xref: /openbmc/qemu/hw/intc/arm_gic.c (revision de15df5ead400b7c3d0cf21c8164a7686dc81933)
1 /*
2  * ARM Generic/Distributed Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 /* This file contains implementation code for the RealView EB interrupt
11  * controller, MPCore distributed interrupt controller and ARMv7-M
12  * Nested Vectored Interrupt Controller.
13  * It is compiled in two ways:
14  *  (1) as a standalone file to produce a sysbus device which is a GIC
15  *  that can be used on the realview board and as one of the builtin
16  *  private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17  *  (2) by being directly #included into armv7m_nvic.c to produce the
18  *  armv7m_nvic device.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "hw/irq.h"
23 #include "hw/sysbus.h"
24 #include "gic_internal.h"
25 #include "qapi/error.h"
26 #include "hw/core/cpu.h"
27 #include "qemu/log.h"
28 #include "qemu/module.h"
29 #include "trace.h"
30 #include "sysemu/kvm.h"
31 
32 /* #define DEBUG_GIC */
33 
34 #ifdef DEBUG_GIC
35 #define DEBUG_GIC_GATE 1
36 #else
37 #define DEBUG_GIC_GATE 0
38 #endif
39 
40 #define DPRINTF(fmt, ...) do {                                          \
41         if (DEBUG_GIC_GATE) {                                           \
42             fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__);      \
43         }                                                               \
44     } while (0)
45 
46 static const uint8_t gic_id_11mpcore[] = {
47     0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
48 };
49 
50 static const uint8_t gic_id_gicv1[] = {
51     0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
52 };
53 
54 static const uint8_t gic_id_gicv2[] = {
55     0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
56 };
57 
58 static inline int gic_get_current_cpu(GICState *s)
59 {
60     if (s->num_cpu > 1) {
61         return current_cpu->cpu_index;
62     }
63     return 0;
64 }
65 
66 static inline int gic_get_current_vcpu(GICState *s)
67 {
68     return gic_get_current_cpu(s) + GIC_NCPU;
69 }
70 
71 /* Return true if this GIC config has interrupt groups, which is
72  * true if we're a GICv2, or a GICv1 with the security extensions.
73  */
74 static inline bool gic_has_groups(GICState *s)
75 {
76     return s->revision == 2 || s->security_extn;
77 }
78 
79 static inline bool gic_cpu_ns_access(GICState *s, int cpu, MemTxAttrs attrs)
80 {
81     return !gic_is_vcpu(cpu) && s->security_extn && !attrs.secure;
82 }
83 
84 static inline void gic_get_best_irq(GICState *s, int cpu,
85                                     int *best_irq, int *best_prio, int *group)
86 {
87     int irq;
88     int cm = 1 << cpu;
89 
90     *best_irq = 1023;
91     *best_prio = 0x100;
92 
93     for (irq = 0; irq < s->num_irq; irq++) {
94         if (GIC_DIST_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
95             (!GIC_DIST_TEST_ACTIVE(irq, cm)) &&
96             (irq < GIC_INTERNAL || GIC_DIST_TARGET(irq) & cm)) {
97             if (GIC_DIST_GET_PRIORITY(irq, cpu) < *best_prio) {
98                 *best_prio = GIC_DIST_GET_PRIORITY(irq, cpu);
99                 *best_irq = irq;
100             }
101         }
102     }
103 
104     if (*best_irq < 1023) {
105         *group = GIC_DIST_TEST_GROUP(*best_irq, cm);
106     }
107 }
108 
109 static inline void gic_get_best_virq(GICState *s, int cpu,
110                                      int *best_irq, int *best_prio, int *group)
111 {
112     int lr_idx = 0;
113 
114     *best_irq = 1023;
115     *best_prio = 0x100;
116 
117     for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
118         uint32_t lr_entry = s->h_lr[lr_idx][cpu];
119         int state = GICH_LR_STATE(lr_entry);
120 
121         if (state == GICH_LR_STATE_PENDING) {
122             int prio = GICH_LR_PRIORITY(lr_entry);
123 
124             if (prio < *best_prio) {
125                 *best_prio = prio;
126                 *best_irq = GICH_LR_VIRT_ID(lr_entry);
127                 *group = GICH_LR_GROUP(lr_entry);
128             }
129         }
130     }
131 }
132 
133 /* Return true if IRQ signaling is enabled for the given cpu and at least one
134  * of the given groups:
135  *   - in the non-virt case, the distributor must be enabled for one of the
136  *   given groups
137  *   - in the virt case, the virtual interface must be enabled.
138  *   - in all cases, the (v)CPU interface must be enabled for one of the given
139  *   groups.
140  */
141 static inline bool gic_irq_signaling_enabled(GICState *s, int cpu, bool virt,
142                                     int group_mask)
143 {
144     if (!virt && !(s->ctlr & group_mask)) {
145         return false;
146     }
147 
148     if (virt && !(s->h_hcr[cpu] & R_GICH_HCR_EN_MASK)) {
149         return false;
150     }
151 
152     if (!(s->cpu_ctlr[cpu] & group_mask)) {
153         return false;
154     }
155 
156     return true;
157 }
158 
159 /* TODO: Many places that call this routine could be optimized.  */
160 /* Update interrupt status after enabled or pending bits have been changed.  */
161 static inline void gic_update_internal(GICState *s, bool virt)
162 {
163     int best_irq;
164     int best_prio;
165     int irq_level, fiq_level;
166     int cpu, cpu_iface;
167     int group = 0;
168     qemu_irq *irq_lines = virt ? s->parent_virq : s->parent_irq;
169     qemu_irq *fiq_lines = virt ? s->parent_vfiq : s->parent_fiq;
170 
171     for (cpu = 0; cpu < s->num_cpu; cpu++) {
172         cpu_iface = virt ? (cpu + GIC_NCPU) : cpu;
173 
174         s->current_pending[cpu_iface] = 1023;
175         if (!gic_irq_signaling_enabled(s, cpu, virt,
176                                        GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1)) {
177             qemu_irq_lower(irq_lines[cpu]);
178             qemu_irq_lower(fiq_lines[cpu]);
179             continue;
180         }
181 
182         if (virt) {
183             gic_get_best_virq(s, cpu, &best_irq, &best_prio, &group);
184         } else {
185             gic_get_best_irq(s, cpu, &best_irq, &best_prio, &group);
186         }
187 
188         if (best_irq != 1023) {
189             trace_gic_update_bestirq(virt ? "vcpu" : "cpu", cpu,
190                                      best_irq, best_prio,
191                                      s->priority_mask[cpu_iface],
192                                      s->running_priority[cpu_iface]);
193         }
194 
195         irq_level = fiq_level = 0;
196 
197         if (best_prio < s->priority_mask[cpu_iface]) {
198             s->current_pending[cpu_iface] = best_irq;
199             if (best_prio < s->running_priority[cpu_iface]) {
200                 if (gic_irq_signaling_enabled(s, cpu, virt, 1 << group)) {
201                     if (group == 0 &&
202                         s->cpu_ctlr[cpu_iface] & GICC_CTLR_FIQ_EN) {
203                         DPRINTF("Raised pending FIQ %d (cpu %d)\n",
204                                 best_irq, cpu_iface);
205                         fiq_level = 1;
206                         trace_gic_update_set_irq(cpu, virt ? "vfiq" : "fiq",
207                                                  fiq_level);
208                     } else {
209                         DPRINTF("Raised pending IRQ %d (cpu %d)\n",
210                                 best_irq, cpu_iface);
211                         irq_level = 1;
212                         trace_gic_update_set_irq(cpu, virt ? "virq" : "irq",
213                                                  irq_level);
214                     }
215                 }
216             }
217         }
218 
219         qemu_set_irq(irq_lines[cpu], irq_level);
220         qemu_set_irq(fiq_lines[cpu], fiq_level);
221     }
222 }
223 
224 static void gic_update(GICState *s)
225 {
226     gic_update_internal(s, false);
227 }
228 
229 /* Return true if this LR is empty, i.e. the corresponding bit
230  * in ELRSR is set.
231  */
232 static inline bool gic_lr_entry_is_free(uint32_t entry)
233 {
234     return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
235         && (GICH_LR_HW(entry) || !GICH_LR_EOI(entry));
236 }
237 
238 /* Return true if this LR should trigger an EOI maintenance interrupt, i.e. the
239  * corrsponding bit in EISR is set.
240  */
241 static inline bool gic_lr_entry_is_eoi(uint32_t entry)
242 {
243     return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
244         && !GICH_LR_HW(entry) && GICH_LR_EOI(entry);
245 }
246 
247 static inline void gic_extract_lr_info(GICState *s, int cpu,
248                                 int *num_eoi, int *num_valid, int *num_pending)
249 {
250     int lr_idx;
251 
252     *num_eoi = 0;
253     *num_valid = 0;
254     *num_pending = 0;
255 
256     for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
257         uint32_t *entry = &s->h_lr[lr_idx][cpu];
258 
259         if (gic_lr_entry_is_eoi(*entry)) {
260             (*num_eoi)++;
261         }
262 
263         if (GICH_LR_STATE(*entry) != GICH_LR_STATE_INVALID) {
264             (*num_valid)++;
265         }
266 
267         if (GICH_LR_STATE(*entry) == GICH_LR_STATE_PENDING) {
268             (*num_pending)++;
269         }
270     }
271 }
272 
273 static void gic_compute_misr(GICState *s, int cpu)
274 {
275     uint32_t value = 0;
276     int vcpu = cpu + GIC_NCPU;
277 
278     int num_eoi, num_valid, num_pending;
279 
280     gic_extract_lr_info(s, cpu, &num_eoi, &num_valid, &num_pending);
281 
282     /* EOI */
283     if (num_eoi) {
284         value |= R_GICH_MISR_EOI_MASK;
285     }
286 
287     /* U: true if only 0 or 1 LR entry is valid */
288     if ((s->h_hcr[cpu] & R_GICH_HCR_UIE_MASK) && (num_valid < 2)) {
289         value |= R_GICH_MISR_U_MASK;
290     }
291 
292     /* LRENP: EOICount is not 0 */
293     if ((s->h_hcr[cpu] & R_GICH_HCR_LRENPIE_MASK) &&
294         ((s->h_hcr[cpu] & R_GICH_HCR_EOICount_MASK) != 0)) {
295         value |= R_GICH_MISR_LRENP_MASK;
296     }
297 
298     /* NP: no pending interrupts */
299     if ((s->h_hcr[cpu] & R_GICH_HCR_NPIE_MASK) && (num_pending == 0)) {
300         value |= R_GICH_MISR_NP_MASK;
301     }
302 
303     /* VGrp0E: group0 virq signaling enabled */
304     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0EIE_MASK) &&
305         (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
306         value |= R_GICH_MISR_VGrp0E_MASK;
307     }
308 
309     /* VGrp0D: group0 virq signaling disabled */
310     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0DIE_MASK) &&
311         !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
312         value |= R_GICH_MISR_VGrp0D_MASK;
313     }
314 
315     /* VGrp1E: group1 virq signaling enabled */
316     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1EIE_MASK) &&
317         (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
318         value |= R_GICH_MISR_VGrp1E_MASK;
319     }
320 
321     /* VGrp1D: group1 virq signaling disabled */
322     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1DIE_MASK) &&
323         !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
324         value |= R_GICH_MISR_VGrp1D_MASK;
325     }
326 
327     s->h_misr[cpu] = value;
328 }
329 
330 static void gic_update_maintenance(GICState *s)
331 {
332     int cpu = 0;
333     int maint_level;
334 
335     for (cpu = 0; cpu < s->num_cpu; cpu++) {
336         gic_compute_misr(s, cpu);
337         maint_level = (s->h_hcr[cpu] & R_GICH_HCR_EN_MASK) && s->h_misr[cpu];
338 
339         trace_gic_update_maintenance_irq(cpu, maint_level);
340         qemu_set_irq(s->maintenance_irq[cpu], maint_level);
341     }
342 }
343 
344 static void gic_update_virt(GICState *s)
345 {
346     gic_update_internal(s, true);
347     gic_update_maintenance(s);
348 }
349 
350 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
351                                  int cm, int target)
352 {
353     if (level) {
354         GIC_DIST_SET_LEVEL(irq, cm);
355         if (GIC_DIST_TEST_EDGE_TRIGGER(irq) || GIC_DIST_TEST_ENABLED(irq, cm)) {
356             DPRINTF("Set %d pending mask %x\n", irq, target);
357             GIC_DIST_SET_PENDING(irq, target);
358         }
359     } else {
360         GIC_DIST_CLEAR_LEVEL(irq, cm);
361     }
362 }
363 
364 static void gic_set_irq_generic(GICState *s, int irq, int level,
365                                 int cm, int target)
366 {
367     if (level) {
368         GIC_DIST_SET_LEVEL(irq, cm);
369         DPRINTF("Set %d pending mask %x\n", irq, target);
370         if (GIC_DIST_TEST_EDGE_TRIGGER(irq)) {
371             GIC_DIST_SET_PENDING(irq, target);
372         }
373     } else {
374         GIC_DIST_CLEAR_LEVEL(irq, cm);
375     }
376 }
377 
378 /* Process a change in an external IRQ input.  */
379 static void gic_set_irq(void *opaque, int irq, int level)
380 {
381     /* Meaning of the 'irq' parameter:
382      *  [0..N-1] : external interrupts
383      *  [N..N+31] : PPI (internal) interrupts for CPU 0
384      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
385      *  ...
386      */
387     GICState *s = (GICState *)opaque;
388     int cm, target;
389     if (irq < (s->num_irq - GIC_INTERNAL)) {
390         /* The first external input line is internal interrupt 32.  */
391         cm = ALL_CPU_MASK;
392         irq += GIC_INTERNAL;
393         target = GIC_DIST_TARGET(irq);
394     } else {
395         int cpu;
396         irq -= (s->num_irq - GIC_INTERNAL);
397         cpu = irq / GIC_INTERNAL;
398         irq %= GIC_INTERNAL;
399         cm = 1 << cpu;
400         target = cm;
401     }
402 
403     assert(irq >= GIC_NR_SGIS);
404 
405     if (level == GIC_DIST_TEST_LEVEL(irq, cm)) {
406         return;
407     }
408 
409     if (s->revision == REV_11MPCORE) {
410         gic_set_irq_11mpcore(s, irq, level, cm, target);
411     } else {
412         gic_set_irq_generic(s, irq, level, cm, target);
413     }
414     trace_gic_set_irq(irq, level, cm, target);
415 
416     gic_update(s);
417 }
418 
419 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
420                                             MemTxAttrs attrs)
421 {
422     uint16_t pending_irq = s->current_pending[cpu];
423 
424     if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
425         int group = gic_test_group(s, pending_irq, cpu);
426 
427         /* On a GIC without the security extensions, reading this register
428          * behaves in the same way as a secure access to a GIC with them.
429          */
430         bool secure = !gic_cpu_ns_access(s, cpu, attrs);
431 
432         if (group == 0 && !secure) {
433             /* Group0 interrupts hidden from Non-secure access */
434             return 1023;
435         }
436         if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
437             /* Group1 interrupts only seen by Secure access if
438              * AckCtl bit set.
439              */
440             return 1022;
441         }
442     }
443     return pending_irq;
444 }
445 
446 static int gic_get_group_priority(GICState *s, int cpu, int irq)
447 {
448     /* Return the group priority of the specified interrupt
449      * (which is the top bits of its priority, with the number
450      * of bits masked determined by the applicable binary point register).
451      */
452     int bpr;
453     uint32_t mask;
454 
455     if (gic_has_groups(s) &&
456         !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
457         gic_test_group(s, irq, cpu)) {
458         bpr = s->abpr[cpu] - 1;
459         assert(bpr >= 0);
460     } else {
461         bpr = s->bpr[cpu];
462     }
463 
464     /* a BPR of 0 means the group priority bits are [7:1];
465      * a BPR of 1 means they are [7:2], and so on down to
466      * a BPR of 7 meaning no group priority bits at all.
467      */
468     mask = ~0U << ((bpr & 7) + 1);
469 
470     return gic_get_priority(s, irq, cpu) & mask;
471 }
472 
473 static void gic_activate_irq(GICState *s, int cpu, int irq)
474 {
475     /* Set the appropriate Active Priority Register bit for this IRQ,
476      * and update the running priority.
477      */
478     int prio = gic_get_group_priority(s, cpu, irq);
479     int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
480     int preemption_level = prio >> (min_bpr + 1);
481     int regno = preemption_level / 32;
482     int bitno = preemption_level % 32;
483     uint32_t *papr = NULL;
484 
485     if (gic_is_vcpu(cpu)) {
486         assert(regno == 0);
487         papr = &s->h_apr[gic_get_vcpu_real_id(cpu)];
488     } else if (gic_has_groups(s) && gic_test_group(s, irq, cpu)) {
489         papr = &s->nsapr[regno][cpu];
490     } else {
491         papr = &s->apr[regno][cpu];
492     }
493 
494     *papr |= (1 << bitno);
495 
496     s->running_priority[cpu] = prio;
497     gic_set_active(s, irq, cpu);
498 }
499 
500 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
501 {
502     /* Recalculate the current running priority for this CPU based
503      * on the set bits in the Active Priority Registers.
504      */
505     int i;
506 
507     if (gic_is_vcpu(cpu)) {
508         uint32_t apr = s->h_apr[gic_get_vcpu_real_id(cpu)];
509         if (apr) {
510             return ctz32(apr) << (GIC_VIRT_MIN_BPR + 1);
511         } else {
512             return 0x100;
513         }
514     }
515 
516     for (i = 0; i < GIC_NR_APRS; i++) {
517         uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
518         if (!apr) {
519             continue;
520         }
521         return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
522     }
523     return 0x100;
524 }
525 
526 static void gic_drop_prio(GICState *s, int cpu, int group)
527 {
528     /* Drop the priority of the currently active interrupt in the
529      * specified group.
530      *
531      * Note that we can guarantee (because of the requirement to nest
532      * GICC_IAR reads [which activate an interrupt and raise priority]
533      * with GICC_EOIR writes [which drop the priority for the interrupt])
534      * that the interrupt we're being called for is the highest priority
535      * active interrupt, meaning that it has the lowest set bit in the
536      * APR registers.
537      *
538      * If the guest does not honour the ordering constraints then the
539      * behaviour of the GIC is UNPREDICTABLE, which for us means that
540      * the values of the APR registers might become incorrect and the
541      * running priority will be wrong, so interrupts that should preempt
542      * might not do so, and interrupts that should not preempt might do so.
543      */
544     if (gic_is_vcpu(cpu)) {
545         int rcpu = gic_get_vcpu_real_id(cpu);
546 
547         if (s->h_apr[rcpu]) {
548             /* Clear lowest set bit */
549             s->h_apr[rcpu] &= s->h_apr[rcpu] - 1;
550         }
551     } else {
552         int i;
553 
554         for (i = 0; i < GIC_NR_APRS; i++) {
555             uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
556             if (!*papr) {
557                 continue;
558             }
559             /* Clear lowest set bit */
560             *papr &= *papr - 1;
561             break;
562         }
563     }
564 
565     s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
566 }
567 
568 static inline uint32_t gic_clear_pending_sgi(GICState *s, int irq, int cpu)
569 {
570     int src;
571     uint32_t ret;
572 
573     if (!gic_is_vcpu(cpu)) {
574         /* Lookup the source CPU for the SGI and clear this in the
575          * sgi_pending map.  Return the src and clear the overall pending
576          * state on this CPU if the SGI is not pending from any CPUs.
577          */
578         assert(s->sgi_pending[irq][cpu] != 0);
579         src = ctz32(s->sgi_pending[irq][cpu]);
580         s->sgi_pending[irq][cpu] &= ~(1 << src);
581         if (s->sgi_pending[irq][cpu] == 0) {
582             gic_clear_pending(s, irq, cpu);
583         }
584         ret = irq | ((src & 0x7) << 10);
585     } else {
586         uint32_t *lr_entry = gic_get_lr_entry(s, irq, cpu);
587         src = GICH_LR_CPUID(*lr_entry);
588 
589         gic_clear_pending(s, irq, cpu);
590         ret = irq | (src << 10);
591     }
592 
593     return ret;
594 }
595 
596 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
597 {
598     int ret, irq;
599 
600     /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
601      * for the case where this GIC supports grouping and the pending interrupt
602      * is in the wrong group.
603      */
604     irq = gic_get_current_pending_irq(s, cpu, attrs);
605     trace_gic_acknowledge_irq(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
606                               gic_get_vcpu_real_id(cpu), irq);
607 
608     if (irq >= GIC_MAXIRQ) {
609         DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
610         return irq;
611     }
612 
613     if (gic_get_priority(s, irq, cpu) >= s->running_priority[cpu]) {
614         DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
615         return 1023;
616     }
617 
618     gic_activate_irq(s, cpu, irq);
619 
620     if (s->revision == REV_11MPCORE) {
621         /* Clear pending flags for both level and edge triggered interrupts.
622          * Level triggered IRQs will be reasserted once they become inactive.
623          */
624         gic_clear_pending(s, irq, cpu);
625         ret = irq;
626     } else {
627         if (irq < GIC_NR_SGIS) {
628             ret = gic_clear_pending_sgi(s, irq, cpu);
629         } else {
630             gic_clear_pending(s, irq, cpu);
631             ret = irq;
632         }
633     }
634 
635     if (gic_is_vcpu(cpu)) {
636         gic_update_virt(s);
637     } else {
638         gic_update(s);
639     }
640     DPRINTF("ACK %d\n", irq);
641     return ret;
642 }
643 
644 static uint32_t gic_fullprio_mask(GICState *s, int cpu)
645 {
646     /*
647      * Return a mask word which clears the unimplemented priority
648      * bits from a priority value for an interrupt. (Not to be
649      * confused with the group priority, whose mask depends on BPR.)
650      */
651     int priBits;
652 
653     if (gic_is_vcpu(cpu)) {
654         priBits = GIC_VIRT_MAX_GROUP_PRIO_BITS;
655     } else {
656         priBits = s->n_prio_bits;
657     }
658     return ~0U << (8 - priBits);
659 }
660 
661 void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
662                       MemTxAttrs attrs)
663 {
664     if (s->security_extn && !attrs.secure) {
665         if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
666             return; /* Ignore Non-secure access of Group0 IRQ */
667         }
668         val = 0x80 | (val >> 1); /* Non-secure view */
669     }
670 
671     val &= gic_fullprio_mask(s, cpu);
672 
673     if (irq < GIC_INTERNAL) {
674         s->priority1[irq][cpu] = val;
675     } else {
676         s->priority2[(irq) - GIC_INTERNAL] = val;
677     }
678 }
679 
680 static uint32_t gic_dist_get_priority(GICState *s, int cpu, int irq,
681                                  MemTxAttrs attrs)
682 {
683     uint32_t prio = GIC_DIST_GET_PRIORITY(irq, cpu);
684 
685     if (s->security_extn && !attrs.secure) {
686         if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
687             return 0; /* Non-secure access cannot read priority of Group0 IRQ */
688         }
689         prio = (prio << 1) & 0xff; /* Non-secure view */
690     }
691     return prio & gic_fullprio_mask(s, cpu);
692 }
693 
694 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
695                                   MemTxAttrs attrs)
696 {
697     if (gic_cpu_ns_access(s, cpu, attrs)) {
698         if (s->priority_mask[cpu] & 0x80) {
699             /* Priority Mask in upper half */
700             pmask = 0x80 | (pmask >> 1);
701         } else {
702             /* Non-secure write ignored if priority mask is in lower half */
703             return;
704         }
705     }
706     s->priority_mask[cpu] = pmask & gic_fullprio_mask(s, cpu);
707 }
708 
709 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
710 {
711     uint32_t pmask = s->priority_mask[cpu];
712 
713     if (gic_cpu_ns_access(s, cpu, attrs)) {
714         if (pmask & 0x80) {
715             /* Priority Mask in upper half, return Non-secure view */
716             pmask = (pmask << 1) & 0xff;
717         } else {
718             /* Priority Mask in lower half, RAZ */
719             pmask = 0;
720         }
721     }
722     return pmask;
723 }
724 
725 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
726 {
727     uint32_t ret = s->cpu_ctlr[cpu];
728 
729     if (gic_cpu_ns_access(s, cpu, attrs)) {
730         /* Construct the NS banked view of GICC_CTLR from the correct
731          * bits of the S banked view. We don't need to move the bypass
732          * control bits because we don't implement that (IMPDEF) part
733          * of the GIC architecture.
734          */
735         ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
736     }
737     return ret;
738 }
739 
740 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
741                                 MemTxAttrs attrs)
742 {
743     uint32_t mask;
744 
745     if (gic_cpu_ns_access(s, cpu, attrs)) {
746         /* The NS view can only write certain bits in the register;
747          * the rest are unchanged
748          */
749         mask = GICC_CTLR_EN_GRP1;
750         if (s->revision == 2) {
751             mask |= GICC_CTLR_EOIMODE_NS;
752         }
753         s->cpu_ctlr[cpu] &= ~mask;
754         s->cpu_ctlr[cpu] |= (value << 1) & mask;
755     } else {
756         if (s->revision == 2) {
757             mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
758         } else {
759             mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
760         }
761         s->cpu_ctlr[cpu] = value & mask;
762     }
763     DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
764             "Group1 Interrupts %sabled\n", cpu,
765             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
766             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
767 }
768 
769 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
770 {
771     if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
772         /* Idle priority */
773         return 0xff;
774     }
775 
776     if (gic_cpu_ns_access(s, cpu, attrs)) {
777         if (s->running_priority[cpu] & 0x80) {
778             /* Running priority in upper half of range: return the Non-secure
779              * view of the priority.
780              */
781             return s->running_priority[cpu] << 1;
782         } else {
783             /* Running priority in lower half of range: RAZ */
784             return 0;
785         }
786     } else {
787         return s->running_priority[cpu];
788     }
789 }
790 
791 /* Return true if we should split priority drop and interrupt deactivation,
792  * ie whether the relevant EOIMode bit is set.
793  */
794 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
795 {
796     if (s->revision != 2) {
797         /* Before GICv2 prio-drop and deactivate are not separable */
798         return false;
799     }
800     if (gic_cpu_ns_access(s, cpu, attrs)) {
801         return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
802     }
803     return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
804 }
805 
806 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
807 {
808     int group;
809 
810     if (irq >= GIC_MAXIRQ || (!gic_is_vcpu(cpu) && irq >= s->num_irq)) {
811         /*
812          * This handles two cases:
813          * 1. If software writes the ID of a spurious interrupt [ie 1023]
814          * to the GICC_DIR, the GIC ignores that write.
815          * 2. If software writes the number of a non-existent interrupt
816          * this must be a subcase of "value written is not an active interrupt"
817          * and so this is UNPREDICTABLE. We choose to ignore it. For vCPUs,
818          * all IRQs potentially exist, so this limit does not apply.
819          */
820         return;
821     }
822 
823     if (!gic_eoi_split(s, cpu, attrs)) {
824         /* This is UNPREDICTABLE; we choose to ignore it */
825         qemu_log_mask(LOG_GUEST_ERROR,
826                       "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
827         return;
828     }
829 
830     if (gic_is_vcpu(cpu) && !gic_virq_is_valid(s, irq, cpu)) {
831         /* This vIRQ does not have an LR entry which is either active or
832          * pending and active. Increment EOICount and ignore the write.
833          */
834         int rcpu = gic_get_vcpu_real_id(cpu);
835         s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
836 
837         /* Update the virtual interface in case a maintenance interrupt should
838          * be raised.
839          */
840         gic_update_virt(s);
841         return;
842     }
843 
844     group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
845 
846     if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
847         DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
848         return;
849     }
850 
851     gic_clear_active(s, irq, cpu);
852 }
853 
854 static void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
855 {
856     int cm = 1 << cpu;
857     int group;
858 
859     DPRINTF("EOI %d\n", irq);
860     if (gic_is_vcpu(cpu)) {
861         /* The call to gic_prio_drop() will clear a bit in GICH_APR iff the
862          * running prio is < 0x100.
863          */
864         bool prio_drop = s->running_priority[cpu] < 0x100;
865 
866         if (irq >= GIC_MAXIRQ) {
867             /* Ignore spurious interrupt */
868             return;
869         }
870 
871         gic_drop_prio(s, cpu, 0);
872 
873         if (!gic_eoi_split(s, cpu, attrs)) {
874             bool valid = gic_virq_is_valid(s, irq, cpu);
875             if (prio_drop && !valid) {
876                 /* We are in a situation where:
877                  *   - V_CTRL.EOIMode is false (no EOI split),
878                  *   - The call to gic_drop_prio() cleared a bit in GICH_APR,
879                  *   - This vIRQ does not have an LR entry which is either
880                  *     active or pending and active.
881                  * In that case, we must increment EOICount.
882                  */
883                 int rcpu = gic_get_vcpu_real_id(cpu);
884                 s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
885             } else if (valid) {
886                 gic_clear_active(s, irq, cpu);
887             }
888         }
889 
890         gic_update_virt(s);
891         return;
892     }
893 
894     if (irq >= s->num_irq) {
895         /* This handles two cases:
896          * 1. If software writes the ID of a spurious interrupt [ie 1023]
897          * to the GICC_EOIR, the GIC ignores that write.
898          * 2. If software writes the number of a non-existent interrupt
899          * this must be a subcase of "value written does not match the last
900          * valid interrupt value read from the Interrupt Acknowledge
901          * register" and so this is UNPREDICTABLE. We choose to ignore it.
902          */
903         return;
904     }
905     if (s->running_priority[cpu] == 0x100) {
906         return; /* No active IRQ.  */
907     }
908 
909     if (s->revision == REV_11MPCORE) {
910         /* Mark level triggered interrupts as pending if they are still
911            raised.  */
912         if (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_ENABLED(irq, cm)
913             && GIC_DIST_TEST_LEVEL(irq, cm)
914             && (GIC_DIST_TARGET(irq) & cm) != 0) {
915             DPRINTF("Set %d pending mask %x\n", irq, cm);
916             GIC_DIST_SET_PENDING(irq, cm);
917         }
918     }
919 
920     group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
921 
922     if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
923         DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
924         return;
925     }
926 
927     /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
928      * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
929      * i.e. go ahead and complete the irq anyway.
930      */
931 
932     gic_drop_prio(s, cpu, group);
933 
934     /* In GICv2 the guest can choose to split priority-drop and deactivate */
935     if (!gic_eoi_split(s, cpu, attrs)) {
936         gic_clear_active(s, irq, cpu);
937     }
938     gic_update(s);
939 }
940 
941 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
942 {
943     GICState *s = (GICState *)opaque;
944     uint32_t res;
945     int irq;
946     int i;
947     int cpu;
948     int cm;
949     int mask;
950 
951     cpu = gic_get_current_cpu(s);
952     cm = 1 << cpu;
953     if (offset < 0x100) {
954         if (offset == 0) {      /* GICD_CTLR */
955             if (s->security_extn && !attrs.secure) {
956                 /* The NS bank of this register is just an alias of the
957                  * EnableGrp1 bit in the S bank version.
958                  */
959                 return extract32(s->ctlr, 1, 1);
960             } else {
961                 return s->ctlr;
962             }
963         }
964         if (offset == 4)
965             /* Interrupt Controller Type Register */
966             return ((s->num_irq / 32) - 1)
967                     | ((s->num_cpu - 1) << 5)
968                     | (s->security_extn << 10);
969         if (offset < 0x08)
970             return 0;
971         if (offset >= 0x80) {
972             /* Interrupt Group Registers: these RAZ/WI if this is an NS
973              * access to a GIC with the security extensions, or if the GIC
974              * doesn't have groups at all.
975              */
976             res = 0;
977             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
978                 /* Every byte offset holds 8 group status bits */
979                 irq = (offset - 0x080) * 8;
980                 if (irq >= s->num_irq) {
981                     goto bad_reg;
982                 }
983                 for (i = 0; i < 8; i++) {
984                     if (GIC_DIST_TEST_GROUP(irq + i, cm)) {
985                         res |= (1 << i);
986                     }
987                 }
988             }
989             return res;
990         }
991         goto bad_reg;
992     } else if (offset < 0x200) {
993         /* Interrupt Set/Clear Enable.  */
994         if (offset < 0x180)
995             irq = (offset - 0x100) * 8;
996         else
997             irq = (offset - 0x180) * 8;
998         if (irq >= s->num_irq)
999             goto bad_reg;
1000         res = 0;
1001         for (i = 0; i < 8; i++) {
1002             if (s->security_extn && !attrs.secure &&
1003                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1004                 continue; /* Ignore Non-secure access of Group0 IRQ */
1005             }
1006 
1007             if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1008                 res |= (1 << i);
1009             }
1010         }
1011     } else if (offset < 0x300) {
1012         /* Interrupt Set/Clear Pending.  */
1013         if (offset < 0x280)
1014             irq = (offset - 0x200) * 8;
1015         else
1016             irq = (offset - 0x280) * 8;
1017         if (irq >= s->num_irq)
1018             goto bad_reg;
1019         res = 0;
1020         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
1021         for (i = 0; i < 8; i++) {
1022             if (s->security_extn && !attrs.secure &&
1023                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1024                 continue; /* Ignore Non-secure access of Group0 IRQ */
1025             }
1026 
1027             if (gic_test_pending(s, irq + i, mask)) {
1028                 res |= (1 << i);
1029             }
1030         }
1031     } else if (offset < 0x400) {
1032         /* Interrupt Set/Clear Active.  */
1033         if (offset < 0x380) {
1034             irq = (offset - 0x300) * 8;
1035         } else if (s->revision == 2) {
1036             irq = (offset - 0x380) * 8;
1037         } else {
1038             goto bad_reg;
1039         }
1040 
1041         if (irq >= s->num_irq)
1042             goto bad_reg;
1043         res = 0;
1044         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
1045         for (i = 0; i < 8; i++) {
1046             if (s->security_extn && !attrs.secure &&
1047                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1048                 continue; /* Ignore Non-secure access of Group0 IRQ */
1049             }
1050 
1051             if (GIC_DIST_TEST_ACTIVE(irq + i, mask)) {
1052                 res |= (1 << i);
1053             }
1054         }
1055     } else if (offset < 0x800) {
1056         /* Interrupt Priority.  */
1057         irq = (offset - 0x400);
1058         if (irq >= s->num_irq)
1059             goto bad_reg;
1060         res = gic_dist_get_priority(s, cpu, irq, attrs);
1061     } else if (offset < 0xc00) {
1062         /* Interrupt CPU Target.  */
1063         if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
1064             /* For uniprocessor GICs these RAZ/WI */
1065             res = 0;
1066         } else {
1067             irq = (offset - 0x800);
1068             if (irq >= s->num_irq) {
1069                 goto bad_reg;
1070             }
1071             if (irq < 29 && s->revision == REV_11MPCORE) {
1072                 res = 0;
1073             } else if (irq < GIC_INTERNAL) {
1074                 res = cm;
1075             } else {
1076                 res = GIC_DIST_TARGET(irq);
1077             }
1078         }
1079     } else if (offset < 0xf00) {
1080         /* Interrupt Configuration.  */
1081         irq = (offset - 0xc00) * 4;
1082         if (irq >= s->num_irq)
1083             goto bad_reg;
1084         res = 0;
1085         for (i = 0; i < 4; i++) {
1086             if (s->security_extn && !attrs.secure &&
1087                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1088                 continue; /* Ignore Non-secure access of Group0 IRQ */
1089             }
1090 
1091             if (GIC_DIST_TEST_MODEL(irq + i)) {
1092                 res |= (1 << (i * 2));
1093             }
1094             if (GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1095                 res |= (2 << (i * 2));
1096             }
1097         }
1098     } else if (offset < 0xf10) {
1099         goto bad_reg;
1100     } else if (offset < 0xf30) {
1101         if (s->revision == REV_11MPCORE) {
1102             goto bad_reg;
1103         }
1104 
1105         if (offset < 0xf20) {
1106             /* GICD_CPENDSGIRn */
1107             irq = (offset - 0xf10);
1108         } else {
1109             irq = (offset - 0xf20);
1110             /* GICD_SPENDSGIRn */
1111         }
1112 
1113         if (s->security_extn && !attrs.secure &&
1114             !GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1115             res = 0; /* Ignore Non-secure access of Group0 IRQ */
1116         } else {
1117             res = s->sgi_pending[irq][cpu];
1118         }
1119     } else if (offset < 0xfd0) {
1120         goto bad_reg;
1121     } else if (offset < 0x1000) {
1122         if (offset & 3) {
1123             res = 0;
1124         } else {
1125             switch (s->revision) {
1126             case REV_11MPCORE:
1127                 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
1128                 break;
1129             case 1:
1130                 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
1131                 break;
1132             case 2:
1133                 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
1134                 break;
1135             default:
1136                 res = 0;
1137             }
1138         }
1139     } else {
1140         g_assert_not_reached();
1141     }
1142     return res;
1143 bad_reg:
1144     qemu_log_mask(LOG_GUEST_ERROR,
1145                   "gic_dist_readb: Bad offset %x\n", (int)offset);
1146     return 0;
1147 }
1148 
1149 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
1150                                  unsigned size, MemTxAttrs attrs)
1151 {
1152     switch (size) {
1153     case 1:
1154         *data = gic_dist_readb(opaque, offset, attrs);
1155         break;
1156     case 2:
1157         *data = gic_dist_readb(opaque, offset, attrs);
1158         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1159         break;
1160     case 4:
1161         *data = gic_dist_readb(opaque, offset, attrs);
1162         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1163         *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
1164         *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
1165         break;
1166     default:
1167         return MEMTX_ERROR;
1168     }
1169 
1170     trace_gic_dist_read(offset, size, *data);
1171     return MEMTX_OK;
1172 }
1173 
1174 static void gic_dist_writeb(void *opaque, hwaddr offset,
1175                             uint32_t value, MemTxAttrs attrs)
1176 {
1177     GICState *s = (GICState *)opaque;
1178     int irq;
1179     int i;
1180     int cpu;
1181 
1182     cpu = gic_get_current_cpu(s);
1183     if (offset < 0x100) {
1184         if (offset == 0) {
1185             if (s->security_extn && !attrs.secure) {
1186                 /* NS version is just an alias of the S version's bit 1 */
1187                 s->ctlr = deposit32(s->ctlr, 1, 1, value);
1188             } else if (gic_has_groups(s)) {
1189                 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
1190             } else {
1191                 s->ctlr = value & GICD_CTLR_EN_GRP0;
1192             }
1193             DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
1194                     s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
1195                     s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
1196         } else if (offset < 4) {
1197             /* ignored.  */
1198         } else if (offset >= 0x80) {
1199             /* Interrupt Group Registers: RAZ/WI for NS access to secure
1200              * GIC, or for GICs without groups.
1201              */
1202             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
1203                 /* Every byte offset holds 8 group status bits */
1204                 irq = (offset - 0x80) * 8;
1205                 if (irq >= s->num_irq) {
1206                     goto bad_reg;
1207                 }
1208                 for (i = 0; i < 8; i++) {
1209                     /* Group bits are banked for private interrupts */
1210                     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1211                     if (value & (1 << i)) {
1212                         /* Group1 (Non-secure) */
1213                         GIC_DIST_SET_GROUP(irq + i, cm);
1214                     } else {
1215                         /* Group0 (Secure) */
1216                         GIC_DIST_CLEAR_GROUP(irq + i, cm);
1217                     }
1218                 }
1219             }
1220         } else {
1221             goto bad_reg;
1222         }
1223     } else if (offset < 0x180) {
1224         /* Interrupt Set Enable.  */
1225         irq = (offset - 0x100) * 8;
1226         if (irq >= s->num_irq)
1227             goto bad_reg;
1228         if (irq < GIC_NR_SGIS) {
1229             value = 0xff;
1230         }
1231 
1232         for (i = 0; i < 8; i++) {
1233             if (value & (1 << i)) {
1234                 int mask =
1235                     (irq < GIC_INTERNAL) ? (1 << cpu)
1236                                          : GIC_DIST_TARGET(irq + i);
1237                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1238 
1239                 if (s->security_extn && !attrs.secure &&
1240                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1241                     continue; /* Ignore Non-secure access of Group0 IRQ */
1242                 }
1243 
1244                 if (!GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1245                     DPRINTF("Enabled IRQ %d\n", irq + i);
1246                     trace_gic_enable_irq(irq + i);
1247                 }
1248                 GIC_DIST_SET_ENABLED(irq + i, cm);
1249                 /* If a raised level triggered IRQ enabled then mark
1250                    is as pending.  */
1251                 if (GIC_DIST_TEST_LEVEL(irq + i, mask)
1252                         && !GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1253                     DPRINTF("Set %d pending mask %x\n", irq + i, mask);
1254                     GIC_DIST_SET_PENDING(irq + i, mask);
1255                 }
1256             }
1257         }
1258     } else if (offset < 0x200) {
1259         /* Interrupt Clear Enable.  */
1260         irq = (offset - 0x180) * 8;
1261         if (irq >= s->num_irq)
1262             goto bad_reg;
1263         if (irq < GIC_NR_SGIS) {
1264             value = 0;
1265         }
1266 
1267         for (i = 0; i < 8; i++) {
1268             if (value & (1 << i)) {
1269                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1270 
1271                 if (s->security_extn && !attrs.secure &&
1272                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1273                     continue; /* Ignore Non-secure access of Group0 IRQ */
1274                 }
1275 
1276                 if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1277                     DPRINTF("Disabled IRQ %d\n", irq + i);
1278                     trace_gic_disable_irq(irq + i);
1279                 }
1280                 GIC_DIST_CLEAR_ENABLED(irq + i, cm);
1281             }
1282         }
1283     } else if (offset < 0x280) {
1284         /* Interrupt Set Pending.  */
1285         irq = (offset - 0x200) * 8;
1286         if (irq >= s->num_irq)
1287             goto bad_reg;
1288         if (irq < GIC_NR_SGIS) {
1289             value = 0;
1290         }
1291 
1292         for (i = 0; i < 8; i++) {
1293             if (value & (1 << i)) {
1294                 if (s->security_extn && !attrs.secure &&
1295                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1296                     continue; /* Ignore Non-secure access of Group0 IRQ */
1297                 }
1298 
1299                 GIC_DIST_SET_PENDING(irq + i, GIC_DIST_TARGET(irq + i));
1300             }
1301         }
1302     } else if (offset < 0x300) {
1303         /* Interrupt Clear Pending.  */
1304         irq = (offset - 0x280) * 8;
1305         if (irq >= s->num_irq)
1306             goto bad_reg;
1307         if (irq < GIC_NR_SGIS) {
1308             value = 0;
1309         }
1310 
1311         for (i = 0; i < 8; i++) {
1312             if (s->security_extn && !attrs.secure &&
1313                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1314                 continue; /* Ignore Non-secure access of Group0 IRQ */
1315             }
1316 
1317             /* ??? This currently clears the pending bit for all CPUs, even
1318                for per-CPU interrupts.  It's unclear whether this is the
1319                corect behavior.  */
1320             if (value & (1 << i)) {
1321                 GIC_DIST_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
1322             }
1323         }
1324     } else if (offset < 0x380) {
1325         /* Interrupt Set Active.  */
1326         if (s->revision != 2) {
1327             goto bad_reg;
1328         }
1329 
1330         irq = (offset - 0x300) * 8;
1331         if (irq >= s->num_irq) {
1332             goto bad_reg;
1333         }
1334 
1335         /* This register is banked per-cpu for PPIs */
1336         int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1337 
1338         for (i = 0; i < 8; i++) {
1339             if (s->security_extn && !attrs.secure &&
1340                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1341                 continue; /* Ignore Non-secure access of Group0 IRQ */
1342             }
1343 
1344             if (value & (1 << i)) {
1345                 GIC_DIST_SET_ACTIVE(irq + i, cm);
1346             }
1347         }
1348     } else if (offset < 0x400) {
1349         /* Interrupt Clear Active.  */
1350         if (s->revision != 2) {
1351             goto bad_reg;
1352         }
1353 
1354         irq = (offset - 0x380) * 8;
1355         if (irq >= s->num_irq) {
1356             goto bad_reg;
1357         }
1358 
1359         /* This register is banked per-cpu for PPIs */
1360         int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1361 
1362         for (i = 0; i < 8; i++) {
1363             if (s->security_extn && !attrs.secure &&
1364                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1365                 continue; /* Ignore Non-secure access of Group0 IRQ */
1366             }
1367 
1368             if (value & (1 << i)) {
1369                 GIC_DIST_CLEAR_ACTIVE(irq + i, cm);
1370             }
1371         }
1372     } else if (offset < 0x800) {
1373         /* Interrupt Priority.  */
1374         irq = (offset - 0x400);
1375         if (irq >= s->num_irq)
1376             goto bad_reg;
1377         gic_dist_set_priority(s, cpu, irq, value, attrs);
1378     } else if (offset < 0xc00) {
1379         /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
1380          * annoying exception of the 11MPCore's GIC.
1381          */
1382         if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
1383             irq = (offset - 0x800);
1384             if (irq >= s->num_irq) {
1385                 goto bad_reg;
1386             }
1387             if (irq < 29 && s->revision == REV_11MPCORE) {
1388                 value = 0;
1389             } else if (irq < GIC_INTERNAL) {
1390                 value = ALL_CPU_MASK;
1391             }
1392             s->irq_target[irq] = value & ALL_CPU_MASK;
1393         }
1394     } else if (offset < 0xf00) {
1395         /* Interrupt Configuration.  */
1396         irq = (offset - 0xc00) * 4;
1397         if (irq >= s->num_irq)
1398             goto bad_reg;
1399         if (irq < GIC_NR_SGIS)
1400             value |= 0xaa;
1401         for (i = 0; i < 4; i++) {
1402             if (s->security_extn && !attrs.secure &&
1403                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1404                 continue; /* Ignore Non-secure access of Group0 IRQ */
1405             }
1406 
1407             if (s->revision == REV_11MPCORE) {
1408                 if (value & (1 << (i * 2))) {
1409                     GIC_DIST_SET_MODEL(irq + i);
1410                 } else {
1411                     GIC_DIST_CLEAR_MODEL(irq + i);
1412                 }
1413             }
1414             if (value & (2 << (i * 2))) {
1415                 GIC_DIST_SET_EDGE_TRIGGER(irq + i);
1416             } else {
1417                 GIC_DIST_CLEAR_EDGE_TRIGGER(irq + i);
1418             }
1419         }
1420     } else if (offset < 0xf10) {
1421         /* 0xf00 is only handled for 32-bit writes.  */
1422         goto bad_reg;
1423     } else if (offset < 0xf20) {
1424         /* GICD_CPENDSGIRn */
1425         if (s->revision == REV_11MPCORE) {
1426             goto bad_reg;
1427         }
1428         irq = (offset - 0xf10);
1429 
1430         if (!s->security_extn || attrs.secure ||
1431             GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1432             s->sgi_pending[irq][cpu] &= ~value;
1433             if (s->sgi_pending[irq][cpu] == 0) {
1434                 GIC_DIST_CLEAR_PENDING(irq, 1 << cpu);
1435             }
1436         }
1437     } else if (offset < 0xf30) {
1438         /* GICD_SPENDSGIRn */
1439         if (s->revision == REV_11MPCORE) {
1440             goto bad_reg;
1441         }
1442         irq = (offset - 0xf20);
1443 
1444         if (!s->security_extn || attrs.secure ||
1445             GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1446             GIC_DIST_SET_PENDING(irq, 1 << cpu);
1447             s->sgi_pending[irq][cpu] |= value;
1448         }
1449     } else {
1450         goto bad_reg;
1451     }
1452     gic_update(s);
1453     return;
1454 bad_reg:
1455     qemu_log_mask(LOG_GUEST_ERROR,
1456                   "gic_dist_writeb: Bad offset %x\n", (int)offset);
1457 }
1458 
1459 static void gic_dist_writew(void *opaque, hwaddr offset,
1460                             uint32_t value, MemTxAttrs attrs)
1461 {
1462     gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1463     gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1464 }
1465 
1466 static void gic_dist_writel(void *opaque, hwaddr offset,
1467                             uint32_t value, MemTxAttrs attrs)
1468 {
1469     GICState *s = (GICState *)opaque;
1470     if (offset == 0xf00) {
1471         int cpu;
1472         int irq;
1473         int mask;
1474         int target_cpu;
1475 
1476         cpu = gic_get_current_cpu(s);
1477         irq = value & 0x3ff;
1478         switch ((value >> 24) & 3) {
1479         case 0:
1480             mask = (value >> 16) & ALL_CPU_MASK;
1481             break;
1482         case 1:
1483             mask = ALL_CPU_MASK ^ (1 << cpu);
1484             break;
1485         case 2:
1486             mask = 1 << cpu;
1487             break;
1488         default:
1489             DPRINTF("Bad Soft Int target filter\n");
1490             mask = ALL_CPU_MASK;
1491             break;
1492         }
1493         GIC_DIST_SET_PENDING(irq, mask);
1494         target_cpu = ctz32(mask);
1495         while (target_cpu < GIC_NCPU) {
1496             s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1497             mask &= ~(1 << target_cpu);
1498             target_cpu = ctz32(mask);
1499         }
1500         gic_update(s);
1501         return;
1502     }
1503     gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1504     gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1505 }
1506 
1507 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1508                                   unsigned size, MemTxAttrs attrs)
1509 {
1510     trace_gic_dist_write(offset, size, data);
1511 
1512     switch (size) {
1513     case 1:
1514         gic_dist_writeb(opaque, offset, data, attrs);
1515         return MEMTX_OK;
1516     case 2:
1517         gic_dist_writew(opaque, offset, data, attrs);
1518         return MEMTX_OK;
1519     case 4:
1520         gic_dist_writel(opaque, offset, data, attrs);
1521         return MEMTX_OK;
1522     default:
1523         return MEMTX_ERROR;
1524     }
1525 }
1526 
1527 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1528 {
1529     /* Return the Nonsecure view of GICC_APR<regno>. This is the
1530      * second half of GICC_NSAPR.
1531      */
1532     switch (GIC_MIN_BPR) {
1533     case 0:
1534         if (regno < 2) {
1535             return s->nsapr[regno + 2][cpu];
1536         }
1537         break;
1538     case 1:
1539         if (regno == 0) {
1540             return s->nsapr[regno + 1][cpu];
1541         }
1542         break;
1543     case 2:
1544         if (regno == 0) {
1545             return extract32(s->nsapr[0][cpu], 16, 16);
1546         }
1547         break;
1548     case 3:
1549         if (regno == 0) {
1550             return extract32(s->nsapr[0][cpu], 8, 8);
1551         }
1552         break;
1553     default:
1554         g_assert_not_reached();
1555     }
1556     return 0;
1557 }
1558 
1559 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1560                                          uint32_t value)
1561 {
1562     /* Write the Nonsecure view of GICC_APR<regno>. */
1563     switch (GIC_MIN_BPR) {
1564     case 0:
1565         if (regno < 2) {
1566             s->nsapr[regno + 2][cpu] = value;
1567         }
1568         break;
1569     case 1:
1570         if (regno == 0) {
1571             s->nsapr[regno + 1][cpu] = value;
1572         }
1573         break;
1574     case 2:
1575         if (regno == 0) {
1576             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1577         }
1578         break;
1579     case 3:
1580         if (regno == 0) {
1581             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1582         }
1583         break;
1584     default:
1585         g_assert_not_reached();
1586     }
1587 }
1588 
1589 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1590                                 uint64_t *data, MemTxAttrs attrs)
1591 {
1592     switch (offset) {
1593     case 0x00: /* Control */
1594         *data = gic_get_cpu_control(s, cpu, attrs);
1595         break;
1596     case 0x04: /* Priority mask */
1597         *data = gic_get_priority_mask(s, cpu, attrs);
1598         break;
1599     case 0x08: /* Binary Point */
1600         if (gic_cpu_ns_access(s, cpu, attrs)) {
1601             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1602                 /* NS view of BPR when CBPR is 1 */
1603                 *data = MIN(s->bpr[cpu] + 1, 7);
1604             } else {
1605                 /* BPR is banked. Non-secure copy stored in ABPR. */
1606                 *data = s->abpr[cpu];
1607             }
1608         } else {
1609             *data = s->bpr[cpu];
1610         }
1611         break;
1612     case 0x0c: /* Acknowledge */
1613         *data = gic_acknowledge_irq(s, cpu, attrs);
1614         break;
1615     case 0x14: /* Running Priority */
1616         *data = gic_get_running_priority(s, cpu, attrs);
1617         break;
1618     case 0x18: /* Highest Pending Interrupt */
1619         *data = gic_get_current_pending_irq(s, cpu, attrs);
1620         break;
1621     case 0x1c: /* Aliased Binary Point */
1622         /* GIC v2, no security: ABPR
1623          * GIC v1, no security: not implemented (RAZ/WI)
1624          * With security extensions, secure access: ABPR (alias of NS BPR)
1625          * With security extensions, nonsecure access: RAZ/WI
1626          */
1627         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1628             *data = 0;
1629         } else {
1630             *data = s->abpr[cpu];
1631         }
1632         break;
1633     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1634     {
1635         int regno = (offset - 0xd0) / 4;
1636         int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1637 
1638         if (regno >= nr_aprs || s->revision != 2) {
1639             *data = 0;
1640         } else if (gic_is_vcpu(cpu)) {
1641             *data = s->h_apr[gic_get_vcpu_real_id(cpu)];
1642         } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1643             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1644             *data = gic_apr_ns_view(s, regno, cpu);
1645         } else {
1646             *data = s->apr[regno][cpu];
1647         }
1648         break;
1649     }
1650     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1651     {
1652         int regno = (offset - 0xe0) / 4;
1653 
1654         if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1655             gic_cpu_ns_access(s, cpu, attrs) || gic_is_vcpu(cpu)) {
1656             *data = 0;
1657         } else {
1658             *data = s->nsapr[regno][cpu];
1659         }
1660         break;
1661     }
1662     default:
1663         qemu_log_mask(LOG_GUEST_ERROR,
1664                       "gic_cpu_read: Bad offset %x\n", (int)offset);
1665         *data = 0;
1666         break;
1667     }
1668 
1669     trace_gic_cpu_read(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1670                        gic_get_vcpu_real_id(cpu), offset, *data);
1671     return MEMTX_OK;
1672 }
1673 
1674 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1675                                  uint32_t value, MemTxAttrs attrs)
1676 {
1677     trace_gic_cpu_write(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1678                         gic_get_vcpu_real_id(cpu), offset, value);
1679 
1680     switch (offset) {
1681     case 0x00: /* Control */
1682         gic_set_cpu_control(s, cpu, value, attrs);
1683         break;
1684     case 0x04: /* Priority mask */
1685         gic_set_priority_mask(s, cpu, value, attrs);
1686         break;
1687     case 0x08: /* Binary Point */
1688         if (gic_cpu_ns_access(s, cpu, attrs)) {
1689             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1690                 /* WI when CBPR is 1 */
1691                 return MEMTX_OK;
1692             } else {
1693                 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1694             }
1695         } else {
1696             int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
1697             s->bpr[cpu] = MAX(value & 0x7, min_bpr);
1698         }
1699         break;
1700     case 0x10: /* End Of Interrupt */
1701         gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1702         return MEMTX_OK;
1703     case 0x1c: /* Aliased Binary Point */
1704         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1705             /* unimplemented, or NS access: RAZ/WI */
1706             return MEMTX_OK;
1707         } else {
1708             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1709         }
1710         break;
1711     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1712     {
1713         int regno = (offset - 0xd0) / 4;
1714         int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1715 
1716         if (regno >= nr_aprs || s->revision != 2) {
1717             return MEMTX_OK;
1718         }
1719         if (gic_is_vcpu(cpu)) {
1720             s->h_apr[gic_get_vcpu_real_id(cpu)] = value;
1721         } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1722             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1723             gic_apr_write_ns_view(s, regno, cpu, value);
1724         } else {
1725             s->apr[regno][cpu] = value;
1726         }
1727         break;
1728     }
1729     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1730     {
1731         int regno = (offset - 0xe0) / 4;
1732 
1733         if (regno >= GIC_NR_APRS || s->revision != 2) {
1734             return MEMTX_OK;
1735         }
1736         if (gic_is_vcpu(cpu)) {
1737             return MEMTX_OK;
1738         }
1739         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1740             return MEMTX_OK;
1741         }
1742         s->nsapr[regno][cpu] = value;
1743         break;
1744     }
1745     case 0x1000:
1746         /* GICC_DIR */
1747         gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1748         break;
1749     default:
1750         qemu_log_mask(LOG_GUEST_ERROR,
1751                       "gic_cpu_write: Bad offset %x\n", (int)offset);
1752         return MEMTX_OK;
1753     }
1754 
1755     if (gic_is_vcpu(cpu)) {
1756         gic_update_virt(s);
1757     } else {
1758         gic_update(s);
1759     }
1760 
1761     return MEMTX_OK;
1762 }
1763 
1764 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1765 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1766                                     unsigned size, MemTxAttrs attrs)
1767 {
1768     GICState *s = (GICState *)opaque;
1769     return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1770 }
1771 
1772 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1773                                      uint64_t value, unsigned size,
1774                                      MemTxAttrs attrs)
1775 {
1776     GICState *s = (GICState *)opaque;
1777     return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1778 }
1779 
1780 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1781  * These just decode the opaque pointer into GICState* + cpu id.
1782  */
1783 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1784                                    unsigned size, MemTxAttrs attrs)
1785 {
1786     GICState **backref = (GICState **)opaque;
1787     GICState *s = *backref;
1788     int id = (backref - s->backref);
1789     return gic_cpu_read(s, id, addr, data, attrs);
1790 }
1791 
1792 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1793                                     uint64_t value, unsigned size,
1794                                     MemTxAttrs attrs)
1795 {
1796     GICState **backref = (GICState **)opaque;
1797     GICState *s = *backref;
1798     int id = (backref - s->backref);
1799     return gic_cpu_write(s, id, addr, value, attrs);
1800 }
1801 
1802 static MemTxResult gic_thisvcpu_read(void *opaque, hwaddr addr, uint64_t *data,
1803                                     unsigned size, MemTxAttrs attrs)
1804 {
1805     GICState *s = (GICState *)opaque;
1806 
1807     return gic_cpu_read(s, gic_get_current_vcpu(s), addr, data, attrs);
1808 }
1809 
1810 static MemTxResult gic_thisvcpu_write(void *opaque, hwaddr addr,
1811                                      uint64_t value, unsigned size,
1812                                      MemTxAttrs attrs)
1813 {
1814     GICState *s = (GICState *)opaque;
1815 
1816     return gic_cpu_write(s, gic_get_current_vcpu(s), addr, value, attrs);
1817 }
1818 
1819 static uint32_t gic_compute_eisr(GICState *s, int cpu, int lr_start)
1820 {
1821     int lr_idx;
1822     uint32_t ret = 0;
1823 
1824     for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1825         uint32_t *entry = &s->h_lr[lr_idx][cpu];
1826         ret = deposit32(ret, lr_idx - lr_start, 1,
1827                         gic_lr_entry_is_eoi(*entry));
1828     }
1829 
1830     return ret;
1831 }
1832 
1833 static uint32_t gic_compute_elrsr(GICState *s, int cpu, int lr_start)
1834 {
1835     int lr_idx;
1836     uint32_t ret = 0;
1837 
1838     for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1839         uint32_t *entry = &s->h_lr[lr_idx][cpu];
1840         ret = deposit32(ret, lr_idx - lr_start, 1,
1841                         gic_lr_entry_is_free(*entry));
1842     }
1843 
1844     return ret;
1845 }
1846 
1847 static void gic_vmcr_write(GICState *s, uint32_t value, MemTxAttrs attrs)
1848 {
1849     int vcpu = gic_get_current_vcpu(s);
1850     uint32_t ctlr;
1851     uint32_t abpr;
1852     uint32_t bpr;
1853     uint32_t prio_mask;
1854 
1855     ctlr = FIELD_EX32(value, GICH_VMCR, VMCCtlr);
1856     abpr = FIELD_EX32(value, GICH_VMCR, VMABP);
1857     bpr = FIELD_EX32(value, GICH_VMCR, VMBP);
1858     prio_mask = FIELD_EX32(value, GICH_VMCR, VMPriMask) << 3;
1859 
1860     gic_set_cpu_control(s, vcpu, ctlr, attrs);
1861     s->abpr[vcpu] = MAX(abpr, GIC_VIRT_MIN_ABPR);
1862     s->bpr[vcpu] = MAX(bpr, GIC_VIRT_MIN_BPR);
1863     gic_set_priority_mask(s, vcpu, prio_mask, attrs);
1864 }
1865 
1866 static MemTxResult gic_hyp_read(void *opaque, int cpu, hwaddr addr,
1867                                 uint64_t *data, MemTxAttrs attrs)
1868 {
1869     GICState *s = ARM_GIC(opaque);
1870     int vcpu = cpu + GIC_NCPU;
1871 
1872     switch (addr) {
1873     case A_GICH_HCR: /* Hypervisor Control */
1874         *data = s->h_hcr[cpu];
1875         break;
1876 
1877     case A_GICH_VTR: /* VGIC Type */
1878         *data = FIELD_DP32(0, GICH_VTR, ListRegs, s->num_lrs - 1);
1879         *data = FIELD_DP32(*data, GICH_VTR, PREbits,
1880                            GIC_VIRT_MAX_GROUP_PRIO_BITS - 1);
1881         *data = FIELD_DP32(*data, GICH_VTR, PRIbits,
1882                            (7 - GIC_VIRT_MIN_BPR) - 1);
1883         break;
1884 
1885     case A_GICH_VMCR: /* Virtual Machine Control */
1886         *data = FIELD_DP32(0, GICH_VMCR, VMCCtlr,
1887                            extract32(s->cpu_ctlr[vcpu], 0, 10));
1888         *data = FIELD_DP32(*data, GICH_VMCR, VMABP, s->abpr[vcpu]);
1889         *data = FIELD_DP32(*data, GICH_VMCR, VMBP, s->bpr[vcpu]);
1890         *data = FIELD_DP32(*data, GICH_VMCR, VMPriMask,
1891                            extract32(s->priority_mask[vcpu], 3, 5));
1892         break;
1893 
1894     case A_GICH_MISR: /* Maintenance Interrupt Status */
1895         *data = s->h_misr[cpu];
1896         break;
1897 
1898     case A_GICH_EISR0: /* End of Interrupt Status 0 and 1 */
1899     case A_GICH_EISR1:
1900         *data = gic_compute_eisr(s, cpu, (addr - A_GICH_EISR0) * 8);
1901         break;
1902 
1903     case A_GICH_ELRSR0: /* Empty List Status 0 and 1 */
1904     case A_GICH_ELRSR1:
1905         *data = gic_compute_elrsr(s, cpu, (addr - A_GICH_ELRSR0) * 8);
1906         break;
1907 
1908     case A_GICH_APR: /* Active Priorities */
1909         *data = s->h_apr[cpu];
1910         break;
1911 
1912     case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1913     {
1914         int lr_idx = (addr - A_GICH_LR0) / 4;
1915 
1916         if (lr_idx > s->num_lrs) {
1917             *data = 0;
1918         } else {
1919             *data = s->h_lr[lr_idx][cpu];
1920         }
1921         break;
1922     }
1923 
1924     default:
1925         qemu_log_mask(LOG_GUEST_ERROR,
1926                       "gic_hyp_read: Bad offset %" HWADDR_PRIx "\n", addr);
1927         return MEMTX_OK;
1928     }
1929 
1930     trace_gic_hyp_read(addr, *data);
1931     return MEMTX_OK;
1932 }
1933 
1934 static MemTxResult gic_hyp_write(void *opaque, int cpu, hwaddr addr,
1935                                  uint64_t value, MemTxAttrs attrs)
1936 {
1937     GICState *s = ARM_GIC(opaque);
1938     int vcpu = cpu + GIC_NCPU;
1939 
1940     trace_gic_hyp_write(addr, value);
1941 
1942     switch (addr) {
1943     case A_GICH_HCR: /* Hypervisor Control */
1944         s->h_hcr[cpu] = value & GICH_HCR_MASK;
1945         break;
1946 
1947     case A_GICH_VMCR: /* Virtual Machine Control */
1948         gic_vmcr_write(s, value, attrs);
1949         break;
1950 
1951     case A_GICH_APR: /* Active Priorities */
1952         s->h_apr[cpu] = value;
1953         s->running_priority[vcpu] = gic_get_prio_from_apr_bits(s, vcpu);
1954         break;
1955 
1956     case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1957     {
1958         int lr_idx = (addr - A_GICH_LR0) / 4;
1959 
1960         if (lr_idx > s->num_lrs) {
1961             return MEMTX_OK;
1962         }
1963 
1964         s->h_lr[lr_idx][cpu] = value & GICH_LR_MASK;
1965         trace_gic_lr_entry(cpu, lr_idx, s->h_lr[lr_idx][cpu]);
1966         break;
1967     }
1968 
1969     default:
1970         qemu_log_mask(LOG_GUEST_ERROR,
1971                       "gic_hyp_write: Bad offset %" HWADDR_PRIx "\n", addr);
1972         return MEMTX_OK;
1973     }
1974 
1975     gic_update_virt(s);
1976     return MEMTX_OK;
1977 }
1978 
1979 static MemTxResult gic_thiscpu_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
1980                                     unsigned size, MemTxAttrs attrs)
1981 {
1982     GICState *s = (GICState *)opaque;
1983 
1984     return gic_hyp_read(s, gic_get_current_cpu(s), addr, data, attrs);
1985 }
1986 
1987 static MemTxResult gic_thiscpu_hyp_write(void *opaque, hwaddr addr,
1988                                      uint64_t value, unsigned size,
1989                                      MemTxAttrs attrs)
1990 {
1991     GICState *s = (GICState *)opaque;
1992 
1993     return gic_hyp_write(s, gic_get_current_cpu(s), addr, value, attrs);
1994 }
1995 
1996 static MemTxResult gic_do_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
1997                                     unsigned size, MemTxAttrs attrs)
1998 {
1999     GICState **backref = (GICState **)opaque;
2000     GICState *s = *backref;
2001     int id = (backref - s->backref);
2002 
2003     return gic_hyp_read(s, id, addr, data, attrs);
2004 }
2005 
2006 static MemTxResult gic_do_hyp_write(void *opaque, hwaddr addr,
2007                                      uint64_t value, unsigned size,
2008                                      MemTxAttrs attrs)
2009 {
2010     GICState **backref = (GICState **)opaque;
2011     GICState *s = *backref;
2012     int id = (backref - s->backref);
2013 
2014     return gic_hyp_write(s, id + GIC_NCPU, addr, value, attrs);
2015 
2016 }
2017 
2018 static const MemoryRegionOps gic_ops[2] = {
2019     {
2020         .read_with_attrs = gic_dist_read,
2021         .write_with_attrs = gic_dist_write,
2022         .endianness = DEVICE_NATIVE_ENDIAN,
2023     },
2024     {
2025         .read_with_attrs = gic_thiscpu_read,
2026         .write_with_attrs = gic_thiscpu_write,
2027         .endianness = DEVICE_NATIVE_ENDIAN,
2028     }
2029 };
2030 
2031 static const MemoryRegionOps gic_cpu_ops = {
2032     .read_with_attrs = gic_do_cpu_read,
2033     .write_with_attrs = gic_do_cpu_write,
2034     .endianness = DEVICE_NATIVE_ENDIAN,
2035 };
2036 
2037 static const MemoryRegionOps gic_virt_ops[2] = {
2038     {
2039         .read_with_attrs = gic_thiscpu_hyp_read,
2040         .write_with_attrs = gic_thiscpu_hyp_write,
2041         .endianness = DEVICE_NATIVE_ENDIAN,
2042     },
2043     {
2044         .read_with_attrs = gic_thisvcpu_read,
2045         .write_with_attrs = gic_thisvcpu_write,
2046         .endianness = DEVICE_NATIVE_ENDIAN,
2047     }
2048 };
2049 
2050 static const MemoryRegionOps gic_viface_ops = {
2051     .read_with_attrs = gic_do_hyp_read,
2052     .write_with_attrs = gic_do_hyp_write,
2053     .endianness = DEVICE_NATIVE_ENDIAN,
2054 };
2055 
2056 static void arm_gic_realize(DeviceState *dev, Error **errp)
2057 {
2058     /* Device instance realize function for the GIC sysbus device */
2059     int i;
2060     GICState *s = ARM_GIC(dev);
2061     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2062     ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
2063     Error *local_err = NULL;
2064 
2065     agc->parent_realize(dev, &local_err);
2066     if (local_err) {
2067         error_propagate(errp, local_err);
2068         return;
2069     }
2070 
2071     if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
2072         error_setg(errp, "KVM with user space irqchip only works when the "
2073                          "host kernel supports KVM_CAP_ARM_USER_IRQ");
2074         return;
2075     }
2076 
2077     if (s->n_prio_bits > GIC_MAX_PRIORITY_BITS ||
2078        (s->virt_extn ? s->n_prio_bits < GIC_VIRT_MAX_GROUP_PRIO_BITS :
2079         s->n_prio_bits < GIC_MIN_PRIORITY_BITS)) {
2080         error_setg(errp, "num-priority-bits cannot be greater than %d"
2081                    " or less than %d", GIC_MAX_PRIORITY_BITS,
2082                    s->virt_extn ? GIC_VIRT_MAX_GROUP_PRIO_BITS :
2083                    GIC_MIN_PRIORITY_BITS);
2084         return;
2085     }
2086 
2087     /* This creates distributor, main CPU interface (s->cpuiomem[0]) and if
2088      * enabled, virtualization extensions related interfaces (main virtual
2089      * interface (s->vifaceiomem[0]) and virtual CPU interface).
2090      */
2091     gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops, gic_virt_ops);
2092 
2093     /* Extra core-specific regions for the CPU interfaces. This is
2094      * necessary for "franken-GIC" implementations, for example on
2095      * Exynos 4.
2096      * NB that the memory region size of 0x100 applies for the 11MPCore
2097      * and also cores following the GIC v1 spec (ie A9).
2098      * GIC v2 defines a larger memory region (0x1000) so this will need
2099      * to be extended when we implement A15.
2100      */
2101     for (i = 0; i < s->num_cpu; i++) {
2102         s->backref[i] = s;
2103         memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
2104                               &s->backref[i], "gic_cpu", 0x100);
2105         sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
2106     }
2107 
2108     /* Extra core-specific regions for virtual interfaces. This is required by
2109      * the GICv2 specification.
2110      */
2111     if (s->virt_extn) {
2112         for (i = 0; i < s->num_cpu; i++) {
2113             memory_region_init_io(&s->vifaceiomem[i + 1], OBJECT(s),
2114                                   &gic_viface_ops, &s->backref[i],
2115                                   "gic_viface", 0x200);
2116             sysbus_init_mmio(sbd, &s->vifaceiomem[i + 1]);
2117         }
2118     }
2119 
2120 }
2121 
2122 static void arm_gic_class_init(ObjectClass *klass, void *data)
2123 {
2124     DeviceClass *dc = DEVICE_CLASS(klass);
2125     ARMGICClass *agc = ARM_GIC_CLASS(klass);
2126 
2127     device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
2128 }
2129 
2130 static const TypeInfo arm_gic_info = {
2131     .name = TYPE_ARM_GIC,
2132     .parent = TYPE_ARM_GIC_COMMON,
2133     .instance_size = sizeof(GICState),
2134     .class_init = arm_gic_class_init,
2135     .class_size = sizeof(ARMGICClass),
2136 };
2137 
2138 static void arm_gic_register_types(void)
2139 {
2140     type_register_static(&arm_gic_info);
2141 }
2142 
2143 type_init(arm_gic_register_types)
2144