xref: /openbmc/qemu/hw/intc/arm_gic.c (revision 3f20ccd359913013723f64e2443dd513786039f6)
1 /*
2  * ARM Generic/Distributed Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 /* This file contains implementation code for the RealView EB interrupt
11  * controller, MPCore distributed interrupt controller and ARMv7-M
12  * Nested Vectored Interrupt Controller.
13  * It is compiled in two ways:
14  *  (1) as a standalone file to produce a sysbus device which is a GIC
15  *  that can be used on the realview board and as one of the builtin
16  *  private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17  *  (2) by being directly #included into armv7m_nvic.c to produce the
18  *  armv7m_nvic device.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "hw/irq.h"
23 #include "hw/sysbus.h"
24 #include "gic_internal.h"
25 #include "qapi/error.h"
26 #include "hw/core/cpu.h"
27 #include "qemu/log.h"
28 #include "qemu/module.h"
29 #include "trace.h"
30 #include "sysemu/kvm.h"
31 
32 /* #define DEBUG_GIC */
33 
34 #ifdef DEBUG_GIC
35 #define DEBUG_GIC_GATE 1
36 #else
37 #define DEBUG_GIC_GATE 0
38 #endif
39 
40 #define DPRINTF(fmt, ...) do {                                          \
41         if (DEBUG_GIC_GATE) {                                           \
42             fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__);      \
43         }                                                               \
44     } while (0)
45 
46 static const uint8_t gic_id_11mpcore[] = {
47     0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
48 };
49 
50 static const uint8_t gic_id_gicv1[] = {
51     0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
52 };
53 
54 static const uint8_t gic_id_gicv2[] = {
55     0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
56 };
57 
58 static inline int gic_get_current_cpu(GICState *s)
59 {
60     if (s->num_cpu > 1) {
61         return current_cpu->cpu_index;
62     }
63     return 0;
64 }
65 
66 static inline int gic_get_current_vcpu(GICState *s)
67 {
68     return gic_get_current_cpu(s) + GIC_NCPU;
69 }
70 
71 /* Return true if this GIC config has interrupt groups, which is
72  * true if we're a GICv2, or a GICv1 with the security extensions.
73  */
74 static inline bool gic_has_groups(GICState *s)
75 {
76     return s->revision == 2 || s->security_extn;
77 }
78 
79 static inline bool gic_cpu_ns_access(GICState *s, int cpu, MemTxAttrs attrs)
80 {
81     return !gic_is_vcpu(cpu) && s->security_extn && !attrs.secure;
82 }
83 
84 static inline void gic_get_best_irq(GICState *s, int cpu,
85                                     int *best_irq, int *best_prio, int *group)
86 {
87     int irq;
88     int cm = 1 << cpu;
89 
90     *best_irq = 1023;
91     *best_prio = 0x100;
92 
93     for (irq = 0; irq < s->num_irq; irq++) {
94         if (GIC_DIST_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
95             (!GIC_DIST_TEST_ACTIVE(irq, cm)) &&
96             (irq < GIC_INTERNAL || GIC_DIST_TARGET(irq) & cm)) {
97             if (GIC_DIST_GET_PRIORITY(irq, cpu) < *best_prio) {
98                 *best_prio = GIC_DIST_GET_PRIORITY(irq, cpu);
99                 *best_irq = irq;
100             }
101         }
102     }
103 
104     if (*best_irq < 1023) {
105         *group = GIC_DIST_TEST_GROUP(*best_irq, cm);
106     }
107 }
108 
109 static inline void gic_get_best_virq(GICState *s, int cpu,
110                                      int *best_irq, int *best_prio, int *group)
111 {
112     int lr_idx = 0;
113 
114     *best_irq = 1023;
115     *best_prio = 0x100;
116 
117     for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
118         uint32_t lr_entry = s->h_lr[lr_idx][cpu];
119         int state = GICH_LR_STATE(lr_entry);
120 
121         if (state == GICH_LR_STATE_PENDING) {
122             int prio = GICH_LR_PRIORITY(lr_entry);
123 
124             if (prio < *best_prio) {
125                 *best_prio = prio;
126                 *best_irq = GICH_LR_VIRT_ID(lr_entry);
127                 *group = GICH_LR_GROUP(lr_entry);
128             }
129         }
130     }
131 }
132 
133 /* Return true if IRQ signaling is enabled for the given cpu and at least one
134  * of the given groups:
135  *   - in the non-virt case, the distributor must be enabled for one of the
136  *   given groups
137  *   - in the virt case, the virtual interface must be enabled.
138  *   - in all cases, the (v)CPU interface must be enabled for one of the given
139  *   groups.
140  */
141 static inline bool gic_irq_signaling_enabled(GICState *s, int cpu, bool virt,
142                                     int group_mask)
143 {
144     int cpu_iface = virt ? (cpu + GIC_NCPU) : cpu;
145 
146     if (!virt && !(s->ctlr & group_mask)) {
147         return false;
148     }
149 
150     if (virt && !(s->h_hcr[cpu] & R_GICH_HCR_EN_MASK)) {
151         return false;
152     }
153 
154     if (!(s->cpu_ctlr[cpu_iface] & group_mask)) {
155         return false;
156     }
157 
158     return true;
159 }
160 
161 /* TODO: Many places that call this routine could be optimized.  */
162 /* Update interrupt status after enabled or pending bits have been changed.  */
163 static inline void gic_update_internal(GICState *s, bool virt)
164 {
165     int best_irq;
166     int best_prio;
167     int irq_level, fiq_level;
168     int cpu, cpu_iface;
169     int group = 0;
170     qemu_irq *irq_lines = virt ? s->parent_virq : s->parent_irq;
171     qemu_irq *fiq_lines = virt ? s->parent_vfiq : s->parent_fiq;
172 
173     for (cpu = 0; cpu < s->num_cpu; cpu++) {
174         cpu_iface = virt ? (cpu + GIC_NCPU) : cpu;
175 
176         s->current_pending[cpu_iface] = 1023;
177         if (!gic_irq_signaling_enabled(s, cpu, virt,
178                                        GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1)) {
179             qemu_irq_lower(irq_lines[cpu]);
180             qemu_irq_lower(fiq_lines[cpu]);
181             continue;
182         }
183 
184         if (virt) {
185             gic_get_best_virq(s, cpu, &best_irq, &best_prio, &group);
186         } else {
187             gic_get_best_irq(s, cpu, &best_irq, &best_prio, &group);
188         }
189 
190         if (best_irq != 1023) {
191             trace_gic_update_bestirq(virt ? "vcpu" : "cpu", cpu,
192                                      best_irq, best_prio,
193                                      s->priority_mask[cpu_iface],
194                                      s->running_priority[cpu_iface]);
195         }
196 
197         irq_level = fiq_level = 0;
198 
199         if (best_prio < s->priority_mask[cpu_iface]) {
200             s->current_pending[cpu_iface] = best_irq;
201             if (best_prio < s->running_priority[cpu_iface]) {
202                 if (gic_irq_signaling_enabled(s, cpu, virt, 1 << group)) {
203                     if (group == 0 &&
204                         s->cpu_ctlr[cpu_iface] & GICC_CTLR_FIQ_EN) {
205                         DPRINTF("Raised pending FIQ %d (cpu %d)\n",
206                                 best_irq, cpu_iface);
207                         fiq_level = 1;
208                         trace_gic_update_set_irq(cpu, virt ? "vfiq" : "fiq",
209                                                  fiq_level);
210                     } else {
211                         DPRINTF("Raised pending IRQ %d (cpu %d)\n",
212                                 best_irq, cpu_iface);
213                         irq_level = 1;
214                         trace_gic_update_set_irq(cpu, virt ? "virq" : "irq",
215                                                  irq_level);
216                     }
217                 }
218             }
219         }
220 
221         qemu_set_irq(irq_lines[cpu], irq_level);
222         qemu_set_irq(fiq_lines[cpu], fiq_level);
223     }
224 }
225 
226 static void gic_update(GICState *s)
227 {
228     gic_update_internal(s, false);
229 }
230 
231 /* Return true if this LR is empty, i.e. the corresponding bit
232  * in ELRSR is set.
233  */
234 static inline bool gic_lr_entry_is_free(uint32_t entry)
235 {
236     return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
237         && (GICH_LR_HW(entry) || !GICH_LR_EOI(entry));
238 }
239 
240 /* Return true if this LR should trigger an EOI maintenance interrupt, i.e. the
241  * corrsponding bit in EISR is set.
242  */
243 static inline bool gic_lr_entry_is_eoi(uint32_t entry)
244 {
245     return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
246         && !GICH_LR_HW(entry) && GICH_LR_EOI(entry);
247 }
248 
249 static inline void gic_extract_lr_info(GICState *s, int cpu,
250                                 int *num_eoi, int *num_valid, int *num_pending)
251 {
252     int lr_idx;
253 
254     *num_eoi = 0;
255     *num_valid = 0;
256     *num_pending = 0;
257 
258     for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
259         uint32_t *entry = &s->h_lr[lr_idx][cpu];
260 
261         if (gic_lr_entry_is_eoi(*entry)) {
262             (*num_eoi)++;
263         }
264 
265         if (GICH_LR_STATE(*entry) != GICH_LR_STATE_INVALID) {
266             (*num_valid)++;
267         }
268 
269         if (GICH_LR_STATE(*entry) == GICH_LR_STATE_PENDING) {
270             (*num_pending)++;
271         }
272     }
273 }
274 
275 static void gic_compute_misr(GICState *s, int cpu)
276 {
277     uint32_t value = 0;
278     int vcpu = cpu + GIC_NCPU;
279 
280     int num_eoi, num_valid, num_pending;
281 
282     gic_extract_lr_info(s, cpu, &num_eoi, &num_valid, &num_pending);
283 
284     /* EOI */
285     if (num_eoi) {
286         value |= R_GICH_MISR_EOI_MASK;
287     }
288 
289     /* U: true if only 0 or 1 LR entry is valid */
290     if ((s->h_hcr[cpu] & R_GICH_HCR_UIE_MASK) && (num_valid < 2)) {
291         value |= R_GICH_MISR_U_MASK;
292     }
293 
294     /* LRENP: EOICount is not 0 */
295     if ((s->h_hcr[cpu] & R_GICH_HCR_LRENPIE_MASK) &&
296         ((s->h_hcr[cpu] & R_GICH_HCR_EOICount_MASK) != 0)) {
297         value |= R_GICH_MISR_LRENP_MASK;
298     }
299 
300     /* NP: no pending interrupts */
301     if ((s->h_hcr[cpu] & R_GICH_HCR_NPIE_MASK) && (num_pending == 0)) {
302         value |= R_GICH_MISR_NP_MASK;
303     }
304 
305     /* VGrp0E: group0 virq signaling enabled */
306     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0EIE_MASK) &&
307         (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
308         value |= R_GICH_MISR_VGrp0E_MASK;
309     }
310 
311     /* VGrp0D: group0 virq signaling disabled */
312     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0DIE_MASK) &&
313         !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
314         value |= R_GICH_MISR_VGrp0D_MASK;
315     }
316 
317     /* VGrp1E: group1 virq signaling enabled */
318     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1EIE_MASK) &&
319         (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
320         value |= R_GICH_MISR_VGrp1E_MASK;
321     }
322 
323     /* VGrp1D: group1 virq signaling disabled */
324     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1DIE_MASK) &&
325         !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
326         value |= R_GICH_MISR_VGrp1D_MASK;
327     }
328 
329     s->h_misr[cpu] = value;
330 }
331 
332 static void gic_update_maintenance(GICState *s)
333 {
334     int cpu = 0;
335     int maint_level;
336 
337     for (cpu = 0; cpu < s->num_cpu; cpu++) {
338         gic_compute_misr(s, cpu);
339         maint_level = (s->h_hcr[cpu] & R_GICH_HCR_EN_MASK) && s->h_misr[cpu];
340 
341         trace_gic_update_maintenance_irq(cpu, maint_level);
342         qemu_set_irq(s->maintenance_irq[cpu], maint_level);
343     }
344 }
345 
346 static void gic_update_virt(GICState *s)
347 {
348     gic_update_internal(s, true);
349     gic_update_maintenance(s);
350 }
351 
352 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
353                                  int cm, int target)
354 {
355     if (level) {
356         GIC_DIST_SET_LEVEL(irq, cm);
357         if (GIC_DIST_TEST_EDGE_TRIGGER(irq) || GIC_DIST_TEST_ENABLED(irq, cm)) {
358             DPRINTF("Set %d pending mask %x\n", irq, target);
359             GIC_DIST_SET_PENDING(irq, target);
360         }
361     } else {
362         GIC_DIST_CLEAR_LEVEL(irq, cm);
363     }
364 }
365 
366 static void gic_set_irq_generic(GICState *s, int irq, int level,
367                                 int cm, int target)
368 {
369     if (level) {
370         GIC_DIST_SET_LEVEL(irq, cm);
371         DPRINTF("Set %d pending mask %x\n", irq, target);
372         if (GIC_DIST_TEST_EDGE_TRIGGER(irq)) {
373             GIC_DIST_SET_PENDING(irq, target);
374         }
375     } else {
376         GIC_DIST_CLEAR_LEVEL(irq, cm);
377     }
378 }
379 
380 /* Process a change in an external IRQ input.  */
381 static void gic_set_irq(void *opaque, int irq, int level)
382 {
383     /* Meaning of the 'irq' parameter:
384      *  [0..N-1] : external interrupts
385      *  [N..N+31] : PPI (internal) interrupts for CPU 0
386      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
387      *  ...
388      */
389     GICState *s = (GICState *)opaque;
390     int cm, target;
391     if (irq < (s->num_irq - GIC_INTERNAL)) {
392         /* The first external input line is internal interrupt 32.  */
393         cm = ALL_CPU_MASK;
394         irq += GIC_INTERNAL;
395         target = GIC_DIST_TARGET(irq);
396     } else {
397         int cpu;
398         irq -= (s->num_irq - GIC_INTERNAL);
399         cpu = irq / GIC_INTERNAL;
400         irq %= GIC_INTERNAL;
401         cm = 1 << cpu;
402         target = cm;
403     }
404 
405     assert(irq >= GIC_NR_SGIS);
406 
407     if (level == GIC_DIST_TEST_LEVEL(irq, cm)) {
408         return;
409     }
410 
411     if (s->revision == REV_11MPCORE) {
412         gic_set_irq_11mpcore(s, irq, level, cm, target);
413     } else {
414         gic_set_irq_generic(s, irq, level, cm, target);
415     }
416     trace_gic_set_irq(irq, level, cm, target);
417 
418     gic_update(s);
419 }
420 
421 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
422                                             MemTxAttrs attrs)
423 {
424     uint16_t pending_irq = s->current_pending[cpu];
425 
426     if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
427         int group = gic_test_group(s, pending_irq, cpu);
428 
429         /* On a GIC without the security extensions, reading this register
430          * behaves in the same way as a secure access to a GIC with them.
431          */
432         bool secure = !gic_cpu_ns_access(s, cpu, attrs);
433 
434         if (group == 0 && !secure) {
435             /* Group0 interrupts hidden from Non-secure access */
436             return 1023;
437         }
438         if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
439             /* Group1 interrupts only seen by Secure access if
440              * AckCtl bit set.
441              */
442             return 1022;
443         }
444     }
445     return pending_irq;
446 }
447 
448 static int gic_get_group_priority(GICState *s, int cpu, int irq)
449 {
450     /* Return the group priority of the specified interrupt
451      * (which is the top bits of its priority, with the number
452      * of bits masked determined by the applicable binary point register).
453      */
454     int bpr;
455     uint32_t mask;
456 
457     if (gic_has_groups(s) &&
458         !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
459         gic_test_group(s, irq, cpu)) {
460         bpr = s->abpr[cpu] - 1;
461         assert(bpr >= 0);
462     } else {
463         bpr = s->bpr[cpu];
464     }
465 
466     /* a BPR of 0 means the group priority bits are [7:1];
467      * a BPR of 1 means they are [7:2], and so on down to
468      * a BPR of 7 meaning no group priority bits at all.
469      */
470     mask = ~0U << ((bpr & 7) + 1);
471 
472     return gic_get_priority(s, irq, cpu) & mask;
473 }
474 
475 static void gic_activate_irq(GICState *s, int cpu, int irq)
476 {
477     /* Set the appropriate Active Priority Register bit for this IRQ,
478      * and update the running priority.
479      */
480     int prio = gic_get_group_priority(s, cpu, irq);
481     int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
482     int preemption_level = prio >> (min_bpr + 1);
483     int regno = preemption_level / 32;
484     int bitno = preemption_level % 32;
485     uint32_t *papr = NULL;
486 
487     if (gic_is_vcpu(cpu)) {
488         assert(regno == 0);
489         papr = &s->h_apr[gic_get_vcpu_real_id(cpu)];
490     } else if (gic_has_groups(s) && gic_test_group(s, irq, cpu)) {
491         papr = &s->nsapr[regno][cpu];
492     } else {
493         papr = &s->apr[regno][cpu];
494     }
495 
496     *papr |= (1 << bitno);
497 
498     s->running_priority[cpu] = prio;
499     gic_set_active(s, irq, cpu);
500 }
501 
502 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
503 {
504     /* Recalculate the current running priority for this CPU based
505      * on the set bits in the Active Priority Registers.
506      */
507     int i;
508 
509     if (gic_is_vcpu(cpu)) {
510         uint32_t apr = s->h_apr[gic_get_vcpu_real_id(cpu)];
511         if (apr) {
512             return ctz32(apr) << (GIC_VIRT_MIN_BPR + 1);
513         } else {
514             return 0x100;
515         }
516     }
517 
518     for (i = 0; i < GIC_NR_APRS; i++) {
519         uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
520         if (!apr) {
521             continue;
522         }
523         return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
524     }
525     return 0x100;
526 }
527 
528 static void gic_drop_prio(GICState *s, int cpu, int group)
529 {
530     /* Drop the priority of the currently active interrupt in the
531      * specified group.
532      *
533      * Note that we can guarantee (because of the requirement to nest
534      * GICC_IAR reads [which activate an interrupt and raise priority]
535      * with GICC_EOIR writes [which drop the priority for the interrupt])
536      * that the interrupt we're being called for is the highest priority
537      * active interrupt, meaning that it has the lowest set bit in the
538      * APR registers.
539      *
540      * If the guest does not honour the ordering constraints then the
541      * behaviour of the GIC is UNPREDICTABLE, which for us means that
542      * the values of the APR registers might become incorrect and the
543      * running priority will be wrong, so interrupts that should preempt
544      * might not do so, and interrupts that should not preempt might do so.
545      */
546     if (gic_is_vcpu(cpu)) {
547         int rcpu = gic_get_vcpu_real_id(cpu);
548 
549         if (s->h_apr[rcpu]) {
550             /* Clear lowest set bit */
551             s->h_apr[rcpu] &= s->h_apr[rcpu] - 1;
552         }
553     } else {
554         int i;
555 
556         for (i = 0; i < GIC_NR_APRS; i++) {
557             uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
558             if (!*papr) {
559                 continue;
560             }
561             /* Clear lowest set bit */
562             *papr &= *papr - 1;
563             break;
564         }
565     }
566 
567     s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
568 }
569 
570 static inline uint32_t gic_clear_pending_sgi(GICState *s, int irq, int cpu)
571 {
572     int src;
573     uint32_t ret;
574 
575     if (!gic_is_vcpu(cpu)) {
576         /* Lookup the source CPU for the SGI and clear this in the
577          * sgi_pending map.  Return the src and clear the overall pending
578          * state on this CPU if the SGI is not pending from any CPUs.
579          */
580         assert(s->sgi_pending[irq][cpu] != 0);
581         src = ctz32(s->sgi_pending[irq][cpu]);
582         s->sgi_pending[irq][cpu] &= ~(1 << src);
583         if (s->sgi_pending[irq][cpu] == 0) {
584             gic_clear_pending(s, irq, cpu);
585         }
586         ret = irq | ((src & 0x7) << 10);
587     } else {
588         uint32_t *lr_entry = gic_get_lr_entry(s, irq, cpu);
589         src = GICH_LR_CPUID(*lr_entry);
590 
591         gic_clear_pending(s, irq, cpu);
592         ret = irq | (src << 10);
593     }
594 
595     return ret;
596 }
597 
598 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
599 {
600     int ret, irq;
601 
602     /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
603      * for the case where this GIC supports grouping and the pending interrupt
604      * is in the wrong group.
605      */
606     irq = gic_get_current_pending_irq(s, cpu, attrs);
607     trace_gic_acknowledge_irq(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
608                               gic_get_vcpu_real_id(cpu), irq);
609 
610     if (irq >= GIC_MAXIRQ) {
611         DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
612         return irq;
613     }
614 
615     if (gic_get_priority(s, irq, cpu) >= s->running_priority[cpu]) {
616         DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
617         return 1023;
618     }
619 
620     gic_activate_irq(s, cpu, irq);
621 
622     if (s->revision == REV_11MPCORE) {
623         /* Clear pending flags for both level and edge triggered interrupts.
624          * Level triggered IRQs will be reasserted once they become inactive.
625          */
626         gic_clear_pending(s, irq, cpu);
627         ret = irq;
628     } else {
629         if (irq < GIC_NR_SGIS) {
630             ret = gic_clear_pending_sgi(s, irq, cpu);
631         } else {
632             gic_clear_pending(s, irq, cpu);
633             ret = irq;
634         }
635     }
636 
637     if (gic_is_vcpu(cpu)) {
638         gic_update_virt(s);
639     } else {
640         gic_update(s);
641     }
642     DPRINTF("ACK %d\n", irq);
643     return ret;
644 }
645 
646 static uint32_t gic_fullprio_mask(GICState *s, int cpu)
647 {
648     /*
649      * Return a mask word which clears the unimplemented priority
650      * bits from a priority value for an interrupt. (Not to be
651      * confused with the group priority, whose mask depends on BPR.)
652      */
653     int priBits;
654 
655     if (gic_is_vcpu(cpu)) {
656         priBits = GIC_VIRT_MAX_GROUP_PRIO_BITS;
657     } else {
658         priBits = s->n_prio_bits;
659     }
660     return ~0U << (8 - priBits);
661 }
662 
663 void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
664                       MemTxAttrs attrs)
665 {
666     if (s->security_extn && !attrs.secure) {
667         if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
668             return; /* Ignore Non-secure access of Group0 IRQ */
669         }
670         val = 0x80 | (val >> 1); /* Non-secure view */
671     }
672 
673     val &= gic_fullprio_mask(s, cpu);
674 
675     if (irq < GIC_INTERNAL) {
676         s->priority1[irq][cpu] = val;
677     } else {
678         s->priority2[(irq) - GIC_INTERNAL] = val;
679     }
680 }
681 
682 static uint32_t gic_dist_get_priority(GICState *s, int cpu, int irq,
683                                  MemTxAttrs attrs)
684 {
685     uint32_t prio = GIC_DIST_GET_PRIORITY(irq, cpu);
686 
687     if (s->security_extn && !attrs.secure) {
688         if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
689             return 0; /* Non-secure access cannot read priority of Group0 IRQ */
690         }
691         prio = (prio << 1) & 0xff; /* Non-secure view */
692     }
693     return prio & gic_fullprio_mask(s, cpu);
694 }
695 
696 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
697                                   MemTxAttrs attrs)
698 {
699     if (gic_cpu_ns_access(s, cpu, attrs)) {
700         if (s->priority_mask[cpu] & 0x80) {
701             /* Priority Mask in upper half */
702             pmask = 0x80 | (pmask >> 1);
703         } else {
704             /* Non-secure write ignored if priority mask is in lower half */
705             return;
706         }
707     }
708     s->priority_mask[cpu] = pmask & gic_fullprio_mask(s, cpu);
709 }
710 
711 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
712 {
713     uint32_t pmask = s->priority_mask[cpu];
714 
715     if (gic_cpu_ns_access(s, cpu, attrs)) {
716         if (pmask & 0x80) {
717             /* Priority Mask in upper half, return Non-secure view */
718             pmask = (pmask << 1) & 0xff;
719         } else {
720             /* Priority Mask in lower half, RAZ */
721             pmask = 0;
722         }
723     }
724     return pmask;
725 }
726 
727 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
728 {
729     uint32_t ret = s->cpu_ctlr[cpu];
730 
731     if (gic_cpu_ns_access(s, cpu, attrs)) {
732         /* Construct the NS banked view of GICC_CTLR from the correct
733          * bits of the S banked view. We don't need to move the bypass
734          * control bits because we don't implement that (IMPDEF) part
735          * of the GIC architecture.
736          */
737         ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
738     }
739     return ret;
740 }
741 
742 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
743                                 MemTxAttrs attrs)
744 {
745     uint32_t mask;
746 
747     if (gic_cpu_ns_access(s, cpu, attrs)) {
748         /* The NS view can only write certain bits in the register;
749          * the rest are unchanged
750          */
751         mask = GICC_CTLR_EN_GRP1;
752         if (s->revision == 2) {
753             mask |= GICC_CTLR_EOIMODE_NS;
754         }
755         s->cpu_ctlr[cpu] &= ~mask;
756         s->cpu_ctlr[cpu] |= (value << 1) & mask;
757     } else {
758         if (s->revision == 2) {
759             mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
760         } else {
761             mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
762         }
763         s->cpu_ctlr[cpu] = value & mask;
764     }
765     DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
766             "Group1 Interrupts %sabled\n", cpu,
767             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
768             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
769 }
770 
771 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
772 {
773     if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
774         /* Idle priority */
775         return 0xff;
776     }
777 
778     if (gic_cpu_ns_access(s, cpu, attrs)) {
779         if (s->running_priority[cpu] & 0x80) {
780             /* Running priority in upper half of range: return the Non-secure
781              * view of the priority.
782              */
783             return s->running_priority[cpu] << 1;
784         } else {
785             /* Running priority in lower half of range: RAZ */
786             return 0;
787         }
788     } else {
789         return s->running_priority[cpu];
790     }
791 }
792 
793 /* Return true if we should split priority drop and interrupt deactivation,
794  * ie whether the relevant EOIMode bit is set.
795  */
796 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
797 {
798     if (s->revision != 2) {
799         /* Before GICv2 prio-drop and deactivate are not separable */
800         return false;
801     }
802     if (gic_cpu_ns_access(s, cpu, attrs)) {
803         return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
804     }
805     return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
806 }
807 
808 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
809 {
810     int group;
811 
812     if (irq >= GIC_MAXIRQ || (!gic_is_vcpu(cpu) && irq >= s->num_irq)) {
813         /*
814          * This handles two cases:
815          * 1. If software writes the ID of a spurious interrupt [ie 1023]
816          * to the GICC_DIR, the GIC ignores that write.
817          * 2. If software writes the number of a non-existent interrupt
818          * this must be a subcase of "value written is not an active interrupt"
819          * and so this is UNPREDICTABLE. We choose to ignore it. For vCPUs,
820          * all IRQs potentially exist, so this limit does not apply.
821          */
822         return;
823     }
824 
825     if (!gic_eoi_split(s, cpu, attrs)) {
826         /* This is UNPREDICTABLE; we choose to ignore it */
827         qemu_log_mask(LOG_GUEST_ERROR,
828                       "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
829         return;
830     }
831 
832     if (gic_is_vcpu(cpu) && !gic_virq_is_valid(s, irq, cpu)) {
833         /* This vIRQ does not have an LR entry which is either active or
834          * pending and active. Increment EOICount and ignore the write.
835          */
836         int rcpu = gic_get_vcpu_real_id(cpu);
837         s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
838 
839         /* Update the virtual interface in case a maintenance interrupt should
840          * be raised.
841          */
842         gic_update_virt(s);
843         return;
844     }
845 
846     group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
847 
848     if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
849         DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
850         return;
851     }
852 
853     gic_clear_active(s, irq, cpu);
854 }
855 
856 static void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
857 {
858     int cm = 1 << cpu;
859     int group;
860 
861     DPRINTF("EOI %d\n", irq);
862     if (gic_is_vcpu(cpu)) {
863         /* The call to gic_prio_drop() will clear a bit in GICH_APR iff the
864          * running prio is < 0x100.
865          */
866         bool prio_drop = s->running_priority[cpu] < 0x100;
867 
868         if (irq >= GIC_MAXIRQ) {
869             /* Ignore spurious interrupt */
870             return;
871         }
872 
873         gic_drop_prio(s, cpu, 0);
874 
875         if (!gic_eoi_split(s, cpu, attrs)) {
876             bool valid = gic_virq_is_valid(s, irq, cpu);
877             if (prio_drop && !valid) {
878                 /* We are in a situation where:
879                  *   - V_CTRL.EOIMode is false (no EOI split),
880                  *   - The call to gic_drop_prio() cleared a bit in GICH_APR,
881                  *   - This vIRQ does not have an LR entry which is either
882                  *     active or pending and active.
883                  * In that case, we must increment EOICount.
884                  */
885                 int rcpu = gic_get_vcpu_real_id(cpu);
886                 s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
887             } else if (valid) {
888                 gic_clear_active(s, irq, cpu);
889             }
890         }
891 
892         gic_update_virt(s);
893         return;
894     }
895 
896     if (irq >= s->num_irq) {
897         /* This handles two cases:
898          * 1. If software writes the ID of a spurious interrupt [ie 1023]
899          * to the GICC_EOIR, the GIC ignores that write.
900          * 2. If software writes the number of a non-existent interrupt
901          * this must be a subcase of "value written does not match the last
902          * valid interrupt value read from the Interrupt Acknowledge
903          * register" and so this is UNPREDICTABLE. We choose to ignore it.
904          */
905         return;
906     }
907     if (s->running_priority[cpu] == 0x100) {
908         return; /* No active IRQ.  */
909     }
910 
911     if (s->revision == REV_11MPCORE) {
912         /* Mark level triggered interrupts as pending if they are still
913            raised.  */
914         if (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_ENABLED(irq, cm)
915             && GIC_DIST_TEST_LEVEL(irq, cm)
916             && (GIC_DIST_TARGET(irq) & cm) != 0) {
917             DPRINTF("Set %d pending mask %x\n", irq, cm);
918             GIC_DIST_SET_PENDING(irq, cm);
919         }
920     }
921 
922     group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
923 
924     if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
925         DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
926         return;
927     }
928 
929     /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
930      * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
931      * i.e. go ahead and complete the irq anyway.
932      */
933 
934     gic_drop_prio(s, cpu, group);
935 
936     /* In GICv2 the guest can choose to split priority-drop and deactivate */
937     if (!gic_eoi_split(s, cpu, attrs)) {
938         gic_clear_active(s, irq, cpu);
939     }
940     gic_update(s);
941 }
942 
943 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
944 {
945     GICState *s = (GICState *)opaque;
946     uint32_t res;
947     int irq;
948     int i;
949     int cpu;
950     int cm;
951     int mask;
952 
953     cpu = gic_get_current_cpu(s);
954     cm = 1 << cpu;
955     if (offset < 0x100) {
956         if (offset == 0) {      /* GICD_CTLR */
957             if (s->security_extn && !attrs.secure) {
958                 /* The NS bank of this register is just an alias of the
959                  * EnableGrp1 bit in the S bank version.
960                  */
961                 return extract32(s->ctlr, 1, 1);
962             } else {
963                 return s->ctlr;
964             }
965         }
966         if (offset == 4)
967             /* Interrupt Controller Type Register */
968             return ((s->num_irq / 32) - 1)
969                     | ((s->num_cpu - 1) << 5)
970                     | (s->security_extn << 10);
971         if (offset < 0x08)
972             return 0;
973         if (offset >= 0x80) {
974             /* Interrupt Group Registers: these RAZ/WI if this is an NS
975              * access to a GIC with the security extensions, or if the GIC
976              * doesn't have groups at all.
977              */
978             res = 0;
979             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
980                 /* Every byte offset holds 8 group status bits */
981                 irq = (offset - 0x080) * 8;
982                 if (irq >= s->num_irq) {
983                     goto bad_reg;
984                 }
985                 for (i = 0; i < 8; i++) {
986                     if (GIC_DIST_TEST_GROUP(irq + i, cm)) {
987                         res |= (1 << i);
988                     }
989                 }
990             }
991             return res;
992         }
993         goto bad_reg;
994     } else if (offset < 0x200) {
995         /* Interrupt Set/Clear Enable.  */
996         if (offset < 0x180)
997             irq = (offset - 0x100) * 8;
998         else
999             irq = (offset - 0x180) * 8;
1000         if (irq >= s->num_irq)
1001             goto bad_reg;
1002         res = 0;
1003         for (i = 0; i < 8; i++) {
1004             if (s->security_extn && !attrs.secure &&
1005                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1006                 continue; /* Ignore Non-secure access of Group0 IRQ */
1007             }
1008 
1009             if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1010                 res |= (1 << i);
1011             }
1012         }
1013     } else if (offset < 0x300) {
1014         /* Interrupt Set/Clear Pending.  */
1015         if (offset < 0x280)
1016             irq = (offset - 0x200) * 8;
1017         else
1018             irq = (offset - 0x280) * 8;
1019         if (irq >= s->num_irq)
1020             goto bad_reg;
1021         res = 0;
1022         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
1023         for (i = 0; i < 8; i++) {
1024             if (s->security_extn && !attrs.secure &&
1025                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1026                 continue; /* Ignore Non-secure access of Group0 IRQ */
1027             }
1028 
1029             if (gic_test_pending(s, irq + i, mask)) {
1030                 res |= (1 << i);
1031             }
1032         }
1033     } else if (offset < 0x400) {
1034         /* Interrupt Set/Clear Active.  */
1035         if (offset < 0x380) {
1036             irq = (offset - 0x300) * 8;
1037         } else if (s->revision == 2) {
1038             irq = (offset - 0x380) * 8;
1039         } else {
1040             goto bad_reg;
1041         }
1042 
1043         if (irq >= s->num_irq)
1044             goto bad_reg;
1045         res = 0;
1046         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
1047         for (i = 0; i < 8; i++) {
1048             if (s->security_extn && !attrs.secure &&
1049                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1050                 continue; /* Ignore Non-secure access of Group0 IRQ */
1051             }
1052 
1053             if (GIC_DIST_TEST_ACTIVE(irq + i, mask)) {
1054                 res |= (1 << i);
1055             }
1056         }
1057     } else if (offset < 0x800) {
1058         /* Interrupt Priority.  */
1059         irq = (offset - 0x400);
1060         if (irq >= s->num_irq)
1061             goto bad_reg;
1062         res = gic_dist_get_priority(s, cpu, irq, attrs);
1063     } else if (offset < 0xc00) {
1064         /* Interrupt CPU Target.  */
1065         if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
1066             /* For uniprocessor GICs these RAZ/WI */
1067             res = 0;
1068         } else {
1069             irq = (offset - 0x800);
1070             if (irq >= s->num_irq) {
1071                 goto bad_reg;
1072             }
1073             if (irq < 29 && s->revision == REV_11MPCORE) {
1074                 res = 0;
1075             } else if (irq < GIC_INTERNAL) {
1076                 res = cm;
1077             } else {
1078                 res = GIC_DIST_TARGET(irq);
1079             }
1080         }
1081     } else if (offset < 0xf00) {
1082         /* Interrupt Configuration.  */
1083         irq = (offset - 0xc00) * 4;
1084         if (irq >= s->num_irq)
1085             goto bad_reg;
1086         res = 0;
1087         for (i = 0; i < 4; i++) {
1088             if (s->security_extn && !attrs.secure &&
1089                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1090                 continue; /* Ignore Non-secure access of Group0 IRQ */
1091             }
1092 
1093             if (GIC_DIST_TEST_MODEL(irq + i)) {
1094                 res |= (1 << (i * 2));
1095             }
1096             if (GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1097                 res |= (2 << (i * 2));
1098             }
1099         }
1100     } else if (offset < 0xf10) {
1101         goto bad_reg;
1102     } else if (offset < 0xf30) {
1103         if (s->revision == REV_11MPCORE) {
1104             goto bad_reg;
1105         }
1106 
1107         if (offset < 0xf20) {
1108             /* GICD_CPENDSGIRn */
1109             irq = (offset - 0xf10);
1110         } else {
1111             irq = (offset - 0xf20);
1112             /* GICD_SPENDSGIRn */
1113         }
1114 
1115         if (s->security_extn && !attrs.secure &&
1116             !GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1117             res = 0; /* Ignore Non-secure access of Group0 IRQ */
1118         } else {
1119             res = s->sgi_pending[irq][cpu];
1120         }
1121     } else if (offset < 0xfd0) {
1122         goto bad_reg;
1123     } else if (offset < 0x1000) {
1124         if (offset & 3) {
1125             res = 0;
1126         } else {
1127             switch (s->revision) {
1128             case REV_11MPCORE:
1129                 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
1130                 break;
1131             case 1:
1132                 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
1133                 break;
1134             case 2:
1135                 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
1136                 break;
1137             default:
1138                 res = 0;
1139             }
1140         }
1141     } else {
1142         g_assert_not_reached();
1143     }
1144     return res;
1145 bad_reg:
1146     qemu_log_mask(LOG_GUEST_ERROR,
1147                   "gic_dist_readb: Bad offset %x\n", (int)offset);
1148     return 0;
1149 }
1150 
1151 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
1152                                  unsigned size, MemTxAttrs attrs)
1153 {
1154     switch (size) {
1155     case 1:
1156         *data = gic_dist_readb(opaque, offset, attrs);
1157         break;
1158     case 2:
1159         *data = gic_dist_readb(opaque, offset, attrs);
1160         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1161         break;
1162     case 4:
1163         *data = gic_dist_readb(opaque, offset, attrs);
1164         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1165         *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
1166         *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
1167         break;
1168     default:
1169         return MEMTX_ERROR;
1170     }
1171 
1172     trace_gic_dist_read(offset, size, *data);
1173     return MEMTX_OK;
1174 }
1175 
1176 static void gic_dist_writeb(void *opaque, hwaddr offset,
1177                             uint32_t value, MemTxAttrs attrs)
1178 {
1179     GICState *s = (GICState *)opaque;
1180     int irq;
1181     int i;
1182     int cpu;
1183 
1184     cpu = gic_get_current_cpu(s);
1185     if (offset < 0x100) {
1186         if (offset == 0) {
1187             if (s->security_extn && !attrs.secure) {
1188                 /* NS version is just an alias of the S version's bit 1 */
1189                 s->ctlr = deposit32(s->ctlr, 1, 1, value);
1190             } else if (gic_has_groups(s)) {
1191                 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
1192             } else {
1193                 s->ctlr = value & GICD_CTLR_EN_GRP0;
1194             }
1195             DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
1196                     s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
1197                     s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
1198         } else if (offset < 4) {
1199             /* ignored.  */
1200         } else if (offset >= 0x80) {
1201             /* Interrupt Group Registers: RAZ/WI for NS access to secure
1202              * GIC, or for GICs without groups.
1203              */
1204             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
1205                 /* Every byte offset holds 8 group status bits */
1206                 irq = (offset - 0x80) * 8;
1207                 if (irq >= s->num_irq) {
1208                     goto bad_reg;
1209                 }
1210                 for (i = 0; i < 8; i++) {
1211                     /* Group bits are banked for private interrupts */
1212                     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1213                     if (value & (1 << i)) {
1214                         /* Group1 (Non-secure) */
1215                         GIC_DIST_SET_GROUP(irq + i, cm);
1216                     } else {
1217                         /* Group0 (Secure) */
1218                         GIC_DIST_CLEAR_GROUP(irq + i, cm);
1219                     }
1220                 }
1221             }
1222         } else {
1223             goto bad_reg;
1224         }
1225     } else if (offset < 0x180) {
1226         /* Interrupt Set Enable.  */
1227         irq = (offset - 0x100) * 8;
1228         if (irq >= s->num_irq)
1229             goto bad_reg;
1230         if (irq < GIC_NR_SGIS) {
1231             value = 0xff;
1232         }
1233 
1234         for (i = 0; i < 8; i++) {
1235             if (value & (1 << i)) {
1236                 int mask =
1237                     (irq < GIC_INTERNAL) ? (1 << cpu)
1238                                          : GIC_DIST_TARGET(irq + i);
1239                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1240 
1241                 if (s->security_extn && !attrs.secure &&
1242                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1243                     continue; /* Ignore Non-secure access of Group0 IRQ */
1244                 }
1245 
1246                 if (!GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1247                     DPRINTF("Enabled IRQ %d\n", irq + i);
1248                     trace_gic_enable_irq(irq + i);
1249                 }
1250                 GIC_DIST_SET_ENABLED(irq + i, cm);
1251                 /* If a raised level triggered IRQ enabled then mark
1252                    is as pending.  */
1253                 if (GIC_DIST_TEST_LEVEL(irq + i, mask)
1254                         && !GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1255                     DPRINTF("Set %d pending mask %x\n", irq + i, mask);
1256                     GIC_DIST_SET_PENDING(irq + i, mask);
1257                 }
1258             }
1259         }
1260     } else if (offset < 0x200) {
1261         /* Interrupt Clear Enable.  */
1262         irq = (offset - 0x180) * 8;
1263         if (irq >= s->num_irq)
1264             goto bad_reg;
1265         if (irq < GIC_NR_SGIS) {
1266             value = 0;
1267         }
1268 
1269         for (i = 0; i < 8; i++) {
1270             if (value & (1 << i)) {
1271                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1272 
1273                 if (s->security_extn && !attrs.secure &&
1274                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1275                     continue; /* Ignore Non-secure access of Group0 IRQ */
1276                 }
1277 
1278                 if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1279                     DPRINTF("Disabled IRQ %d\n", irq + i);
1280                     trace_gic_disable_irq(irq + i);
1281                 }
1282                 GIC_DIST_CLEAR_ENABLED(irq + i, cm);
1283             }
1284         }
1285     } else if (offset < 0x280) {
1286         /* Interrupt Set Pending.  */
1287         irq = (offset - 0x200) * 8;
1288         if (irq >= s->num_irq)
1289             goto bad_reg;
1290         if (irq < GIC_NR_SGIS) {
1291             value = 0;
1292         }
1293 
1294         for (i = 0; i < 8; i++) {
1295             if (value & (1 << i)) {
1296                 if (s->security_extn && !attrs.secure &&
1297                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1298                     continue; /* Ignore Non-secure access of Group0 IRQ */
1299                 }
1300 
1301                 GIC_DIST_SET_PENDING(irq + i, GIC_DIST_TARGET(irq + i));
1302             }
1303         }
1304     } else if (offset < 0x300) {
1305         /* Interrupt Clear Pending.  */
1306         irq = (offset - 0x280) * 8;
1307         if (irq >= s->num_irq)
1308             goto bad_reg;
1309         if (irq < GIC_NR_SGIS) {
1310             value = 0;
1311         }
1312 
1313         for (i = 0; i < 8; i++) {
1314             if (s->security_extn && !attrs.secure &&
1315                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1316                 continue; /* Ignore Non-secure access of Group0 IRQ */
1317             }
1318 
1319             /* ??? This currently clears the pending bit for all CPUs, even
1320                for per-CPU interrupts.  It's unclear whether this is the
1321                corect behavior.  */
1322             if (value & (1 << i)) {
1323                 GIC_DIST_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
1324             }
1325         }
1326     } else if (offset < 0x380) {
1327         /* Interrupt Set Active.  */
1328         if (s->revision != 2) {
1329             goto bad_reg;
1330         }
1331 
1332         irq = (offset - 0x300) * 8;
1333         if (irq >= s->num_irq) {
1334             goto bad_reg;
1335         }
1336 
1337         /* This register is banked per-cpu for PPIs */
1338         int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1339 
1340         for (i = 0; i < 8; i++) {
1341             if (s->security_extn && !attrs.secure &&
1342                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1343                 continue; /* Ignore Non-secure access of Group0 IRQ */
1344             }
1345 
1346             if (value & (1 << i)) {
1347                 GIC_DIST_SET_ACTIVE(irq + i, cm);
1348             }
1349         }
1350     } else if (offset < 0x400) {
1351         /* Interrupt Clear Active.  */
1352         if (s->revision != 2) {
1353             goto bad_reg;
1354         }
1355 
1356         irq = (offset - 0x380) * 8;
1357         if (irq >= s->num_irq) {
1358             goto bad_reg;
1359         }
1360 
1361         /* This register is banked per-cpu for PPIs */
1362         int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1363 
1364         for (i = 0; i < 8; i++) {
1365             if (s->security_extn && !attrs.secure &&
1366                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1367                 continue; /* Ignore Non-secure access of Group0 IRQ */
1368             }
1369 
1370             if (value & (1 << i)) {
1371                 GIC_DIST_CLEAR_ACTIVE(irq + i, cm);
1372             }
1373         }
1374     } else if (offset < 0x800) {
1375         /* Interrupt Priority.  */
1376         irq = (offset - 0x400);
1377         if (irq >= s->num_irq)
1378             goto bad_reg;
1379         gic_dist_set_priority(s, cpu, irq, value, attrs);
1380     } else if (offset < 0xc00) {
1381         /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
1382          * annoying exception of the 11MPCore's GIC.
1383          */
1384         if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
1385             irq = (offset - 0x800);
1386             if (irq >= s->num_irq) {
1387                 goto bad_reg;
1388             }
1389             if (irq < 29 && s->revision == REV_11MPCORE) {
1390                 value = 0;
1391             } else if (irq < GIC_INTERNAL) {
1392                 value = ALL_CPU_MASK;
1393             }
1394             s->irq_target[irq] = value & ALL_CPU_MASK;
1395         }
1396     } else if (offset < 0xf00) {
1397         /* Interrupt Configuration.  */
1398         irq = (offset - 0xc00) * 4;
1399         if (irq >= s->num_irq)
1400             goto bad_reg;
1401         if (irq < GIC_NR_SGIS)
1402             value |= 0xaa;
1403         for (i = 0; i < 4; i++) {
1404             if (s->security_extn && !attrs.secure &&
1405                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1406                 continue; /* Ignore Non-secure access of Group0 IRQ */
1407             }
1408 
1409             if (s->revision == REV_11MPCORE) {
1410                 if (value & (1 << (i * 2))) {
1411                     GIC_DIST_SET_MODEL(irq + i);
1412                 } else {
1413                     GIC_DIST_CLEAR_MODEL(irq + i);
1414                 }
1415             }
1416             if (value & (2 << (i * 2))) {
1417                 GIC_DIST_SET_EDGE_TRIGGER(irq + i);
1418             } else {
1419                 GIC_DIST_CLEAR_EDGE_TRIGGER(irq + i);
1420             }
1421         }
1422     } else if (offset < 0xf10) {
1423         /* 0xf00 is only handled for 32-bit writes.  */
1424         goto bad_reg;
1425     } else if (offset < 0xf20) {
1426         /* GICD_CPENDSGIRn */
1427         if (s->revision == REV_11MPCORE) {
1428             goto bad_reg;
1429         }
1430         irq = (offset - 0xf10);
1431 
1432         if (!s->security_extn || attrs.secure ||
1433             GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1434             s->sgi_pending[irq][cpu] &= ~value;
1435             if (s->sgi_pending[irq][cpu] == 0) {
1436                 GIC_DIST_CLEAR_PENDING(irq, 1 << cpu);
1437             }
1438         }
1439     } else if (offset < 0xf30) {
1440         /* GICD_SPENDSGIRn */
1441         if (s->revision == REV_11MPCORE) {
1442             goto bad_reg;
1443         }
1444         irq = (offset - 0xf20);
1445 
1446         if (!s->security_extn || attrs.secure ||
1447             GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1448             GIC_DIST_SET_PENDING(irq, 1 << cpu);
1449             s->sgi_pending[irq][cpu] |= value;
1450         }
1451     } else {
1452         goto bad_reg;
1453     }
1454     gic_update(s);
1455     return;
1456 bad_reg:
1457     qemu_log_mask(LOG_GUEST_ERROR,
1458                   "gic_dist_writeb: Bad offset %x\n", (int)offset);
1459 }
1460 
1461 static void gic_dist_writew(void *opaque, hwaddr offset,
1462                             uint32_t value, MemTxAttrs attrs)
1463 {
1464     gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1465     gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1466 }
1467 
1468 static void gic_dist_writel(void *opaque, hwaddr offset,
1469                             uint32_t value, MemTxAttrs attrs)
1470 {
1471     GICState *s = (GICState *)opaque;
1472     if (offset == 0xf00) {
1473         int cpu;
1474         int irq;
1475         int mask;
1476         int target_cpu;
1477 
1478         cpu = gic_get_current_cpu(s);
1479         irq = value & 0x3ff;
1480         switch ((value >> 24) & 3) {
1481         case 0:
1482             mask = (value >> 16) & ALL_CPU_MASK;
1483             break;
1484         case 1:
1485             mask = ALL_CPU_MASK ^ (1 << cpu);
1486             break;
1487         case 2:
1488             mask = 1 << cpu;
1489             break;
1490         default:
1491             DPRINTF("Bad Soft Int target filter\n");
1492             mask = ALL_CPU_MASK;
1493             break;
1494         }
1495         GIC_DIST_SET_PENDING(irq, mask);
1496         target_cpu = ctz32(mask);
1497         while (target_cpu < GIC_NCPU) {
1498             s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1499             mask &= ~(1 << target_cpu);
1500             target_cpu = ctz32(mask);
1501         }
1502         gic_update(s);
1503         return;
1504     }
1505     gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1506     gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1507 }
1508 
1509 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1510                                   unsigned size, MemTxAttrs attrs)
1511 {
1512     trace_gic_dist_write(offset, size, data);
1513 
1514     switch (size) {
1515     case 1:
1516         gic_dist_writeb(opaque, offset, data, attrs);
1517         return MEMTX_OK;
1518     case 2:
1519         gic_dist_writew(opaque, offset, data, attrs);
1520         return MEMTX_OK;
1521     case 4:
1522         gic_dist_writel(opaque, offset, data, attrs);
1523         return MEMTX_OK;
1524     default:
1525         return MEMTX_ERROR;
1526     }
1527 }
1528 
1529 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1530 {
1531     /* Return the Nonsecure view of GICC_APR<regno>. This is the
1532      * second half of GICC_NSAPR.
1533      */
1534     switch (GIC_MIN_BPR) {
1535     case 0:
1536         if (regno < 2) {
1537             return s->nsapr[regno + 2][cpu];
1538         }
1539         break;
1540     case 1:
1541         if (regno == 0) {
1542             return s->nsapr[regno + 1][cpu];
1543         }
1544         break;
1545     case 2:
1546         if (regno == 0) {
1547             return extract32(s->nsapr[0][cpu], 16, 16);
1548         }
1549         break;
1550     case 3:
1551         if (regno == 0) {
1552             return extract32(s->nsapr[0][cpu], 8, 8);
1553         }
1554         break;
1555     default:
1556         g_assert_not_reached();
1557     }
1558     return 0;
1559 }
1560 
1561 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1562                                          uint32_t value)
1563 {
1564     /* Write the Nonsecure view of GICC_APR<regno>. */
1565     switch (GIC_MIN_BPR) {
1566     case 0:
1567         if (regno < 2) {
1568             s->nsapr[regno + 2][cpu] = value;
1569         }
1570         break;
1571     case 1:
1572         if (regno == 0) {
1573             s->nsapr[regno + 1][cpu] = value;
1574         }
1575         break;
1576     case 2:
1577         if (regno == 0) {
1578             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1579         }
1580         break;
1581     case 3:
1582         if (regno == 0) {
1583             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1584         }
1585         break;
1586     default:
1587         g_assert_not_reached();
1588     }
1589 }
1590 
1591 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1592                                 uint64_t *data, MemTxAttrs attrs)
1593 {
1594     switch (offset) {
1595     case 0x00: /* Control */
1596         *data = gic_get_cpu_control(s, cpu, attrs);
1597         break;
1598     case 0x04: /* Priority mask */
1599         *data = gic_get_priority_mask(s, cpu, attrs);
1600         break;
1601     case 0x08: /* Binary Point */
1602         if (gic_cpu_ns_access(s, cpu, attrs)) {
1603             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1604                 /* NS view of BPR when CBPR is 1 */
1605                 *data = MIN(s->bpr[cpu] + 1, 7);
1606             } else {
1607                 /* BPR is banked. Non-secure copy stored in ABPR. */
1608                 *data = s->abpr[cpu];
1609             }
1610         } else {
1611             *data = s->bpr[cpu];
1612         }
1613         break;
1614     case 0x0c: /* Acknowledge */
1615         *data = gic_acknowledge_irq(s, cpu, attrs);
1616         break;
1617     case 0x14: /* Running Priority */
1618         *data = gic_get_running_priority(s, cpu, attrs);
1619         break;
1620     case 0x18: /* Highest Pending Interrupt */
1621         *data = gic_get_current_pending_irq(s, cpu, attrs);
1622         break;
1623     case 0x1c: /* Aliased Binary Point */
1624         /* GIC v2, no security: ABPR
1625          * GIC v1, no security: not implemented (RAZ/WI)
1626          * With security extensions, secure access: ABPR (alias of NS BPR)
1627          * With security extensions, nonsecure access: RAZ/WI
1628          */
1629         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1630             *data = 0;
1631         } else {
1632             *data = s->abpr[cpu];
1633         }
1634         break;
1635     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1636     {
1637         int regno = (offset - 0xd0) / 4;
1638         int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1639 
1640         if (regno >= nr_aprs || s->revision != 2) {
1641             *data = 0;
1642         } else if (gic_is_vcpu(cpu)) {
1643             *data = s->h_apr[gic_get_vcpu_real_id(cpu)];
1644         } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1645             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1646             *data = gic_apr_ns_view(s, regno, cpu);
1647         } else {
1648             *data = s->apr[regno][cpu];
1649         }
1650         break;
1651     }
1652     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1653     {
1654         int regno = (offset - 0xe0) / 4;
1655 
1656         if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1657             gic_cpu_ns_access(s, cpu, attrs) || gic_is_vcpu(cpu)) {
1658             *data = 0;
1659         } else {
1660             *data = s->nsapr[regno][cpu];
1661         }
1662         break;
1663     }
1664     default:
1665         qemu_log_mask(LOG_GUEST_ERROR,
1666                       "gic_cpu_read: Bad offset %x\n", (int)offset);
1667         *data = 0;
1668         break;
1669     }
1670 
1671     trace_gic_cpu_read(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1672                        gic_get_vcpu_real_id(cpu), offset, *data);
1673     return MEMTX_OK;
1674 }
1675 
1676 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1677                                  uint32_t value, MemTxAttrs attrs)
1678 {
1679     trace_gic_cpu_write(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1680                         gic_get_vcpu_real_id(cpu), offset, value);
1681 
1682     switch (offset) {
1683     case 0x00: /* Control */
1684         gic_set_cpu_control(s, cpu, value, attrs);
1685         break;
1686     case 0x04: /* Priority mask */
1687         gic_set_priority_mask(s, cpu, value, attrs);
1688         break;
1689     case 0x08: /* Binary Point */
1690         if (gic_cpu_ns_access(s, cpu, attrs)) {
1691             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1692                 /* WI when CBPR is 1 */
1693                 return MEMTX_OK;
1694             } else {
1695                 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1696             }
1697         } else {
1698             int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
1699             s->bpr[cpu] = MAX(value & 0x7, min_bpr);
1700         }
1701         break;
1702     case 0x10: /* End Of Interrupt */
1703         gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1704         return MEMTX_OK;
1705     case 0x1c: /* Aliased Binary Point */
1706         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1707             /* unimplemented, or NS access: RAZ/WI */
1708             return MEMTX_OK;
1709         } else {
1710             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1711         }
1712         break;
1713     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1714     {
1715         int regno = (offset - 0xd0) / 4;
1716         int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1717 
1718         if (regno >= nr_aprs || s->revision != 2) {
1719             return MEMTX_OK;
1720         }
1721         if (gic_is_vcpu(cpu)) {
1722             s->h_apr[gic_get_vcpu_real_id(cpu)] = value;
1723         } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1724             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1725             gic_apr_write_ns_view(s, regno, cpu, value);
1726         } else {
1727             s->apr[regno][cpu] = value;
1728         }
1729         break;
1730     }
1731     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1732     {
1733         int regno = (offset - 0xe0) / 4;
1734 
1735         if (regno >= GIC_NR_APRS || s->revision != 2) {
1736             return MEMTX_OK;
1737         }
1738         if (gic_is_vcpu(cpu)) {
1739             return MEMTX_OK;
1740         }
1741         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1742             return MEMTX_OK;
1743         }
1744         s->nsapr[regno][cpu] = value;
1745         break;
1746     }
1747     case 0x1000:
1748         /* GICC_DIR */
1749         gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1750         break;
1751     default:
1752         qemu_log_mask(LOG_GUEST_ERROR,
1753                       "gic_cpu_write: Bad offset %x\n", (int)offset);
1754         return MEMTX_OK;
1755     }
1756 
1757     if (gic_is_vcpu(cpu)) {
1758         gic_update_virt(s);
1759     } else {
1760         gic_update(s);
1761     }
1762 
1763     return MEMTX_OK;
1764 }
1765 
1766 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1767 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1768                                     unsigned size, MemTxAttrs attrs)
1769 {
1770     GICState *s = (GICState *)opaque;
1771     return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1772 }
1773 
1774 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1775                                      uint64_t value, unsigned size,
1776                                      MemTxAttrs attrs)
1777 {
1778     GICState *s = (GICState *)opaque;
1779     return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1780 }
1781 
1782 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1783  * These just decode the opaque pointer into GICState* + cpu id.
1784  */
1785 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1786                                    unsigned size, MemTxAttrs attrs)
1787 {
1788     GICState **backref = (GICState **)opaque;
1789     GICState *s = *backref;
1790     int id = (backref - s->backref);
1791     return gic_cpu_read(s, id, addr, data, attrs);
1792 }
1793 
1794 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1795                                     uint64_t value, unsigned size,
1796                                     MemTxAttrs attrs)
1797 {
1798     GICState **backref = (GICState **)opaque;
1799     GICState *s = *backref;
1800     int id = (backref - s->backref);
1801     return gic_cpu_write(s, id, addr, value, attrs);
1802 }
1803 
1804 static MemTxResult gic_thisvcpu_read(void *opaque, hwaddr addr, uint64_t *data,
1805                                     unsigned size, MemTxAttrs attrs)
1806 {
1807     GICState *s = (GICState *)opaque;
1808 
1809     return gic_cpu_read(s, gic_get_current_vcpu(s), addr, data, attrs);
1810 }
1811 
1812 static MemTxResult gic_thisvcpu_write(void *opaque, hwaddr addr,
1813                                      uint64_t value, unsigned size,
1814                                      MemTxAttrs attrs)
1815 {
1816     GICState *s = (GICState *)opaque;
1817 
1818     return gic_cpu_write(s, gic_get_current_vcpu(s), addr, value, attrs);
1819 }
1820 
1821 static uint32_t gic_compute_eisr(GICState *s, int cpu, int lr_start)
1822 {
1823     int lr_idx;
1824     uint32_t ret = 0;
1825 
1826     for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1827         uint32_t *entry = &s->h_lr[lr_idx][cpu];
1828         ret = deposit32(ret, lr_idx - lr_start, 1,
1829                         gic_lr_entry_is_eoi(*entry));
1830     }
1831 
1832     return ret;
1833 }
1834 
1835 static uint32_t gic_compute_elrsr(GICState *s, int cpu, int lr_start)
1836 {
1837     int lr_idx;
1838     uint32_t ret = 0;
1839 
1840     for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1841         uint32_t *entry = &s->h_lr[lr_idx][cpu];
1842         ret = deposit32(ret, lr_idx - lr_start, 1,
1843                         gic_lr_entry_is_free(*entry));
1844     }
1845 
1846     return ret;
1847 }
1848 
1849 static void gic_vmcr_write(GICState *s, uint32_t value, MemTxAttrs attrs)
1850 {
1851     int vcpu = gic_get_current_vcpu(s);
1852     uint32_t ctlr;
1853     uint32_t abpr;
1854     uint32_t bpr;
1855     uint32_t prio_mask;
1856 
1857     ctlr = FIELD_EX32(value, GICH_VMCR, VMCCtlr);
1858     abpr = FIELD_EX32(value, GICH_VMCR, VMABP);
1859     bpr = FIELD_EX32(value, GICH_VMCR, VMBP);
1860     prio_mask = FIELD_EX32(value, GICH_VMCR, VMPriMask) << 3;
1861 
1862     gic_set_cpu_control(s, vcpu, ctlr, attrs);
1863     s->abpr[vcpu] = MAX(abpr, GIC_VIRT_MIN_ABPR);
1864     s->bpr[vcpu] = MAX(bpr, GIC_VIRT_MIN_BPR);
1865     gic_set_priority_mask(s, vcpu, prio_mask, attrs);
1866 }
1867 
1868 static MemTxResult gic_hyp_read(void *opaque, int cpu, hwaddr addr,
1869                                 uint64_t *data, MemTxAttrs attrs)
1870 {
1871     GICState *s = ARM_GIC(opaque);
1872     int vcpu = cpu + GIC_NCPU;
1873 
1874     switch (addr) {
1875     case A_GICH_HCR: /* Hypervisor Control */
1876         *data = s->h_hcr[cpu];
1877         break;
1878 
1879     case A_GICH_VTR: /* VGIC Type */
1880         *data = FIELD_DP32(0, GICH_VTR, ListRegs, s->num_lrs - 1);
1881         *data = FIELD_DP32(*data, GICH_VTR, PREbits,
1882                            GIC_VIRT_MAX_GROUP_PRIO_BITS - 1);
1883         *data = FIELD_DP32(*data, GICH_VTR, PRIbits,
1884                            (7 - GIC_VIRT_MIN_BPR) - 1);
1885         break;
1886 
1887     case A_GICH_VMCR: /* Virtual Machine Control */
1888         *data = FIELD_DP32(0, GICH_VMCR, VMCCtlr,
1889                            extract32(s->cpu_ctlr[vcpu], 0, 10));
1890         *data = FIELD_DP32(*data, GICH_VMCR, VMABP, s->abpr[vcpu]);
1891         *data = FIELD_DP32(*data, GICH_VMCR, VMBP, s->bpr[vcpu]);
1892         *data = FIELD_DP32(*data, GICH_VMCR, VMPriMask,
1893                            extract32(s->priority_mask[vcpu], 3, 5));
1894         break;
1895 
1896     case A_GICH_MISR: /* Maintenance Interrupt Status */
1897         *data = s->h_misr[cpu];
1898         break;
1899 
1900     case A_GICH_EISR0: /* End of Interrupt Status 0 and 1 */
1901     case A_GICH_EISR1:
1902         *data = gic_compute_eisr(s, cpu, (addr - A_GICH_EISR0) * 8);
1903         break;
1904 
1905     case A_GICH_ELRSR0: /* Empty List Status 0 and 1 */
1906     case A_GICH_ELRSR1:
1907         *data = gic_compute_elrsr(s, cpu, (addr - A_GICH_ELRSR0) * 8);
1908         break;
1909 
1910     case A_GICH_APR: /* Active Priorities */
1911         *data = s->h_apr[cpu];
1912         break;
1913 
1914     case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1915     {
1916         int lr_idx = (addr - A_GICH_LR0) / 4;
1917 
1918         if (lr_idx > s->num_lrs) {
1919             *data = 0;
1920         } else {
1921             *data = s->h_lr[lr_idx][cpu];
1922         }
1923         break;
1924     }
1925 
1926     default:
1927         qemu_log_mask(LOG_GUEST_ERROR,
1928                       "gic_hyp_read: Bad offset %" HWADDR_PRIx "\n", addr);
1929         return MEMTX_OK;
1930     }
1931 
1932     trace_gic_hyp_read(addr, *data);
1933     return MEMTX_OK;
1934 }
1935 
1936 static MemTxResult gic_hyp_write(void *opaque, int cpu, hwaddr addr,
1937                                  uint64_t value, MemTxAttrs attrs)
1938 {
1939     GICState *s = ARM_GIC(opaque);
1940     int vcpu = cpu + GIC_NCPU;
1941 
1942     trace_gic_hyp_write(addr, value);
1943 
1944     switch (addr) {
1945     case A_GICH_HCR: /* Hypervisor Control */
1946         s->h_hcr[cpu] = value & GICH_HCR_MASK;
1947         break;
1948 
1949     case A_GICH_VMCR: /* Virtual Machine Control */
1950         gic_vmcr_write(s, value, attrs);
1951         break;
1952 
1953     case A_GICH_APR: /* Active Priorities */
1954         s->h_apr[cpu] = value;
1955         s->running_priority[vcpu] = gic_get_prio_from_apr_bits(s, vcpu);
1956         break;
1957 
1958     case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1959     {
1960         int lr_idx = (addr - A_GICH_LR0) / 4;
1961 
1962         if (lr_idx > s->num_lrs) {
1963             return MEMTX_OK;
1964         }
1965 
1966         s->h_lr[lr_idx][cpu] = value & GICH_LR_MASK;
1967         trace_gic_lr_entry(cpu, lr_idx, s->h_lr[lr_idx][cpu]);
1968         break;
1969     }
1970 
1971     default:
1972         qemu_log_mask(LOG_GUEST_ERROR,
1973                       "gic_hyp_write: Bad offset %" HWADDR_PRIx "\n", addr);
1974         return MEMTX_OK;
1975     }
1976 
1977     gic_update_virt(s);
1978     return MEMTX_OK;
1979 }
1980 
1981 static MemTxResult gic_thiscpu_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
1982                                     unsigned size, MemTxAttrs attrs)
1983 {
1984     GICState *s = (GICState *)opaque;
1985 
1986     return gic_hyp_read(s, gic_get_current_cpu(s), addr, data, attrs);
1987 }
1988 
1989 static MemTxResult gic_thiscpu_hyp_write(void *opaque, hwaddr addr,
1990                                      uint64_t value, unsigned size,
1991                                      MemTxAttrs attrs)
1992 {
1993     GICState *s = (GICState *)opaque;
1994 
1995     return gic_hyp_write(s, gic_get_current_cpu(s), addr, value, attrs);
1996 }
1997 
1998 static MemTxResult gic_do_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
1999                                     unsigned size, MemTxAttrs attrs)
2000 {
2001     GICState **backref = (GICState **)opaque;
2002     GICState *s = *backref;
2003     int id = (backref - s->backref);
2004 
2005     return gic_hyp_read(s, id, addr, data, attrs);
2006 }
2007 
2008 static MemTxResult gic_do_hyp_write(void *opaque, hwaddr addr,
2009                                      uint64_t value, unsigned size,
2010                                      MemTxAttrs attrs)
2011 {
2012     GICState **backref = (GICState **)opaque;
2013     GICState *s = *backref;
2014     int id = (backref - s->backref);
2015 
2016     return gic_hyp_write(s, id + GIC_NCPU, addr, value, attrs);
2017 
2018 }
2019 
2020 static const MemoryRegionOps gic_ops[2] = {
2021     {
2022         .read_with_attrs = gic_dist_read,
2023         .write_with_attrs = gic_dist_write,
2024         .endianness = DEVICE_NATIVE_ENDIAN,
2025     },
2026     {
2027         .read_with_attrs = gic_thiscpu_read,
2028         .write_with_attrs = gic_thiscpu_write,
2029         .endianness = DEVICE_NATIVE_ENDIAN,
2030     }
2031 };
2032 
2033 static const MemoryRegionOps gic_cpu_ops = {
2034     .read_with_attrs = gic_do_cpu_read,
2035     .write_with_attrs = gic_do_cpu_write,
2036     .endianness = DEVICE_NATIVE_ENDIAN,
2037 };
2038 
2039 static const MemoryRegionOps gic_virt_ops[2] = {
2040     {
2041         .read_with_attrs = gic_thiscpu_hyp_read,
2042         .write_with_attrs = gic_thiscpu_hyp_write,
2043         .endianness = DEVICE_NATIVE_ENDIAN,
2044     },
2045     {
2046         .read_with_attrs = gic_thisvcpu_read,
2047         .write_with_attrs = gic_thisvcpu_write,
2048         .endianness = DEVICE_NATIVE_ENDIAN,
2049     }
2050 };
2051 
2052 static const MemoryRegionOps gic_viface_ops = {
2053     .read_with_attrs = gic_do_hyp_read,
2054     .write_with_attrs = gic_do_hyp_write,
2055     .endianness = DEVICE_NATIVE_ENDIAN,
2056 };
2057 
2058 static void arm_gic_realize(DeviceState *dev, Error **errp)
2059 {
2060     /* Device instance realize function for the GIC sysbus device */
2061     int i;
2062     GICState *s = ARM_GIC(dev);
2063     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2064     ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
2065     Error *local_err = NULL;
2066 
2067     agc->parent_realize(dev, &local_err);
2068     if (local_err) {
2069         error_propagate(errp, local_err);
2070         return;
2071     }
2072 
2073     if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
2074         error_setg(errp, "KVM with user space irqchip only works when the "
2075                          "host kernel supports KVM_CAP_ARM_USER_IRQ");
2076         return;
2077     }
2078 
2079     if (s->n_prio_bits > GIC_MAX_PRIORITY_BITS ||
2080        (s->virt_extn ? s->n_prio_bits < GIC_VIRT_MAX_GROUP_PRIO_BITS :
2081         s->n_prio_bits < GIC_MIN_PRIORITY_BITS)) {
2082         error_setg(errp, "num-priority-bits cannot be greater than %d"
2083                    " or less than %d", GIC_MAX_PRIORITY_BITS,
2084                    s->virt_extn ? GIC_VIRT_MAX_GROUP_PRIO_BITS :
2085                    GIC_MIN_PRIORITY_BITS);
2086         return;
2087     }
2088 
2089     /* This creates distributor, main CPU interface (s->cpuiomem[0]) and if
2090      * enabled, virtualization extensions related interfaces (main virtual
2091      * interface (s->vifaceiomem[0]) and virtual CPU interface).
2092      */
2093     gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops, gic_virt_ops);
2094 
2095     /* Extra core-specific regions for the CPU interfaces. This is
2096      * necessary for "franken-GIC" implementations, for example on
2097      * Exynos 4.
2098      * NB that the memory region size of 0x100 applies for the 11MPCore
2099      * and also cores following the GIC v1 spec (ie A9).
2100      * GIC v2 defines a larger memory region (0x1000) so this will need
2101      * to be extended when we implement A15.
2102      */
2103     for (i = 0; i < s->num_cpu; i++) {
2104         s->backref[i] = s;
2105         memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
2106                               &s->backref[i], "gic_cpu", 0x100);
2107         sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
2108     }
2109 
2110     /* Extra core-specific regions for virtual interfaces. This is required by
2111      * the GICv2 specification.
2112      */
2113     if (s->virt_extn) {
2114         for (i = 0; i < s->num_cpu; i++) {
2115             memory_region_init_io(&s->vifaceiomem[i + 1], OBJECT(s),
2116                                   &gic_viface_ops, &s->backref[i],
2117                                   "gic_viface", 0x200);
2118             sysbus_init_mmio(sbd, &s->vifaceiomem[i + 1]);
2119         }
2120     }
2121 
2122 }
2123 
2124 static void arm_gic_class_init(ObjectClass *klass, void *data)
2125 {
2126     DeviceClass *dc = DEVICE_CLASS(klass);
2127     ARMGICClass *agc = ARM_GIC_CLASS(klass);
2128 
2129     device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
2130 }
2131 
2132 static const TypeInfo arm_gic_info = {
2133     .name = TYPE_ARM_GIC,
2134     .parent = TYPE_ARM_GIC_COMMON,
2135     .instance_size = sizeof(GICState),
2136     .class_init = arm_gic_class_init,
2137     .class_size = sizeof(ARMGICClass),
2138 };
2139 
2140 static void arm_gic_register_types(void)
2141 {
2142     type_register_static(&arm_gic_info);
2143 }
2144 
2145 type_init(arm_gic_register_types)
2146