xref: /openbmc/qemu/hw/intc/arm_gic.c (revision 8e6fe6b8bab4716b4adf99a9ab52eaa82464b37e)
1 /*
2  * ARM Generic/Distributed Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 /* This file contains implementation code for the RealView EB interrupt
11  * controller, MPCore distributed interrupt controller and ARMv7-M
12  * Nested Vectored Interrupt Controller.
13  * It is compiled in two ways:
14  *  (1) as a standalone file to produce a sysbus device which is a GIC
15  *  that can be used on the realview board and as one of the builtin
16  *  private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17  *  (2) by being directly #included into armv7m_nvic.c to produce the
18  *  armv7m_nvic device.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "hw/sysbus.h"
23 #include "gic_internal.h"
24 #include "qapi/error.h"
25 #include "qom/cpu.h"
26 #include "qemu/log.h"
27 #include "qemu/module.h"
28 #include "trace.h"
29 #include "sysemu/kvm.h"
30 
31 /* #define DEBUG_GIC */
32 
33 #ifdef DEBUG_GIC
34 #define DEBUG_GIC_GATE 1
35 #else
36 #define DEBUG_GIC_GATE 0
37 #endif
38 
39 #define DPRINTF(fmt, ...) do {                                          \
40         if (DEBUG_GIC_GATE) {                                           \
41             fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__);      \
42         }                                                               \
43     } while (0)
44 
45 static const uint8_t gic_id_11mpcore[] = {
46     0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
47 };
48 
49 static const uint8_t gic_id_gicv1[] = {
50     0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
51 };
52 
53 static const uint8_t gic_id_gicv2[] = {
54     0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
55 };
56 
57 static inline int gic_get_current_cpu(GICState *s)
58 {
59     if (s->num_cpu > 1) {
60         return current_cpu->cpu_index;
61     }
62     return 0;
63 }
64 
65 static inline int gic_get_current_vcpu(GICState *s)
66 {
67     return gic_get_current_cpu(s) + GIC_NCPU;
68 }
69 
70 /* Return true if this GIC config has interrupt groups, which is
71  * true if we're a GICv2, or a GICv1 with the security extensions.
72  */
73 static inline bool gic_has_groups(GICState *s)
74 {
75     return s->revision == 2 || s->security_extn;
76 }
77 
78 static inline bool gic_cpu_ns_access(GICState *s, int cpu, MemTxAttrs attrs)
79 {
80     return !gic_is_vcpu(cpu) && s->security_extn && !attrs.secure;
81 }
82 
83 static inline void gic_get_best_irq(GICState *s, int cpu,
84                                     int *best_irq, int *best_prio, int *group)
85 {
86     int irq;
87     int cm = 1 << cpu;
88 
89     *best_irq = 1023;
90     *best_prio = 0x100;
91 
92     for (irq = 0; irq < s->num_irq; irq++) {
93         if (GIC_DIST_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
94             (!GIC_DIST_TEST_ACTIVE(irq, cm)) &&
95             (irq < GIC_INTERNAL || GIC_DIST_TARGET(irq) & cm)) {
96             if (GIC_DIST_GET_PRIORITY(irq, cpu) < *best_prio) {
97                 *best_prio = GIC_DIST_GET_PRIORITY(irq, cpu);
98                 *best_irq = irq;
99             }
100         }
101     }
102 
103     if (*best_irq < 1023) {
104         *group = GIC_DIST_TEST_GROUP(*best_irq, cm);
105     }
106 }
107 
108 static inline void gic_get_best_virq(GICState *s, int cpu,
109                                      int *best_irq, int *best_prio, int *group)
110 {
111     int lr_idx = 0;
112 
113     *best_irq = 1023;
114     *best_prio = 0x100;
115 
116     for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
117         uint32_t lr_entry = s->h_lr[lr_idx][cpu];
118         int state = GICH_LR_STATE(lr_entry);
119 
120         if (state == GICH_LR_STATE_PENDING) {
121             int prio = GICH_LR_PRIORITY(lr_entry);
122 
123             if (prio < *best_prio) {
124                 *best_prio = prio;
125                 *best_irq = GICH_LR_VIRT_ID(lr_entry);
126                 *group = GICH_LR_GROUP(lr_entry);
127             }
128         }
129     }
130 }
131 
132 /* Return true if IRQ signaling is enabled for the given cpu and at least one
133  * of the given groups:
134  *   - in the non-virt case, the distributor must be enabled for one of the
135  *   given groups
136  *   - in the virt case, the virtual interface must be enabled.
137  *   - in all cases, the (v)CPU interface must be enabled for one of the given
138  *   groups.
139  */
140 static inline bool gic_irq_signaling_enabled(GICState *s, int cpu, bool virt,
141                                     int group_mask)
142 {
143     if (!virt && !(s->ctlr & group_mask)) {
144         return false;
145     }
146 
147     if (virt && !(s->h_hcr[cpu] & R_GICH_HCR_EN_MASK)) {
148         return false;
149     }
150 
151     if (!(s->cpu_ctlr[cpu] & group_mask)) {
152         return false;
153     }
154 
155     return true;
156 }
157 
158 /* TODO: Many places that call this routine could be optimized.  */
159 /* Update interrupt status after enabled or pending bits have been changed.  */
160 static inline void gic_update_internal(GICState *s, bool virt)
161 {
162     int best_irq;
163     int best_prio;
164     int irq_level, fiq_level;
165     int cpu, cpu_iface;
166     int group = 0;
167     qemu_irq *irq_lines = virt ? s->parent_virq : s->parent_irq;
168     qemu_irq *fiq_lines = virt ? s->parent_vfiq : s->parent_fiq;
169 
170     for (cpu = 0; cpu < s->num_cpu; cpu++) {
171         cpu_iface = virt ? (cpu + GIC_NCPU) : cpu;
172 
173         s->current_pending[cpu_iface] = 1023;
174         if (!gic_irq_signaling_enabled(s, cpu, virt,
175                                        GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1)) {
176             qemu_irq_lower(irq_lines[cpu]);
177             qemu_irq_lower(fiq_lines[cpu]);
178             continue;
179         }
180 
181         if (virt) {
182             gic_get_best_virq(s, cpu, &best_irq, &best_prio, &group);
183         } else {
184             gic_get_best_irq(s, cpu, &best_irq, &best_prio, &group);
185         }
186 
187         if (best_irq != 1023) {
188             trace_gic_update_bestirq(virt ? "vcpu" : "cpu", cpu,
189                                      best_irq, best_prio,
190                                      s->priority_mask[cpu_iface],
191                                      s->running_priority[cpu_iface]);
192         }
193 
194         irq_level = fiq_level = 0;
195 
196         if (best_prio < s->priority_mask[cpu_iface]) {
197             s->current_pending[cpu_iface] = best_irq;
198             if (best_prio < s->running_priority[cpu_iface]) {
199                 if (gic_irq_signaling_enabled(s, cpu, virt, 1 << group)) {
200                     if (group == 0 &&
201                         s->cpu_ctlr[cpu_iface] & GICC_CTLR_FIQ_EN) {
202                         DPRINTF("Raised pending FIQ %d (cpu %d)\n",
203                                 best_irq, cpu_iface);
204                         fiq_level = 1;
205                         trace_gic_update_set_irq(cpu, virt ? "vfiq" : "fiq",
206                                                  fiq_level);
207                     } else {
208                         DPRINTF("Raised pending IRQ %d (cpu %d)\n",
209                                 best_irq, cpu_iface);
210                         irq_level = 1;
211                         trace_gic_update_set_irq(cpu, virt ? "virq" : "irq",
212                                                  irq_level);
213                     }
214                 }
215             }
216         }
217 
218         qemu_set_irq(irq_lines[cpu], irq_level);
219         qemu_set_irq(fiq_lines[cpu], fiq_level);
220     }
221 }
222 
223 static void gic_update(GICState *s)
224 {
225     gic_update_internal(s, false);
226 }
227 
228 /* Return true if this LR is empty, i.e. the corresponding bit
229  * in ELRSR is set.
230  */
231 static inline bool gic_lr_entry_is_free(uint32_t entry)
232 {
233     return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
234         && (GICH_LR_HW(entry) || !GICH_LR_EOI(entry));
235 }
236 
237 /* Return true if this LR should trigger an EOI maintenance interrupt, i.e. the
238  * corrsponding bit in EISR is set.
239  */
240 static inline bool gic_lr_entry_is_eoi(uint32_t entry)
241 {
242     return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
243         && !GICH_LR_HW(entry) && GICH_LR_EOI(entry);
244 }
245 
246 static inline void gic_extract_lr_info(GICState *s, int cpu,
247                                 int *num_eoi, int *num_valid, int *num_pending)
248 {
249     int lr_idx;
250 
251     *num_eoi = 0;
252     *num_valid = 0;
253     *num_pending = 0;
254 
255     for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
256         uint32_t *entry = &s->h_lr[lr_idx][cpu];
257 
258         if (gic_lr_entry_is_eoi(*entry)) {
259             (*num_eoi)++;
260         }
261 
262         if (GICH_LR_STATE(*entry) != GICH_LR_STATE_INVALID) {
263             (*num_valid)++;
264         }
265 
266         if (GICH_LR_STATE(*entry) == GICH_LR_STATE_PENDING) {
267             (*num_pending)++;
268         }
269     }
270 }
271 
272 static void gic_compute_misr(GICState *s, int cpu)
273 {
274     uint32_t value = 0;
275     int vcpu = cpu + GIC_NCPU;
276 
277     int num_eoi, num_valid, num_pending;
278 
279     gic_extract_lr_info(s, cpu, &num_eoi, &num_valid, &num_pending);
280 
281     /* EOI */
282     if (num_eoi) {
283         value |= R_GICH_MISR_EOI_MASK;
284     }
285 
286     /* U: true if only 0 or 1 LR entry is valid */
287     if ((s->h_hcr[cpu] & R_GICH_HCR_UIE_MASK) && (num_valid < 2)) {
288         value |= R_GICH_MISR_U_MASK;
289     }
290 
291     /* LRENP: EOICount is not 0 */
292     if ((s->h_hcr[cpu] & R_GICH_HCR_LRENPIE_MASK) &&
293         ((s->h_hcr[cpu] & R_GICH_HCR_EOICount_MASK) != 0)) {
294         value |= R_GICH_MISR_LRENP_MASK;
295     }
296 
297     /* NP: no pending interrupts */
298     if ((s->h_hcr[cpu] & R_GICH_HCR_NPIE_MASK) && (num_pending == 0)) {
299         value |= R_GICH_MISR_NP_MASK;
300     }
301 
302     /* VGrp0E: group0 virq signaling enabled */
303     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0EIE_MASK) &&
304         (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
305         value |= R_GICH_MISR_VGrp0E_MASK;
306     }
307 
308     /* VGrp0D: group0 virq signaling disabled */
309     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0DIE_MASK) &&
310         !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
311         value |= R_GICH_MISR_VGrp0D_MASK;
312     }
313 
314     /* VGrp1E: group1 virq signaling enabled */
315     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1EIE_MASK) &&
316         (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
317         value |= R_GICH_MISR_VGrp1E_MASK;
318     }
319 
320     /* VGrp1D: group1 virq signaling disabled */
321     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1DIE_MASK) &&
322         !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
323         value |= R_GICH_MISR_VGrp1D_MASK;
324     }
325 
326     s->h_misr[cpu] = value;
327 }
328 
329 static void gic_update_maintenance(GICState *s)
330 {
331     int cpu = 0;
332     int maint_level;
333 
334     for (cpu = 0; cpu < s->num_cpu; cpu++) {
335         gic_compute_misr(s, cpu);
336         maint_level = (s->h_hcr[cpu] & R_GICH_HCR_EN_MASK) && s->h_misr[cpu];
337 
338         trace_gic_update_maintenance_irq(cpu, maint_level);
339         qemu_set_irq(s->maintenance_irq[cpu], maint_level);
340     }
341 }
342 
343 static void gic_update_virt(GICState *s)
344 {
345     gic_update_internal(s, true);
346     gic_update_maintenance(s);
347 }
348 
349 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
350                                  int cm, int target)
351 {
352     if (level) {
353         GIC_DIST_SET_LEVEL(irq, cm);
354         if (GIC_DIST_TEST_EDGE_TRIGGER(irq) || GIC_DIST_TEST_ENABLED(irq, cm)) {
355             DPRINTF("Set %d pending mask %x\n", irq, target);
356             GIC_DIST_SET_PENDING(irq, target);
357         }
358     } else {
359         GIC_DIST_CLEAR_LEVEL(irq, cm);
360     }
361 }
362 
363 static void gic_set_irq_generic(GICState *s, int irq, int level,
364                                 int cm, int target)
365 {
366     if (level) {
367         GIC_DIST_SET_LEVEL(irq, cm);
368         DPRINTF("Set %d pending mask %x\n", irq, target);
369         if (GIC_DIST_TEST_EDGE_TRIGGER(irq)) {
370             GIC_DIST_SET_PENDING(irq, target);
371         }
372     } else {
373         GIC_DIST_CLEAR_LEVEL(irq, cm);
374     }
375 }
376 
377 /* Process a change in an external IRQ input.  */
378 static void gic_set_irq(void *opaque, int irq, int level)
379 {
380     /* Meaning of the 'irq' parameter:
381      *  [0..N-1] : external interrupts
382      *  [N..N+31] : PPI (internal) interrupts for CPU 0
383      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
384      *  ...
385      */
386     GICState *s = (GICState *)opaque;
387     int cm, target;
388     if (irq < (s->num_irq - GIC_INTERNAL)) {
389         /* The first external input line is internal interrupt 32.  */
390         cm = ALL_CPU_MASK;
391         irq += GIC_INTERNAL;
392         target = GIC_DIST_TARGET(irq);
393     } else {
394         int cpu;
395         irq -= (s->num_irq - GIC_INTERNAL);
396         cpu = irq / GIC_INTERNAL;
397         irq %= GIC_INTERNAL;
398         cm = 1 << cpu;
399         target = cm;
400     }
401 
402     assert(irq >= GIC_NR_SGIS);
403 
404     if (level == GIC_DIST_TEST_LEVEL(irq, cm)) {
405         return;
406     }
407 
408     if (s->revision == REV_11MPCORE) {
409         gic_set_irq_11mpcore(s, irq, level, cm, target);
410     } else {
411         gic_set_irq_generic(s, irq, level, cm, target);
412     }
413     trace_gic_set_irq(irq, level, cm, target);
414 
415     gic_update(s);
416 }
417 
418 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
419                                             MemTxAttrs attrs)
420 {
421     uint16_t pending_irq = s->current_pending[cpu];
422 
423     if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
424         int group = gic_test_group(s, pending_irq, cpu);
425 
426         /* On a GIC without the security extensions, reading this register
427          * behaves in the same way as a secure access to a GIC with them.
428          */
429         bool secure = !gic_cpu_ns_access(s, cpu, attrs);
430 
431         if (group == 0 && !secure) {
432             /* Group0 interrupts hidden from Non-secure access */
433             return 1023;
434         }
435         if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
436             /* Group1 interrupts only seen by Secure access if
437              * AckCtl bit set.
438              */
439             return 1022;
440         }
441     }
442     return pending_irq;
443 }
444 
445 static int gic_get_group_priority(GICState *s, int cpu, int irq)
446 {
447     /* Return the group priority of the specified interrupt
448      * (which is the top bits of its priority, with the number
449      * of bits masked determined by the applicable binary point register).
450      */
451     int bpr;
452     uint32_t mask;
453 
454     if (gic_has_groups(s) &&
455         !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
456         gic_test_group(s, irq, cpu)) {
457         bpr = s->abpr[cpu] - 1;
458         assert(bpr >= 0);
459     } else {
460         bpr = s->bpr[cpu];
461     }
462 
463     /* a BPR of 0 means the group priority bits are [7:1];
464      * a BPR of 1 means they are [7:2], and so on down to
465      * a BPR of 7 meaning no group priority bits at all.
466      */
467     mask = ~0U << ((bpr & 7) + 1);
468 
469     return gic_get_priority(s, irq, cpu) & mask;
470 }
471 
472 static void gic_activate_irq(GICState *s, int cpu, int irq)
473 {
474     /* Set the appropriate Active Priority Register bit for this IRQ,
475      * and update the running priority.
476      */
477     int prio = gic_get_group_priority(s, cpu, irq);
478     int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
479     int preemption_level = prio >> (min_bpr + 1);
480     int regno = preemption_level / 32;
481     int bitno = preemption_level % 32;
482     uint32_t *papr = NULL;
483 
484     if (gic_is_vcpu(cpu)) {
485         assert(regno == 0);
486         papr = &s->h_apr[gic_get_vcpu_real_id(cpu)];
487     } else if (gic_has_groups(s) && gic_test_group(s, irq, cpu)) {
488         papr = &s->nsapr[regno][cpu];
489     } else {
490         papr = &s->apr[regno][cpu];
491     }
492 
493     *papr |= (1 << bitno);
494 
495     s->running_priority[cpu] = prio;
496     gic_set_active(s, irq, cpu);
497 }
498 
499 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
500 {
501     /* Recalculate the current running priority for this CPU based
502      * on the set bits in the Active Priority Registers.
503      */
504     int i;
505 
506     if (gic_is_vcpu(cpu)) {
507         uint32_t apr = s->h_apr[gic_get_vcpu_real_id(cpu)];
508         if (apr) {
509             return ctz32(apr) << (GIC_VIRT_MIN_BPR + 1);
510         } else {
511             return 0x100;
512         }
513     }
514 
515     for (i = 0; i < GIC_NR_APRS; i++) {
516         uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
517         if (!apr) {
518             continue;
519         }
520         return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
521     }
522     return 0x100;
523 }
524 
525 static void gic_drop_prio(GICState *s, int cpu, int group)
526 {
527     /* Drop the priority of the currently active interrupt in the
528      * specified group.
529      *
530      * Note that we can guarantee (because of the requirement to nest
531      * GICC_IAR reads [which activate an interrupt and raise priority]
532      * with GICC_EOIR writes [which drop the priority for the interrupt])
533      * that the interrupt we're being called for is the highest priority
534      * active interrupt, meaning that it has the lowest set bit in the
535      * APR registers.
536      *
537      * If the guest does not honour the ordering constraints then the
538      * behaviour of the GIC is UNPREDICTABLE, which for us means that
539      * the values of the APR registers might become incorrect and the
540      * running priority will be wrong, so interrupts that should preempt
541      * might not do so, and interrupts that should not preempt might do so.
542      */
543     if (gic_is_vcpu(cpu)) {
544         int rcpu = gic_get_vcpu_real_id(cpu);
545 
546         if (s->h_apr[rcpu]) {
547             /* Clear lowest set bit */
548             s->h_apr[rcpu] &= s->h_apr[rcpu] - 1;
549         }
550     } else {
551         int i;
552 
553         for (i = 0; i < GIC_NR_APRS; i++) {
554             uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
555             if (!*papr) {
556                 continue;
557             }
558             /* Clear lowest set bit */
559             *papr &= *papr - 1;
560             break;
561         }
562     }
563 
564     s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
565 }
566 
567 static inline uint32_t gic_clear_pending_sgi(GICState *s, int irq, int cpu)
568 {
569     int src;
570     uint32_t ret;
571 
572     if (!gic_is_vcpu(cpu)) {
573         /* Lookup the source CPU for the SGI and clear this in the
574          * sgi_pending map.  Return the src and clear the overall pending
575          * state on this CPU if the SGI is not pending from any CPUs.
576          */
577         assert(s->sgi_pending[irq][cpu] != 0);
578         src = ctz32(s->sgi_pending[irq][cpu]);
579         s->sgi_pending[irq][cpu] &= ~(1 << src);
580         if (s->sgi_pending[irq][cpu] == 0) {
581             gic_clear_pending(s, irq, cpu);
582         }
583         ret = irq | ((src & 0x7) << 10);
584     } else {
585         uint32_t *lr_entry = gic_get_lr_entry(s, irq, cpu);
586         src = GICH_LR_CPUID(*lr_entry);
587 
588         gic_clear_pending(s, irq, cpu);
589         ret = irq | (src << 10);
590     }
591 
592     return ret;
593 }
594 
595 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
596 {
597     int ret, irq;
598 
599     /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
600      * for the case where this GIC supports grouping and the pending interrupt
601      * is in the wrong group.
602      */
603     irq = gic_get_current_pending_irq(s, cpu, attrs);
604     trace_gic_acknowledge_irq(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
605                               gic_get_vcpu_real_id(cpu), irq);
606 
607     if (irq >= GIC_MAXIRQ) {
608         DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
609         return irq;
610     }
611 
612     if (gic_get_priority(s, irq, cpu) >= s->running_priority[cpu]) {
613         DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
614         return 1023;
615     }
616 
617     gic_activate_irq(s, cpu, irq);
618 
619     if (s->revision == REV_11MPCORE) {
620         /* Clear pending flags for both level and edge triggered interrupts.
621          * Level triggered IRQs will be reasserted once they become inactive.
622          */
623         gic_clear_pending(s, irq, cpu);
624         ret = irq;
625     } else {
626         if (irq < GIC_NR_SGIS) {
627             ret = gic_clear_pending_sgi(s, irq, cpu);
628         } else {
629             gic_clear_pending(s, irq, cpu);
630             ret = irq;
631         }
632     }
633 
634     if (gic_is_vcpu(cpu)) {
635         gic_update_virt(s);
636     } else {
637         gic_update(s);
638     }
639     DPRINTF("ACK %d\n", irq);
640     return ret;
641 }
642 
643 void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
644                       MemTxAttrs attrs)
645 {
646     if (s->security_extn && !attrs.secure) {
647         if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
648             return; /* Ignore Non-secure access of Group0 IRQ */
649         }
650         val = 0x80 | (val >> 1); /* Non-secure view */
651     }
652 
653     if (irq < GIC_INTERNAL) {
654         s->priority1[irq][cpu] = val;
655     } else {
656         s->priority2[(irq) - GIC_INTERNAL] = val;
657     }
658 }
659 
660 static uint32_t gic_dist_get_priority(GICState *s, int cpu, int irq,
661                                  MemTxAttrs attrs)
662 {
663     uint32_t prio = GIC_DIST_GET_PRIORITY(irq, cpu);
664 
665     if (s->security_extn && !attrs.secure) {
666         if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
667             return 0; /* Non-secure access cannot read priority of Group0 IRQ */
668         }
669         prio = (prio << 1) & 0xff; /* Non-secure view */
670     }
671     return prio;
672 }
673 
674 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
675                                   MemTxAttrs attrs)
676 {
677     if (gic_cpu_ns_access(s, cpu, attrs)) {
678         if (s->priority_mask[cpu] & 0x80) {
679             /* Priority Mask in upper half */
680             pmask = 0x80 | (pmask >> 1);
681         } else {
682             /* Non-secure write ignored if priority mask is in lower half */
683             return;
684         }
685     }
686     s->priority_mask[cpu] = pmask;
687 }
688 
689 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
690 {
691     uint32_t pmask = s->priority_mask[cpu];
692 
693     if (gic_cpu_ns_access(s, cpu, attrs)) {
694         if (pmask & 0x80) {
695             /* Priority Mask in upper half, return Non-secure view */
696             pmask = (pmask << 1) & 0xff;
697         } else {
698             /* Priority Mask in lower half, RAZ */
699             pmask = 0;
700         }
701     }
702     return pmask;
703 }
704 
705 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
706 {
707     uint32_t ret = s->cpu_ctlr[cpu];
708 
709     if (gic_cpu_ns_access(s, cpu, attrs)) {
710         /* Construct the NS banked view of GICC_CTLR from the correct
711          * bits of the S banked view. We don't need to move the bypass
712          * control bits because we don't implement that (IMPDEF) part
713          * of the GIC architecture.
714          */
715         ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
716     }
717     return ret;
718 }
719 
720 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
721                                 MemTxAttrs attrs)
722 {
723     uint32_t mask;
724 
725     if (gic_cpu_ns_access(s, cpu, attrs)) {
726         /* The NS view can only write certain bits in the register;
727          * the rest are unchanged
728          */
729         mask = GICC_CTLR_EN_GRP1;
730         if (s->revision == 2) {
731             mask |= GICC_CTLR_EOIMODE_NS;
732         }
733         s->cpu_ctlr[cpu] &= ~mask;
734         s->cpu_ctlr[cpu] |= (value << 1) & mask;
735     } else {
736         if (s->revision == 2) {
737             mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
738         } else {
739             mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
740         }
741         s->cpu_ctlr[cpu] = value & mask;
742     }
743     DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
744             "Group1 Interrupts %sabled\n", cpu,
745             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
746             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
747 }
748 
749 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
750 {
751     if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
752         /* Idle priority */
753         return 0xff;
754     }
755 
756     if (gic_cpu_ns_access(s, cpu, attrs)) {
757         if (s->running_priority[cpu] & 0x80) {
758             /* Running priority in upper half of range: return the Non-secure
759              * view of the priority.
760              */
761             return s->running_priority[cpu] << 1;
762         } else {
763             /* Running priority in lower half of range: RAZ */
764             return 0;
765         }
766     } else {
767         return s->running_priority[cpu];
768     }
769 }
770 
771 /* Return true if we should split priority drop and interrupt deactivation,
772  * ie whether the relevant EOIMode bit is set.
773  */
774 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
775 {
776     if (s->revision != 2) {
777         /* Before GICv2 prio-drop and deactivate are not separable */
778         return false;
779     }
780     if (gic_cpu_ns_access(s, cpu, attrs)) {
781         return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
782     }
783     return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
784 }
785 
786 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
787 {
788     int group;
789 
790     if (irq >= GIC_MAXIRQ || (!gic_is_vcpu(cpu) && irq >= s->num_irq)) {
791         /*
792          * This handles two cases:
793          * 1. If software writes the ID of a spurious interrupt [ie 1023]
794          * to the GICC_DIR, the GIC ignores that write.
795          * 2. If software writes the number of a non-existent interrupt
796          * this must be a subcase of "value written is not an active interrupt"
797          * and so this is UNPREDICTABLE. We choose to ignore it. For vCPUs,
798          * all IRQs potentially exist, so this limit does not apply.
799          */
800         return;
801     }
802 
803     if (!gic_eoi_split(s, cpu, attrs)) {
804         /* This is UNPREDICTABLE; we choose to ignore it */
805         qemu_log_mask(LOG_GUEST_ERROR,
806                       "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
807         return;
808     }
809 
810     if (gic_is_vcpu(cpu) && !gic_virq_is_valid(s, irq, cpu)) {
811         /* This vIRQ does not have an LR entry which is either active or
812          * pending and active. Increment EOICount and ignore the write.
813          */
814         int rcpu = gic_get_vcpu_real_id(cpu);
815         s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
816 
817         /* Update the virtual interface in case a maintenance interrupt should
818          * be raised.
819          */
820         gic_update_virt(s);
821         return;
822     }
823 
824     group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
825 
826     if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
827         DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
828         return;
829     }
830 
831     gic_clear_active(s, irq, cpu);
832 }
833 
834 static void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
835 {
836     int cm = 1 << cpu;
837     int group;
838 
839     DPRINTF("EOI %d\n", irq);
840     if (gic_is_vcpu(cpu)) {
841         /* The call to gic_prio_drop() will clear a bit in GICH_APR iff the
842          * running prio is < 0x100.
843          */
844         bool prio_drop = s->running_priority[cpu] < 0x100;
845 
846         if (irq >= GIC_MAXIRQ) {
847             /* Ignore spurious interrupt */
848             return;
849         }
850 
851         gic_drop_prio(s, cpu, 0);
852 
853         if (!gic_eoi_split(s, cpu, attrs)) {
854             bool valid = gic_virq_is_valid(s, irq, cpu);
855             if (prio_drop && !valid) {
856                 /* We are in a situation where:
857                  *   - V_CTRL.EOIMode is false (no EOI split),
858                  *   - The call to gic_drop_prio() cleared a bit in GICH_APR,
859                  *   - This vIRQ does not have an LR entry which is either
860                  *     active or pending and active.
861                  * In that case, we must increment EOICount.
862                  */
863                 int rcpu = gic_get_vcpu_real_id(cpu);
864                 s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
865             } else if (valid) {
866                 gic_clear_active(s, irq, cpu);
867             }
868         }
869 
870         gic_update_virt(s);
871         return;
872     }
873 
874     if (irq >= s->num_irq) {
875         /* This handles two cases:
876          * 1. If software writes the ID of a spurious interrupt [ie 1023]
877          * to the GICC_EOIR, the GIC ignores that write.
878          * 2. If software writes the number of a non-existent interrupt
879          * this must be a subcase of "value written does not match the last
880          * valid interrupt value read from the Interrupt Acknowledge
881          * register" and so this is UNPREDICTABLE. We choose to ignore it.
882          */
883         return;
884     }
885     if (s->running_priority[cpu] == 0x100) {
886         return; /* No active IRQ.  */
887     }
888 
889     if (s->revision == REV_11MPCORE) {
890         /* Mark level triggered interrupts as pending if they are still
891            raised.  */
892         if (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_ENABLED(irq, cm)
893             && GIC_DIST_TEST_LEVEL(irq, cm)
894             && (GIC_DIST_TARGET(irq) & cm) != 0) {
895             DPRINTF("Set %d pending mask %x\n", irq, cm);
896             GIC_DIST_SET_PENDING(irq, cm);
897         }
898     }
899 
900     group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
901 
902     if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
903         DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
904         return;
905     }
906 
907     /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
908      * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
909      * i.e. go ahead and complete the irq anyway.
910      */
911 
912     gic_drop_prio(s, cpu, group);
913 
914     /* In GICv2 the guest can choose to split priority-drop and deactivate */
915     if (!gic_eoi_split(s, cpu, attrs)) {
916         gic_clear_active(s, irq, cpu);
917     }
918     gic_update(s);
919 }
920 
921 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
922 {
923     GICState *s = (GICState *)opaque;
924     uint32_t res;
925     int irq;
926     int i;
927     int cpu;
928     int cm;
929     int mask;
930 
931     cpu = gic_get_current_cpu(s);
932     cm = 1 << cpu;
933     if (offset < 0x100) {
934         if (offset == 0) {      /* GICD_CTLR */
935             if (s->security_extn && !attrs.secure) {
936                 /* The NS bank of this register is just an alias of the
937                  * EnableGrp1 bit in the S bank version.
938                  */
939                 return extract32(s->ctlr, 1, 1);
940             } else {
941                 return s->ctlr;
942             }
943         }
944         if (offset == 4)
945             /* Interrupt Controller Type Register */
946             return ((s->num_irq / 32) - 1)
947                     | ((s->num_cpu - 1) << 5)
948                     | (s->security_extn << 10);
949         if (offset < 0x08)
950             return 0;
951         if (offset >= 0x80) {
952             /* Interrupt Group Registers: these RAZ/WI if this is an NS
953              * access to a GIC with the security extensions, or if the GIC
954              * doesn't have groups at all.
955              */
956             res = 0;
957             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
958                 /* Every byte offset holds 8 group status bits */
959                 irq = (offset - 0x080) * 8;
960                 if (irq >= s->num_irq) {
961                     goto bad_reg;
962                 }
963                 for (i = 0; i < 8; i++) {
964                     if (GIC_DIST_TEST_GROUP(irq + i, cm)) {
965                         res |= (1 << i);
966                     }
967                 }
968             }
969             return res;
970         }
971         goto bad_reg;
972     } else if (offset < 0x200) {
973         /* Interrupt Set/Clear Enable.  */
974         if (offset < 0x180)
975             irq = (offset - 0x100) * 8;
976         else
977             irq = (offset - 0x180) * 8;
978         if (irq >= s->num_irq)
979             goto bad_reg;
980         res = 0;
981         for (i = 0; i < 8; i++) {
982             if (s->security_extn && !attrs.secure &&
983                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
984                 continue; /* Ignore Non-secure access of Group0 IRQ */
985             }
986 
987             if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
988                 res |= (1 << i);
989             }
990         }
991     } else if (offset < 0x300) {
992         /* Interrupt Set/Clear Pending.  */
993         if (offset < 0x280)
994             irq = (offset - 0x200) * 8;
995         else
996             irq = (offset - 0x280) * 8;
997         if (irq >= s->num_irq)
998             goto bad_reg;
999         res = 0;
1000         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
1001         for (i = 0; i < 8; i++) {
1002             if (s->security_extn && !attrs.secure &&
1003                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1004                 continue; /* Ignore Non-secure access of Group0 IRQ */
1005             }
1006 
1007             if (gic_test_pending(s, irq + i, mask)) {
1008                 res |= (1 << i);
1009             }
1010         }
1011     } else if (offset < 0x400) {
1012         /* Interrupt Set/Clear Active.  */
1013         if (offset < 0x380) {
1014             irq = (offset - 0x300) * 8;
1015         } else if (s->revision == 2) {
1016             irq = (offset - 0x380) * 8;
1017         } else {
1018             goto bad_reg;
1019         }
1020 
1021         if (irq >= s->num_irq)
1022             goto bad_reg;
1023         res = 0;
1024         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
1025         for (i = 0; i < 8; i++) {
1026             if (s->security_extn && !attrs.secure &&
1027                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1028                 continue; /* Ignore Non-secure access of Group0 IRQ */
1029             }
1030 
1031             if (GIC_DIST_TEST_ACTIVE(irq + i, mask)) {
1032                 res |= (1 << i);
1033             }
1034         }
1035     } else if (offset < 0x800) {
1036         /* Interrupt Priority.  */
1037         irq = (offset - 0x400);
1038         if (irq >= s->num_irq)
1039             goto bad_reg;
1040         res = gic_dist_get_priority(s, cpu, irq, attrs);
1041     } else if (offset < 0xc00) {
1042         /* Interrupt CPU Target.  */
1043         if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
1044             /* For uniprocessor GICs these RAZ/WI */
1045             res = 0;
1046         } else {
1047             irq = (offset - 0x800);
1048             if (irq >= s->num_irq) {
1049                 goto bad_reg;
1050             }
1051             if (irq < 29 && s->revision == REV_11MPCORE) {
1052                 res = 0;
1053             } else if (irq < GIC_INTERNAL) {
1054                 res = cm;
1055             } else {
1056                 res = GIC_DIST_TARGET(irq);
1057             }
1058         }
1059     } else if (offset < 0xf00) {
1060         /* Interrupt Configuration.  */
1061         irq = (offset - 0xc00) * 4;
1062         if (irq >= s->num_irq)
1063             goto bad_reg;
1064         res = 0;
1065         for (i = 0; i < 4; i++) {
1066             if (s->security_extn && !attrs.secure &&
1067                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1068                 continue; /* Ignore Non-secure access of Group0 IRQ */
1069             }
1070 
1071             if (GIC_DIST_TEST_MODEL(irq + i)) {
1072                 res |= (1 << (i * 2));
1073             }
1074             if (GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1075                 res |= (2 << (i * 2));
1076             }
1077         }
1078     } else if (offset < 0xf10) {
1079         goto bad_reg;
1080     } else if (offset < 0xf30) {
1081         if (s->revision == REV_11MPCORE) {
1082             goto bad_reg;
1083         }
1084 
1085         if (offset < 0xf20) {
1086             /* GICD_CPENDSGIRn */
1087             irq = (offset - 0xf10);
1088         } else {
1089             irq = (offset - 0xf20);
1090             /* GICD_SPENDSGIRn */
1091         }
1092 
1093         if (s->security_extn && !attrs.secure &&
1094             !GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1095             res = 0; /* Ignore Non-secure access of Group0 IRQ */
1096         } else {
1097             res = s->sgi_pending[irq][cpu];
1098         }
1099     } else if (offset < 0xfd0) {
1100         goto bad_reg;
1101     } else if (offset < 0x1000) {
1102         if (offset & 3) {
1103             res = 0;
1104         } else {
1105             switch (s->revision) {
1106             case REV_11MPCORE:
1107                 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
1108                 break;
1109             case 1:
1110                 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
1111                 break;
1112             case 2:
1113                 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
1114                 break;
1115             default:
1116                 res = 0;
1117             }
1118         }
1119     } else {
1120         g_assert_not_reached();
1121     }
1122     return res;
1123 bad_reg:
1124     qemu_log_mask(LOG_GUEST_ERROR,
1125                   "gic_dist_readb: Bad offset %x\n", (int)offset);
1126     return 0;
1127 }
1128 
1129 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
1130                                  unsigned size, MemTxAttrs attrs)
1131 {
1132     switch (size) {
1133     case 1:
1134         *data = gic_dist_readb(opaque, offset, attrs);
1135         break;
1136     case 2:
1137         *data = gic_dist_readb(opaque, offset, attrs);
1138         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1139         break;
1140     case 4:
1141         *data = gic_dist_readb(opaque, offset, attrs);
1142         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1143         *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
1144         *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
1145         break;
1146     default:
1147         return MEMTX_ERROR;
1148     }
1149 
1150     trace_gic_dist_read(offset, size, *data);
1151     return MEMTX_OK;
1152 }
1153 
1154 static void gic_dist_writeb(void *opaque, hwaddr offset,
1155                             uint32_t value, MemTxAttrs attrs)
1156 {
1157     GICState *s = (GICState *)opaque;
1158     int irq;
1159     int i;
1160     int cpu;
1161 
1162     cpu = gic_get_current_cpu(s);
1163     if (offset < 0x100) {
1164         if (offset == 0) {
1165             if (s->security_extn && !attrs.secure) {
1166                 /* NS version is just an alias of the S version's bit 1 */
1167                 s->ctlr = deposit32(s->ctlr, 1, 1, value);
1168             } else if (gic_has_groups(s)) {
1169                 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
1170             } else {
1171                 s->ctlr = value & GICD_CTLR_EN_GRP0;
1172             }
1173             DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
1174                     s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
1175                     s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
1176         } else if (offset < 4) {
1177             /* ignored.  */
1178         } else if (offset >= 0x80) {
1179             /* Interrupt Group Registers: RAZ/WI for NS access to secure
1180              * GIC, or for GICs without groups.
1181              */
1182             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
1183                 /* Every byte offset holds 8 group status bits */
1184                 irq = (offset - 0x80) * 8;
1185                 if (irq >= s->num_irq) {
1186                     goto bad_reg;
1187                 }
1188                 for (i = 0; i < 8; i++) {
1189                     /* Group bits are banked for private interrupts */
1190                     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1191                     if (value & (1 << i)) {
1192                         /* Group1 (Non-secure) */
1193                         GIC_DIST_SET_GROUP(irq + i, cm);
1194                     } else {
1195                         /* Group0 (Secure) */
1196                         GIC_DIST_CLEAR_GROUP(irq + i, cm);
1197                     }
1198                 }
1199             }
1200         } else {
1201             goto bad_reg;
1202         }
1203     } else if (offset < 0x180) {
1204         /* Interrupt Set Enable.  */
1205         irq = (offset - 0x100) * 8;
1206         if (irq >= s->num_irq)
1207             goto bad_reg;
1208         if (irq < GIC_NR_SGIS) {
1209             value = 0xff;
1210         }
1211 
1212         for (i = 0; i < 8; i++) {
1213             if (value & (1 << i)) {
1214                 int mask =
1215                     (irq < GIC_INTERNAL) ? (1 << cpu)
1216                                          : GIC_DIST_TARGET(irq + i);
1217                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1218 
1219                 if (s->security_extn && !attrs.secure &&
1220                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1221                     continue; /* Ignore Non-secure access of Group0 IRQ */
1222                 }
1223 
1224                 if (!GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1225                     DPRINTF("Enabled IRQ %d\n", irq + i);
1226                     trace_gic_enable_irq(irq + i);
1227                 }
1228                 GIC_DIST_SET_ENABLED(irq + i, cm);
1229                 /* If a raised level triggered IRQ enabled then mark
1230                    is as pending.  */
1231                 if (GIC_DIST_TEST_LEVEL(irq + i, mask)
1232                         && !GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1233                     DPRINTF("Set %d pending mask %x\n", irq + i, mask);
1234                     GIC_DIST_SET_PENDING(irq + i, mask);
1235                 }
1236             }
1237         }
1238     } else if (offset < 0x200) {
1239         /* Interrupt Clear Enable.  */
1240         irq = (offset - 0x180) * 8;
1241         if (irq >= s->num_irq)
1242             goto bad_reg;
1243         if (irq < GIC_NR_SGIS) {
1244             value = 0;
1245         }
1246 
1247         for (i = 0; i < 8; i++) {
1248             if (value & (1 << i)) {
1249                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1250 
1251                 if (s->security_extn && !attrs.secure &&
1252                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1253                     continue; /* Ignore Non-secure access of Group0 IRQ */
1254                 }
1255 
1256                 if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1257                     DPRINTF("Disabled IRQ %d\n", irq + i);
1258                     trace_gic_disable_irq(irq + i);
1259                 }
1260                 GIC_DIST_CLEAR_ENABLED(irq + i, cm);
1261             }
1262         }
1263     } else if (offset < 0x280) {
1264         /* Interrupt Set Pending.  */
1265         irq = (offset - 0x200) * 8;
1266         if (irq >= s->num_irq)
1267             goto bad_reg;
1268         if (irq < GIC_NR_SGIS) {
1269             value = 0;
1270         }
1271 
1272         for (i = 0; i < 8; i++) {
1273             if (value & (1 << i)) {
1274                 if (s->security_extn && !attrs.secure &&
1275                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1276                     continue; /* Ignore Non-secure access of Group0 IRQ */
1277                 }
1278 
1279                 GIC_DIST_SET_PENDING(irq + i, GIC_DIST_TARGET(irq + i));
1280             }
1281         }
1282     } else if (offset < 0x300) {
1283         /* Interrupt Clear Pending.  */
1284         irq = (offset - 0x280) * 8;
1285         if (irq >= s->num_irq)
1286             goto bad_reg;
1287         if (irq < GIC_NR_SGIS) {
1288             value = 0;
1289         }
1290 
1291         for (i = 0; i < 8; i++) {
1292             if (s->security_extn && !attrs.secure &&
1293                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1294                 continue; /* Ignore Non-secure access of Group0 IRQ */
1295             }
1296 
1297             /* ??? This currently clears the pending bit for all CPUs, even
1298                for per-CPU interrupts.  It's unclear whether this is the
1299                corect behavior.  */
1300             if (value & (1 << i)) {
1301                 GIC_DIST_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
1302             }
1303         }
1304     } else if (offset < 0x380) {
1305         /* Interrupt Set Active.  */
1306         if (s->revision != 2) {
1307             goto bad_reg;
1308         }
1309 
1310         irq = (offset - 0x300) * 8;
1311         if (irq >= s->num_irq) {
1312             goto bad_reg;
1313         }
1314 
1315         /* This register is banked per-cpu for PPIs */
1316         int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1317 
1318         for (i = 0; i < 8; i++) {
1319             if (s->security_extn && !attrs.secure &&
1320                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1321                 continue; /* Ignore Non-secure access of Group0 IRQ */
1322             }
1323 
1324             if (value & (1 << i)) {
1325                 GIC_DIST_SET_ACTIVE(irq + i, cm);
1326             }
1327         }
1328     } else if (offset < 0x400) {
1329         /* Interrupt Clear Active.  */
1330         if (s->revision != 2) {
1331             goto bad_reg;
1332         }
1333 
1334         irq = (offset - 0x380) * 8;
1335         if (irq >= s->num_irq) {
1336             goto bad_reg;
1337         }
1338 
1339         /* This register is banked per-cpu for PPIs */
1340         int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1341 
1342         for (i = 0; i < 8; i++) {
1343             if (s->security_extn && !attrs.secure &&
1344                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1345                 continue; /* Ignore Non-secure access of Group0 IRQ */
1346             }
1347 
1348             if (value & (1 << i)) {
1349                 GIC_DIST_CLEAR_ACTIVE(irq + i, cm);
1350             }
1351         }
1352     } else if (offset < 0x800) {
1353         /* Interrupt Priority.  */
1354         irq = (offset - 0x400);
1355         if (irq >= s->num_irq)
1356             goto bad_reg;
1357         gic_dist_set_priority(s, cpu, irq, value, attrs);
1358     } else if (offset < 0xc00) {
1359         /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
1360          * annoying exception of the 11MPCore's GIC.
1361          */
1362         if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
1363             irq = (offset - 0x800);
1364             if (irq >= s->num_irq) {
1365                 goto bad_reg;
1366             }
1367             if (irq < 29 && s->revision == REV_11MPCORE) {
1368                 value = 0;
1369             } else if (irq < GIC_INTERNAL) {
1370                 value = ALL_CPU_MASK;
1371             }
1372             s->irq_target[irq] = value & ALL_CPU_MASK;
1373         }
1374     } else if (offset < 0xf00) {
1375         /* Interrupt Configuration.  */
1376         irq = (offset - 0xc00) * 4;
1377         if (irq >= s->num_irq)
1378             goto bad_reg;
1379         if (irq < GIC_NR_SGIS)
1380             value |= 0xaa;
1381         for (i = 0; i < 4; i++) {
1382             if (s->security_extn && !attrs.secure &&
1383                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1384                 continue; /* Ignore Non-secure access of Group0 IRQ */
1385             }
1386 
1387             if (s->revision == REV_11MPCORE) {
1388                 if (value & (1 << (i * 2))) {
1389                     GIC_DIST_SET_MODEL(irq + i);
1390                 } else {
1391                     GIC_DIST_CLEAR_MODEL(irq + i);
1392                 }
1393             }
1394             if (value & (2 << (i * 2))) {
1395                 GIC_DIST_SET_EDGE_TRIGGER(irq + i);
1396             } else {
1397                 GIC_DIST_CLEAR_EDGE_TRIGGER(irq + i);
1398             }
1399         }
1400     } else if (offset < 0xf10) {
1401         /* 0xf00 is only handled for 32-bit writes.  */
1402         goto bad_reg;
1403     } else if (offset < 0xf20) {
1404         /* GICD_CPENDSGIRn */
1405         if (s->revision == REV_11MPCORE) {
1406             goto bad_reg;
1407         }
1408         irq = (offset - 0xf10);
1409 
1410         if (!s->security_extn || attrs.secure ||
1411             GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1412             s->sgi_pending[irq][cpu] &= ~value;
1413             if (s->sgi_pending[irq][cpu] == 0) {
1414                 GIC_DIST_CLEAR_PENDING(irq, 1 << cpu);
1415             }
1416         }
1417     } else if (offset < 0xf30) {
1418         /* GICD_SPENDSGIRn */
1419         if (s->revision == REV_11MPCORE) {
1420             goto bad_reg;
1421         }
1422         irq = (offset - 0xf20);
1423 
1424         if (!s->security_extn || attrs.secure ||
1425             GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1426             GIC_DIST_SET_PENDING(irq, 1 << cpu);
1427             s->sgi_pending[irq][cpu] |= value;
1428         }
1429     } else {
1430         goto bad_reg;
1431     }
1432     gic_update(s);
1433     return;
1434 bad_reg:
1435     qemu_log_mask(LOG_GUEST_ERROR,
1436                   "gic_dist_writeb: Bad offset %x\n", (int)offset);
1437 }
1438 
1439 static void gic_dist_writew(void *opaque, hwaddr offset,
1440                             uint32_t value, MemTxAttrs attrs)
1441 {
1442     gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1443     gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1444 }
1445 
1446 static void gic_dist_writel(void *opaque, hwaddr offset,
1447                             uint32_t value, MemTxAttrs attrs)
1448 {
1449     GICState *s = (GICState *)opaque;
1450     if (offset == 0xf00) {
1451         int cpu;
1452         int irq;
1453         int mask;
1454         int target_cpu;
1455 
1456         cpu = gic_get_current_cpu(s);
1457         irq = value & 0x3ff;
1458         switch ((value >> 24) & 3) {
1459         case 0:
1460             mask = (value >> 16) & ALL_CPU_MASK;
1461             break;
1462         case 1:
1463             mask = ALL_CPU_MASK ^ (1 << cpu);
1464             break;
1465         case 2:
1466             mask = 1 << cpu;
1467             break;
1468         default:
1469             DPRINTF("Bad Soft Int target filter\n");
1470             mask = ALL_CPU_MASK;
1471             break;
1472         }
1473         GIC_DIST_SET_PENDING(irq, mask);
1474         target_cpu = ctz32(mask);
1475         while (target_cpu < GIC_NCPU) {
1476             s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1477             mask &= ~(1 << target_cpu);
1478             target_cpu = ctz32(mask);
1479         }
1480         gic_update(s);
1481         return;
1482     }
1483     gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1484     gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1485 }
1486 
1487 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1488                                   unsigned size, MemTxAttrs attrs)
1489 {
1490     trace_gic_dist_write(offset, size, data);
1491 
1492     switch (size) {
1493     case 1:
1494         gic_dist_writeb(opaque, offset, data, attrs);
1495         return MEMTX_OK;
1496     case 2:
1497         gic_dist_writew(opaque, offset, data, attrs);
1498         return MEMTX_OK;
1499     case 4:
1500         gic_dist_writel(opaque, offset, data, attrs);
1501         return MEMTX_OK;
1502     default:
1503         return MEMTX_ERROR;
1504     }
1505 }
1506 
1507 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1508 {
1509     /* Return the Nonsecure view of GICC_APR<regno>. This is the
1510      * second half of GICC_NSAPR.
1511      */
1512     switch (GIC_MIN_BPR) {
1513     case 0:
1514         if (regno < 2) {
1515             return s->nsapr[regno + 2][cpu];
1516         }
1517         break;
1518     case 1:
1519         if (regno == 0) {
1520             return s->nsapr[regno + 1][cpu];
1521         }
1522         break;
1523     case 2:
1524         if (regno == 0) {
1525             return extract32(s->nsapr[0][cpu], 16, 16);
1526         }
1527         break;
1528     case 3:
1529         if (regno == 0) {
1530             return extract32(s->nsapr[0][cpu], 8, 8);
1531         }
1532         break;
1533     default:
1534         g_assert_not_reached();
1535     }
1536     return 0;
1537 }
1538 
1539 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1540                                          uint32_t value)
1541 {
1542     /* Write the Nonsecure view of GICC_APR<regno>. */
1543     switch (GIC_MIN_BPR) {
1544     case 0:
1545         if (regno < 2) {
1546             s->nsapr[regno + 2][cpu] = value;
1547         }
1548         break;
1549     case 1:
1550         if (regno == 0) {
1551             s->nsapr[regno + 1][cpu] = value;
1552         }
1553         break;
1554     case 2:
1555         if (regno == 0) {
1556             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1557         }
1558         break;
1559     case 3:
1560         if (regno == 0) {
1561             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1562         }
1563         break;
1564     default:
1565         g_assert_not_reached();
1566     }
1567 }
1568 
1569 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1570                                 uint64_t *data, MemTxAttrs attrs)
1571 {
1572     switch (offset) {
1573     case 0x00: /* Control */
1574         *data = gic_get_cpu_control(s, cpu, attrs);
1575         break;
1576     case 0x04: /* Priority mask */
1577         *data = gic_get_priority_mask(s, cpu, attrs);
1578         break;
1579     case 0x08: /* Binary Point */
1580         if (gic_cpu_ns_access(s, cpu, attrs)) {
1581             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1582                 /* NS view of BPR when CBPR is 1 */
1583                 *data = MIN(s->bpr[cpu] + 1, 7);
1584             } else {
1585                 /* BPR is banked. Non-secure copy stored in ABPR. */
1586                 *data = s->abpr[cpu];
1587             }
1588         } else {
1589             *data = s->bpr[cpu];
1590         }
1591         break;
1592     case 0x0c: /* Acknowledge */
1593         *data = gic_acknowledge_irq(s, cpu, attrs);
1594         break;
1595     case 0x14: /* Running Priority */
1596         *data = gic_get_running_priority(s, cpu, attrs);
1597         break;
1598     case 0x18: /* Highest Pending Interrupt */
1599         *data = gic_get_current_pending_irq(s, cpu, attrs);
1600         break;
1601     case 0x1c: /* Aliased Binary Point */
1602         /* GIC v2, no security: ABPR
1603          * GIC v1, no security: not implemented (RAZ/WI)
1604          * With security extensions, secure access: ABPR (alias of NS BPR)
1605          * With security extensions, nonsecure access: RAZ/WI
1606          */
1607         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1608             *data = 0;
1609         } else {
1610             *data = s->abpr[cpu];
1611         }
1612         break;
1613     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1614     {
1615         int regno = (offset - 0xd0) / 4;
1616         int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1617 
1618         if (regno >= nr_aprs || s->revision != 2) {
1619             *data = 0;
1620         } else if (gic_is_vcpu(cpu)) {
1621             *data = s->h_apr[gic_get_vcpu_real_id(cpu)];
1622         } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1623             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1624             *data = gic_apr_ns_view(s, regno, cpu);
1625         } else {
1626             *data = s->apr[regno][cpu];
1627         }
1628         break;
1629     }
1630     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1631     {
1632         int regno = (offset - 0xe0) / 4;
1633 
1634         if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1635             gic_cpu_ns_access(s, cpu, attrs) || gic_is_vcpu(cpu)) {
1636             *data = 0;
1637         } else {
1638             *data = s->nsapr[regno][cpu];
1639         }
1640         break;
1641     }
1642     default:
1643         qemu_log_mask(LOG_GUEST_ERROR,
1644                       "gic_cpu_read: Bad offset %x\n", (int)offset);
1645         *data = 0;
1646         break;
1647     }
1648 
1649     trace_gic_cpu_read(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1650                        gic_get_vcpu_real_id(cpu), offset, *data);
1651     return MEMTX_OK;
1652 }
1653 
1654 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1655                                  uint32_t value, MemTxAttrs attrs)
1656 {
1657     trace_gic_cpu_write(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1658                         gic_get_vcpu_real_id(cpu), offset, value);
1659 
1660     switch (offset) {
1661     case 0x00: /* Control */
1662         gic_set_cpu_control(s, cpu, value, attrs);
1663         break;
1664     case 0x04: /* Priority mask */
1665         gic_set_priority_mask(s, cpu, value, attrs);
1666         break;
1667     case 0x08: /* Binary Point */
1668         if (gic_cpu_ns_access(s, cpu, attrs)) {
1669             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1670                 /* WI when CBPR is 1 */
1671                 return MEMTX_OK;
1672             } else {
1673                 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1674             }
1675         } else {
1676             int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
1677             s->bpr[cpu] = MAX(value & 0x7, min_bpr);
1678         }
1679         break;
1680     case 0x10: /* End Of Interrupt */
1681         gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1682         return MEMTX_OK;
1683     case 0x1c: /* Aliased Binary Point */
1684         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1685             /* unimplemented, or NS access: RAZ/WI */
1686             return MEMTX_OK;
1687         } else {
1688             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1689         }
1690         break;
1691     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1692     {
1693         int regno = (offset - 0xd0) / 4;
1694         int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1695 
1696         if (regno >= nr_aprs || s->revision != 2) {
1697             return MEMTX_OK;
1698         }
1699         if (gic_is_vcpu(cpu)) {
1700             s->h_apr[gic_get_vcpu_real_id(cpu)] = value;
1701         } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1702             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1703             gic_apr_write_ns_view(s, regno, cpu, value);
1704         } else {
1705             s->apr[regno][cpu] = value;
1706         }
1707         break;
1708     }
1709     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1710     {
1711         int regno = (offset - 0xe0) / 4;
1712 
1713         if (regno >= GIC_NR_APRS || s->revision != 2) {
1714             return MEMTX_OK;
1715         }
1716         if (gic_is_vcpu(cpu)) {
1717             return MEMTX_OK;
1718         }
1719         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1720             return MEMTX_OK;
1721         }
1722         s->nsapr[regno][cpu] = value;
1723         break;
1724     }
1725     case 0x1000:
1726         /* GICC_DIR */
1727         gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1728         break;
1729     default:
1730         qemu_log_mask(LOG_GUEST_ERROR,
1731                       "gic_cpu_write: Bad offset %x\n", (int)offset);
1732         return MEMTX_OK;
1733     }
1734 
1735     if (gic_is_vcpu(cpu)) {
1736         gic_update_virt(s);
1737     } else {
1738         gic_update(s);
1739     }
1740 
1741     return MEMTX_OK;
1742 }
1743 
1744 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1745 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1746                                     unsigned size, MemTxAttrs attrs)
1747 {
1748     GICState *s = (GICState *)opaque;
1749     return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1750 }
1751 
1752 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1753                                      uint64_t value, unsigned size,
1754                                      MemTxAttrs attrs)
1755 {
1756     GICState *s = (GICState *)opaque;
1757     return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1758 }
1759 
1760 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1761  * These just decode the opaque pointer into GICState* + cpu id.
1762  */
1763 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1764                                    unsigned size, MemTxAttrs attrs)
1765 {
1766     GICState **backref = (GICState **)opaque;
1767     GICState *s = *backref;
1768     int id = (backref - s->backref);
1769     return gic_cpu_read(s, id, addr, data, attrs);
1770 }
1771 
1772 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1773                                     uint64_t value, unsigned size,
1774                                     MemTxAttrs attrs)
1775 {
1776     GICState **backref = (GICState **)opaque;
1777     GICState *s = *backref;
1778     int id = (backref - s->backref);
1779     return gic_cpu_write(s, id, addr, value, attrs);
1780 }
1781 
1782 static MemTxResult gic_thisvcpu_read(void *opaque, hwaddr addr, uint64_t *data,
1783                                     unsigned size, MemTxAttrs attrs)
1784 {
1785     GICState *s = (GICState *)opaque;
1786 
1787     return gic_cpu_read(s, gic_get_current_vcpu(s), addr, data, attrs);
1788 }
1789 
1790 static MemTxResult gic_thisvcpu_write(void *opaque, hwaddr addr,
1791                                      uint64_t value, unsigned size,
1792                                      MemTxAttrs attrs)
1793 {
1794     GICState *s = (GICState *)opaque;
1795 
1796     return gic_cpu_write(s, gic_get_current_vcpu(s), addr, value, attrs);
1797 }
1798 
1799 static uint32_t gic_compute_eisr(GICState *s, int cpu, int lr_start)
1800 {
1801     int lr_idx;
1802     uint32_t ret = 0;
1803 
1804     for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1805         uint32_t *entry = &s->h_lr[lr_idx][cpu];
1806         ret = deposit32(ret, lr_idx - lr_start, 1,
1807                         gic_lr_entry_is_eoi(*entry));
1808     }
1809 
1810     return ret;
1811 }
1812 
1813 static uint32_t gic_compute_elrsr(GICState *s, int cpu, int lr_start)
1814 {
1815     int lr_idx;
1816     uint32_t ret = 0;
1817 
1818     for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1819         uint32_t *entry = &s->h_lr[lr_idx][cpu];
1820         ret = deposit32(ret, lr_idx - lr_start, 1,
1821                         gic_lr_entry_is_free(*entry));
1822     }
1823 
1824     return ret;
1825 }
1826 
1827 static void gic_vmcr_write(GICState *s, uint32_t value, MemTxAttrs attrs)
1828 {
1829     int vcpu = gic_get_current_vcpu(s);
1830     uint32_t ctlr;
1831     uint32_t abpr;
1832     uint32_t bpr;
1833     uint32_t prio_mask;
1834 
1835     ctlr = FIELD_EX32(value, GICH_VMCR, VMCCtlr);
1836     abpr = FIELD_EX32(value, GICH_VMCR, VMABP);
1837     bpr = FIELD_EX32(value, GICH_VMCR, VMBP);
1838     prio_mask = FIELD_EX32(value, GICH_VMCR, VMPriMask) << 3;
1839 
1840     gic_set_cpu_control(s, vcpu, ctlr, attrs);
1841     s->abpr[vcpu] = MAX(abpr, GIC_VIRT_MIN_ABPR);
1842     s->bpr[vcpu] = MAX(bpr, GIC_VIRT_MIN_BPR);
1843     gic_set_priority_mask(s, vcpu, prio_mask, attrs);
1844 }
1845 
1846 static MemTxResult gic_hyp_read(void *opaque, int cpu, hwaddr addr,
1847                                 uint64_t *data, MemTxAttrs attrs)
1848 {
1849     GICState *s = ARM_GIC(opaque);
1850     int vcpu = cpu + GIC_NCPU;
1851 
1852     switch (addr) {
1853     case A_GICH_HCR: /* Hypervisor Control */
1854         *data = s->h_hcr[cpu];
1855         break;
1856 
1857     case A_GICH_VTR: /* VGIC Type */
1858         *data = FIELD_DP32(0, GICH_VTR, ListRegs, s->num_lrs - 1);
1859         *data = FIELD_DP32(*data, GICH_VTR, PREbits,
1860                            GIC_VIRT_MAX_GROUP_PRIO_BITS - 1);
1861         *data = FIELD_DP32(*data, GICH_VTR, PRIbits,
1862                            (7 - GIC_VIRT_MIN_BPR) - 1);
1863         break;
1864 
1865     case A_GICH_VMCR: /* Virtual Machine Control */
1866         *data = FIELD_DP32(0, GICH_VMCR, VMCCtlr,
1867                            extract32(s->cpu_ctlr[vcpu], 0, 10));
1868         *data = FIELD_DP32(*data, GICH_VMCR, VMABP, s->abpr[vcpu]);
1869         *data = FIELD_DP32(*data, GICH_VMCR, VMBP, s->bpr[vcpu]);
1870         *data = FIELD_DP32(*data, GICH_VMCR, VMPriMask,
1871                            extract32(s->priority_mask[vcpu], 3, 5));
1872         break;
1873 
1874     case A_GICH_MISR: /* Maintenance Interrupt Status */
1875         *data = s->h_misr[cpu];
1876         break;
1877 
1878     case A_GICH_EISR0: /* End of Interrupt Status 0 and 1 */
1879     case A_GICH_EISR1:
1880         *data = gic_compute_eisr(s, cpu, (addr - A_GICH_EISR0) * 8);
1881         break;
1882 
1883     case A_GICH_ELRSR0: /* Empty List Status 0 and 1 */
1884     case A_GICH_ELRSR1:
1885         *data = gic_compute_elrsr(s, cpu, (addr - A_GICH_ELRSR0) * 8);
1886         break;
1887 
1888     case A_GICH_APR: /* Active Priorities */
1889         *data = s->h_apr[cpu];
1890         break;
1891 
1892     case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1893     {
1894         int lr_idx = (addr - A_GICH_LR0) / 4;
1895 
1896         if (lr_idx > s->num_lrs) {
1897             *data = 0;
1898         } else {
1899             *data = s->h_lr[lr_idx][cpu];
1900         }
1901         break;
1902     }
1903 
1904     default:
1905         qemu_log_mask(LOG_GUEST_ERROR,
1906                       "gic_hyp_read: Bad offset %" HWADDR_PRIx "\n", addr);
1907         return MEMTX_OK;
1908     }
1909 
1910     trace_gic_hyp_read(addr, *data);
1911     return MEMTX_OK;
1912 }
1913 
1914 static MemTxResult gic_hyp_write(void *opaque, int cpu, hwaddr addr,
1915                                  uint64_t value, MemTxAttrs attrs)
1916 {
1917     GICState *s = ARM_GIC(opaque);
1918     int vcpu = cpu + GIC_NCPU;
1919 
1920     trace_gic_hyp_write(addr, value);
1921 
1922     switch (addr) {
1923     case A_GICH_HCR: /* Hypervisor Control */
1924         s->h_hcr[cpu] = value & GICH_HCR_MASK;
1925         break;
1926 
1927     case A_GICH_VMCR: /* Virtual Machine Control */
1928         gic_vmcr_write(s, value, attrs);
1929         break;
1930 
1931     case A_GICH_APR: /* Active Priorities */
1932         s->h_apr[cpu] = value;
1933         s->running_priority[vcpu] = gic_get_prio_from_apr_bits(s, vcpu);
1934         break;
1935 
1936     case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1937     {
1938         int lr_idx = (addr - A_GICH_LR0) / 4;
1939 
1940         if (lr_idx > s->num_lrs) {
1941             return MEMTX_OK;
1942         }
1943 
1944         s->h_lr[lr_idx][cpu] = value & GICH_LR_MASK;
1945         trace_gic_lr_entry(cpu, lr_idx, s->h_lr[lr_idx][cpu]);
1946         break;
1947     }
1948 
1949     default:
1950         qemu_log_mask(LOG_GUEST_ERROR,
1951                       "gic_hyp_write: Bad offset %" HWADDR_PRIx "\n", addr);
1952         return MEMTX_OK;
1953     }
1954 
1955     gic_update_virt(s);
1956     return MEMTX_OK;
1957 }
1958 
1959 static MemTxResult gic_thiscpu_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
1960                                     unsigned size, MemTxAttrs attrs)
1961 {
1962     GICState *s = (GICState *)opaque;
1963 
1964     return gic_hyp_read(s, gic_get_current_cpu(s), addr, data, attrs);
1965 }
1966 
1967 static MemTxResult gic_thiscpu_hyp_write(void *opaque, hwaddr addr,
1968                                      uint64_t value, unsigned size,
1969                                      MemTxAttrs attrs)
1970 {
1971     GICState *s = (GICState *)opaque;
1972 
1973     return gic_hyp_write(s, gic_get_current_cpu(s), addr, value, attrs);
1974 }
1975 
1976 static MemTxResult gic_do_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
1977                                     unsigned size, MemTxAttrs attrs)
1978 {
1979     GICState **backref = (GICState **)opaque;
1980     GICState *s = *backref;
1981     int id = (backref - s->backref);
1982 
1983     return gic_hyp_read(s, id, addr, data, attrs);
1984 }
1985 
1986 static MemTxResult gic_do_hyp_write(void *opaque, hwaddr addr,
1987                                      uint64_t value, unsigned size,
1988                                      MemTxAttrs attrs)
1989 {
1990     GICState **backref = (GICState **)opaque;
1991     GICState *s = *backref;
1992     int id = (backref - s->backref);
1993 
1994     return gic_hyp_write(s, id + GIC_NCPU, addr, value, attrs);
1995 
1996 }
1997 
1998 static const MemoryRegionOps gic_ops[2] = {
1999     {
2000         .read_with_attrs = gic_dist_read,
2001         .write_with_attrs = gic_dist_write,
2002         .endianness = DEVICE_NATIVE_ENDIAN,
2003     },
2004     {
2005         .read_with_attrs = gic_thiscpu_read,
2006         .write_with_attrs = gic_thiscpu_write,
2007         .endianness = DEVICE_NATIVE_ENDIAN,
2008     }
2009 };
2010 
2011 static const MemoryRegionOps gic_cpu_ops = {
2012     .read_with_attrs = gic_do_cpu_read,
2013     .write_with_attrs = gic_do_cpu_write,
2014     .endianness = DEVICE_NATIVE_ENDIAN,
2015 };
2016 
2017 static const MemoryRegionOps gic_virt_ops[2] = {
2018     {
2019         .read_with_attrs = gic_thiscpu_hyp_read,
2020         .write_with_attrs = gic_thiscpu_hyp_write,
2021         .endianness = DEVICE_NATIVE_ENDIAN,
2022     },
2023     {
2024         .read_with_attrs = gic_thisvcpu_read,
2025         .write_with_attrs = gic_thisvcpu_write,
2026         .endianness = DEVICE_NATIVE_ENDIAN,
2027     }
2028 };
2029 
2030 static const MemoryRegionOps gic_viface_ops = {
2031     .read_with_attrs = gic_do_hyp_read,
2032     .write_with_attrs = gic_do_hyp_write,
2033     .endianness = DEVICE_NATIVE_ENDIAN,
2034 };
2035 
2036 static void arm_gic_realize(DeviceState *dev, Error **errp)
2037 {
2038     /* Device instance realize function for the GIC sysbus device */
2039     int i;
2040     GICState *s = ARM_GIC(dev);
2041     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2042     ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
2043     Error *local_err = NULL;
2044 
2045     agc->parent_realize(dev, &local_err);
2046     if (local_err) {
2047         error_propagate(errp, local_err);
2048         return;
2049     }
2050 
2051     if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
2052         error_setg(errp, "KVM with user space irqchip only works when the "
2053                          "host kernel supports KVM_CAP_ARM_USER_IRQ");
2054         return;
2055     }
2056 
2057     /* This creates distributor, main CPU interface (s->cpuiomem[0]) and if
2058      * enabled, virtualization extensions related interfaces (main virtual
2059      * interface (s->vifaceiomem[0]) and virtual CPU interface).
2060      */
2061     gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops, gic_virt_ops);
2062 
2063     /* Extra core-specific regions for the CPU interfaces. This is
2064      * necessary for "franken-GIC" implementations, for example on
2065      * Exynos 4.
2066      * NB that the memory region size of 0x100 applies for the 11MPCore
2067      * and also cores following the GIC v1 spec (ie A9).
2068      * GIC v2 defines a larger memory region (0x1000) so this will need
2069      * to be extended when we implement A15.
2070      */
2071     for (i = 0; i < s->num_cpu; i++) {
2072         s->backref[i] = s;
2073         memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
2074                               &s->backref[i], "gic_cpu", 0x100);
2075         sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
2076     }
2077 
2078     /* Extra core-specific regions for virtual interfaces. This is required by
2079      * the GICv2 specification.
2080      */
2081     if (s->virt_extn) {
2082         for (i = 0; i < s->num_cpu; i++) {
2083             memory_region_init_io(&s->vifaceiomem[i + 1], OBJECT(s),
2084                                   &gic_viface_ops, &s->backref[i],
2085                                   "gic_viface", 0x200);
2086             sysbus_init_mmio(sbd, &s->vifaceiomem[i + 1]);
2087         }
2088     }
2089 
2090 }
2091 
2092 static void arm_gic_class_init(ObjectClass *klass, void *data)
2093 {
2094     DeviceClass *dc = DEVICE_CLASS(klass);
2095     ARMGICClass *agc = ARM_GIC_CLASS(klass);
2096 
2097     device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
2098 }
2099 
2100 static const TypeInfo arm_gic_info = {
2101     .name = TYPE_ARM_GIC,
2102     .parent = TYPE_ARM_GIC_COMMON,
2103     .instance_size = sizeof(GICState),
2104     .class_init = arm_gic_class_init,
2105     .class_size = sizeof(ARMGICClass),
2106 };
2107 
2108 static void arm_gic_register_types(void)
2109 {
2110     type_register_static(&arm_gic_info);
2111 }
2112 
2113 type_init(arm_gic_register_types)
2114