xref: /openbmc/qemu/hw/ide/pci.c (revision 9bad39c7e86a7fea05b66e7d3425f5874b3bbcfb)
1 /*
2  * QEMU IDE Emulation: PCI Bus support.
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  * Copyright (c) 2006 Openedhand Ltd.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 
26 #include "qemu/osdep.h"
27 #include "hw/irq.h"
28 #include "hw/pci/pci.h"
29 #include "migration/vmstate.h"
30 #include "sysemu/dma.h"
31 #include "qemu/error-report.h"
32 #include "qemu/module.h"
33 #include "hw/ide/pci.h"
34 #include "trace.h"
35 
36 #define BMDMA_PAGE_SIZE 4096
37 
38 #define BM_MIGRATION_COMPAT_STATUS_BITS \
39         (IDE_RETRY_DMA | IDE_RETRY_PIO | \
40         IDE_RETRY_READ | IDE_RETRY_FLUSH)
41 
42 static uint64_t pci_ide_status_read(void *opaque, hwaddr addr, unsigned size)
43 {
44     IDEBus *bus = opaque;
45 
46     if (addr != 2 || size != 1) {
47         return ((uint64_t)1 << (size * 8)) - 1;
48     }
49     return ide_status_read(bus, addr + 2);
50 }
51 
52 static void pci_ide_ctrl_write(void *opaque, hwaddr addr,
53                                uint64_t data, unsigned size)
54 {
55     IDEBus *bus = opaque;
56 
57     if (addr != 2 || size != 1) {
58         return;
59     }
60     ide_ctrl_write(bus, addr + 2, data);
61 }
62 
63 const MemoryRegionOps pci_ide_cmd_le_ops = {
64     .read = pci_ide_status_read,
65     .write = pci_ide_ctrl_write,
66     .endianness = DEVICE_LITTLE_ENDIAN,
67 };
68 
69 static uint64_t pci_ide_data_read(void *opaque, hwaddr addr, unsigned size)
70 {
71     IDEBus *bus = opaque;
72 
73     if (size == 1) {
74         return ide_ioport_read(bus, addr);
75     } else if (addr == 0) {
76         if (size == 2) {
77             return ide_data_readw(bus, addr);
78         } else {
79             return ide_data_readl(bus, addr);
80         }
81     }
82     return ((uint64_t)1 << (size * 8)) - 1;
83 }
84 
85 static void pci_ide_data_write(void *opaque, hwaddr addr,
86                                uint64_t data, unsigned size)
87 {
88     IDEBus *bus = opaque;
89 
90     if (size == 1) {
91         ide_ioport_write(bus, addr, data);
92     } else if (addr == 0) {
93         if (size == 2) {
94             ide_data_writew(bus, addr, data);
95         } else {
96             ide_data_writel(bus, addr, data);
97         }
98     }
99 }
100 
101 const MemoryRegionOps pci_ide_data_le_ops = {
102     .read = pci_ide_data_read,
103     .write = pci_ide_data_write,
104     .endianness = DEVICE_LITTLE_ENDIAN,
105 };
106 
107 static IDEState *bmdma_active_if(BMDMAState *bmdma)
108 {
109     assert(bmdma->bus->retry_unit != (uint8_t)-1);
110     return bmdma->bus->ifs + bmdma->bus->retry_unit;
111 }
112 
113 static void bmdma_start_dma(const IDEDMA *dma, IDEState *s,
114                             BlockCompletionFunc *dma_cb)
115 {
116     BMDMAState *bm = DO_UPCAST(BMDMAState, dma, dma);
117 
118     bm->dma_cb = dma_cb;
119     bm->cur_prd_last = 0;
120     bm->cur_prd_addr = 0;
121     bm->cur_prd_len = 0;
122 
123     if (bm->status & BM_STATUS_DMAING) {
124         bm->dma_cb(bmdma_active_if(bm), 0);
125     }
126 }
127 
128 /**
129  * Prepare an sglist based on available PRDs.
130  * @limit: How many bytes to prepare total.
131  *
132  * Returns the number of bytes prepared, -1 on error.
133  * IDEState.io_buffer_size will contain the number of bytes described
134  * by the PRDs, whether or not we added them to the sglist.
135  */
136 static int32_t bmdma_prepare_buf(const IDEDMA *dma, int32_t limit)
137 {
138     BMDMAState *bm = DO_UPCAST(BMDMAState, dma, dma);
139     IDEState *s = bmdma_active_if(bm);
140     PCIDevice *pci_dev = PCI_DEVICE(bm->pci_dev);
141     struct {
142         uint32_t addr;
143         uint32_t size;
144     } prd;
145     int l, len;
146 
147     pci_dma_sglist_init(&s->sg, pci_dev,
148                         s->nsector / (BMDMA_PAGE_SIZE / BDRV_SECTOR_SIZE) + 1);
149     s->io_buffer_size = 0;
150     for(;;) {
151         if (bm->cur_prd_len == 0) {
152             /* end of table (with a fail safe of one page) */
153             if (bm->cur_prd_last ||
154                 (bm->cur_addr - bm->addr) >= BMDMA_PAGE_SIZE) {
155                 return s->sg.size;
156             }
157             pci_dma_read(pci_dev, bm->cur_addr, &prd, 8);
158             bm->cur_addr += 8;
159             prd.addr = le32_to_cpu(prd.addr);
160             prd.size = le32_to_cpu(prd.size);
161             len = prd.size & 0xfffe;
162             if (len == 0)
163                 len = 0x10000;
164             bm->cur_prd_len = len;
165             bm->cur_prd_addr = prd.addr;
166             bm->cur_prd_last = (prd.size & 0x80000000);
167         }
168         l = bm->cur_prd_len;
169         if (l > 0) {
170             uint64_t sg_len;
171 
172             /* Don't add extra bytes to the SGList; consume any remaining
173              * PRDs from the guest, but ignore them. */
174             sg_len = MIN(limit - s->sg.size, bm->cur_prd_len);
175             if (sg_len) {
176                 qemu_sglist_add(&s->sg, bm->cur_prd_addr, sg_len);
177             }
178 
179             bm->cur_prd_addr += l;
180             bm->cur_prd_len -= l;
181             s->io_buffer_size += l;
182         }
183     }
184 
185     qemu_sglist_destroy(&s->sg);
186     s->io_buffer_size = 0;
187     return -1;
188 }
189 
190 /* return 0 if buffer completed */
191 static int bmdma_rw_buf(const IDEDMA *dma, bool is_write)
192 {
193     BMDMAState *bm = DO_UPCAST(BMDMAState, dma, dma);
194     IDEState *s = bmdma_active_if(bm);
195     PCIDevice *pci_dev = PCI_DEVICE(bm->pci_dev);
196     struct {
197         uint32_t addr;
198         uint32_t size;
199     } prd;
200     int l, len;
201 
202     for(;;) {
203         l = s->io_buffer_size - s->io_buffer_index;
204         if (l <= 0)
205             break;
206         if (bm->cur_prd_len == 0) {
207             /* end of table (with a fail safe of one page) */
208             if (bm->cur_prd_last ||
209                 (bm->cur_addr - bm->addr) >= BMDMA_PAGE_SIZE)
210                 return 0;
211             pci_dma_read(pci_dev, bm->cur_addr, &prd, 8);
212             bm->cur_addr += 8;
213             prd.addr = le32_to_cpu(prd.addr);
214             prd.size = le32_to_cpu(prd.size);
215             len = prd.size & 0xfffe;
216             if (len == 0)
217                 len = 0x10000;
218             bm->cur_prd_len = len;
219             bm->cur_prd_addr = prd.addr;
220             bm->cur_prd_last = (prd.size & 0x80000000);
221         }
222         if (l > bm->cur_prd_len)
223             l = bm->cur_prd_len;
224         if (l > 0) {
225             if (is_write) {
226                 pci_dma_write(pci_dev, bm->cur_prd_addr,
227                               s->io_buffer + s->io_buffer_index, l);
228             } else {
229                 pci_dma_read(pci_dev, bm->cur_prd_addr,
230                              s->io_buffer + s->io_buffer_index, l);
231             }
232             bm->cur_prd_addr += l;
233             bm->cur_prd_len -= l;
234             s->io_buffer_index += l;
235         }
236     }
237     return 1;
238 }
239 
240 static void bmdma_set_inactive(const IDEDMA *dma, bool more)
241 {
242     BMDMAState *bm = DO_UPCAST(BMDMAState, dma, dma);
243 
244     bm->dma_cb = NULL;
245     if (more) {
246         bm->status |= BM_STATUS_DMAING;
247     } else {
248         bm->status &= ~BM_STATUS_DMAING;
249     }
250 }
251 
252 static void bmdma_restart_dma(const IDEDMA *dma)
253 {
254     BMDMAState *bm = DO_UPCAST(BMDMAState, dma, dma);
255 
256     bm->cur_addr = bm->addr;
257 }
258 
259 static void bmdma_cancel(BMDMAState *bm)
260 {
261     if (bm->status & BM_STATUS_DMAING) {
262         /* cancel DMA request */
263         bmdma_set_inactive(&bm->dma, false);
264     }
265 }
266 
267 static void bmdma_reset(const IDEDMA *dma)
268 {
269     BMDMAState *bm = DO_UPCAST(BMDMAState, dma, dma);
270 
271     trace_bmdma_reset();
272     bmdma_cancel(bm);
273     bm->cmd = 0;
274     bm->status = 0;
275     bm->addr = 0;
276     bm->cur_addr = 0;
277     bm->cur_prd_last = 0;
278     bm->cur_prd_addr = 0;
279     bm->cur_prd_len = 0;
280 }
281 
282 static void bmdma_irq(void *opaque, int n, int level)
283 {
284     BMDMAState *bm = opaque;
285 
286     if (!level) {
287         /* pass through lower */
288         qemu_set_irq(bm->irq, level);
289         return;
290     }
291 
292     bm->status |= BM_STATUS_INT;
293 
294     /* trigger the real irq */
295     qemu_set_irq(bm->irq, level);
296 }
297 
298 void bmdma_cmd_writeb(BMDMAState *bm, uint32_t val)
299 {
300     trace_bmdma_cmd_writeb(val);
301 
302     /* Ignore writes to SSBM if it keeps the old value */
303     if ((val & BM_CMD_START) != (bm->cmd & BM_CMD_START)) {
304         if (!(val & BM_CMD_START)) {
305             ide_cancel_dma_sync(ide_bus_active_if(bm->bus));
306             bm->status &= ~BM_STATUS_DMAING;
307         } else {
308             bm->cur_addr = bm->addr;
309             if (!(bm->status & BM_STATUS_DMAING)) {
310                 bm->status |= BM_STATUS_DMAING;
311                 /* start dma transfer if possible */
312                 if (bm->dma_cb)
313                     bm->dma_cb(bmdma_active_if(bm), 0);
314             }
315         }
316     }
317 
318     bm->cmd = val & 0x09;
319 }
320 
321 void bmdma_status_writeb(BMDMAState *bm, uint32_t val)
322 {
323     bm->status = (val & 0x60) | (bm->status & BM_STATUS_DMAING)
324                  | (bm->status & ~val & (BM_STATUS_ERROR | BM_STATUS_INT));
325 }
326 
327 static uint64_t bmdma_addr_read(void *opaque, hwaddr addr,
328                                 unsigned width)
329 {
330     BMDMAState *bm = opaque;
331     uint32_t mask = (1ULL << (width * 8)) - 1;
332     uint64_t data;
333 
334     data = (bm->addr >> (addr * 8)) & mask;
335     trace_bmdma_addr_read(data);
336     return data;
337 }
338 
339 static void bmdma_addr_write(void *opaque, hwaddr addr,
340                              uint64_t data, unsigned width)
341 {
342     BMDMAState *bm = opaque;
343     int shift = addr * 8;
344     uint32_t mask = (1ULL << (width * 8)) - 1;
345 
346     trace_bmdma_addr_write(data);
347     bm->addr &= ~(mask << shift);
348     bm->addr |= ((data & mask) << shift) & ~3;
349 }
350 
351 MemoryRegionOps bmdma_addr_ioport_ops = {
352     .read = bmdma_addr_read,
353     .write = bmdma_addr_write,
354     .endianness = DEVICE_LITTLE_ENDIAN,
355 };
356 
357 static bool ide_bmdma_current_needed(void *opaque)
358 {
359     BMDMAState *bm = opaque;
360 
361     return (bm->cur_prd_len != 0);
362 }
363 
364 static bool ide_bmdma_status_needed(void *opaque)
365 {
366     BMDMAState *bm = opaque;
367 
368     /* Older versions abused some bits in the status register for internal
369      * error state. If any of these bits are set, we must add a subsection to
370      * transfer the real status register */
371     uint8_t abused_bits = BM_MIGRATION_COMPAT_STATUS_BITS;
372 
373     return ((bm->status & abused_bits) != 0);
374 }
375 
376 static int ide_bmdma_pre_save(void *opaque)
377 {
378     BMDMAState *bm = opaque;
379     uint8_t abused_bits = BM_MIGRATION_COMPAT_STATUS_BITS;
380 
381     if (!(bm->status & BM_STATUS_DMAING) && bm->dma_cb) {
382         bm->bus->error_status =
383             ide_dma_cmd_to_retry(bmdma_active_if(bm)->dma_cmd);
384     }
385     bm->migration_retry_unit = bm->bus->retry_unit;
386     bm->migration_retry_sector_num = bm->bus->retry_sector_num;
387     bm->migration_retry_nsector = bm->bus->retry_nsector;
388     bm->migration_compat_status =
389         (bm->status & ~abused_bits) | (bm->bus->error_status & abused_bits);
390 
391     return 0;
392 }
393 
394 /* This function accesses bm->bus->error_status which is loaded only after
395  * BMDMA itself. This is why the function is called from ide_pci_post_load
396  * instead of being registered with VMState where it would run too early. */
397 static int ide_bmdma_post_load(void *opaque, int version_id)
398 {
399     BMDMAState *bm = opaque;
400     uint8_t abused_bits = BM_MIGRATION_COMPAT_STATUS_BITS;
401 
402     if (bm->status == 0) {
403         bm->status = bm->migration_compat_status & ~abused_bits;
404         bm->bus->error_status |= bm->migration_compat_status & abused_bits;
405     }
406     if (bm->bus->error_status) {
407         bm->bus->retry_sector_num = bm->migration_retry_sector_num;
408         bm->bus->retry_nsector = bm->migration_retry_nsector;
409         bm->bus->retry_unit = bm->migration_retry_unit;
410     }
411 
412     return 0;
413 }
414 
415 static const VMStateDescription vmstate_bmdma_current = {
416     .name = "ide bmdma_current",
417     .version_id = 1,
418     .minimum_version_id = 1,
419     .needed = ide_bmdma_current_needed,
420     .fields = (VMStateField[]) {
421         VMSTATE_UINT32(cur_addr, BMDMAState),
422         VMSTATE_UINT32(cur_prd_last, BMDMAState),
423         VMSTATE_UINT32(cur_prd_addr, BMDMAState),
424         VMSTATE_UINT32(cur_prd_len, BMDMAState),
425         VMSTATE_END_OF_LIST()
426     }
427 };
428 
429 static const VMStateDescription vmstate_bmdma_status = {
430     .name ="ide bmdma/status",
431     .version_id = 1,
432     .minimum_version_id = 1,
433     .needed = ide_bmdma_status_needed,
434     .fields = (VMStateField[]) {
435         VMSTATE_UINT8(status, BMDMAState),
436         VMSTATE_END_OF_LIST()
437     }
438 };
439 
440 static const VMStateDescription vmstate_bmdma = {
441     .name = "ide bmdma",
442     .version_id = 3,
443     .minimum_version_id = 0,
444     .pre_save  = ide_bmdma_pre_save,
445     .fields = (VMStateField[]) {
446         VMSTATE_UINT8(cmd, BMDMAState),
447         VMSTATE_UINT8(migration_compat_status, BMDMAState),
448         VMSTATE_UINT32(addr, BMDMAState),
449         VMSTATE_INT64(migration_retry_sector_num, BMDMAState),
450         VMSTATE_UINT32(migration_retry_nsector, BMDMAState),
451         VMSTATE_UINT8(migration_retry_unit, BMDMAState),
452         VMSTATE_END_OF_LIST()
453     },
454     .subsections = (const VMStateDescription*[]) {
455         &vmstate_bmdma_current,
456         &vmstate_bmdma_status,
457         NULL
458     }
459 };
460 
461 static int ide_pci_post_load(void *opaque, int version_id)
462 {
463     PCIIDEState *d = opaque;
464     int i;
465 
466     for(i = 0; i < 2; i++) {
467         /* current versions always store 0/1, but older version
468            stored bigger values. We only need last bit */
469         d->bmdma[i].migration_retry_unit &= 1;
470         ide_bmdma_post_load(&d->bmdma[i], -1);
471     }
472 
473     return 0;
474 }
475 
476 const VMStateDescription vmstate_ide_pci = {
477     .name = "ide",
478     .version_id = 3,
479     .minimum_version_id = 0,
480     .post_load = ide_pci_post_load,
481     .fields = (VMStateField[]) {
482         VMSTATE_PCI_DEVICE(parent_obj, PCIIDEState),
483         VMSTATE_STRUCT_ARRAY(bmdma, PCIIDEState, 2, 0,
484                              vmstate_bmdma, BMDMAState),
485         VMSTATE_IDE_BUS_ARRAY(bus, PCIIDEState, 2),
486         VMSTATE_IDE_DRIVES(bus[0].ifs, PCIIDEState),
487         VMSTATE_IDE_DRIVES(bus[1].ifs, PCIIDEState),
488         VMSTATE_END_OF_LIST()
489     }
490 };
491 
492 /* hd_table must contain 4 block drivers */
493 void pci_ide_create_devs(PCIDevice *dev)
494 {
495     PCIIDEState *d = PCI_IDE(dev);
496     DriveInfo *hd_table[2 * MAX_IDE_DEVS];
497     static const int bus[4]  = { 0, 0, 1, 1 };
498     static const int unit[4] = { 0, 1, 0, 1 };
499     int i;
500 
501     ide_drive_get(hd_table, ARRAY_SIZE(hd_table));
502     for (i = 0; i < 4; i++) {
503         if (hd_table[i]) {
504             ide_bus_create_drive(d->bus + bus[i], unit[i], hd_table[i]);
505         }
506     }
507 }
508 
509 static const struct IDEDMAOps bmdma_ops = {
510     .start_dma = bmdma_start_dma,
511     .prepare_buf = bmdma_prepare_buf,
512     .rw_buf = bmdma_rw_buf,
513     .restart_dma = bmdma_restart_dma,
514     .set_inactive = bmdma_set_inactive,
515     .reset = bmdma_reset,
516 };
517 
518 void bmdma_init(IDEBus *bus, BMDMAState *bm, PCIIDEState *d)
519 {
520     if (bus->dma == &bm->dma) {
521         return;
522     }
523 
524     bm->dma.ops = &bmdma_ops;
525     bus->dma = &bm->dma;
526     bm->irq = bus->irq;
527     bus->irq = qemu_allocate_irq(bmdma_irq, bm, 0);
528     bm->bus = bus;
529     bm->pci_dev = d;
530 }
531 
532 static void pci_ide_init(Object *obj)
533 {
534     PCIIDEState *d = PCI_IDE(obj);
535 
536     qdev_init_gpio_out_named(DEVICE(d), d->isa_irq, "isa-irq",
537                              ARRAY_SIZE(d->isa_irq));
538 }
539 
540 static const TypeInfo pci_ide_type_info = {
541     .name = TYPE_PCI_IDE,
542     .parent = TYPE_PCI_DEVICE,
543     .instance_size = sizeof(PCIIDEState),
544     .instance_init = pci_ide_init,
545     .abstract = true,
546     .interfaces = (InterfaceInfo[]) {
547         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
548         { },
549     },
550 };
551 
552 static void pci_ide_register_types(void)
553 {
554     type_register_static(&pci_ide_type_info);
555 }
556 
557 type_init(pci_ide_register_types)
558