xref: /openbmc/qemu/hw/intc/arm_gic.c (revision b91b0fc1635544341b9d00d1addc8ddf48e5b389)
1 /*
2  * ARM Generic/Distributed Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 /* This file contains implementation code for the RealView EB interrupt
11  * controller, MPCore distributed interrupt controller and ARMv7-M
12  * Nested Vectored Interrupt Controller.
13  * It is compiled in two ways:
14  *  (1) as a standalone file to produce a sysbus device which is a GIC
15  *  that can be used on the realview board and as one of the builtin
16  *  private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17  *  (2) by being directly #included into armv7m_nvic.c to produce the
18  *  armv7m_nvic device.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "hw/irq.h"
23 #include "hw/sysbus.h"
24 #include "gic_internal.h"
25 #include "qapi/error.h"
26 #include "hw/core/cpu.h"
27 #include "qemu/log.h"
28 #include "qemu/module.h"
29 #include "trace.h"
30 #include "sysemu/kvm.h"
31 #include "sysemu/qtest.h"
32 
33 /* #define DEBUG_GIC */
34 
35 #ifdef DEBUG_GIC
36 #define DEBUG_GIC_GATE 1
37 #else
38 #define DEBUG_GIC_GATE 0
39 #endif
40 
41 #define DPRINTF(fmt, ...) do {                                          \
42         if (DEBUG_GIC_GATE) {                                           \
43             fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__);      \
44         }                                                               \
45     } while (0)
46 
47 static const uint8_t gic_id_11mpcore[] = {
48     0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
49 };
50 
51 static const uint8_t gic_id_gicv1[] = {
52     0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
53 };
54 
55 static const uint8_t gic_id_gicv2[] = {
56     0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
57 };
58 
59 static inline int gic_get_current_cpu(GICState *s)
60 {
61     if (!qtest_enabled() && s->num_cpu > 1) {
62         return current_cpu->cpu_index;
63     }
64     return 0;
65 }
66 
67 static inline int gic_get_current_vcpu(GICState *s)
68 {
69     return gic_get_current_cpu(s) + GIC_NCPU;
70 }
71 
72 /* Return true if this GIC config has interrupt groups, which is
73  * true if we're a GICv2, or a GICv1 with the security extensions.
74  */
75 static inline bool gic_has_groups(GICState *s)
76 {
77     return s->revision == 2 || s->security_extn;
78 }
79 
80 static inline bool gic_cpu_ns_access(GICState *s, int cpu, MemTxAttrs attrs)
81 {
82     return !gic_is_vcpu(cpu) && s->security_extn && !attrs.secure;
83 }
84 
85 static inline void gic_get_best_irq(GICState *s, int cpu,
86                                     int *best_irq, int *best_prio, int *group)
87 {
88     int irq;
89     int cm = 1 << cpu;
90 
91     *best_irq = 1023;
92     *best_prio = 0x100;
93 
94     for (irq = 0; irq < s->num_irq; irq++) {
95         if (GIC_DIST_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
96             (!GIC_DIST_TEST_ACTIVE(irq, cm)) &&
97             (irq < GIC_INTERNAL || GIC_DIST_TARGET(irq) & cm)) {
98             if (GIC_DIST_GET_PRIORITY(irq, cpu) < *best_prio) {
99                 *best_prio = GIC_DIST_GET_PRIORITY(irq, cpu);
100                 *best_irq = irq;
101             }
102         }
103     }
104 
105     if (*best_irq < 1023) {
106         *group = GIC_DIST_TEST_GROUP(*best_irq, cm);
107     }
108 }
109 
110 static inline void gic_get_best_virq(GICState *s, int cpu,
111                                      int *best_irq, int *best_prio, int *group)
112 {
113     int lr_idx = 0;
114 
115     *best_irq = 1023;
116     *best_prio = 0x100;
117 
118     for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
119         uint32_t lr_entry = s->h_lr[lr_idx][cpu];
120         int state = GICH_LR_STATE(lr_entry);
121 
122         if (state == GICH_LR_STATE_PENDING) {
123             int prio = GICH_LR_PRIORITY(lr_entry);
124 
125             if (prio < *best_prio) {
126                 *best_prio = prio;
127                 *best_irq = GICH_LR_VIRT_ID(lr_entry);
128                 *group = GICH_LR_GROUP(lr_entry);
129             }
130         }
131     }
132 }
133 
134 /* Return true if IRQ signaling is enabled for the given cpu and at least one
135  * of the given groups:
136  *   - in the non-virt case, the distributor must be enabled for one of the
137  *   given groups
138  *   - in the virt case, the virtual interface must be enabled.
139  *   - in all cases, the (v)CPU interface must be enabled for one of the given
140  *   groups.
141  */
142 static inline bool gic_irq_signaling_enabled(GICState *s, int cpu, bool virt,
143                                     int group_mask)
144 {
145     int cpu_iface = virt ? (cpu + GIC_NCPU) : cpu;
146 
147     if (!virt && !(s->ctlr & group_mask)) {
148         return false;
149     }
150 
151     if (virt && !(s->h_hcr[cpu] & R_GICH_HCR_EN_MASK)) {
152         return false;
153     }
154 
155     if (!(s->cpu_ctlr[cpu_iface] & group_mask)) {
156         return false;
157     }
158 
159     return true;
160 }
161 
162 /* TODO: Many places that call this routine could be optimized.  */
163 /* Update interrupt status after enabled or pending bits have been changed.  */
164 static inline void gic_update_internal(GICState *s, bool virt)
165 {
166     int best_irq;
167     int best_prio;
168     int irq_level, fiq_level;
169     int cpu, cpu_iface;
170     int group = 0;
171     qemu_irq *irq_lines = virt ? s->parent_virq : s->parent_irq;
172     qemu_irq *fiq_lines = virt ? s->parent_vfiq : s->parent_fiq;
173 
174     for (cpu = 0; cpu < s->num_cpu; cpu++) {
175         cpu_iface = virt ? (cpu + GIC_NCPU) : cpu;
176 
177         s->current_pending[cpu_iface] = 1023;
178         if (!gic_irq_signaling_enabled(s, cpu, virt,
179                                        GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1)) {
180             qemu_irq_lower(irq_lines[cpu]);
181             qemu_irq_lower(fiq_lines[cpu]);
182             continue;
183         }
184 
185         if (virt) {
186             gic_get_best_virq(s, cpu, &best_irq, &best_prio, &group);
187         } else {
188             gic_get_best_irq(s, cpu, &best_irq, &best_prio, &group);
189         }
190 
191         if (best_irq != 1023) {
192             trace_gic_update_bestirq(virt ? "vcpu" : "cpu", cpu,
193                                      best_irq, best_prio,
194                                      s->priority_mask[cpu_iface],
195                                      s->running_priority[cpu_iface]);
196         }
197 
198         irq_level = fiq_level = 0;
199 
200         if (best_prio < s->priority_mask[cpu_iface]) {
201             s->current_pending[cpu_iface] = best_irq;
202             if (best_prio < s->running_priority[cpu_iface]) {
203                 if (gic_irq_signaling_enabled(s, cpu, virt, 1 << group)) {
204                     if (group == 0 &&
205                         s->cpu_ctlr[cpu_iface] & GICC_CTLR_FIQ_EN) {
206                         DPRINTF("Raised pending FIQ %d (cpu %d)\n",
207                                 best_irq, cpu_iface);
208                         fiq_level = 1;
209                         trace_gic_update_set_irq(cpu, virt ? "vfiq" : "fiq",
210                                                  fiq_level);
211                     } else {
212                         DPRINTF("Raised pending IRQ %d (cpu %d)\n",
213                                 best_irq, cpu_iface);
214                         irq_level = 1;
215                         trace_gic_update_set_irq(cpu, virt ? "virq" : "irq",
216                                                  irq_level);
217                     }
218                 }
219             }
220         }
221 
222         qemu_set_irq(irq_lines[cpu], irq_level);
223         qemu_set_irq(fiq_lines[cpu], fiq_level);
224     }
225 }
226 
227 static void gic_update(GICState *s)
228 {
229     gic_update_internal(s, false);
230 }
231 
232 /* Return true if this LR is empty, i.e. the corresponding bit
233  * in ELRSR is set.
234  */
235 static inline bool gic_lr_entry_is_free(uint32_t entry)
236 {
237     return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
238         && (GICH_LR_HW(entry) || !GICH_LR_EOI(entry));
239 }
240 
241 /* Return true if this LR should trigger an EOI maintenance interrupt, i.e. the
242  * corresponding bit in EISR is set.
243  */
244 static inline bool gic_lr_entry_is_eoi(uint32_t entry)
245 {
246     return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
247         && !GICH_LR_HW(entry) && GICH_LR_EOI(entry);
248 }
249 
250 static inline void gic_extract_lr_info(GICState *s, int cpu,
251                                 int *num_eoi, int *num_valid, int *num_pending)
252 {
253     int lr_idx;
254 
255     *num_eoi = 0;
256     *num_valid = 0;
257     *num_pending = 0;
258 
259     for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
260         uint32_t *entry = &s->h_lr[lr_idx][cpu];
261 
262         if (gic_lr_entry_is_eoi(*entry)) {
263             (*num_eoi)++;
264         }
265 
266         if (GICH_LR_STATE(*entry) != GICH_LR_STATE_INVALID) {
267             (*num_valid)++;
268         }
269 
270         if (GICH_LR_STATE(*entry) == GICH_LR_STATE_PENDING) {
271             (*num_pending)++;
272         }
273     }
274 }
275 
276 static void gic_compute_misr(GICState *s, int cpu)
277 {
278     uint32_t value = 0;
279     int vcpu = cpu + GIC_NCPU;
280 
281     int num_eoi, num_valid, num_pending;
282 
283     gic_extract_lr_info(s, cpu, &num_eoi, &num_valid, &num_pending);
284 
285     /* EOI */
286     if (num_eoi) {
287         value |= R_GICH_MISR_EOI_MASK;
288     }
289 
290     /* U: true if only 0 or 1 LR entry is valid */
291     if ((s->h_hcr[cpu] & R_GICH_HCR_UIE_MASK) && (num_valid < 2)) {
292         value |= R_GICH_MISR_U_MASK;
293     }
294 
295     /* LRENP: EOICount is not 0 */
296     if ((s->h_hcr[cpu] & R_GICH_HCR_LRENPIE_MASK) &&
297         ((s->h_hcr[cpu] & R_GICH_HCR_EOICount_MASK) != 0)) {
298         value |= R_GICH_MISR_LRENP_MASK;
299     }
300 
301     /* NP: no pending interrupts */
302     if ((s->h_hcr[cpu] & R_GICH_HCR_NPIE_MASK) && (num_pending == 0)) {
303         value |= R_GICH_MISR_NP_MASK;
304     }
305 
306     /* VGrp0E: group0 virq signaling enabled */
307     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0EIE_MASK) &&
308         (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
309         value |= R_GICH_MISR_VGrp0E_MASK;
310     }
311 
312     /* VGrp0D: group0 virq signaling disabled */
313     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0DIE_MASK) &&
314         !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
315         value |= R_GICH_MISR_VGrp0D_MASK;
316     }
317 
318     /* VGrp1E: group1 virq signaling enabled */
319     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1EIE_MASK) &&
320         (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
321         value |= R_GICH_MISR_VGrp1E_MASK;
322     }
323 
324     /* VGrp1D: group1 virq signaling disabled */
325     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1DIE_MASK) &&
326         !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
327         value |= R_GICH_MISR_VGrp1D_MASK;
328     }
329 
330     s->h_misr[cpu] = value;
331 }
332 
333 static void gic_update_maintenance(GICState *s)
334 {
335     int cpu = 0;
336     int maint_level;
337 
338     for (cpu = 0; cpu < s->num_cpu; cpu++) {
339         gic_compute_misr(s, cpu);
340         maint_level = (s->h_hcr[cpu] & R_GICH_HCR_EN_MASK) && s->h_misr[cpu];
341 
342         trace_gic_update_maintenance_irq(cpu, maint_level);
343         qemu_set_irq(s->maintenance_irq[cpu], maint_level);
344     }
345 }
346 
347 static void gic_update_virt(GICState *s)
348 {
349     gic_update_internal(s, true);
350     gic_update_maintenance(s);
351 }
352 
353 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
354                                  int cm, int target)
355 {
356     if (level) {
357         GIC_DIST_SET_LEVEL(irq, cm);
358         if (GIC_DIST_TEST_EDGE_TRIGGER(irq) || GIC_DIST_TEST_ENABLED(irq, cm)) {
359             DPRINTF("Set %d pending mask %x\n", irq, target);
360             GIC_DIST_SET_PENDING(irq, target);
361         }
362     } else {
363         GIC_DIST_CLEAR_LEVEL(irq, cm);
364     }
365 }
366 
367 static void gic_set_irq_generic(GICState *s, int irq, int level,
368                                 int cm, int target)
369 {
370     if (level) {
371         GIC_DIST_SET_LEVEL(irq, cm);
372         DPRINTF("Set %d pending mask %x\n", irq, target);
373         if (GIC_DIST_TEST_EDGE_TRIGGER(irq)) {
374             GIC_DIST_SET_PENDING(irq, target);
375         }
376     } else {
377         GIC_DIST_CLEAR_LEVEL(irq, cm);
378     }
379 }
380 
381 /* Process a change in an external IRQ input.  */
382 static void gic_set_irq(void *opaque, int irq, int level)
383 {
384     /* Meaning of the 'irq' parameter:
385      *  [0..N-1] : external interrupts
386      *  [N..N+31] : PPI (internal) interrupts for CPU 0
387      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
388      *  ...
389      */
390     GICState *s = (GICState *)opaque;
391     int cm, target;
392     if (irq < (s->num_irq - GIC_INTERNAL)) {
393         /* The first external input line is internal interrupt 32.  */
394         cm = ALL_CPU_MASK;
395         irq += GIC_INTERNAL;
396         target = GIC_DIST_TARGET(irq);
397     } else {
398         int cpu;
399         irq -= (s->num_irq - GIC_INTERNAL);
400         cpu = irq / GIC_INTERNAL;
401         irq %= GIC_INTERNAL;
402         cm = 1 << cpu;
403         target = cm;
404     }
405 
406     assert(irq >= GIC_NR_SGIS);
407 
408     if (level == GIC_DIST_TEST_LEVEL(irq, cm)) {
409         return;
410     }
411 
412     if (s->revision == REV_11MPCORE) {
413         gic_set_irq_11mpcore(s, irq, level, cm, target);
414     } else {
415         gic_set_irq_generic(s, irq, level, cm, target);
416     }
417     trace_gic_set_irq(irq, level, cm, target);
418 
419     gic_update(s);
420 }
421 
422 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
423                                             MemTxAttrs attrs)
424 {
425     uint16_t pending_irq = s->current_pending[cpu];
426 
427     if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
428         int group = gic_test_group(s, pending_irq, cpu);
429 
430         /* On a GIC without the security extensions, reading this register
431          * behaves in the same way as a secure access to a GIC with them.
432          */
433         bool secure = !gic_cpu_ns_access(s, cpu, attrs);
434 
435         if (group == 0 && !secure) {
436             /* Group0 interrupts hidden from Non-secure access */
437             return 1023;
438         }
439         if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
440             /* Group1 interrupts only seen by Secure access if
441              * AckCtl bit set.
442              */
443             return 1022;
444         }
445     }
446     return pending_irq;
447 }
448 
449 static int gic_get_group_priority(GICState *s, int cpu, int irq)
450 {
451     /* Return the group priority of the specified interrupt
452      * (which is the top bits of its priority, with the number
453      * of bits masked determined by the applicable binary point register).
454      */
455     int bpr;
456     uint32_t mask;
457 
458     if (gic_has_groups(s) &&
459         !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
460         gic_test_group(s, irq, cpu)) {
461         bpr = s->abpr[cpu] - 1;
462         assert(bpr >= 0);
463     } else {
464         bpr = s->bpr[cpu];
465     }
466 
467     /* a BPR of 0 means the group priority bits are [7:1];
468      * a BPR of 1 means they are [7:2], and so on down to
469      * a BPR of 7 meaning no group priority bits at all.
470      */
471     mask = ~0U << ((bpr & 7) + 1);
472 
473     return gic_get_priority(s, irq, cpu) & mask;
474 }
475 
476 static void gic_activate_irq(GICState *s, int cpu, int irq)
477 {
478     /* Set the appropriate Active Priority Register bit for this IRQ,
479      * and update the running priority.
480      */
481     int prio = gic_get_group_priority(s, cpu, irq);
482     int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
483     int preemption_level = prio >> (min_bpr + 1);
484     int regno = preemption_level / 32;
485     int bitno = preemption_level % 32;
486     uint32_t *papr = NULL;
487 
488     if (gic_is_vcpu(cpu)) {
489         assert(regno == 0);
490         papr = &s->h_apr[gic_get_vcpu_real_id(cpu)];
491     } else if (gic_has_groups(s) && gic_test_group(s, irq, cpu)) {
492         papr = &s->nsapr[regno][cpu];
493     } else {
494         papr = &s->apr[regno][cpu];
495     }
496 
497     *papr |= (1 << bitno);
498 
499     s->running_priority[cpu] = prio;
500     gic_set_active(s, irq, cpu);
501 }
502 
503 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
504 {
505     /* Recalculate the current running priority for this CPU based
506      * on the set bits in the Active Priority Registers.
507      */
508     int i;
509 
510     if (gic_is_vcpu(cpu)) {
511         uint32_t apr = s->h_apr[gic_get_vcpu_real_id(cpu)];
512         if (apr) {
513             return ctz32(apr) << (GIC_VIRT_MIN_BPR + 1);
514         } else {
515             return 0x100;
516         }
517     }
518 
519     for (i = 0; i < GIC_NR_APRS; i++) {
520         uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
521         if (!apr) {
522             continue;
523         }
524         return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
525     }
526     return 0x100;
527 }
528 
529 static void gic_drop_prio(GICState *s, int cpu, int group)
530 {
531     /* Drop the priority of the currently active interrupt in the
532      * specified group.
533      *
534      * Note that we can guarantee (because of the requirement to nest
535      * GICC_IAR reads [which activate an interrupt and raise priority]
536      * with GICC_EOIR writes [which drop the priority for the interrupt])
537      * that the interrupt we're being called for is the highest priority
538      * active interrupt, meaning that it has the lowest set bit in the
539      * APR registers.
540      *
541      * If the guest does not honour the ordering constraints then the
542      * behaviour of the GIC is UNPREDICTABLE, which for us means that
543      * the values of the APR registers might become incorrect and the
544      * running priority will be wrong, so interrupts that should preempt
545      * might not do so, and interrupts that should not preempt might do so.
546      */
547     if (gic_is_vcpu(cpu)) {
548         int rcpu = gic_get_vcpu_real_id(cpu);
549 
550         if (s->h_apr[rcpu]) {
551             /* Clear lowest set bit */
552             s->h_apr[rcpu] &= s->h_apr[rcpu] - 1;
553         }
554     } else {
555         int i;
556 
557         for (i = 0; i < GIC_NR_APRS; i++) {
558             uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
559             if (!*papr) {
560                 continue;
561             }
562             /* Clear lowest set bit */
563             *papr &= *papr - 1;
564             break;
565         }
566     }
567 
568     s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
569 }
570 
571 static inline uint32_t gic_clear_pending_sgi(GICState *s, int irq, int cpu)
572 {
573     int src;
574     uint32_t ret;
575 
576     if (!gic_is_vcpu(cpu)) {
577         /* Lookup the source CPU for the SGI and clear this in the
578          * sgi_pending map.  Return the src and clear the overall pending
579          * state on this CPU if the SGI is not pending from any CPUs.
580          */
581         assert(s->sgi_pending[irq][cpu] != 0);
582         src = ctz32(s->sgi_pending[irq][cpu]);
583         s->sgi_pending[irq][cpu] &= ~(1 << src);
584         if (s->sgi_pending[irq][cpu] == 0) {
585             gic_clear_pending(s, irq, cpu);
586         }
587         ret = irq | ((src & 0x7) << 10);
588     } else {
589         uint32_t *lr_entry = gic_get_lr_entry(s, irq, cpu);
590         src = GICH_LR_CPUID(*lr_entry);
591 
592         gic_clear_pending(s, irq, cpu);
593         ret = irq | (src << 10);
594     }
595 
596     return ret;
597 }
598 
599 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
600 {
601     int ret, irq;
602 
603     /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
604      * for the case where this GIC supports grouping and the pending interrupt
605      * is in the wrong group.
606      */
607     irq = gic_get_current_pending_irq(s, cpu, attrs);
608     trace_gic_acknowledge_irq(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
609                               gic_get_vcpu_real_id(cpu), irq);
610 
611     if (irq >= GIC_MAXIRQ) {
612         DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
613         return irq;
614     }
615 
616     if (gic_get_priority(s, irq, cpu) >= s->running_priority[cpu]) {
617         DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
618         return 1023;
619     }
620 
621     gic_activate_irq(s, cpu, irq);
622 
623     if (s->revision == REV_11MPCORE) {
624         /* Clear pending flags for both level and edge triggered interrupts.
625          * Level triggered IRQs will be reasserted once they become inactive.
626          */
627         gic_clear_pending(s, irq, cpu);
628         ret = irq;
629     } else {
630         if (irq < GIC_NR_SGIS) {
631             ret = gic_clear_pending_sgi(s, irq, cpu);
632         } else {
633             gic_clear_pending(s, irq, cpu);
634             ret = irq;
635         }
636     }
637 
638     if (gic_is_vcpu(cpu)) {
639         gic_update_virt(s);
640     } else {
641         gic_update(s);
642     }
643     DPRINTF("ACK %d\n", irq);
644     return ret;
645 }
646 
647 static uint32_t gic_fullprio_mask(GICState *s, int cpu)
648 {
649     /*
650      * Return a mask word which clears the unimplemented priority
651      * bits from a priority value for an interrupt. (Not to be
652      * confused with the group priority, whose mask depends on BPR.)
653      */
654     int priBits;
655 
656     if (gic_is_vcpu(cpu)) {
657         priBits = GIC_VIRT_MAX_GROUP_PRIO_BITS;
658     } else {
659         priBits = s->n_prio_bits;
660     }
661     return ~0U << (8 - priBits);
662 }
663 
664 void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
665                       MemTxAttrs attrs)
666 {
667     if (s->security_extn && !attrs.secure) {
668         if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
669             return; /* Ignore Non-secure access of Group0 IRQ */
670         }
671         val = 0x80 | (val >> 1); /* Non-secure view */
672     }
673 
674     val &= gic_fullprio_mask(s, cpu);
675 
676     if (irq < GIC_INTERNAL) {
677         s->priority1[irq][cpu] = val;
678     } else {
679         s->priority2[(irq) - GIC_INTERNAL] = val;
680     }
681 }
682 
683 static uint32_t gic_dist_get_priority(GICState *s, int cpu, int irq,
684                                  MemTxAttrs attrs)
685 {
686     uint32_t prio = GIC_DIST_GET_PRIORITY(irq, cpu);
687 
688     if (s->security_extn && !attrs.secure) {
689         if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
690             return 0; /* Non-secure access cannot read priority of Group0 IRQ */
691         }
692         prio = (prio << 1) & 0xff; /* Non-secure view */
693     }
694     return prio & gic_fullprio_mask(s, cpu);
695 }
696 
697 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
698                                   MemTxAttrs attrs)
699 {
700     if (gic_cpu_ns_access(s, cpu, attrs)) {
701         if (s->priority_mask[cpu] & 0x80) {
702             /* Priority Mask in upper half */
703             pmask = 0x80 | (pmask >> 1);
704         } else {
705             /* Non-secure write ignored if priority mask is in lower half */
706             return;
707         }
708     }
709     s->priority_mask[cpu] = pmask & gic_fullprio_mask(s, cpu);
710 }
711 
712 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
713 {
714     uint32_t pmask = s->priority_mask[cpu];
715 
716     if (gic_cpu_ns_access(s, cpu, attrs)) {
717         if (pmask & 0x80) {
718             /* Priority Mask in upper half, return Non-secure view */
719             pmask = (pmask << 1) & 0xff;
720         } else {
721             /* Priority Mask in lower half, RAZ */
722             pmask = 0;
723         }
724     }
725     return pmask;
726 }
727 
728 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
729 {
730     uint32_t ret = s->cpu_ctlr[cpu];
731 
732     if (gic_cpu_ns_access(s, cpu, attrs)) {
733         /* Construct the NS banked view of GICC_CTLR from the correct
734          * bits of the S banked view. We don't need to move the bypass
735          * control bits because we don't implement that (IMPDEF) part
736          * of the GIC architecture.
737          */
738         ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
739     }
740     return ret;
741 }
742 
743 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
744                                 MemTxAttrs attrs)
745 {
746     uint32_t mask;
747 
748     if (gic_cpu_ns_access(s, cpu, attrs)) {
749         /* The NS view can only write certain bits in the register;
750          * the rest are unchanged
751          */
752         mask = GICC_CTLR_EN_GRP1;
753         if (s->revision == 2) {
754             mask |= GICC_CTLR_EOIMODE_NS;
755         }
756         s->cpu_ctlr[cpu] &= ~mask;
757         s->cpu_ctlr[cpu] |= (value << 1) & mask;
758     } else {
759         if (s->revision == 2) {
760             mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
761         } else {
762             mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
763         }
764         s->cpu_ctlr[cpu] = value & mask;
765     }
766     DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
767             "Group1 Interrupts %sabled\n", cpu,
768             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
769             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
770 }
771 
772 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
773 {
774     if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
775         /* Idle priority */
776         return 0xff;
777     }
778 
779     if (gic_cpu_ns_access(s, cpu, attrs)) {
780         if (s->running_priority[cpu] & 0x80) {
781             /* Running priority in upper half of range: return the Non-secure
782              * view of the priority.
783              */
784             return s->running_priority[cpu] << 1;
785         } else {
786             /* Running priority in lower half of range: RAZ */
787             return 0;
788         }
789     } else {
790         return s->running_priority[cpu];
791     }
792 }
793 
794 /* Return true if we should split priority drop and interrupt deactivation,
795  * ie whether the relevant EOIMode bit is set.
796  */
797 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
798 {
799     if (s->revision != 2) {
800         /* Before GICv2 prio-drop and deactivate are not separable */
801         return false;
802     }
803     if (gic_cpu_ns_access(s, cpu, attrs)) {
804         return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
805     }
806     return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
807 }
808 
809 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
810 {
811     int group;
812 
813     if (irq >= GIC_MAXIRQ || (!gic_is_vcpu(cpu) && irq >= s->num_irq)) {
814         /*
815          * This handles two cases:
816          * 1. If software writes the ID of a spurious interrupt [ie 1023]
817          * to the GICC_DIR, the GIC ignores that write.
818          * 2. If software writes the number of a non-existent interrupt
819          * this must be a subcase of "value written is not an active interrupt"
820          * and so this is UNPREDICTABLE. We choose to ignore it. For vCPUs,
821          * all IRQs potentially exist, so this limit does not apply.
822          */
823         return;
824     }
825 
826     if (!gic_eoi_split(s, cpu, attrs)) {
827         /* This is UNPREDICTABLE; we choose to ignore it */
828         qemu_log_mask(LOG_GUEST_ERROR,
829                       "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
830         return;
831     }
832 
833     if (gic_is_vcpu(cpu) && !gic_virq_is_valid(s, irq, cpu)) {
834         /* This vIRQ does not have an LR entry which is either active or
835          * pending and active. Increment EOICount and ignore the write.
836          */
837         int rcpu = gic_get_vcpu_real_id(cpu);
838         s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
839 
840         /* Update the virtual interface in case a maintenance interrupt should
841          * be raised.
842          */
843         gic_update_virt(s);
844         return;
845     }
846 
847     group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
848 
849     if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
850         DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
851         return;
852     }
853 
854     gic_clear_active(s, irq, cpu);
855 }
856 
857 static void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
858 {
859     int cm = 1 << cpu;
860     int group;
861 
862     DPRINTF("EOI %d\n", irq);
863     if (gic_is_vcpu(cpu)) {
864         /* The call to gic_prio_drop() will clear a bit in GICH_APR iff the
865          * running prio is < 0x100.
866          */
867         bool prio_drop = s->running_priority[cpu] < 0x100;
868 
869         if (irq >= GIC_MAXIRQ) {
870             /* Ignore spurious interrupt */
871             return;
872         }
873 
874         gic_drop_prio(s, cpu, 0);
875 
876         if (!gic_eoi_split(s, cpu, attrs)) {
877             bool valid = gic_virq_is_valid(s, irq, cpu);
878             if (prio_drop && !valid) {
879                 /* We are in a situation where:
880                  *   - V_CTRL.EOIMode is false (no EOI split),
881                  *   - The call to gic_drop_prio() cleared a bit in GICH_APR,
882                  *   - This vIRQ does not have an LR entry which is either
883                  *     active or pending and active.
884                  * In that case, we must increment EOICount.
885                  */
886                 int rcpu = gic_get_vcpu_real_id(cpu);
887                 s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
888             } else if (valid) {
889                 gic_clear_active(s, irq, cpu);
890             }
891         }
892 
893         gic_update_virt(s);
894         return;
895     }
896 
897     if (irq >= s->num_irq) {
898         /* This handles two cases:
899          * 1. If software writes the ID of a spurious interrupt [ie 1023]
900          * to the GICC_EOIR, the GIC ignores that write.
901          * 2. If software writes the number of a non-existent interrupt
902          * this must be a subcase of "value written does not match the last
903          * valid interrupt value read from the Interrupt Acknowledge
904          * register" and so this is UNPREDICTABLE. We choose to ignore it.
905          */
906         return;
907     }
908     if (s->running_priority[cpu] == 0x100) {
909         return; /* No active IRQ.  */
910     }
911 
912     if (s->revision == REV_11MPCORE) {
913         /* Mark level triggered interrupts as pending if they are still
914            raised.  */
915         if (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_ENABLED(irq, cm)
916             && GIC_DIST_TEST_LEVEL(irq, cm)
917             && (GIC_DIST_TARGET(irq) & cm) != 0) {
918             DPRINTF("Set %d pending mask %x\n", irq, cm);
919             GIC_DIST_SET_PENDING(irq, cm);
920         }
921     }
922 
923     group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
924 
925     if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
926         DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
927         return;
928     }
929 
930     /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
931      * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
932      * i.e. go ahead and complete the irq anyway.
933      */
934 
935     gic_drop_prio(s, cpu, group);
936 
937     /* In GICv2 the guest can choose to split priority-drop and deactivate */
938     if (!gic_eoi_split(s, cpu, attrs)) {
939         gic_clear_active(s, irq, cpu);
940     }
941     gic_update(s);
942 }
943 
944 static uint8_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
945 {
946     GICState *s = (GICState *)opaque;
947     uint32_t res;
948     int irq;
949     int i;
950     int cpu;
951     int cm;
952     int mask;
953 
954     cpu = gic_get_current_cpu(s);
955     cm = 1 << cpu;
956     if (offset < 0x100) {
957         if (offset == 0) {      /* GICD_CTLR */
958             /* We rely here on the only non-zero bits being in byte 0 */
959             if (s->security_extn && !attrs.secure) {
960                 /* The NS bank of this register is just an alias of the
961                  * EnableGrp1 bit in the S bank version.
962                  */
963                 return extract32(s->ctlr, 1, 1);
964             } else {
965                 return s->ctlr;
966             }
967         }
968         if (offset == 4) {
969             /* GICD_TYPER byte 0 */
970             return ((s->num_irq / 32) - 1) | ((s->num_cpu - 1) << 5);
971         }
972         if (offset == 5) {
973             /* GICD_TYPER byte 1 */
974             return (s->security_extn << 2);
975         }
976         if (offset == 8) {
977             /* GICD_IIDR byte 0 */
978             return 0x3b; /* Arm JEP106 identity */
979         }
980         if (offset == 9) {
981             /* GICD_IIDR byte 1 */
982             return 0x04; /* Arm JEP106 identity */
983         }
984         if (offset < 0x0c) {
985             /* All other bytes in this range are RAZ */
986             return 0;
987         }
988         if (offset >= 0x80) {
989             /* Interrupt Group Registers: these RAZ/WI if this is an NS
990              * access to a GIC with the security extensions, or if the GIC
991              * doesn't have groups at all.
992              */
993             res = 0;
994             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
995                 /* Every byte offset holds 8 group status bits */
996                 irq = (offset - 0x080) * 8;
997                 if (irq >= s->num_irq) {
998                     goto bad_reg;
999                 }
1000                 for (i = 0; i < 8; i++) {
1001                     if (GIC_DIST_TEST_GROUP(irq + i, cm)) {
1002                         res |= (1 << i);
1003                     }
1004                 }
1005             }
1006             return res;
1007         }
1008         goto bad_reg;
1009     } else if (offset < 0x200) {
1010         /* Interrupt Set/Clear Enable.  */
1011         if (offset < 0x180)
1012             irq = (offset - 0x100) * 8;
1013         else
1014             irq = (offset - 0x180) * 8;
1015         if (irq >= s->num_irq)
1016             goto bad_reg;
1017         res = 0;
1018         for (i = 0; i < 8; i++) {
1019             if (s->security_extn && !attrs.secure &&
1020                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1021                 continue; /* Ignore Non-secure access of Group0 IRQ */
1022             }
1023 
1024             if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1025                 res |= (1 << i);
1026             }
1027         }
1028     } else if (offset < 0x300) {
1029         /* Interrupt Set/Clear Pending.  */
1030         if (offset < 0x280)
1031             irq = (offset - 0x200) * 8;
1032         else
1033             irq = (offset - 0x280) * 8;
1034         if (irq >= s->num_irq)
1035             goto bad_reg;
1036         res = 0;
1037         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
1038         for (i = 0; i < 8; i++) {
1039             if (s->security_extn && !attrs.secure &&
1040                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1041                 continue; /* Ignore Non-secure access of Group0 IRQ */
1042             }
1043 
1044             if (gic_test_pending(s, irq + i, mask)) {
1045                 res |= (1 << i);
1046             }
1047         }
1048     } else if (offset < 0x400) {
1049         /* Interrupt Set/Clear Active.  */
1050         if (offset < 0x380) {
1051             irq = (offset - 0x300) * 8;
1052         } else if (s->revision == 2) {
1053             irq = (offset - 0x380) * 8;
1054         } else {
1055             goto bad_reg;
1056         }
1057 
1058         if (irq >= s->num_irq)
1059             goto bad_reg;
1060         res = 0;
1061         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
1062         for (i = 0; i < 8; i++) {
1063             if (s->security_extn && !attrs.secure &&
1064                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1065                 continue; /* Ignore Non-secure access of Group0 IRQ */
1066             }
1067 
1068             if (GIC_DIST_TEST_ACTIVE(irq + i, mask)) {
1069                 res |= (1 << i);
1070             }
1071         }
1072     } else if (offset < 0x800) {
1073         /* Interrupt Priority.  */
1074         irq = (offset - 0x400);
1075         if (irq >= s->num_irq)
1076             goto bad_reg;
1077         res = gic_dist_get_priority(s, cpu, irq, attrs);
1078     } else if (offset < 0xc00) {
1079         /* Interrupt CPU Target.  */
1080         if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
1081             /* For uniprocessor GICs these RAZ/WI */
1082             res = 0;
1083         } else {
1084             irq = (offset - 0x800);
1085             if (irq >= s->num_irq) {
1086                 goto bad_reg;
1087             }
1088             if (irq < 29 && s->revision == REV_11MPCORE) {
1089                 res = 0;
1090             } else if (irq < GIC_INTERNAL) {
1091                 res = cm;
1092             } else {
1093                 res = GIC_DIST_TARGET(irq);
1094             }
1095         }
1096     } else if (offset < 0xf00) {
1097         /* Interrupt Configuration.  */
1098         irq = (offset - 0xc00) * 4;
1099         if (irq >= s->num_irq)
1100             goto bad_reg;
1101         res = 0;
1102         for (i = 0; i < 4; i++) {
1103             if (s->security_extn && !attrs.secure &&
1104                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1105                 continue; /* Ignore Non-secure access of Group0 IRQ */
1106             }
1107 
1108             if (GIC_DIST_TEST_MODEL(irq + i)) {
1109                 res |= (1 << (i * 2));
1110             }
1111             if (GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1112                 res |= (2 << (i * 2));
1113             }
1114         }
1115     } else if (offset < 0xf10) {
1116         goto bad_reg;
1117     } else if (offset < 0xf30) {
1118         if (s->revision == REV_11MPCORE) {
1119             goto bad_reg;
1120         }
1121 
1122         if (offset < 0xf20) {
1123             /* GICD_CPENDSGIRn */
1124             irq = (offset - 0xf10);
1125         } else {
1126             irq = (offset - 0xf20);
1127             /* GICD_SPENDSGIRn */
1128         }
1129 
1130         if (s->security_extn && !attrs.secure &&
1131             !GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1132             res = 0; /* Ignore Non-secure access of Group0 IRQ */
1133         } else {
1134             res = s->sgi_pending[irq][cpu];
1135         }
1136     } else if (offset < 0xfd0) {
1137         goto bad_reg;
1138     } else if (offset < 0x1000) {
1139         if (offset & 3) {
1140             res = 0;
1141         } else {
1142             switch (s->revision) {
1143             case REV_11MPCORE:
1144                 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
1145                 break;
1146             case 1:
1147                 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
1148                 break;
1149             case 2:
1150                 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
1151                 break;
1152             default:
1153                 res = 0;
1154             }
1155         }
1156     } else {
1157         g_assert_not_reached();
1158     }
1159     return res;
1160 bad_reg:
1161     qemu_log_mask(LOG_GUEST_ERROR,
1162                   "gic_dist_readb: Bad offset %x\n", (int)offset);
1163     return 0;
1164 }
1165 
1166 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
1167                                  unsigned size, MemTxAttrs attrs)
1168 {
1169     switch (size) {
1170     case 1:
1171         *data = gic_dist_readb(opaque, offset, attrs);
1172         break;
1173     case 2:
1174         *data = gic_dist_readb(opaque, offset, attrs);
1175         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1176         break;
1177     case 4:
1178         *data = gic_dist_readb(opaque, offset, attrs);
1179         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1180         *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
1181         *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
1182         break;
1183     default:
1184         return MEMTX_ERROR;
1185     }
1186 
1187     trace_gic_dist_read(offset, size, *data);
1188     return MEMTX_OK;
1189 }
1190 
1191 static void gic_dist_writeb(void *opaque, hwaddr offset,
1192                             uint32_t value, MemTxAttrs attrs)
1193 {
1194     GICState *s = (GICState *)opaque;
1195     int irq;
1196     int i;
1197     int cpu;
1198 
1199     cpu = gic_get_current_cpu(s);
1200     if (offset < 0x100) {
1201         if (offset == 0) {
1202             if (s->security_extn && !attrs.secure) {
1203                 /* NS version is just an alias of the S version's bit 1 */
1204                 s->ctlr = deposit32(s->ctlr, 1, 1, value);
1205             } else if (gic_has_groups(s)) {
1206                 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
1207             } else {
1208                 s->ctlr = value & GICD_CTLR_EN_GRP0;
1209             }
1210             DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
1211                     s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
1212                     s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
1213         } else if (offset < 4) {
1214             /* ignored.  */
1215         } else if (offset >= 0x80) {
1216             /* Interrupt Group Registers: RAZ/WI for NS access to secure
1217              * GIC, or for GICs without groups.
1218              */
1219             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
1220                 /* Every byte offset holds 8 group status bits */
1221                 irq = (offset - 0x80) * 8;
1222                 if (irq >= s->num_irq) {
1223                     goto bad_reg;
1224                 }
1225                 for (i = 0; i < 8; i++) {
1226                     /* Group bits are banked for private interrupts */
1227                     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1228                     if (value & (1 << i)) {
1229                         /* Group1 (Non-secure) */
1230                         GIC_DIST_SET_GROUP(irq + i, cm);
1231                     } else {
1232                         /* Group0 (Secure) */
1233                         GIC_DIST_CLEAR_GROUP(irq + i, cm);
1234                     }
1235                 }
1236             }
1237         } else {
1238             goto bad_reg;
1239         }
1240     } else if (offset < 0x180) {
1241         /* Interrupt Set Enable.  */
1242         irq = (offset - 0x100) * 8;
1243         if (irq >= s->num_irq)
1244             goto bad_reg;
1245         if (irq < GIC_NR_SGIS) {
1246             value = 0xff;
1247         }
1248 
1249         for (i = 0; i < 8; i++) {
1250             if (value & (1 << i)) {
1251                 int mask =
1252                     (irq < GIC_INTERNAL) ? (1 << cpu)
1253                                          : GIC_DIST_TARGET(irq + i);
1254                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1255 
1256                 if (s->security_extn && !attrs.secure &&
1257                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1258                     continue; /* Ignore Non-secure access of Group0 IRQ */
1259                 }
1260 
1261                 if (!GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1262                     DPRINTF("Enabled IRQ %d\n", irq + i);
1263                     trace_gic_enable_irq(irq + i);
1264                 }
1265                 GIC_DIST_SET_ENABLED(irq + i, cm);
1266                 /* If a raised level triggered IRQ enabled then mark
1267                    is as pending.  */
1268                 if (GIC_DIST_TEST_LEVEL(irq + i, mask)
1269                         && !GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1270                     DPRINTF("Set %d pending mask %x\n", irq + i, mask);
1271                     GIC_DIST_SET_PENDING(irq + i, mask);
1272                 }
1273             }
1274         }
1275     } else if (offset < 0x200) {
1276         /* Interrupt Clear Enable.  */
1277         irq = (offset - 0x180) * 8;
1278         if (irq >= s->num_irq)
1279             goto bad_reg;
1280         if (irq < GIC_NR_SGIS) {
1281             value = 0;
1282         }
1283 
1284         for (i = 0; i < 8; i++) {
1285             if (value & (1 << i)) {
1286                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1287 
1288                 if (s->security_extn && !attrs.secure &&
1289                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1290                     continue; /* Ignore Non-secure access of Group0 IRQ */
1291                 }
1292 
1293                 if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1294                     DPRINTF("Disabled IRQ %d\n", irq + i);
1295                     trace_gic_disable_irq(irq + i);
1296                 }
1297                 GIC_DIST_CLEAR_ENABLED(irq + i, cm);
1298             }
1299         }
1300     } else if (offset < 0x280) {
1301         /* Interrupt Set Pending.  */
1302         irq = (offset - 0x200) * 8;
1303         if (irq >= s->num_irq)
1304             goto bad_reg;
1305         if (irq < GIC_NR_SGIS) {
1306             value = 0;
1307         }
1308 
1309         for (i = 0; i < 8; i++) {
1310             if (value & (1 << i)) {
1311                 if (s->security_extn && !attrs.secure &&
1312                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1313                     continue; /* Ignore Non-secure access of Group0 IRQ */
1314                 }
1315 
1316                 GIC_DIST_SET_PENDING(irq + i, GIC_DIST_TARGET(irq + i));
1317             }
1318         }
1319     } else if (offset < 0x300) {
1320         /* Interrupt Clear Pending.  */
1321         irq = (offset - 0x280) * 8;
1322         if (irq >= s->num_irq)
1323             goto bad_reg;
1324         if (irq < GIC_NR_SGIS) {
1325             value = 0;
1326         }
1327 
1328         for (i = 0; i < 8; i++) {
1329             if (s->security_extn && !attrs.secure &&
1330                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1331                 continue; /* Ignore Non-secure access of Group0 IRQ */
1332             }
1333 
1334             /* ??? This currently clears the pending bit for all CPUs, even
1335                for per-CPU interrupts.  It's unclear whether this is the
1336                correct behavior.  */
1337             if (value & (1 << i)) {
1338                 GIC_DIST_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
1339             }
1340         }
1341     } else if (offset < 0x380) {
1342         /* Interrupt Set Active.  */
1343         if (s->revision != 2) {
1344             goto bad_reg;
1345         }
1346 
1347         irq = (offset - 0x300) * 8;
1348         if (irq >= s->num_irq) {
1349             goto bad_reg;
1350         }
1351 
1352         /* This register is banked per-cpu for PPIs */
1353         int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1354 
1355         for (i = 0; i < 8; i++) {
1356             if (s->security_extn && !attrs.secure &&
1357                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1358                 continue; /* Ignore Non-secure access of Group0 IRQ */
1359             }
1360 
1361             if (value & (1 << i)) {
1362                 GIC_DIST_SET_ACTIVE(irq + i, cm);
1363             }
1364         }
1365     } else if (offset < 0x400) {
1366         /* Interrupt Clear Active.  */
1367         if (s->revision != 2) {
1368             goto bad_reg;
1369         }
1370 
1371         irq = (offset - 0x380) * 8;
1372         if (irq >= s->num_irq) {
1373             goto bad_reg;
1374         }
1375 
1376         /* This register is banked per-cpu for PPIs */
1377         int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1378 
1379         for (i = 0; i < 8; i++) {
1380             if (s->security_extn && !attrs.secure &&
1381                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1382                 continue; /* Ignore Non-secure access of Group0 IRQ */
1383             }
1384 
1385             if (value & (1 << i)) {
1386                 GIC_DIST_CLEAR_ACTIVE(irq + i, cm);
1387             }
1388         }
1389     } else if (offset < 0x800) {
1390         /* Interrupt Priority.  */
1391         irq = (offset - 0x400);
1392         if (irq >= s->num_irq)
1393             goto bad_reg;
1394         gic_dist_set_priority(s, cpu, irq, value, attrs);
1395     } else if (offset < 0xc00) {
1396         /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
1397          * annoying exception of the 11MPCore's GIC.
1398          */
1399         if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
1400             irq = (offset - 0x800);
1401             if (irq >= s->num_irq) {
1402                 goto bad_reg;
1403             }
1404             if (irq < 29 && s->revision == REV_11MPCORE) {
1405                 value = 0;
1406             } else if (irq < GIC_INTERNAL) {
1407                 value = ALL_CPU_MASK;
1408             }
1409             s->irq_target[irq] = value & ALL_CPU_MASK;
1410         }
1411     } else if (offset < 0xf00) {
1412         /* Interrupt Configuration.  */
1413         irq = (offset - 0xc00) * 4;
1414         if (irq >= s->num_irq)
1415             goto bad_reg;
1416         if (irq < GIC_NR_SGIS)
1417             value |= 0xaa;
1418         for (i = 0; i < 4; i++) {
1419             if (s->security_extn && !attrs.secure &&
1420                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1421                 continue; /* Ignore Non-secure access of Group0 IRQ */
1422             }
1423 
1424             if (s->revision == REV_11MPCORE) {
1425                 if (value & (1 << (i * 2))) {
1426                     GIC_DIST_SET_MODEL(irq + i);
1427                 } else {
1428                     GIC_DIST_CLEAR_MODEL(irq + i);
1429                 }
1430             }
1431             if (value & (2 << (i * 2))) {
1432                 GIC_DIST_SET_EDGE_TRIGGER(irq + i);
1433             } else {
1434                 GIC_DIST_CLEAR_EDGE_TRIGGER(irq + i);
1435             }
1436         }
1437     } else if (offset < 0xf10) {
1438         /* 0xf00 is only handled for 32-bit writes.  */
1439         goto bad_reg;
1440     } else if (offset < 0xf20) {
1441         /* GICD_CPENDSGIRn */
1442         if (s->revision == REV_11MPCORE) {
1443             goto bad_reg;
1444         }
1445         irq = (offset - 0xf10);
1446 
1447         if (!s->security_extn || attrs.secure ||
1448             GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1449             s->sgi_pending[irq][cpu] &= ~value;
1450             if (s->sgi_pending[irq][cpu] == 0) {
1451                 GIC_DIST_CLEAR_PENDING(irq, 1 << cpu);
1452             }
1453         }
1454     } else if (offset < 0xf30) {
1455         /* GICD_SPENDSGIRn */
1456         if (s->revision == REV_11MPCORE) {
1457             goto bad_reg;
1458         }
1459         irq = (offset - 0xf20);
1460 
1461         if (!s->security_extn || attrs.secure ||
1462             GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1463             GIC_DIST_SET_PENDING(irq, 1 << cpu);
1464             s->sgi_pending[irq][cpu] |= value;
1465         }
1466     } else {
1467         goto bad_reg;
1468     }
1469     gic_update(s);
1470     return;
1471 bad_reg:
1472     qemu_log_mask(LOG_GUEST_ERROR,
1473                   "gic_dist_writeb: Bad offset %x\n", (int)offset);
1474 }
1475 
1476 static void gic_dist_writew(void *opaque, hwaddr offset,
1477                             uint32_t value, MemTxAttrs attrs)
1478 {
1479     gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1480     gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1481 }
1482 
1483 static void gic_dist_writel(void *opaque, hwaddr offset,
1484                             uint32_t value, MemTxAttrs attrs)
1485 {
1486     GICState *s = (GICState *)opaque;
1487     if (offset == 0xf00) {
1488         int cpu;
1489         int irq;
1490         int mask;
1491         int target_cpu;
1492 
1493         cpu = gic_get_current_cpu(s);
1494         irq = value & 0xf;
1495         switch ((value >> 24) & 3) {
1496         case 0:
1497             mask = (value >> 16) & ALL_CPU_MASK;
1498             break;
1499         case 1:
1500             mask = ALL_CPU_MASK ^ (1 << cpu);
1501             break;
1502         case 2:
1503             mask = 1 << cpu;
1504             break;
1505         default:
1506             DPRINTF("Bad Soft Int target filter\n");
1507             mask = ALL_CPU_MASK;
1508             break;
1509         }
1510         GIC_DIST_SET_PENDING(irq, mask);
1511         target_cpu = ctz32(mask);
1512         while (target_cpu < GIC_NCPU) {
1513             s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1514             mask &= ~(1 << target_cpu);
1515             target_cpu = ctz32(mask);
1516         }
1517         gic_update(s);
1518         return;
1519     }
1520     gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1521     gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1522 }
1523 
1524 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1525                                   unsigned size, MemTxAttrs attrs)
1526 {
1527     trace_gic_dist_write(offset, size, data);
1528 
1529     switch (size) {
1530     case 1:
1531         gic_dist_writeb(opaque, offset, data, attrs);
1532         return MEMTX_OK;
1533     case 2:
1534         gic_dist_writew(opaque, offset, data, attrs);
1535         return MEMTX_OK;
1536     case 4:
1537         gic_dist_writel(opaque, offset, data, attrs);
1538         return MEMTX_OK;
1539     default:
1540         return MEMTX_ERROR;
1541     }
1542 }
1543 
1544 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1545 {
1546     /* Return the Nonsecure view of GICC_APR<regno>. This is the
1547      * second half of GICC_NSAPR.
1548      */
1549     switch (GIC_MIN_BPR) {
1550     case 0:
1551         if (regno < 2) {
1552             return s->nsapr[regno + 2][cpu];
1553         }
1554         break;
1555     case 1:
1556         if (regno == 0) {
1557             return s->nsapr[regno + 1][cpu];
1558         }
1559         break;
1560     case 2:
1561         if (regno == 0) {
1562             return extract32(s->nsapr[0][cpu], 16, 16);
1563         }
1564         break;
1565     case 3:
1566         if (regno == 0) {
1567             return extract32(s->nsapr[0][cpu], 8, 8);
1568         }
1569         break;
1570     default:
1571         g_assert_not_reached();
1572     }
1573     return 0;
1574 }
1575 
1576 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1577                                          uint32_t value)
1578 {
1579     /* Write the Nonsecure view of GICC_APR<regno>. */
1580     switch (GIC_MIN_BPR) {
1581     case 0:
1582         if (regno < 2) {
1583             s->nsapr[regno + 2][cpu] = value;
1584         }
1585         break;
1586     case 1:
1587         if (regno == 0) {
1588             s->nsapr[regno + 1][cpu] = value;
1589         }
1590         break;
1591     case 2:
1592         if (regno == 0) {
1593             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1594         }
1595         break;
1596     case 3:
1597         if (regno == 0) {
1598             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1599         }
1600         break;
1601     default:
1602         g_assert_not_reached();
1603     }
1604 }
1605 
1606 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1607                                 uint64_t *data, MemTxAttrs attrs)
1608 {
1609     switch (offset) {
1610     case 0x00: /* Control */
1611         *data = gic_get_cpu_control(s, cpu, attrs);
1612         break;
1613     case 0x04: /* Priority mask */
1614         *data = gic_get_priority_mask(s, cpu, attrs);
1615         break;
1616     case 0x08: /* Binary Point */
1617         if (gic_cpu_ns_access(s, cpu, attrs)) {
1618             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1619                 /* NS view of BPR when CBPR is 1 */
1620                 *data = MIN(s->bpr[cpu] + 1, 7);
1621             } else {
1622                 /* BPR is banked. Non-secure copy stored in ABPR. */
1623                 *data = s->abpr[cpu];
1624             }
1625         } else {
1626             *data = s->bpr[cpu];
1627         }
1628         break;
1629     case 0x0c: /* Acknowledge */
1630         *data = gic_acknowledge_irq(s, cpu, attrs);
1631         break;
1632     case 0x14: /* Running Priority */
1633         *data = gic_get_running_priority(s, cpu, attrs);
1634         break;
1635     case 0x18: /* Highest Pending Interrupt */
1636         *data = gic_get_current_pending_irq(s, cpu, attrs);
1637         break;
1638     case 0x1c: /* Aliased Binary Point */
1639         /* GIC v2, no security: ABPR
1640          * GIC v1, no security: not implemented (RAZ/WI)
1641          * With security extensions, secure access: ABPR (alias of NS BPR)
1642          * With security extensions, nonsecure access: RAZ/WI
1643          */
1644         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1645             *data = 0;
1646         } else {
1647             *data = s->abpr[cpu];
1648         }
1649         break;
1650     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1651     {
1652         int regno = (offset - 0xd0) / 4;
1653         int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1654 
1655         if (regno >= nr_aprs || s->revision != 2) {
1656             *data = 0;
1657         } else if (gic_is_vcpu(cpu)) {
1658             *data = s->h_apr[gic_get_vcpu_real_id(cpu)];
1659         } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1660             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1661             *data = gic_apr_ns_view(s, regno, cpu);
1662         } else {
1663             *data = s->apr[regno][cpu];
1664         }
1665         break;
1666     }
1667     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1668     {
1669         int regno = (offset - 0xe0) / 4;
1670 
1671         if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1672             gic_cpu_ns_access(s, cpu, attrs) || gic_is_vcpu(cpu)) {
1673             *data = 0;
1674         } else {
1675             *data = s->nsapr[regno][cpu];
1676         }
1677         break;
1678     }
1679     case 0xfc:
1680         if (s->revision == REV_11MPCORE) {
1681             /* Reserved on 11MPCore */
1682             *data = 0;
1683         } else {
1684             /* GICv1 or v2; Arm implementation */
1685             *data = (s->revision << 16) | 0x43b;
1686         }
1687         break;
1688     default:
1689         qemu_log_mask(LOG_GUEST_ERROR,
1690                       "gic_cpu_read: Bad offset %x\n", (int)offset);
1691         *data = 0;
1692         break;
1693     }
1694 
1695     trace_gic_cpu_read(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1696                        gic_get_vcpu_real_id(cpu), offset, *data);
1697     return MEMTX_OK;
1698 }
1699 
1700 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1701                                  uint32_t value, MemTxAttrs attrs)
1702 {
1703     trace_gic_cpu_write(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1704                         gic_get_vcpu_real_id(cpu), offset, value);
1705 
1706     switch (offset) {
1707     case 0x00: /* Control */
1708         gic_set_cpu_control(s, cpu, value, attrs);
1709         break;
1710     case 0x04: /* Priority mask */
1711         gic_set_priority_mask(s, cpu, value, attrs);
1712         break;
1713     case 0x08: /* Binary Point */
1714         if (gic_cpu_ns_access(s, cpu, attrs)) {
1715             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1716                 /* WI when CBPR is 1 */
1717                 return MEMTX_OK;
1718             } else {
1719                 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1720             }
1721         } else {
1722             int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
1723             s->bpr[cpu] = MAX(value & 0x7, min_bpr);
1724         }
1725         break;
1726     case 0x10: /* End Of Interrupt */
1727         gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1728         return MEMTX_OK;
1729     case 0x1c: /* Aliased Binary Point */
1730         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1731             /* unimplemented, or NS access: RAZ/WI */
1732             return MEMTX_OK;
1733         } else {
1734             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1735         }
1736         break;
1737     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1738     {
1739         int regno = (offset - 0xd0) / 4;
1740         int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1741 
1742         if (regno >= nr_aprs || s->revision != 2) {
1743             return MEMTX_OK;
1744         }
1745         if (gic_is_vcpu(cpu)) {
1746             s->h_apr[gic_get_vcpu_real_id(cpu)] = value;
1747         } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1748             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1749             gic_apr_write_ns_view(s, regno, cpu, value);
1750         } else {
1751             s->apr[regno][cpu] = value;
1752         }
1753         s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
1754         break;
1755     }
1756     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1757     {
1758         int regno = (offset - 0xe0) / 4;
1759 
1760         if (regno >= GIC_NR_APRS || s->revision != 2) {
1761             return MEMTX_OK;
1762         }
1763         if (gic_is_vcpu(cpu)) {
1764             return MEMTX_OK;
1765         }
1766         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1767             return MEMTX_OK;
1768         }
1769         s->nsapr[regno][cpu] = value;
1770         s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
1771         break;
1772     }
1773     case 0x1000:
1774         /* GICC_DIR */
1775         gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1776         break;
1777     default:
1778         qemu_log_mask(LOG_GUEST_ERROR,
1779                       "gic_cpu_write: Bad offset %x\n", (int)offset);
1780         return MEMTX_OK;
1781     }
1782 
1783     if (gic_is_vcpu(cpu)) {
1784         gic_update_virt(s);
1785     } else {
1786         gic_update(s);
1787     }
1788 
1789     return MEMTX_OK;
1790 }
1791 
1792 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1793 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1794                                     unsigned size, MemTxAttrs attrs)
1795 {
1796     GICState *s = (GICState *)opaque;
1797     return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1798 }
1799 
1800 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1801                                      uint64_t value, unsigned size,
1802                                      MemTxAttrs attrs)
1803 {
1804     GICState *s = (GICState *)opaque;
1805     return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1806 }
1807 
1808 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1809  * These just decode the opaque pointer into GICState* + cpu id.
1810  */
1811 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1812                                    unsigned size, MemTxAttrs attrs)
1813 {
1814     GICState **backref = (GICState **)opaque;
1815     GICState *s = *backref;
1816     int id = (backref - s->backref);
1817     return gic_cpu_read(s, id, addr, data, attrs);
1818 }
1819 
1820 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1821                                     uint64_t value, unsigned size,
1822                                     MemTxAttrs attrs)
1823 {
1824     GICState **backref = (GICState **)opaque;
1825     GICState *s = *backref;
1826     int id = (backref - s->backref);
1827     return gic_cpu_write(s, id, addr, value, attrs);
1828 }
1829 
1830 static MemTxResult gic_thisvcpu_read(void *opaque, hwaddr addr, uint64_t *data,
1831                                     unsigned size, MemTxAttrs attrs)
1832 {
1833     GICState *s = (GICState *)opaque;
1834 
1835     return gic_cpu_read(s, gic_get_current_vcpu(s), addr, data, attrs);
1836 }
1837 
1838 static MemTxResult gic_thisvcpu_write(void *opaque, hwaddr addr,
1839                                      uint64_t value, unsigned size,
1840                                      MemTxAttrs attrs)
1841 {
1842     GICState *s = (GICState *)opaque;
1843 
1844     return gic_cpu_write(s, gic_get_current_vcpu(s), addr, value, attrs);
1845 }
1846 
1847 static uint32_t gic_compute_eisr(GICState *s, int cpu, int lr_start)
1848 {
1849     int lr_idx;
1850     uint32_t ret = 0;
1851 
1852     for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1853         uint32_t *entry = &s->h_lr[lr_idx][cpu];
1854         ret = deposit32(ret, lr_idx - lr_start, 1,
1855                         gic_lr_entry_is_eoi(*entry));
1856     }
1857 
1858     return ret;
1859 }
1860 
1861 static uint32_t gic_compute_elrsr(GICState *s, int cpu, int lr_start)
1862 {
1863     int lr_idx;
1864     uint32_t ret = 0;
1865 
1866     for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1867         uint32_t *entry = &s->h_lr[lr_idx][cpu];
1868         ret = deposit32(ret, lr_idx - lr_start, 1,
1869                         gic_lr_entry_is_free(*entry));
1870     }
1871 
1872     return ret;
1873 }
1874 
1875 static void gic_vmcr_write(GICState *s, uint32_t value, MemTxAttrs attrs)
1876 {
1877     int vcpu = gic_get_current_vcpu(s);
1878     uint32_t ctlr;
1879     uint32_t abpr;
1880     uint32_t bpr;
1881     uint32_t prio_mask;
1882 
1883     ctlr = FIELD_EX32(value, GICH_VMCR, VMCCtlr);
1884     abpr = FIELD_EX32(value, GICH_VMCR, VMABP);
1885     bpr = FIELD_EX32(value, GICH_VMCR, VMBP);
1886     prio_mask = FIELD_EX32(value, GICH_VMCR, VMPriMask) << 3;
1887 
1888     gic_set_cpu_control(s, vcpu, ctlr, attrs);
1889     s->abpr[vcpu] = MAX(abpr, GIC_VIRT_MIN_ABPR);
1890     s->bpr[vcpu] = MAX(bpr, GIC_VIRT_MIN_BPR);
1891     gic_set_priority_mask(s, vcpu, prio_mask, attrs);
1892 }
1893 
1894 static MemTxResult gic_hyp_read(void *opaque, int cpu, hwaddr addr,
1895                                 uint64_t *data, MemTxAttrs attrs)
1896 {
1897     GICState *s = ARM_GIC(opaque);
1898     int vcpu = cpu + GIC_NCPU;
1899 
1900     switch (addr) {
1901     case A_GICH_HCR: /* Hypervisor Control */
1902         *data = s->h_hcr[cpu];
1903         break;
1904 
1905     case A_GICH_VTR: /* VGIC Type */
1906         *data = FIELD_DP32(0, GICH_VTR, ListRegs, s->num_lrs - 1);
1907         *data = FIELD_DP32(*data, GICH_VTR, PREbits,
1908                            GIC_VIRT_MAX_GROUP_PRIO_BITS - 1);
1909         *data = FIELD_DP32(*data, GICH_VTR, PRIbits,
1910                            (7 - GIC_VIRT_MIN_BPR) - 1);
1911         break;
1912 
1913     case A_GICH_VMCR: /* Virtual Machine Control */
1914         *data = FIELD_DP32(0, GICH_VMCR, VMCCtlr,
1915                            extract32(s->cpu_ctlr[vcpu], 0, 10));
1916         *data = FIELD_DP32(*data, GICH_VMCR, VMABP, s->abpr[vcpu]);
1917         *data = FIELD_DP32(*data, GICH_VMCR, VMBP, s->bpr[vcpu]);
1918         *data = FIELD_DP32(*data, GICH_VMCR, VMPriMask,
1919                            extract32(s->priority_mask[vcpu], 3, 5));
1920         break;
1921 
1922     case A_GICH_MISR: /* Maintenance Interrupt Status */
1923         *data = s->h_misr[cpu];
1924         break;
1925 
1926     case A_GICH_EISR0: /* End of Interrupt Status 0 and 1 */
1927     case A_GICH_EISR1:
1928         *data = gic_compute_eisr(s, cpu, (addr - A_GICH_EISR0) * 8);
1929         break;
1930 
1931     case A_GICH_ELRSR0: /* Empty List Status 0 and 1 */
1932     case A_GICH_ELRSR1:
1933         *data = gic_compute_elrsr(s, cpu, (addr - A_GICH_ELRSR0) * 8);
1934         break;
1935 
1936     case A_GICH_APR: /* Active Priorities */
1937         *data = s->h_apr[cpu];
1938         break;
1939 
1940     case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1941     {
1942         int lr_idx = (addr - A_GICH_LR0) / 4;
1943 
1944         if (lr_idx > s->num_lrs) {
1945             *data = 0;
1946         } else {
1947             *data = s->h_lr[lr_idx][cpu];
1948         }
1949         break;
1950     }
1951 
1952     default:
1953         qemu_log_mask(LOG_GUEST_ERROR,
1954                       "gic_hyp_read: Bad offset %" HWADDR_PRIx "\n", addr);
1955         return MEMTX_OK;
1956     }
1957 
1958     trace_gic_hyp_read(addr, *data);
1959     return MEMTX_OK;
1960 }
1961 
1962 static MemTxResult gic_hyp_write(void *opaque, int cpu, hwaddr addr,
1963                                  uint64_t value, MemTxAttrs attrs)
1964 {
1965     GICState *s = ARM_GIC(opaque);
1966     int vcpu = cpu + GIC_NCPU;
1967 
1968     trace_gic_hyp_write(addr, value);
1969 
1970     switch (addr) {
1971     case A_GICH_HCR: /* Hypervisor Control */
1972         s->h_hcr[cpu] = value & GICH_HCR_MASK;
1973         break;
1974 
1975     case A_GICH_VMCR: /* Virtual Machine Control */
1976         gic_vmcr_write(s, value, attrs);
1977         break;
1978 
1979     case A_GICH_APR: /* Active Priorities */
1980         s->h_apr[cpu] = value;
1981         s->running_priority[vcpu] = gic_get_prio_from_apr_bits(s, vcpu);
1982         break;
1983 
1984     case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1985     {
1986         int lr_idx = (addr - A_GICH_LR0) / 4;
1987 
1988         if (lr_idx > s->num_lrs) {
1989             return MEMTX_OK;
1990         }
1991 
1992         s->h_lr[lr_idx][cpu] = value & GICH_LR_MASK;
1993         trace_gic_lr_entry(cpu, lr_idx, s->h_lr[lr_idx][cpu]);
1994         break;
1995     }
1996 
1997     default:
1998         qemu_log_mask(LOG_GUEST_ERROR,
1999                       "gic_hyp_write: Bad offset %" HWADDR_PRIx "\n", addr);
2000         return MEMTX_OK;
2001     }
2002 
2003     gic_update_virt(s);
2004     return MEMTX_OK;
2005 }
2006 
2007 static MemTxResult gic_thiscpu_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
2008                                     unsigned size, MemTxAttrs attrs)
2009 {
2010     GICState *s = (GICState *)opaque;
2011 
2012     return gic_hyp_read(s, gic_get_current_cpu(s), addr, data, attrs);
2013 }
2014 
2015 static MemTxResult gic_thiscpu_hyp_write(void *opaque, hwaddr addr,
2016                                      uint64_t value, unsigned size,
2017                                      MemTxAttrs attrs)
2018 {
2019     GICState *s = (GICState *)opaque;
2020 
2021     return gic_hyp_write(s, gic_get_current_cpu(s), addr, value, attrs);
2022 }
2023 
2024 static MemTxResult gic_do_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
2025                                     unsigned size, MemTxAttrs attrs)
2026 {
2027     GICState **backref = (GICState **)opaque;
2028     GICState *s = *backref;
2029     int id = (backref - s->backref);
2030 
2031     return gic_hyp_read(s, id, addr, data, attrs);
2032 }
2033 
2034 static MemTxResult gic_do_hyp_write(void *opaque, hwaddr addr,
2035                                      uint64_t value, unsigned size,
2036                                      MemTxAttrs attrs)
2037 {
2038     GICState **backref = (GICState **)opaque;
2039     GICState *s = *backref;
2040     int id = (backref - s->backref);
2041 
2042     return gic_hyp_write(s, id + GIC_NCPU, addr, value, attrs);
2043 
2044 }
2045 
2046 static const MemoryRegionOps gic_ops[2] = {
2047     {
2048         .read_with_attrs = gic_dist_read,
2049         .write_with_attrs = gic_dist_write,
2050         .endianness = DEVICE_NATIVE_ENDIAN,
2051     },
2052     {
2053         .read_with_attrs = gic_thiscpu_read,
2054         .write_with_attrs = gic_thiscpu_write,
2055         .endianness = DEVICE_NATIVE_ENDIAN,
2056     }
2057 };
2058 
2059 static const MemoryRegionOps gic_cpu_ops = {
2060     .read_with_attrs = gic_do_cpu_read,
2061     .write_with_attrs = gic_do_cpu_write,
2062     .endianness = DEVICE_NATIVE_ENDIAN,
2063 };
2064 
2065 static const MemoryRegionOps gic_virt_ops[2] = {
2066     {
2067         .read_with_attrs = gic_thiscpu_hyp_read,
2068         .write_with_attrs = gic_thiscpu_hyp_write,
2069         .endianness = DEVICE_NATIVE_ENDIAN,
2070     },
2071     {
2072         .read_with_attrs = gic_thisvcpu_read,
2073         .write_with_attrs = gic_thisvcpu_write,
2074         .endianness = DEVICE_NATIVE_ENDIAN,
2075     }
2076 };
2077 
2078 static const MemoryRegionOps gic_viface_ops = {
2079     .read_with_attrs = gic_do_hyp_read,
2080     .write_with_attrs = gic_do_hyp_write,
2081     .endianness = DEVICE_NATIVE_ENDIAN,
2082 };
2083 
2084 static void arm_gic_realize(DeviceState *dev, Error **errp)
2085 {
2086     /* Device instance realize function for the GIC sysbus device */
2087     int i;
2088     GICState *s = ARM_GIC(dev);
2089     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2090     ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
2091     Error *local_err = NULL;
2092 
2093     agc->parent_realize(dev, &local_err);
2094     if (local_err) {
2095         error_propagate(errp, local_err);
2096         return;
2097     }
2098 
2099     if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
2100         error_setg(errp, "KVM with user space irqchip only works when the "
2101                          "host kernel supports KVM_CAP_ARM_USER_IRQ");
2102         return;
2103     }
2104 
2105     if (s->n_prio_bits > GIC_MAX_PRIORITY_BITS ||
2106        (s->virt_extn ? s->n_prio_bits < GIC_VIRT_MAX_GROUP_PRIO_BITS :
2107         s->n_prio_bits < GIC_MIN_PRIORITY_BITS)) {
2108         error_setg(errp, "num-priority-bits cannot be greater than %d"
2109                    " or less than %d", GIC_MAX_PRIORITY_BITS,
2110                    s->virt_extn ? GIC_VIRT_MAX_GROUP_PRIO_BITS :
2111                    GIC_MIN_PRIORITY_BITS);
2112         return;
2113     }
2114 
2115     /* This creates distributor, main CPU interface (s->cpuiomem[0]) and if
2116      * enabled, virtualization extensions related interfaces (main virtual
2117      * interface (s->vifaceiomem[0]) and virtual CPU interface).
2118      */
2119     gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops, gic_virt_ops);
2120 
2121     /* Extra core-specific regions for the CPU interfaces. This is
2122      * necessary for "franken-GIC" implementations, for example on
2123      * Exynos 4.
2124      * NB that the memory region size of 0x100 applies for the 11MPCore
2125      * and also cores following the GIC v1 spec (ie A9).
2126      * GIC v2 defines a larger memory region (0x1000) so this will need
2127      * to be extended when we implement A15.
2128      */
2129     for (i = 0; i < s->num_cpu; i++) {
2130         s->backref[i] = s;
2131         memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
2132                               &s->backref[i], "gic_cpu", 0x100);
2133         sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
2134     }
2135 
2136     /* Extra core-specific regions for virtual interfaces. This is required by
2137      * the GICv2 specification.
2138      */
2139     if (s->virt_extn) {
2140         for (i = 0; i < s->num_cpu; i++) {
2141             memory_region_init_io(&s->vifaceiomem[i + 1], OBJECT(s),
2142                                   &gic_viface_ops, &s->backref[i],
2143                                   "gic_viface", 0x200);
2144             sysbus_init_mmio(sbd, &s->vifaceiomem[i + 1]);
2145         }
2146     }
2147 
2148 }
2149 
2150 static void arm_gic_class_init(ObjectClass *klass, void *data)
2151 {
2152     DeviceClass *dc = DEVICE_CLASS(klass);
2153     ARMGICClass *agc = ARM_GIC_CLASS(klass);
2154 
2155     device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
2156 }
2157 
2158 static const TypeInfo arm_gic_info = {
2159     .name = TYPE_ARM_GIC,
2160     .parent = TYPE_ARM_GIC_COMMON,
2161     .instance_size = sizeof(GICState),
2162     .class_init = arm_gic_class_init,
2163     .class_size = sizeof(ARMGICClass),
2164 };
2165 
2166 static void arm_gic_register_types(void)
2167 {
2168     type_register_static(&arm_gic_info);
2169 }
2170 
2171 type_init(arm_gic_register_types)
2172