irq_reg(irq, s->num_irq, 8) {
140         kvm_gicd_access(s, offset, &reg, false);
141         *field = reg;
142         offset += 4;
143         field++;
144     }
145 }
146 
147 static void kvm_dist_put_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
148 {
149     uint32_t reg, *field;
150     int irq;
151 
152     field = (uint32_t *)bmp;
153     for_each_dist_irq_reg(irq, s->num_irq, 8) {
154         reg = *field;
155         kvm_gicd_access(s, offset, &reg, true);
156         offset += 4;
157         field++;
158     }
159 }
160 
161 static void kvm_dist_get_edge_trigger(GICv3State *s, uint32_t offset,
162                                       uint32_t *bmp)
163 {
164     uint32_t reg;
165     int irq;
166 
167     for_each_dist_irq_reg(irq, s->num_irq, 2) {
168         kvm_gicd_access(s, offset, &reg, false);
169         reg = half_unshuffle32(reg >> 1);
170         if (irq % 32 != 0) {
171             reg = (reg << 16);
172         }
173         *gic_bmp_ptr32(bmp, irq) |=  reg;
174         offset += 4;
175     }
176 }
177 
178 static void kvm_dist_put_edge_trigger(GICv3State *s, uint32_t offset,
179                                       uint32_t *bmp)
180 {
181     uint32_t reg;
182     int irq;
183 
184     for_each_dist_irq_reg(irq, s->num_irq, 2) {
185         reg = *gic_bmp_ptr32(bmp, irq);
186         if (irq % 32 != 0) {
187             reg = (reg & 0xffff0000) >> 16;
188         } else {
189             reg = reg & 0xffff;
190         }
191         reg = half_shuffle32(reg) << 1;
192         kvm_gicd_access(s, offset, &reg, true);
193         offset += 4;
194     }
195 }
196 
197 static void kvm_gic_get_line_level_bmp(GICv3State *s, uint32_t *bmp)
198 {
199     uint32_t reg;
200     int irq;
201 
202     for_each_dist_irq_reg(irq, s->num_irq, 1) {
203         kvm_gic_line_level_access(s, irq, 0, &reg, false);
204         *gic_bmp_ptr32(bmp, irq) = reg;
205     }
206 }
207 
208 static void kvm_gic_put_line_level_bmp(GICv3State *s, uint32_t *bmp)
209 {
210     uint32_t reg;
211     int irq;
212 
213     for_each_dist_irq_reg(irq, s->num_irq, 1) {
214         reg = *gic_bmp_ptr32(bmp, irq);
215         kvm_gic_line_level_access(s, irq, 0, &reg, true);
216     }
217 }
218 
219 /* Read a bitmap register group from the kernel VGIC. */
220 static void kvm_dist_getbmp(GICv3State *s, uint32_t offset, uint32_t *bmp)
221 {
222     uint32_t reg;
223     int irq;
224 
225     for_each_dist_irq_reg(irq, s->num_irq, 1) {
226         kvm_gicd_access(s, offset, &reg, false);
227         *gic_bmp_ptr32(bmp, irq) = reg;
228         offset += 4;
229     }
230 }
231 
232 static void kvm_dist_putbmp(GICv3State *s, uint32_t offset,
233                             uint32_t clroffset, uint32_t *bmp)
234 {
235     uint32_t reg;
236     int irq;
237 
238     for_each_dist_irq_reg(irq, s->num_irq, 1) {
239         /* If this bitmap is a set/clear register pair, first write to the
240          * clear-reg to clear all bits before using the set-reg to write
241          * the 1 bits.
242          */
243         if (clroffset != 0) {
244             reg = 0;
245             kvm_gicd_access(s, clroffset, &reg, true);
246         }
247         reg = *gic_bmp_ptr32(bmp, irq);
248         kvm_gicd_access(s, offset, &reg, true);
249         offset += 4;
250     }
251 }
252 
253 static void kvm_arm_gicv3_check(GICv3State *s)
254 {
255     uint32_t reg;
256     uint32_t num_irq;
257 
258     /* Sanity checking s->num_irq */
259     kvm_gicd_access(s, GICD_TYPER, &reg, false);
260     num_irq = ((reg & 0x1f) + 1) * 32;
261 
262     if (num_irq < s->num_irq) {
263         error_report("Model requests %u IRQs, but kernel supports max %u",
264                      s->num_irq, num_irq);
265         abort();
266     }
267 }
268 
269 static void kvm_arm_gicv3_put(GICv3State *s)
270 {
271     uint32_t regl, regh, reg;
272     uint64_t reg64, redist_typer;
273     int ncpu, i;
274 
275     kvm_arm_gicv3_check(s);
276 
277     kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
278     kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
279     redist_typer = ((uint64_t)regh << 32) | regl;
280 
281     reg = s->gicd_ctlr;
282     kvm_gicd_access(s, GICD_CTLR, &reg, true);
283 
284     if (redist_typer & GICR_TYPER_PLPIS) {
285         /* Set base addresses before LPIs are enabled by GICR_CTLR write */
286         for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
287             GICv3CPUState *c = &s->cpu[ncpu];
288 
289             reg64 = c->gicr_propbaser;
290             regl = (uint32_t)reg64;
291             kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, true);
292             regh = (uint32_t)(reg64 >> 32);
293             kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, true);
294 
295             reg64 = c->gicr_pendbaser;
296             if (!(c->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
297                 /* Setting PTZ is advised if LPIs are disabled, to reduce
298                  * GIC initialization time.
299                  */
300                 reg64 |= GICR_PENDBASER_PTZ;
301             }
302             regl = (uint32_t)reg64;
303             kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, true);
304             regh = (uint32_t)(reg64 >> 32);
305             kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, true);
306         }
307     }
308 
309     /* Redistributor state (one per CPU) */
310 
311     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
312         GICv3CPUState *c = &s->cpu[ncpu];
313 
314         reg = c->gicr_ctlr;
315         kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, true);
316 
317         reg = c->gicr_statusr[GICV3_NS];
318         kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, true);
319 
320         reg = c->gicr_waker;
321         kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, true);
322 
323         reg = c->gicr_igroupr0;
324         kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, true);
325 
326         reg = ~0;
327         kvm_gicr_access(s, GICR_ICENABLER0, ncpu, &reg, true);
328         reg = c->gicr_ienabler0;
329         kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, true);
330 
331         /* Restore config before pending so we treat level/edge correctly */
332         reg = half_shuffle32(c->edge_trigger >> 16) << 1;
333         kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, true);
334 
335         reg = c->level;
336         kvm_gic_line_level_access(s, 0, ncpu, &reg, true);
337 
338         reg = ~0;
339         kvm_gicr_access(s, GICR_ICPENDR0, ncpu, &reg, true);
340         reg = c->gicr_ipendr0;
341         kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, true);
342 
343         reg = ~0;
344         kvm_gicr_access(s, GICR_ICACTIVER0, ncpu, &reg, true);
345         reg = c->gicr_iactiver0;
346         kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, true);
347 
348         for (i = 0; i < GIC_INTERNAL; i += 4) {
349             reg = c->gicr_ipriorityr[i] |
350                 (c->gicr_ipriorityr[i + 1] << 8) |
351                 (c->gicr_ipriorityr[i + 2] << 16) |
352                 (c->gicr_ipriorityr[i + 3] << 24);
353             kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, true);
354         }
355     }
356 
357     /* Distributor state (shared between all CPUs */
358     reg = s->gicd_statusr[GICV3_NS];
359     kvm_gicd_access(s, GICD_STATUSR, &reg, true);
360 
361     /* s->enable bitmap -> GICD_ISENABLERn */
362     kvm_dist_putbmp(s, GICD_ISENABLER, GICD_ICENABLER, s->enabled);
363 
364     /* s->group bitmap -> GICD_IGROUPRn */
365     kvm_dist_putbmp(s, GICD_IGROUPR, 0, s->group);
366 
367     /* Restore targets before pending to ensure the pending state is set on
368      * the appropriate CPU interfaces in the kernel
369      */
370 
371     /* s->gicd_irouter[irq] -> GICD_IROUTERn
372      * We can't use kvm_dist_put() here because the registers are 64-bit
373      */
374     for (i = GIC_INTERNAL; i < s->num_irq; i++) {
375         uint32_t offset;
376 
377         offset = GICD_IROUTER + (sizeof(uint32_t) * i);
378         reg = (uint32_t)s->gicd_irouter[i];
379         kvm_gicd_access(s, offset, &reg, true);
380 
381         offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
382         reg = (uint32_t)(s->gicd_irouter[i] >> 32);
383         kvm_gicd_access(s, offset, &reg, true);
384     }
385 
386     /* s->trigger bitmap -> GICD_ICFGRn
387      * (restore configuration registers before pending IRQs so we treat
388      * level/edge correctly)
389      */
390     kvm_dist_put_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
391 
392     /* s->level bitmap ->  line_level */
393     kvm_gic_put_line_level_bmp(s, s->level);
394 
395     /* s->pending bitmap -> GICD_ISPENDRn */
396     kvm_dist_putbmp(s, GICD_ISPENDR, GICD_ICPENDR, s->pending);
397 
398     /* s->active bitmap -> GICD_ISACTIVERn */
399     kvm_dist_putbmp(s, GICD_ISACTIVER, GICD_ICACTIVER, s->active);
400 
401     /* s->gicd_ipriority[] -> GICD_IPRIORITYRn */
402     kvm_dist_put_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
403 
404     /* CPU Interface state (one per CPU) */
405 
406     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
407         GICv3CPUState *c = &s->cpu[ncpu];
408         int num_pri_bits;
409 
410         kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, true);
411         kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
412                         &c->icc_ctlr_el1[GICV3_NS], true);
413         kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
414                         &c->icc_igrpen[GICV3_G0], true);
415         kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
416                         &c->icc_igrpen[GICV3_G1NS], true);
417         kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, true);
418         kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], true);
419         kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], true);
420 
421         num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
422                         ICC_CTLR_EL1_PRIBITS_MASK) >>
423                         ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
424 
425         switch (num_pri_bits) {
426         case 7:
427             reg64 = c->icc_apr[GICV3_G0][3];
428             kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, true);
429             reg64 = c->icc_apr[GICV3_G0][2];
430             kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, true);
431         case 6:
432             reg64 = c->icc_apr[GICV3_G0][1];
433             kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, true);
434         default:
435             reg64 = c->icc_apr[GICV3_G0][0];
436             kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, true);
437         }
438 
439         switch (num_pri_bits) {
440         case 7:
441             reg64 = c->icc_apr[GICV3_G1NS][3];
442             kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, true);
443             reg64 = c->icc_apr[GICV3_G1NS][2];
444             kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, true);
445         case 6:
446             reg64 = c->icc_apr[GICV3_G1NS][1];
447             kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, true);
448         default:
449             reg64 = c->icc_apr[GICV3_G1NS][0];
450             kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, true);
451         }
452     }
453 }
454 
455 static void kvm_arm_gicv3_get(GICv3State *s)
456 {
457     uint32_t regl, regh, reg;
458     uint64_t reg64, redist_typer;
459     int ncpu, i;
460 
461     kvm_arm_gicv3_check(s);
462 
463     kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
464     kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
465     redist_typer = ((uint64_t)regh << 32) | regl;
466 
467     kvm_gicd_access(s, GICD_CTLR, &reg, false);
468     s->gicd_ctlr = reg;
469 
470     /* Redistributor state (one per CPU) */
471 
472     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
473         GICv3CPUState *c = &s->cpu[ncpu];
474 
475         kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, false);
476         c->gicr_ctlr = reg;
477 
478         kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, false);
479         c->gicr_statusr[GICV3_NS] = reg;
480 
481         kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, false);
482         c->gicr_waker = reg;
483 
484         kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, false);
485         c->gicr_igroupr0 = reg;
486         kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, false);
487         c->gicr_ienabler0 = reg;
488         kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, false);
489         c->edge_trigger = half_unshuffle32(reg >> 1) << 16;
490         kvm_gic_line_level_access(s, 0, ncpu, &reg, false);
491         c->level = reg;
492         kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, false);
493         c->gicr_ipendr0 = reg;
494         kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, false);
495         c->gicr_iactiver0 = reg;
496 
497         for (i = 0; i < GIC_INTERNAL; i += 4) {
498             kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, false);
499             c->gicr_ipriorityr[i] = extract32(reg, 0, 8);
500             c->gicr_ipriorityr[i + 1] = extract32(reg, 8, 8);
501             c->gicr_ipriorityr[i + 2] = extract32(reg, 16, 8);
502             c->gicr_ipriorityr[i + 3] = extract32(reg, 24, 8);
503         }
504     }
505 
506     if (redist_typer & GICR_TYPER_PLPIS) {
507         for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
508             GICv3CPUState *c = &s->cpu[ncpu];
509 
510             kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, false);
511             kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, false);
512             c->gicr_propbaser = ((uint64_t)regh << 32) | regl;
513 
514             kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, false);
515             kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, false);
516             c->gicr_pendbaser = ((uint64_t)regh << 32) | regl;
517         }
518     }
519 
520     /* Distributor state (shared between all CPUs */
521 
522     kvm_gicd_access(s, GICD_STATUSR, &reg, false);
523     s->gicd_statusr[GICV3_NS] = reg;
524 
525     /* GICD_IGROUPRn -> s->group bitmap */
526     kvm_dist_getbmp(s, GICD_IGROUPR, s->group);
527 
528     /* GICD_ISENABLERn -> s->enabled bitmap */
529     kvm_dist_getbmp(s, GICD_ISENABLER, s->enabled);
530 
531     /* Line level of irq */
532     kvm_gic_get_line_level_bmp(s, s->level);
533     /* GICD_ISPENDRn -> s->pending bitmap */
534     kvm_dist_getbmp(s, GICD_ISPENDR, s->pending);
535 
536     /* GICD_ISACTIVERn -> s->active bitmap */
537     kvm_dist_getbmp(s, GICD_ISACTIVER, s->active);
538 
539     /* GICD_ICFGRn -> s->trigger bitmap */
540     kvm_dist_get_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
541 
542     /* GICD_IPRIORITYRn -> s->gicd_ipriority[] */
543     kvm_dist_get_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
544 
545     /* GICD_IROUTERn -> s->gicd_irouter[irq] */
546     for (i = GIC_INTERNAL; i < s->num_irq; i++) {
547         uint32_t offset;
548 
549         offset = GICD_IROUTER + (sizeof(uint32_t) * i);
550         kvm_gicd_access(s, offset, &regl, false);
551         offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
552         kvm_gicd_access(s, offset, &regh, false);
553         s->gicd_irouter[i] = ((uint64_t)regh << 32) | regl;
554     }
555 
556     /*****************************************************************
557      * CPU Interface(s) State
558      */
559 
560     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
561         GICv3CPUState *c = &s->cpu[ncpu];
562         int num_pri_bits;
563 
564         kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, false);
565         kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
566                         &c->icc_ctlr_el1[GICV3_NS], false);
567         kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
568                         &c->icc_igrpen[GICV3_G0], false);
569         kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
570                         &c->icc_igrpen[GICV3_G1NS], false);
571         kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, false);
572         kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], false);
573         kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], false);
574         num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
575                         ICC_CTLR_EL1_PRIBITS_MASK) >>
576                         ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
577 
578         switch (num_pri_bits) {
579         case 7:
580             kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, false);
581             c->icc_apr[GICV3_G0][3] = reg64;
582             kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, false);
583             c->icc_apr[GICV3_G0][2] = reg64;
584         case 6:
585             kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, false);
586             c->icc_apr[GICV3_G0][1] = reg64;
587         default:
588             kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, false);
589             c->icc_apr[GICV3_G0][0] = reg64;
590         }
591 
592         switch (num_pri_bits) {
593         case 7:
594             kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, false);
595             c->icc_apr[GICV3_G1NS][3] = reg64;
596             kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, false);
597             c->icc_apr[GICV3_G1NS][2] = reg64;
598         case 6:
599             kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, false);
600             c->icc_apr[GICV3_G1NS][1] = reg64;
601         default:
602             kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, false);
603             c->icc_apr[GICV3_G1NS][0] = reg64;
604         }
605     }
606 }
607 
608 static void arm_gicv3_icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
609 {
610     ARMCPU *cpu;
611     GICv3State *s;
612     GICv3CPUState *c;
613 
614     c = (GICv3CPUState *)env->gicv3state;
615     s = c->gic;
616     cpu = ARM_CPU(c->cpu);
617 
618     c->icc_pmr_el1 = 0;
619     c->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
620     c->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
621     c->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR;
622 
623     c->icc_sre_el1 = 0x7;
624     memset(c->icc_apr, 0, sizeof(c->icc_apr));
625     memset(c->icc_igrpen, 0, sizeof(c->icc_igrpen));
626 
627     if (s->migration_blocker) {
628         return;
629     }
630 
631     /* Initialize to actual HW supported configuration */
632     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
633                       KVM_VGIC_ATTR(ICC_CTLR_EL1, cpu->mp_affinity),
634                       &c->icc_ctlr_el1[GICV3_NS], false, &error_abort);
635 
636     c->icc_ctlr_el1[GICV3_S] = c->icc_ctlr_el1[GICV3_NS];
637 }
638 
639 static void kvm_arm_gicv3_reset(DeviceState *dev)
640 {
641     GICv3State *s = ARM_GICV3_COMMON(dev);
642     KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
643 
644     DPRINTF("Reset\n");
645 
646     kgc->parent_reset(dev);
647 
648     if (s->migration_blocker) {
649         DPRINTF("Cannot put kernel gic state, no kernel interface\n");
650         return;
651     }
652 
653     kvm_arm_gicv3_put(s);
654 }
655 
656 /*
657  * CPU interface registers of GIC needs to be reset on CPU reset.
658  * For the calling arm_gicv3_icc_reset() on CPU reset, we register
659  * below ARMCPRegInfo. As we reset the whole cpu interface under single
660  * register reset, we define only one register of CPU interface instead
661  * of defining all the registers.
662  */
663 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
664     { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
665       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
666       /*
667        * If ARM_CP_NOP is used, resetfn is not called,
668        * So ARM_CP_NO_RAW is appropriate type.
669        */
670       .type = ARM_CP_NO_RAW,
671       .access = PL1_RW,
672       .readfn = arm_cp_read_zero,
673       .writefn = arm_cp_write_ignore,
674       /*
675        * We hang the whole cpu interface reset routine off here
676        * rather than parcelling it out into one little function
677        * per register
678        */
679       .resetfn = arm_gicv3_icc_reset,
680     },
681     REGINFO_SENTINEL
682 };
683 
684 /**
685  * vm_change_state_handler - VM change state callback aiming at flushing
686  * RDIST pending tables into guest RAM
687  *
688  * The tables get flushed to guest RAM whenever the VM gets stopped.
689  */
690 static void vm_change_state_handler(void *opaque, int running,
691                                     RunState state)
692 {
693     GICv3State *s = (GICv3State *)opaque;
694     Error *err = NULL;
695     int ret;
696 
697     if (running) {
698         return;
699     }
700 
701     ret = kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
702                            KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES,
703                            NULL, true, &err);
704     if (err) {
705         error_report_err(err);
706     }
707     if (ret < 0 && ret != -EFAULT) {
708         abort();
709     }
710 }
711 
712 
713 static void kvm_arm_gicv3_realize(DeviceState *dev, Error **errp)
714 {
715     GICv3State *s = KVM_ARM_GICV3(dev);
716     KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
717     Error *local_err = NULL;
718     int i;
719 
720     DPRINTF("kvm_arm_gicv3_realize\n");
721 
722     kgc->parent_realize(dev, &local_err);
723     if (local_err) {
724         error_propagate(errp, local_err);
725         return;
726     }
727 
728     if (s->security_extn) {
729         error_setg(errp, "the in-kernel VGICv3 does not implement the "
730                    "security extensions");
731         return;
732     }
733 
734     gicv3_init_irqs_and_mmio(s, kvm_arm_gicv3_set_irq, NULL);
735 
736     for (i = 0; i < s->num_cpu; i++) {
737         ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
738 
739         define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
740     }
741 
742     /* Try to create the device via the device control API */
743     s->dev_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V3, false);
744     if (s->dev_fd < 0) {
745         error_setg_errno(errp, -s->dev_fd, "error creating in-kernel VGIC");
746         return;
747     }
748 
749     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS,
750                       0, &s->num_irq, true, &error_abort);
751 
752     /* Tell the kernel to complete VGIC initialization now */
753     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
754                       KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true, &error_abort);
755 
756     kvm_arm_register_device(&s->iomem_dist, -1, KVM_DEV_ARM_VGIC_GRP_ADDR,
757                             KVM_VGIC_V3_ADDR_TYPE_DIST, s->dev_fd);
758     kvm_arm_register_device(&s->iomem_redist, -1, KVM_DEV_ARM_VGIC_GRP_ADDR,
759                             KVM_VGIC_V3_ADDR_TYPE_REDIST, s->dev_fd);
760 
761     if (kvm_has_gsi_routing()) {
762         /* set up irq routing */
763         kvm_init_irq_routing(kvm_state);
764         for (i = 0; i < s->num_irq - GIC_INTERNAL; ++i) {
765             kvm_irqchip_add_irq_route(kvm_state, i, 0, i);
766         }
767 
768         kvm_gsi_routing_allowed = true;
769 
770         kvm_irqchip_commit_routes(kvm_state);
771     }
772 
773     if (!kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
774                                GICD_CTLR)) {
775         error_setg(&s->migration_blocker, "This operating system kernel does "
776                                           "not support vGICv3 migration");
777         migrate_add_blocker(s->migration_blocker, &local_err);
778         if (local_err) {
779             error_propagate(errp, local_err);
780             error_free(s->migration_blocker);
781             return;
782         }
783     }
784     if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
785                               KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES)) {
786         qemu_add_vm_change_state_handler(vm_change_state_handler, s);
787     }
788 }
789 
790 static void kvm_arm_gicv3_class_init(ObjectClass *klass, void *data)
791 {
792     DeviceClass *dc = DEVICE_CLASS(klass);
793     ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass);
794     KVMARMGICv3Class *kgc = KVM_ARM_GICV3_CLASS(klass);
795 
796     agcc->pre_save = kvm_arm_gicv3_get;
797     agcc->post_load = kvm_arm_gicv3_put;
798     kgc->parent_realize = dc->realize;
799     kgc->parent_reset = dc->reset;
800     dc->realize = kvm_arm_gicv3_realize;
801     dc->reset = kvm_arm_gicv3_reset;
802 }
803 
804 static const TypeInfo kvm_arm_gicv3_info = {
805     .name = TYPE_KVM_ARM_GICV3,
806     .parent = TYPE_ARM_GICV3_COMMON,
807     .instance_size = sizeof(GICv3State),
808     .class_init = kvm_arm_gicv3_class_init,
809     .class_size = sizeof(KVMARMGICv3Class),
810 };
811 
812 static void kvm_arm_gicv3_register_types(void)
813 {
814     type_register_static(&kvm_arm_gicv3_info);
815 }
816 
817 type_init(kvm_arm_gicv3_register_types)
818