1 /* 2 * ARM Generic Interrupt Controller using KVM in-kernel support 3 * 4 * Copyright (c) 2015 Samsung Electronics Co., Ltd. 5 * Written by Pavel Fedin 6 * Based on vGICv2 code by Peter Maydell 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation, either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License along 19 * with this program; if not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include "qemu/osdep.h" 23 #include "qapi/error.h" 24 #include "hw/intc/arm_gicv3_common.h" 25 #include "hw/sysbus.h" 26 #include "qemu/error-report.h" 27 #include "sysemu/kvm.h" 28 #include "kvm_arm.h" 29 #include "gicv3_internal.h" 30 #include "vgic_common.h" 31 #include "migration/migration.h" 32 33 #ifdef DEBUG_GICV3_KVM 34 #define DPRINTF(fmt, ...) \ 35 do { fprintf(stderr, "kvm_gicv3: " fmt, ## __VA_ARGS__); } while (0) 36 #else 37 #define DPRINTF(fmt, ...) \ 38 do { } while (0) 39 #endif 40 41 #define TYPE_KVM_ARM_GICV3 "kvm-arm-gicv3" 42 #define KVM_ARM_GICV3(obj) \ 43 OBJECT_CHECK(GICv3State, (obj), TYPE_KVM_ARM_GICV3) 44 #define KVM_ARM_GICV3_CLASS(klass) \ 45 OBJECT_CLASS_CHECK(KVMARMGICv3Class, (klass), TYPE_KVM_ARM_GICV3) 46 #define KVM_ARM_GICV3_GET_CLASS(obj) \ 47 OBJECT_GET_CLASS(KVMARMGICv3Class, (obj), TYPE_KVM_ARM_GICV3) 48 49 #define KVM_DEV_ARM_VGIC_SYSREG(op0, op1, crn, crm, op2) \ 50 (ARM64_SYS_REG_SHIFT_MASK(op0, OP0) | \ 51 ARM64_SYS_REG_SHIFT_MASK(op1, OP1) | \ 52 ARM64_SYS_REG_SHIFT_MASK(crn, CRN) | \ 53 ARM64_SYS_REG_SHIFT_MASK(crm, CRM) | \ 54 ARM64_SYS_REG_SHIFT_MASK(op2, OP2)) 55 56 #define ICC_PMR_EL1 \ 57 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 4, 6, 0) 58 #define ICC_BPR0_EL1 \ 59 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 3) 60 #define ICC_AP0R_EL1(n) \ 61 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 4 | n) 62 #define ICC_AP1R_EL1(n) \ 63 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 9, n) 64 #define ICC_BPR1_EL1 \ 65 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 3) 66 #define ICC_CTLR_EL1 \ 67 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 4) 68 #define ICC_SRE_EL1 \ 69 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 5) 70 #define ICC_IGRPEN0_EL1 \ 71 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 6) 72 #define ICC_IGRPEN1_EL1 \ 73 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 7) 74 75 typedef struct KVMARMGICv3Class { 76 ARMGICv3CommonClass parent_class; 77 DeviceRealize parent_realize; 78 void (*parent_reset)(DeviceState *dev); 79 } KVMARMGICv3Class; 80 81 static void kvm_arm_gicv3_set_irq(void *opaque, int irq, int level) 82 { 83 GICv3State *s = (GICv3State *)opaque; 84 85 kvm_arm_gic_set_irq(s->num_irq, irq, level); 86 } 87 88 #define KVM_VGIC_ATTR(reg, typer) \ 89 ((typer & KVM_DEV_ARM_VGIC_V3_MPIDR_MASK) | (reg)) 90 91 static inline void kvm_gicd_access(GICv3State *s, int offset, 92 uint32_t *val, bool write) 93 { 94 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS, 95 KVM_VGIC_ATTR(offset, 0), 96 val, write); 97 } 98 99 static inline void kvm_gicr_access(GICv3State *s, int offset, int cpu, 100 uint32_t *val, bool write) 101 { 102 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS, 103 KVM_VGIC_ATTR(offset, s->cpu[cpu].gicr_typer), 104 val, write); 105 } 106 107 static inline void kvm_gicc_access(GICv3State *s, uint64_t reg, int cpu, 108 uint64_t *val, bool write) 109 { 110 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS, 111 KVM_VGIC_ATTR(reg, s->cpu[cpu].gicr_typer), 112 val, write); 113 } 114 115 static inline void kvm_gic_line_level_access(GICv3State *s, int irq, int cpu, 116 uint32_t *val, bool write) 117 { 118 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO, 119 KVM_VGIC_ATTR(irq, s->cpu[cpu].gicr_typer) | 120 (VGIC_LEVEL_INFO_LINE_LEVEL << 121 KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT), 122 val, write); 123 } 124 125 /* Loop through each distributor IRQ related register; since bits 126 * corresponding to SPIs and PPIs are RAZ/WI when affinity routing 127 * is enabled, we skip those. 128 */ 129 #define for_each_dist_irq_reg(_irq, _max, _field_width) \ 130 for (_irq = GIC_INTERNAL; _irq < _max; _irq += (32 / _field_width)) 131 132 static void kvm_dist_get_priority(GICv3State *s, uint32_t offset, uint8_t *bmp) 133 { 134 uint32_t reg, *field; 135 int irq; 136 137 field = (uint32_t *)bmp; 138 for_each_dist_irq_reg(irq, s->num_irq, 8) { 139 kvm_gicd_access(s, offset, ®, false); 140 *field = reg; 141 offset += 4; 142 field++; 143 } 144 } 145 146 static void kvm_dist_put_priority(GICv3State *s, uint32_t offset, uint8_t *bmp) 147 { 148 uint32_t reg, *field; 149 int irq; 150 151 field = (uint32_t *)bmp; 152 for_each_dist_irq_reg(irq, s->num_irq, 8) { 153 reg = *field; 154 kvm_gicd_access(s, offset, ®, true); 155 offset += 4; 156 field++; 157 } 158 } 159 160 static void kvm_dist_get_edge_trigger(GICv3State *s, uint32_t offset, 161 uint32_t *bmp) 162 { 163 uint32_t reg; 164 int irq; 165 166 for_each_dist_irq_reg(irq, s->num_irq, 2) { 167 kvm_gicd_access(s, offset, ®, false); 168 reg = half_unshuffle32(reg >> 1); 169 if (irq % 32 != 0) { 170 reg = (reg << 16); 171 } 172 *gic_bmp_ptr32(bmp, irq) |= reg; 173 offset += 4; 174 } 175 } 176 177 static void kvm_dist_put_edge_trigger(GICv3State *s, uint32_t offset, 178 uint32_t *bmp) 179 { 180 uint32_t reg; 181 int irq; 182 183 for_each_dist_irq_reg(irq, s->num_irq, 2) { 184 reg = *gic_bmp_ptr32(bmp, irq); 185 if (irq % 32 != 0) { 186 reg = (reg & 0xffff0000) >> 16; 187 } else { 188 reg = reg & 0xffff; 189 } 190 reg = half_shuffle32(reg) << 1; 191 kvm_gicd_access(s, offset, ®, true); 192 offset += 4; 193 } 194 } 195 196 static void kvm_gic_get_line_level_bmp(GICv3State *s, uint32_t *bmp) 197 { 198 uint32_t reg; 199 int irq; 200 201 for_each_dist_irq_reg(irq, s->num_irq, 1) { 202 kvm_gic_line_level_access(s, irq, 0, ®, false); 203 *gic_bmp_ptr32(bmp, irq) = reg; 204 } 205 } 206 207 static void kvm_gic_put_line_level_bmp(GICv3State *s, uint32_t *bmp) 208 { 209 uint32_t reg; 210 int irq; 211 212 for_each_dist_irq_reg(irq, s->num_irq, 1) { 213 reg = *gic_bmp_ptr32(bmp, irq); 214 kvm_gic_line_level_access(s, irq, 0, ®, true); 215 } 216 } 217 218 /* Read a bitmap register group from the kernel VGIC. */ 219 static void kvm_dist_getbmp(GICv3State *s, uint32_t offset, uint32_t *bmp) 220 { 221 uint32_t reg; 222 int irq; 223 224 for_each_dist_irq_reg(irq, s->num_irq, 1) { 225 kvm_gicd_access(s, offset, ®, false); 226 *gic_bmp_ptr32(bmp, irq) = reg; 227 offset += 4; 228 } 229 } 230 231 static void kvm_dist_putbmp(GICv3State *s, uint32_t offset, 232 uint32_t clroffset, uint32_t *bmp) 233 { 234 uint32_t reg; 235 int irq; 236 237 for_each_dist_irq_reg(irq, s->num_irq, 1) { 238 /* If this bitmap is a set/clear register pair, first write to the 239 * clear-reg to clear all bits before using the set-reg to write 240 * the 1 bits. 241 */ 242 if (clroffset != 0) { 243 reg = 0; 244 kvm_gicd_access(s, clroffset, ®, true); 245 } 246 reg = *gic_bmp_ptr32(bmp, irq); 247 kvm_gicd_access(s, offset, ®, true); 248 offset += 4; 249 } 250 } 251 252 static void kvm_arm_gicv3_check(GICv3State *s) 253 { 254 uint32_t reg; 255 uint32_t num_irq; 256 257 /* Sanity checking s->num_irq */ 258 kvm_gicd_access(s, GICD_TYPER, ®, false); 259 num_irq = ((reg & 0x1f) + 1) * 32; 260 261 if (num_irq < s->num_irq) { 262 error_report("Model requests %u IRQs, but kernel supports max %u", 263 s->num_irq, num_irq); 264 abort(); 265 } 266 } 267 268 static void kvm_arm_gicv3_put(GICv3State *s) 269 { 270 uint32_t regl, regh, reg; 271 uint64_t reg64, redist_typer; 272 int ncpu, i; 273 274 kvm_arm_gicv3_check(s); 275 276 kvm_gicr_access(s, GICR_TYPER, 0, ®l, false); 277 kvm_gicr_access(s, GICR_TYPER + 4, 0, ®h, false); 278 redist_typer = ((uint64_t)regh << 32) | regl; 279 280 reg = s->gicd_ctlr; 281 kvm_gicd_access(s, GICD_CTLR, ®, true); 282 283 if (redist_typer & GICR_TYPER_PLPIS) { 284 /* Set base addresses before LPIs are enabled by GICR_CTLR write */ 285 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) { 286 GICv3CPUState *c = &s->cpu[ncpu]; 287 288 reg64 = c->gicr_propbaser; 289 regl = (uint32_t)reg64; 290 kvm_gicr_access(s, GICR_PROPBASER, ncpu, ®l, true); 291 regh = (uint32_t)(reg64 >> 32); 292 kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, ®h, true); 293 294 reg64 = c->gicr_pendbaser; 295 if (!c->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) { 296 /* Setting PTZ is advised if LPIs are disabled, to reduce 297 * GIC initialization time. 298 */ 299 reg64 |= GICR_PENDBASER_PTZ; 300 } 301 regl = (uint32_t)reg64; 302 kvm_gicr_access(s, GICR_PENDBASER, ncpu, ®l, true); 303 regh = (uint32_t)(reg64 >> 32); 304 kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, ®h, true); 305 } 306 } 307 308 /* Redistributor state (one per CPU) */ 309 310 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) { 311 GICv3CPUState *c = &s->cpu[ncpu]; 312 313 reg = c->gicr_ctlr; 314 kvm_gicr_access(s, GICR_CTLR, ncpu, ®, true); 315 316 reg = c->gicr_statusr[GICV3_NS]; 317 kvm_gicr_access(s, GICR_STATUSR, ncpu, ®, true); 318 319 reg = c->gicr_waker; 320 kvm_gicr_access(s, GICR_WAKER, ncpu, ®, true); 321 322 reg = c->gicr_igroupr0; 323 kvm_gicr_access(s, GICR_IGROUPR0, ncpu, ®, true); 324 325 reg = ~0; 326 kvm_gicr_access(s, GICR_ICENABLER0, ncpu, ®, true); 327 reg = c->gicr_ienabler0; 328 kvm_gicr_access(s, GICR_ISENABLER0, ncpu, ®, true); 329 330 /* Restore config before pending so we treat level/edge correctly */ 331 reg = half_shuffle32(c->edge_trigger >> 16) << 1; 332 kvm_gicr_access(s, GICR_ICFGR1, ncpu, ®, true); 333 334 reg = c->level; 335 kvm_gic_line_level_access(s, 0, ncpu, ®, true); 336 337 reg = ~0; 338 kvm_gicr_access(s, GICR_ICPENDR0, ncpu, ®, true); 339 reg = c->gicr_ipendr0; 340 kvm_gicr_access(s, GICR_ISPENDR0, ncpu, ®, true); 341 342 reg = ~0; 343 kvm_gicr_access(s, GICR_ICACTIVER0, ncpu, ®, true); 344 reg = c->gicr_iactiver0; 345 kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, ®, true); 346 347 for (i = 0; i < GIC_INTERNAL; i += 4) { 348 reg = c->gicr_ipriorityr[i] | 349 (c->gicr_ipriorityr[i + 1] << 8) | 350 (c->gicr_ipriorityr[i + 2] << 16) | 351 (c->gicr_ipriorityr[i + 3] << 24); 352 kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, ®, true); 353 } 354 } 355 356 /* Distributor state (shared between all CPUs */ 357 reg = s->gicd_statusr[GICV3_NS]; 358 kvm_gicd_access(s, GICD_STATUSR, ®, true); 359 360 /* s->enable bitmap -> GICD_ISENABLERn */ 361 kvm_dist_putbmp(s, GICD_ISENABLER, GICD_ICENABLER, s->enabled); 362 363 /* s->group bitmap -> GICD_IGROUPRn */ 364 kvm_dist_putbmp(s, GICD_IGROUPR, 0, s->group); 365 366 /* Restore targets before pending to ensure the pending state is set on 367 * the appropriate CPU interfaces in the kernel 368 */ 369 370 /* s->gicd_irouter[irq] -> GICD_IROUTERn 371 * We can't use kvm_dist_put() here because the registers are 64-bit 372 */ 373 for (i = GIC_INTERNAL; i < s->num_irq; i++) { 374 uint32_t offset; 375 376 offset = GICD_IROUTER + (sizeof(uint32_t) * i); 377 reg = (uint32_t)s->gicd_irouter[i]; 378 kvm_gicd_access(s, offset, ®, true); 379 380 offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4; 381 reg = (uint32_t)(s->gicd_irouter[i] >> 32); 382 kvm_gicd_access(s, offset, ®, true); 383 } 384 385 /* s->trigger bitmap -> GICD_ICFGRn 386 * (restore configuration registers before pending IRQs so we treat 387 * level/edge correctly) 388 */ 389 kvm_dist_put_edge_trigger(s, GICD_ICFGR, s->edge_trigger); 390 391 /* s->level bitmap -> line_level */ 392 kvm_gic_put_line_level_bmp(s, s->level); 393 394 /* s->pending bitmap -> GICD_ISPENDRn */ 395 kvm_dist_putbmp(s, GICD_ISPENDR, GICD_ICPENDR, s->pending); 396 397 /* s->active bitmap -> GICD_ISACTIVERn */ 398 kvm_dist_putbmp(s, GICD_ISACTIVER, GICD_ICACTIVER, s->active); 399 400 /* s->gicd_ipriority[] -> GICD_IPRIORITYRn */ 401 kvm_dist_put_priority(s, GICD_IPRIORITYR, s->gicd_ipriority); 402 403 /* CPU Interface state (one per CPU) */ 404 405 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) { 406 GICv3CPUState *c = &s->cpu[ncpu]; 407 int num_pri_bits; 408 409 kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, true); 410 kvm_gicc_access(s, ICC_CTLR_EL1, ncpu, 411 &c->icc_ctlr_el1[GICV3_NS], true); 412 kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu, 413 &c->icc_igrpen[GICV3_G0], true); 414 kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu, 415 &c->icc_igrpen[GICV3_G1NS], true); 416 kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, true); 417 kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], true); 418 kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], true); 419 420 num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] & 421 ICC_CTLR_EL1_PRIBITS_MASK) >> 422 ICC_CTLR_EL1_PRIBITS_SHIFT) + 1; 423 424 switch (num_pri_bits) { 425 case 7: 426 reg64 = c->icc_apr[GICV3_G0][3]; 427 kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, ®64, true); 428 reg64 = c->icc_apr[GICV3_G0][2]; 429 kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, ®64, true); 430 case 6: 431 reg64 = c->icc_apr[GICV3_G0][1]; 432 kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, ®64, true); 433 default: 434 reg64 = c->icc_apr[GICV3_G0][0]; 435 kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, ®64, true); 436 } 437 438 switch (num_pri_bits) { 439 case 7: 440 reg64 = c->icc_apr[GICV3_G1NS][3]; 441 kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, ®64, true); 442 reg64 = c->icc_apr[GICV3_G1NS][2]; 443 kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, ®64, true); 444 case 6: 445 reg64 = c->icc_apr[GICV3_G1NS][1]; 446 kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, ®64, true); 447 default: 448 reg64 = c->icc_apr[GICV3_G1NS][0]; 449 kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, ®64, true); 450 } 451 } 452 } 453 454 static void kvm_arm_gicv3_get(GICv3State *s) 455 { 456 uint32_t regl, regh, reg; 457 uint64_t reg64, redist_typer; 458 int ncpu, i; 459 460 kvm_arm_gicv3_check(s); 461 462 kvm_gicr_access(s, GICR_TYPER, 0, ®l, false); 463 kvm_gicr_access(s, GICR_TYPER + 4, 0, ®h, false); 464 redist_typer = ((uint64_t)regh << 32) | regl; 465 466 kvm_gicd_access(s, GICD_CTLR, ®, false); 467 s->gicd_ctlr = reg; 468 469 /* Redistributor state (one per CPU) */ 470 471 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) { 472 GICv3CPUState *c = &s->cpu[ncpu]; 473 474 kvm_gicr_access(s, GICR_CTLR, ncpu, ®, false); 475 c->gicr_ctlr = reg; 476 477 kvm_gicr_access(s, GICR_STATUSR, ncpu, ®, false); 478 c->gicr_statusr[GICV3_NS] = reg; 479 480 kvm_gicr_access(s, GICR_WAKER, ncpu, ®, false); 481 c->gicr_waker = reg; 482 483 kvm_gicr_access(s, GICR_IGROUPR0, ncpu, ®, false); 484 c->gicr_igroupr0 = reg; 485 kvm_gicr_access(s, GICR_ISENABLER0, ncpu, ®, false); 486 c->gicr_ienabler0 = reg; 487 kvm_gicr_access(s, GICR_ICFGR1, ncpu, ®, false); 488 c->edge_trigger = half_unshuffle32(reg >> 1) << 16; 489 kvm_gic_line_level_access(s, 0, ncpu, ®, false); 490 c->level = reg; 491 kvm_gicr_access(s, GICR_ISPENDR0, ncpu, ®, false); 492 c->gicr_ipendr0 = reg; 493 kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, ®, false); 494 c->gicr_iactiver0 = reg; 495 496 for (i = 0; i < GIC_INTERNAL; i += 4) { 497 kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, ®, false); 498 c->gicr_ipriorityr[i] = extract32(reg, 0, 8); 499 c->gicr_ipriorityr[i + 1] = extract32(reg, 8, 8); 500 c->gicr_ipriorityr[i + 2] = extract32(reg, 16, 8); 501 c->gicr_ipriorityr[i + 3] = extract32(reg, 24, 8); 502 } 503 } 504 505 if (redist_typer & GICR_TYPER_PLPIS) { 506 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) { 507 GICv3CPUState *c = &s->cpu[ncpu]; 508 509 kvm_gicr_access(s, GICR_PROPBASER, ncpu, ®l, false); 510 kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, ®h, false); 511 c->gicr_propbaser = ((uint64_t)regh << 32) | regl; 512 513 kvm_gicr_access(s, GICR_PENDBASER, ncpu, ®l, false); 514 kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, ®h, false); 515 c->gicr_pendbaser = ((uint64_t)regh << 32) | regl; 516 } 517 } 518 519 /* Distributor state (shared between all CPUs */ 520 521 kvm_gicd_access(s, GICD_STATUSR, ®, false); 522 s->gicd_statusr[GICV3_NS] = reg; 523 524 /* GICD_IGROUPRn -> s->group bitmap */ 525 kvm_dist_getbmp(s, GICD_IGROUPR, s->group); 526 527 /* GICD_ISENABLERn -> s->enabled bitmap */ 528 kvm_dist_getbmp(s, GICD_ISENABLER, s->enabled); 529 530 /* Line level of irq */ 531 kvm_gic_get_line_level_bmp(s, s->level); 532 /* GICD_ISPENDRn -> s->pending bitmap */ 533 kvm_dist_getbmp(s, GICD_ISPENDR, s->pending); 534 535 /* GICD_ISACTIVERn -> s->active bitmap */ 536 kvm_dist_getbmp(s, GICD_ISACTIVER, s->active); 537 538 /* GICD_ICFGRn -> s->trigger bitmap */ 539 kvm_dist_get_edge_trigger(s, GICD_ICFGR, s->edge_trigger); 540 541 /* GICD_IPRIORITYRn -> s->gicd_ipriority[] */ 542 kvm_dist_get_priority(s, GICD_IPRIORITYR, s->gicd_ipriority); 543 544 /* GICD_IROUTERn -> s->gicd_irouter[irq] */ 545 for (i = GIC_INTERNAL; i < s->num_irq; i++) { 546 uint32_t offset; 547 548 offset = GICD_IROUTER + (sizeof(uint32_t) * i); 549 kvm_gicd_access(s, offset, ®l, false); 550 offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4; 551 kvm_gicd_access(s, offset, ®h, false); 552 s->gicd_irouter[i] = ((uint64_t)regh << 32) | regl; 553 } 554 555 /***************************************************************** 556 * CPU Interface(s) State 557 */ 558 559 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) { 560 GICv3CPUState *c = &s->cpu[ncpu]; 561 int num_pri_bits; 562 563 kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, false); 564 kvm_gicc_access(s, ICC_CTLR_EL1, ncpu, 565 &c->icc_ctlr_el1[GICV3_NS], false); 566 kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu, 567 &c->icc_igrpen[GICV3_G0], false); 568 kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu, 569 &c->icc_igrpen[GICV3_G1NS], false); 570 kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, false); 571 kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], false); 572 kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], false); 573 num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] & 574 ICC_CTLR_EL1_PRIBITS_MASK) >> 575 ICC_CTLR_EL1_PRIBITS_SHIFT) + 1; 576 577 switch (num_pri_bits) { 578 case 7: 579 kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, ®64, false); 580 c->icc_apr[GICV3_G0][3] = reg64; 581 kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, ®64, false); 582 c->icc_apr[GICV3_G0][2] = reg64; 583 case 6: 584 kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, ®64, false); 585 c->icc_apr[GICV3_G0][1] = reg64; 586 default: 587 kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, ®64, false); 588 c->icc_apr[GICV3_G0][0] = reg64; 589 } 590 591 switch (num_pri_bits) { 592 case 7: 593 kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, ®64, false); 594 c->icc_apr[GICV3_G1NS][3] = reg64; 595 kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, ®64, false); 596 c->icc_apr[GICV3_G1NS][2] = reg64; 597 case 6: 598 kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, ®64, false); 599 c->icc_apr[GICV3_G1NS][1] = reg64; 600 default: 601 kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, ®64, false); 602 c->icc_apr[GICV3_G1NS][0] = reg64; 603 } 604 } 605 } 606 607 static void arm_gicv3_icc_reset(CPUARMState *env, const ARMCPRegInfo *ri) 608 { 609 ARMCPU *cpu; 610 GICv3State *s; 611 GICv3CPUState *c; 612 613 c = (GICv3CPUState *)env->gicv3state; 614 s = c->gic; 615 cpu = ARM_CPU(c->cpu); 616 617 c->icc_pmr_el1 = 0; 618 c->icc_bpr[GICV3_G0] = GIC_MIN_BPR; 619 c->icc_bpr[GICV3_G1] = GIC_MIN_BPR; 620 c->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR; 621 622 c->icc_sre_el1 = 0x7; 623 memset(c->icc_apr, 0, sizeof(c->icc_apr)); 624 memset(c->icc_igrpen, 0, sizeof(c->icc_igrpen)); 625 626 if (s->migration_blocker) { 627 return; 628 } 629 630 /* Initialize to actual HW supported configuration */ 631 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS, 632 KVM_VGIC_ATTR(ICC_CTLR_EL1, cpu->mp_affinity), 633 &c->icc_ctlr_el1[GICV3_NS], false); 634 635 c->icc_ctlr_el1[GICV3_S] = c->icc_ctlr_el1[GICV3_NS]; 636 } 637 638 static void kvm_arm_gicv3_reset(DeviceState *dev) 639 { 640 GICv3State *s = ARM_GICV3_COMMON(dev); 641 KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s); 642 643 DPRINTF("Reset\n"); 644 645 kgc->parent_reset(dev); 646 647 if (s->migration_blocker) { 648 DPRINTF("Cannot put kernel gic state, no kernel interface\n"); 649 return; 650 } 651 652 kvm_arm_gicv3_put(s); 653 } 654 655 /* 656 * CPU interface registers of GIC needs to be reset on CPU reset. 657 * For the calling arm_gicv3_icc_reset() on CPU reset, we register 658 * below ARMCPRegInfo. As we reset the whole cpu interface under single 659 * register reset, we define only one register of CPU interface instead 660 * of defining all the registers. 661 */ 662 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = { 663 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH, 664 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4, 665 /* 666 * If ARM_CP_NOP is used, resetfn is not called, 667 * So ARM_CP_NO_RAW is appropriate type. 668 */ 669 .type = ARM_CP_NO_RAW, 670 .access = PL1_RW, 671 .readfn = arm_cp_read_zero, 672 .writefn = arm_cp_write_ignore, 673 /* 674 * We hang the whole cpu interface reset routine off here 675 * rather than parcelling it out into one little function 676 * per register 677 */ 678 .resetfn = arm_gicv3_icc_reset, 679 }, 680 REGINFO_SENTINEL 681 }; 682 683 static void kvm_arm_gicv3_realize(DeviceState *dev, Error **errp) 684 { 685 GICv3State *s = KVM_ARM_GICV3(dev); 686 KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s); 687 Error *local_err = NULL; 688 int i; 689 690 DPRINTF("kvm_arm_gicv3_realize\n"); 691 692 kgc->parent_realize(dev, &local_err); 693 if (local_err) { 694 error_propagate(errp, local_err); 695 return; 696 } 697 698 if (s->security_extn) { 699 error_setg(errp, "the in-kernel VGICv3 does not implement the " 700 "security extensions"); 701 return; 702 } 703 704 gicv3_init_irqs_and_mmio(s, kvm_arm_gicv3_set_irq, NULL); 705 706 for (i = 0; i < s->num_cpu; i++) { 707 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i)); 708 709 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); 710 } 711 712 /* Try to create the device via the device control API */ 713 s->dev_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V3, false); 714 if (s->dev_fd < 0) { 715 error_setg_errno(errp, -s->dev_fd, "error creating in-kernel VGIC"); 716 return; 717 } 718 719 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 720 0, &s->num_irq, true); 721 722 /* Tell the kernel to complete VGIC initialization now */ 723 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, 724 KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true); 725 726 kvm_arm_register_device(&s->iomem_dist, -1, KVM_DEV_ARM_VGIC_GRP_ADDR, 727 KVM_VGIC_V3_ADDR_TYPE_DIST, s->dev_fd); 728 kvm_arm_register_device(&s->iomem_redist, -1, KVM_DEV_ARM_VGIC_GRP_ADDR, 729 KVM_VGIC_V3_ADDR_TYPE_REDIST, s->dev_fd); 730 731 if (kvm_has_gsi_routing()) { 732 /* set up irq routing */ 733 kvm_init_irq_routing(kvm_state); 734 for (i = 0; i < s->num_irq - GIC_INTERNAL; ++i) { 735 kvm_irqchip_add_irq_route(kvm_state, i, 0, i); 736 } 737 738 kvm_gsi_routing_allowed = true; 739 740 kvm_irqchip_commit_routes(kvm_state); 741 } 742 743 if (!kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS, 744 GICD_CTLR)) { 745 error_setg(&s->migration_blocker, "This operating system kernel does " 746 "not support vGICv3 migration"); 747 migrate_add_blocker(s->migration_blocker, &local_err); 748 if (local_err) { 749 error_propagate(errp, local_err); 750 error_free(s->migration_blocker); 751 return; 752 } 753 } 754 } 755 756 static void kvm_arm_gicv3_class_init(ObjectClass *klass, void *data) 757 { 758 DeviceClass *dc = DEVICE_CLASS(klass); 759 ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass); 760 KVMARMGICv3Class *kgc = KVM_ARM_GICV3_CLASS(klass); 761 762 agcc->pre_save = kvm_arm_gicv3_get; 763 agcc->post_load = kvm_arm_gicv3_put; 764 kgc->parent_realize = dc->realize; 765 kgc->parent_reset = dc->reset; 766 dc->realize = kvm_arm_gicv3_realize; 767 dc->reset = kvm_arm_gicv3_reset; 768 } 769 770 static const TypeInfo kvm_arm_gicv3_info = { 771 .name = TYPE_KVM_ARM_GICV3, 772 .parent = TYPE_ARM_GICV3_COMMON, 773 .instance_size = sizeof(GICv3State), 774 .class_init = kvm_arm_gicv3_class_init, 775 .class_size = sizeof(KVMARMGICv3Class), 776 }; 777 778 static void kvm_arm_gicv3_register_types(void) 779 { 780 type_register_static(&kvm_arm_gicv3_info); 781 } 782 783 type_init(kvm_arm_gicv3_register_types) 784