1 /* 2 * Copyright (C) 2010 Citrix Ltd. 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2. See 5 * the COPYING file in the top-level directory. 6 * 7 * Contributions after 2012-01-13 are licensed under the terms of the 8 * GNU GPL, version 2 or (at your option) any later version. 9 */ 10 11 #include "qemu/osdep.h" 12 13 #include "cpu.h" 14 #include "hw/pci/pci.h" 15 #include "hw/i386/pc.h" 16 #include "hw/i386/apic-msidef.h" 17 #include "hw/xen/xen_common.h" 18 #include "hw/xen/xen_backend.h" 19 #include "qmp-commands.h" 20 21 #include "qemu/error-report.h" 22 #include "qemu/range.h" 23 #include "sysemu/xen-mapcache.h" 24 #include "trace.h" 25 #include "exec/address-spaces.h" 26 27 #include <xen/hvm/ioreq.h> 28 #include <xen/hvm/params.h> 29 #include <xen/hvm/e820.h> 30 31 //#define DEBUG_XEN_HVM 32 33 #ifdef DEBUG_XEN_HVM 34 #define DPRINTF(fmt, ...) \ 35 do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0) 36 #else 37 #define DPRINTF(fmt, ...) \ 38 do { } while (0) 39 #endif 40 41 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi; 42 static MemoryRegion *framebuffer; 43 static bool xen_in_migration; 44 45 /* Compatibility with older version */ 46 47 /* This allows QEMU to build on a system that has Xen 4.5 or earlier 48 * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h 49 * needs to be included before this block and hw/xen/xen_common.h needs to 50 * be included before xen/hvm/ioreq.h 51 */ 52 #ifndef IOREQ_TYPE_VMWARE_PORT 53 #define IOREQ_TYPE_VMWARE_PORT 3 54 struct vmware_regs { 55 uint32_t esi; 56 uint32_t edi; 57 uint32_t ebx; 58 uint32_t ecx; 59 uint32_t edx; 60 }; 61 typedef struct vmware_regs vmware_regs_t; 62 63 struct shared_vmport_iopage { 64 struct vmware_regs vcpu_vmport_regs[1]; 65 }; 66 typedef struct shared_vmport_iopage shared_vmport_iopage_t; 67 #endif 68 69 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i) 70 { 71 return shared_page->vcpu_ioreq[i].vp_eport; 72 } 73 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu) 74 { 75 return &shared_page->vcpu_ioreq[vcpu]; 76 } 77 78 #define BUFFER_IO_MAX_DELAY 100 79 80 typedef struct XenPhysmap { 81 hwaddr start_addr; 82 ram_addr_t size; 83 const char *name; 84 hwaddr phys_offset; 85 86 QLIST_ENTRY(XenPhysmap) list; 87 } XenPhysmap; 88 89 typedef struct XenIOState { 90 ioservid_t ioservid; 91 shared_iopage_t *shared_page; 92 shared_vmport_iopage_t *shared_vmport_page; 93 buffered_iopage_t *buffered_io_page; 94 QEMUTimer *buffered_io_timer; 95 CPUState **cpu_by_vcpu_id; 96 /* the evtchn port for polling the notification, */ 97 evtchn_port_t *ioreq_local_port; 98 /* evtchn local port for buffered io */ 99 evtchn_port_t bufioreq_local_port; 100 /* the evtchn fd for polling */ 101 xenevtchn_handle *xce_handle; 102 /* which vcpu we are serving */ 103 int send_vcpu; 104 105 struct xs_handle *xenstore; 106 MemoryListener memory_listener; 107 MemoryListener io_listener; 108 DeviceListener device_listener; 109 QLIST_HEAD(, XenPhysmap) physmap; 110 hwaddr free_phys_offset; 111 const XenPhysmap *log_for_dirtybit; 112 113 Notifier exit; 114 Notifier suspend; 115 Notifier wakeup; 116 } XenIOState; 117 118 /* Xen specific function for piix pci */ 119 120 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num) 121 { 122 return irq_num + ((pci_dev->devfn >> 3) << 2); 123 } 124 125 void xen_piix3_set_irq(void *opaque, int irq_num, int level) 126 { 127 xen_set_pci_intx_level(xen_domid, 0, 0, irq_num >> 2, 128 irq_num & 3, level); 129 } 130 131 void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len) 132 { 133 int i; 134 135 /* Scan for updates to PCI link routes (0x60-0x63). */ 136 for (i = 0; i < len; i++) { 137 uint8_t v = (val >> (8 * i)) & 0xff; 138 if (v & 0x80) { 139 v = 0; 140 } 141 v &= 0xf; 142 if (((address + i) >= 0x60) && ((address + i) <= 0x63)) { 143 xen_set_pci_link_route(xen_domid, address + i - 0x60, v); 144 } 145 } 146 } 147 148 int xen_is_pirq_msi(uint32_t msi_data) 149 { 150 /* If vector is 0, the msi is remapped into a pirq, passed as 151 * dest_id. 152 */ 153 return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0; 154 } 155 156 void xen_hvm_inject_msi(uint64_t addr, uint32_t data) 157 { 158 xen_inject_msi(xen_domid, addr, data); 159 } 160 161 static void xen_suspend_notifier(Notifier *notifier, void *data) 162 { 163 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3); 164 } 165 166 /* Xen Interrupt Controller */ 167 168 static void xen_set_irq(void *opaque, int irq, int level) 169 { 170 xen_set_isa_irq_level(xen_domid, irq, level); 171 } 172 173 qemu_irq *xen_interrupt_controller_init(void) 174 { 175 return qemu_allocate_irqs(xen_set_irq, NULL, 16); 176 } 177 178 /* Memory Ops */ 179 180 static void xen_ram_init(PCMachineState *pcms, 181 ram_addr_t ram_size, MemoryRegion **ram_memory_p) 182 { 183 MemoryRegion *sysmem = get_system_memory(); 184 ram_addr_t block_len; 185 uint64_t user_lowmem = object_property_get_uint(qdev_get_machine(), 186 PC_MACHINE_MAX_RAM_BELOW_4G, 187 &error_abort); 188 189 /* Handle the machine opt max-ram-below-4g. It is basically doing 190 * min(xen limit, user limit). 191 */ 192 if (!user_lowmem) { 193 user_lowmem = HVM_BELOW_4G_RAM_END; /* default */ 194 } 195 if (HVM_BELOW_4G_RAM_END <= user_lowmem) { 196 user_lowmem = HVM_BELOW_4G_RAM_END; 197 } 198 199 if (ram_size >= user_lowmem) { 200 pcms->above_4g_mem_size = ram_size - user_lowmem; 201 pcms->below_4g_mem_size = user_lowmem; 202 } else { 203 pcms->above_4g_mem_size = 0; 204 pcms->below_4g_mem_size = ram_size; 205 } 206 if (!pcms->above_4g_mem_size) { 207 block_len = ram_size; 208 } else { 209 /* 210 * Xen does not allocate the memory continuously, it keeps a 211 * hole of the size computed above or passed in. 212 */ 213 block_len = (1ULL << 32) + pcms->above_4g_mem_size; 214 } 215 memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len, 216 &error_fatal); 217 *ram_memory_p = &ram_memory; 218 219 memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k", 220 &ram_memory, 0, 0xa0000); 221 memory_region_add_subregion(sysmem, 0, &ram_640k); 222 /* Skip of the VGA IO memory space, it will be registered later by the VGA 223 * emulated device. 224 * 225 * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load 226 * the Options ROM, so it is registered here as RAM. 227 */ 228 memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo", 229 &ram_memory, 0xc0000, 230 pcms->below_4g_mem_size - 0xc0000); 231 memory_region_add_subregion(sysmem, 0xc0000, &ram_lo); 232 if (pcms->above_4g_mem_size > 0) { 233 memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi", 234 &ram_memory, 0x100000000ULL, 235 pcms->above_4g_mem_size); 236 memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi); 237 } 238 } 239 240 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr, 241 Error **errp) 242 { 243 unsigned long nr_pfn; 244 xen_pfn_t *pfn_list; 245 int i; 246 247 if (runstate_check(RUN_STATE_INMIGRATE)) { 248 /* RAM already populated in Xen */ 249 fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT 250 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n", 251 __func__, size, ram_addr); 252 return; 253 } 254 255 if (mr == &ram_memory) { 256 return; 257 } 258 259 trace_xen_ram_alloc(ram_addr, size); 260 261 nr_pfn = size >> TARGET_PAGE_BITS; 262 pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn); 263 264 for (i = 0; i < nr_pfn; i++) { 265 pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i; 266 } 267 268 if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) { 269 error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT, 270 ram_addr); 271 } 272 273 g_free(pfn_list); 274 } 275 276 static XenPhysmap *get_physmapping(XenIOState *state, 277 hwaddr start_addr, ram_addr_t size) 278 { 279 XenPhysmap *physmap = NULL; 280 281 start_addr &= TARGET_PAGE_MASK; 282 283 QLIST_FOREACH(physmap, &state->physmap, list) { 284 if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) { 285 return physmap; 286 } 287 } 288 return NULL; 289 } 290 291 static hwaddr xen_phys_offset_to_gaddr(hwaddr start_addr, 292 ram_addr_t size, void *opaque) 293 { 294 hwaddr addr = start_addr & TARGET_PAGE_MASK; 295 XenIOState *xen_io_state = opaque; 296 XenPhysmap *physmap = NULL; 297 298 QLIST_FOREACH(physmap, &xen_io_state->physmap, list) { 299 if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) { 300 return physmap->start_addr; 301 } 302 } 303 304 return start_addr; 305 } 306 307 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap) 308 { 309 char path[80], value[17]; 310 311 snprintf(path, sizeof(path), 312 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr", 313 xen_domid, (uint64_t)physmap->phys_offset); 314 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->start_addr); 315 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { 316 return -1; 317 } 318 snprintf(path, sizeof(path), 319 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size", 320 xen_domid, (uint64_t)physmap->phys_offset); 321 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->size); 322 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { 323 return -1; 324 } 325 if (physmap->name) { 326 snprintf(path, sizeof(path), 327 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name", 328 xen_domid, (uint64_t)physmap->phys_offset); 329 if (!xs_write(state->xenstore, 0, path, 330 physmap->name, strlen(physmap->name))) { 331 return -1; 332 } 333 } 334 return 0; 335 } 336 337 static int xen_add_to_physmap(XenIOState *state, 338 hwaddr start_addr, 339 ram_addr_t size, 340 MemoryRegion *mr, 341 hwaddr offset_within_region) 342 { 343 unsigned long i = 0; 344 int rc = 0; 345 XenPhysmap *physmap = NULL; 346 hwaddr pfn, start_gpfn; 347 hwaddr phys_offset = memory_region_get_ram_addr(mr); 348 const char *mr_name; 349 350 if (get_physmapping(state, start_addr, size)) { 351 return 0; 352 } 353 if (size <= 0) { 354 return -1; 355 } 356 357 /* Xen can only handle a single dirty log region for now and we want 358 * the linear framebuffer to be that region. 359 * Avoid tracking any regions that is not videoram and avoid tracking 360 * the legacy vga region. */ 361 if (mr == framebuffer && start_addr > 0xbffff) { 362 goto go_physmap; 363 } 364 return -1; 365 366 go_physmap: 367 DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n", 368 start_addr, start_addr + size); 369 370 pfn = phys_offset >> TARGET_PAGE_BITS; 371 start_gpfn = start_addr >> TARGET_PAGE_BITS; 372 for (i = 0; i < size >> TARGET_PAGE_BITS; i++) { 373 unsigned long idx = pfn + i; 374 xen_pfn_t gpfn = start_gpfn + i; 375 376 rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn); 377 if (rc) { 378 DPRINTF("add_to_physmap MFN %"PRI_xen_pfn" to PFN %" 379 PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno); 380 return -rc; 381 } 382 } 383 384 mr_name = memory_region_name(mr); 385 386 physmap = g_malloc(sizeof (XenPhysmap)); 387 388 physmap->start_addr = start_addr; 389 physmap->size = size; 390 physmap->name = mr_name; 391 physmap->phys_offset = phys_offset; 392 393 QLIST_INSERT_HEAD(&state->physmap, physmap, list); 394 395 xc_domain_pin_memory_cacheattr(xen_xc, xen_domid, 396 start_addr >> TARGET_PAGE_BITS, 397 (start_addr + size - 1) >> TARGET_PAGE_BITS, 398 XEN_DOMCTL_MEM_CACHEATTR_WB); 399 return xen_save_physmap(state, physmap); 400 } 401 402 static int xen_remove_from_physmap(XenIOState *state, 403 hwaddr start_addr, 404 ram_addr_t size) 405 { 406 unsigned long i = 0; 407 int rc = 0; 408 XenPhysmap *physmap = NULL; 409 hwaddr phys_offset = 0; 410 411 physmap = get_physmapping(state, start_addr, size); 412 if (physmap == NULL) { 413 return -1; 414 } 415 416 phys_offset = physmap->phys_offset; 417 size = physmap->size; 418 419 DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at " 420 "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset); 421 422 size >>= TARGET_PAGE_BITS; 423 start_addr >>= TARGET_PAGE_BITS; 424 phys_offset >>= TARGET_PAGE_BITS; 425 for (i = 0; i < size; i++) { 426 xen_pfn_t idx = start_addr + i; 427 xen_pfn_t gpfn = phys_offset + i; 428 429 rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn); 430 if (rc) { 431 fprintf(stderr, "add_to_physmap MFN %"PRI_xen_pfn" to PFN %" 432 PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno); 433 return -rc; 434 } 435 } 436 437 QLIST_REMOVE(physmap, list); 438 if (state->log_for_dirtybit == physmap) { 439 state->log_for_dirtybit = NULL; 440 } 441 g_free(physmap); 442 443 return 0; 444 } 445 446 static void xen_set_memory(struct MemoryListener *listener, 447 MemoryRegionSection *section, 448 bool add) 449 { 450 XenIOState *state = container_of(listener, XenIOState, memory_listener); 451 hwaddr start_addr = section->offset_within_address_space; 452 ram_addr_t size = int128_get64(section->size); 453 bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA); 454 hvmmem_type_t mem_type; 455 456 if (section->mr == &ram_memory) { 457 return; 458 } else { 459 if (add) { 460 xen_map_memory_section(xen_domid, state->ioservid, 461 section); 462 } else { 463 xen_unmap_memory_section(xen_domid, state->ioservid, 464 section); 465 } 466 } 467 468 if (!memory_region_is_ram(section->mr)) { 469 return; 470 } 471 472 if (log_dirty != add) { 473 return; 474 } 475 476 trace_xen_client_set_memory(start_addr, size, log_dirty); 477 478 start_addr &= TARGET_PAGE_MASK; 479 size = TARGET_PAGE_ALIGN(size); 480 481 if (add) { 482 if (!memory_region_is_rom(section->mr)) { 483 xen_add_to_physmap(state, start_addr, size, 484 section->mr, section->offset_within_region); 485 } else { 486 mem_type = HVMMEM_ram_ro; 487 if (xen_set_mem_type(xen_domid, mem_type, 488 start_addr >> TARGET_PAGE_BITS, 489 size >> TARGET_PAGE_BITS)) { 490 DPRINTF("xen_set_mem_type error, addr: "TARGET_FMT_plx"\n", 491 start_addr); 492 } 493 } 494 } else { 495 if (xen_remove_from_physmap(state, start_addr, size) < 0) { 496 DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr); 497 } 498 } 499 } 500 501 static void xen_region_add(MemoryListener *listener, 502 MemoryRegionSection *section) 503 { 504 memory_region_ref(section->mr); 505 xen_set_memory(listener, section, true); 506 } 507 508 static void xen_region_del(MemoryListener *listener, 509 MemoryRegionSection *section) 510 { 511 xen_set_memory(listener, section, false); 512 memory_region_unref(section->mr); 513 } 514 515 static void xen_io_add(MemoryListener *listener, 516 MemoryRegionSection *section) 517 { 518 XenIOState *state = container_of(listener, XenIOState, io_listener); 519 MemoryRegion *mr = section->mr; 520 521 if (mr->ops == &unassigned_io_ops) { 522 return; 523 } 524 525 memory_region_ref(mr); 526 527 xen_map_io_section(xen_domid, state->ioservid, section); 528 } 529 530 static void xen_io_del(MemoryListener *listener, 531 MemoryRegionSection *section) 532 { 533 XenIOState *state = container_of(listener, XenIOState, io_listener); 534 MemoryRegion *mr = section->mr; 535 536 if (mr->ops == &unassigned_io_ops) { 537 return; 538 } 539 540 xen_unmap_io_section(xen_domid, state->ioservid, section); 541 542 memory_region_unref(mr); 543 } 544 545 static void xen_device_realize(DeviceListener *listener, 546 DeviceState *dev) 547 { 548 XenIOState *state = container_of(listener, XenIOState, device_listener); 549 550 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 551 PCIDevice *pci_dev = PCI_DEVICE(dev); 552 553 xen_map_pcidev(xen_domid, state->ioservid, pci_dev); 554 } 555 } 556 557 static void xen_device_unrealize(DeviceListener *listener, 558 DeviceState *dev) 559 { 560 XenIOState *state = container_of(listener, XenIOState, device_listener); 561 562 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 563 PCIDevice *pci_dev = PCI_DEVICE(dev); 564 565 xen_unmap_pcidev(xen_domid, state->ioservid, pci_dev); 566 } 567 } 568 569 static void xen_sync_dirty_bitmap(XenIOState *state, 570 hwaddr start_addr, 571 ram_addr_t size) 572 { 573 hwaddr npages = size >> TARGET_PAGE_BITS; 574 const int width = sizeof(unsigned long) * 8; 575 unsigned long bitmap[DIV_ROUND_UP(npages, width)]; 576 int rc, i, j; 577 const XenPhysmap *physmap = NULL; 578 579 physmap = get_physmapping(state, start_addr, size); 580 if (physmap == NULL) { 581 /* not handled */ 582 return; 583 } 584 585 if (state->log_for_dirtybit == NULL) { 586 state->log_for_dirtybit = physmap; 587 } else if (state->log_for_dirtybit != physmap) { 588 /* Only one range for dirty bitmap can be tracked. */ 589 return; 590 } 591 592 rc = xen_track_dirty_vram(xen_domid, start_addr >> TARGET_PAGE_BITS, 593 npages, bitmap); 594 if (rc < 0) { 595 #ifndef ENODATA 596 #define ENODATA ENOENT 597 #endif 598 if (errno == ENODATA) { 599 memory_region_set_dirty(framebuffer, 0, size); 600 DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx 601 ", 0x" TARGET_FMT_plx "): %s\n", 602 start_addr, start_addr + size, strerror(errno)); 603 } 604 return; 605 } 606 607 for (i = 0; i < ARRAY_SIZE(bitmap); i++) { 608 unsigned long map = bitmap[i]; 609 while (map != 0) { 610 j = ctzl(map); 611 map &= ~(1ul << j); 612 memory_region_set_dirty(framebuffer, 613 (i * width + j) * TARGET_PAGE_SIZE, 614 TARGET_PAGE_SIZE); 615 }; 616 } 617 } 618 619 static void xen_log_start(MemoryListener *listener, 620 MemoryRegionSection *section, 621 int old, int new) 622 { 623 XenIOState *state = container_of(listener, XenIOState, memory_listener); 624 625 if (new & ~old & (1 << DIRTY_MEMORY_VGA)) { 626 xen_sync_dirty_bitmap(state, section->offset_within_address_space, 627 int128_get64(section->size)); 628 } 629 } 630 631 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section, 632 int old, int new) 633 { 634 XenIOState *state = container_of(listener, XenIOState, memory_listener); 635 636 if (old & ~new & (1 << DIRTY_MEMORY_VGA)) { 637 state->log_for_dirtybit = NULL; 638 /* Disable dirty bit tracking */ 639 xen_track_dirty_vram(xen_domid, 0, 0, NULL); 640 } 641 } 642 643 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section) 644 { 645 XenIOState *state = container_of(listener, XenIOState, memory_listener); 646 647 xen_sync_dirty_bitmap(state, section->offset_within_address_space, 648 int128_get64(section->size)); 649 } 650 651 static void xen_log_global_start(MemoryListener *listener) 652 { 653 if (xen_enabled()) { 654 xen_in_migration = true; 655 } 656 } 657 658 static void xen_log_global_stop(MemoryListener *listener) 659 { 660 xen_in_migration = false; 661 } 662 663 static MemoryListener xen_memory_listener = { 664 .region_add = xen_region_add, 665 .region_del = xen_region_del, 666 .log_start = xen_log_start, 667 .log_stop = xen_log_stop, 668 .log_sync = xen_log_sync, 669 .log_global_start = xen_log_global_start, 670 .log_global_stop = xen_log_global_stop, 671 .priority = 10, 672 }; 673 674 static MemoryListener xen_io_listener = { 675 .region_add = xen_io_add, 676 .region_del = xen_io_del, 677 .priority = 10, 678 }; 679 680 static DeviceListener xen_device_listener = { 681 .realize = xen_device_realize, 682 .unrealize = xen_device_unrealize, 683 }; 684 685 /* get the ioreq packets from share mem */ 686 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu) 687 { 688 ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu); 689 690 if (req->state != STATE_IOREQ_READY) { 691 DPRINTF("I/O request not ready: " 692 "%x, ptr: %x, port: %"PRIx64", " 693 "data: %"PRIx64", count: %u, size: %u\n", 694 req->state, req->data_is_ptr, req->addr, 695 req->data, req->count, req->size); 696 return NULL; 697 } 698 699 xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */ 700 701 req->state = STATE_IOREQ_INPROCESS; 702 return req; 703 } 704 705 /* use poll to get the port notification */ 706 /* ioreq_vec--out,the */ 707 /* retval--the number of ioreq packet */ 708 static ioreq_t *cpu_get_ioreq(XenIOState *state) 709 { 710 int i; 711 evtchn_port_t port; 712 713 port = xenevtchn_pending(state->xce_handle); 714 if (port == state->bufioreq_local_port) { 715 timer_mod(state->buffered_io_timer, 716 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); 717 return NULL; 718 } 719 720 if (port != -1) { 721 for (i = 0; i < max_cpus; i++) { 722 if (state->ioreq_local_port[i] == port) { 723 break; 724 } 725 } 726 727 if (i == max_cpus) { 728 hw_error("Fatal error while trying to get io event!\n"); 729 } 730 731 /* unmask the wanted port again */ 732 xenevtchn_unmask(state->xce_handle, port); 733 734 /* get the io packet from shared memory */ 735 state->send_vcpu = i; 736 return cpu_get_ioreq_from_shared_memory(state, i); 737 } 738 739 /* read error or read nothing */ 740 return NULL; 741 } 742 743 static uint32_t do_inp(uint32_t addr, unsigned long size) 744 { 745 switch (size) { 746 case 1: 747 return cpu_inb(addr); 748 case 2: 749 return cpu_inw(addr); 750 case 4: 751 return cpu_inl(addr); 752 default: 753 hw_error("inp: bad size: %04x %lx", addr, size); 754 } 755 } 756 757 static void do_outp(uint32_t addr, 758 unsigned long size, uint32_t val) 759 { 760 switch (size) { 761 case 1: 762 return cpu_outb(addr, val); 763 case 2: 764 return cpu_outw(addr, val); 765 case 4: 766 return cpu_outl(addr, val); 767 default: 768 hw_error("outp: bad size: %04x %lx", addr, size); 769 } 770 } 771 772 /* 773 * Helper functions which read/write an object from/to physical guest 774 * memory, as part of the implementation of an ioreq. 775 * 776 * Equivalent to 777 * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i, 778 * val, req->size, 0/1) 779 * except without the integer overflow problems. 780 */ 781 static void rw_phys_req_item(hwaddr addr, 782 ioreq_t *req, uint32_t i, void *val, int rw) 783 { 784 /* Do everything unsigned so overflow just results in a truncated result 785 * and accesses to undesired parts of guest memory, which is up 786 * to the guest */ 787 hwaddr offset = (hwaddr)req->size * i; 788 if (req->df) { 789 addr -= offset; 790 } else { 791 addr += offset; 792 } 793 cpu_physical_memory_rw(addr, val, req->size, rw); 794 } 795 796 static inline void read_phys_req_item(hwaddr addr, 797 ioreq_t *req, uint32_t i, void *val) 798 { 799 rw_phys_req_item(addr, req, i, val, 0); 800 } 801 static inline void write_phys_req_item(hwaddr addr, 802 ioreq_t *req, uint32_t i, void *val) 803 { 804 rw_phys_req_item(addr, req, i, val, 1); 805 } 806 807 808 static void cpu_ioreq_pio(ioreq_t *req) 809 { 810 uint32_t i; 811 812 trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr, 813 req->data, req->count, req->size); 814 815 if (req->size > sizeof(uint32_t)) { 816 hw_error("PIO: bad size (%u)", req->size); 817 } 818 819 if (req->dir == IOREQ_READ) { 820 if (!req->data_is_ptr) { 821 req->data = do_inp(req->addr, req->size); 822 trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr, 823 req->size); 824 } else { 825 uint32_t tmp; 826 827 for (i = 0; i < req->count; i++) { 828 tmp = do_inp(req->addr, req->size); 829 write_phys_req_item(req->data, req, i, &tmp); 830 } 831 } 832 } else if (req->dir == IOREQ_WRITE) { 833 if (!req->data_is_ptr) { 834 trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr, 835 req->size); 836 do_outp(req->addr, req->size, req->data); 837 } else { 838 for (i = 0; i < req->count; i++) { 839 uint32_t tmp = 0; 840 841 read_phys_req_item(req->data, req, i, &tmp); 842 do_outp(req->addr, req->size, tmp); 843 } 844 } 845 } 846 } 847 848 static void cpu_ioreq_move(ioreq_t *req) 849 { 850 uint32_t i; 851 852 trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr, 853 req->data, req->count, req->size); 854 855 if (req->size > sizeof(req->data)) { 856 hw_error("MMIO: bad size (%u)", req->size); 857 } 858 859 if (!req->data_is_ptr) { 860 if (req->dir == IOREQ_READ) { 861 for (i = 0; i < req->count; i++) { 862 read_phys_req_item(req->addr, req, i, &req->data); 863 } 864 } else if (req->dir == IOREQ_WRITE) { 865 for (i = 0; i < req->count; i++) { 866 write_phys_req_item(req->addr, req, i, &req->data); 867 } 868 } 869 } else { 870 uint64_t tmp; 871 872 if (req->dir == IOREQ_READ) { 873 for (i = 0; i < req->count; i++) { 874 read_phys_req_item(req->addr, req, i, &tmp); 875 write_phys_req_item(req->data, req, i, &tmp); 876 } 877 } else if (req->dir == IOREQ_WRITE) { 878 for (i = 0; i < req->count; i++) { 879 read_phys_req_item(req->data, req, i, &tmp); 880 write_phys_req_item(req->addr, req, i, &tmp); 881 } 882 } 883 } 884 } 885 886 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req) 887 { 888 X86CPU *cpu; 889 CPUX86State *env; 890 891 cpu = X86_CPU(current_cpu); 892 env = &cpu->env; 893 env->regs[R_EAX] = req->data; 894 env->regs[R_EBX] = vmport_regs->ebx; 895 env->regs[R_ECX] = vmport_regs->ecx; 896 env->regs[R_EDX] = vmport_regs->edx; 897 env->regs[R_ESI] = vmport_regs->esi; 898 env->regs[R_EDI] = vmport_regs->edi; 899 } 900 901 static void regs_from_cpu(vmware_regs_t *vmport_regs) 902 { 903 X86CPU *cpu = X86_CPU(current_cpu); 904 CPUX86State *env = &cpu->env; 905 906 vmport_regs->ebx = env->regs[R_EBX]; 907 vmport_regs->ecx = env->regs[R_ECX]; 908 vmport_regs->edx = env->regs[R_EDX]; 909 vmport_regs->esi = env->regs[R_ESI]; 910 vmport_regs->edi = env->regs[R_EDI]; 911 } 912 913 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req) 914 { 915 vmware_regs_t *vmport_regs; 916 917 assert(state->shared_vmport_page); 918 vmport_regs = 919 &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu]; 920 QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs)); 921 922 current_cpu = state->cpu_by_vcpu_id[state->send_vcpu]; 923 regs_to_cpu(vmport_regs, req); 924 cpu_ioreq_pio(req); 925 regs_from_cpu(vmport_regs); 926 current_cpu = NULL; 927 } 928 929 static void handle_ioreq(XenIOState *state, ioreq_t *req) 930 { 931 trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr, 932 req->addr, req->data, req->count, req->size); 933 934 if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) && 935 (req->size < sizeof (target_ulong))) { 936 req->data &= ((target_ulong) 1 << (8 * req->size)) - 1; 937 } 938 939 if (req->dir == IOREQ_WRITE) 940 trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr, 941 req->addr, req->data, req->count, req->size); 942 943 switch (req->type) { 944 case IOREQ_TYPE_PIO: 945 cpu_ioreq_pio(req); 946 break; 947 case IOREQ_TYPE_COPY: 948 cpu_ioreq_move(req); 949 break; 950 case IOREQ_TYPE_VMWARE_PORT: 951 handle_vmport_ioreq(state, req); 952 break; 953 case IOREQ_TYPE_TIMEOFFSET: 954 break; 955 case IOREQ_TYPE_INVALIDATE: 956 xen_invalidate_map_cache(); 957 break; 958 case IOREQ_TYPE_PCI_CONFIG: { 959 uint32_t sbdf = req->addr >> 32; 960 uint32_t val; 961 962 /* Fake a write to port 0xCF8 so that 963 * the config space access will target the 964 * correct device model. 965 */ 966 val = (1u << 31) | 967 ((req->addr & 0x0f00) << 16) | 968 ((sbdf & 0xffff) << 8) | 969 (req->addr & 0xfc); 970 do_outp(0xcf8, 4, val); 971 972 /* Now issue the config space access via 973 * port 0xCFC 974 */ 975 req->addr = 0xcfc | (req->addr & 0x03); 976 cpu_ioreq_pio(req); 977 break; 978 } 979 default: 980 hw_error("Invalid ioreq type 0x%x\n", req->type); 981 } 982 if (req->dir == IOREQ_READ) { 983 trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr, 984 req->addr, req->data, req->count, req->size); 985 } 986 } 987 988 static int handle_buffered_iopage(XenIOState *state) 989 { 990 buffered_iopage_t *buf_page = state->buffered_io_page; 991 buf_ioreq_t *buf_req = NULL; 992 ioreq_t req; 993 int qw; 994 995 if (!buf_page) { 996 return 0; 997 } 998 999 memset(&req, 0x00, sizeof(req)); 1000 req.state = STATE_IOREQ_READY; 1001 req.count = 1; 1002 req.dir = IOREQ_WRITE; 1003 1004 for (;;) { 1005 uint32_t rdptr = buf_page->read_pointer, wrptr; 1006 1007 xen_rmb(); 1008 wrptr = buf_page->write_pointer; 1009 xen_rmb(); 1010 if (rdptr != buf_page->read_pointer) { 1011 continue; 1012 } 1013 if (rdptr == wrptr) { 1014 break; 1015 } 1016 buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM]; 1017 req.size = 1U << buf_req->size; 1018 req.addr = buf_req->addr; 1019 req.data = buf_req->data; 1020 req.type = buf_req->type; 1021 xen_rmb(); 1022 qw = (req.size == 8); 1023 if (qw) { 1024 if (rdptr + 1 == wrptr) { 1025 hw_error("Incomplete quad word buffered ioreq"); 1026 } 1027 buf_req = &buf_page->buf_ioreq[(rdptr + 1) % 1028 IOREQ_BUFFER_SLOT_NUM]; 1029 req.data |= ((uint64_t)buf_req->data) << 32; 1030 xen_rmb(); 1031 } 1032 1033 handle_ioreq(state, &req); 1034 1035 /* Only req.data may get updated by handle_ioreq(), albeit even that 1036 * should not happen as such data would never make it to the guest (we 1037 * can only usefully see writes here after all). 1038 */ 1039 assert(req.state == STATE_IOREQ_READY); 1040 assert(req.count == 1); 1041 assert(req.dir == IOREQ_WRITE); 1042 assert(!req.data_is_ptr); 1043 1044 atomic_add(&buf_page->read_pointer, qw + 1); 1045 } 1046 1047 return req.count; 1048 } 1049 1050 static void handle_buffered_io(void *opaque) 1051 { 1052 XenIOState *state = opaque; 1053 1054 if (handle_buffered_iopage(state)) { 1055 timer_mod(state->buffered_io_timer, 1056 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); 1057 } else { 1058 timer_del(state->buffered_io_timer); 1059 xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port); 1060 } 1061 } 1062 1063 static void cpu_handle_ioreq(void *opaque) 1064 { 1065 XenIOState *state = opaque; 1066 ioreq_t *req = cpu_get_ioreq(state); 1067 1068 handle_buffered_iopage(state); 1069 if (req) { 1070 ioreq_t copy = *req; 1071 1072 xen_rmb(); 1073 handle_ioreq(state, ©); 1074 req->data = copy.data; 1075 1076 if (req->state != STATE_IOREQ_INPROCESS) { 1077 fprintf(stderr, "Badness in I/O request ... not in service?!: " 1078 "%x, ptr: %x, port: %"PRIx64", " 1079 "data: %"PRIx64", count: %u, size: %u, type: %u\n", 1080 req->state, req->data_is_ptr, req->addr, 1081 req->data, req->count, req->size, req->type); 1082 destroy_hvm_domain(false); 1083 return; 1084 } 1085 1086 xen_wmb(); /* Update ioreq contents /then/ update state. */ 1087 1088 /* 1089 * We do this before we send the response so that the tools 1090 * have the opportunity to pick up on the reset before the 1091 * guest resumes and does a hlt with interrupts disabled which 1092 * causes Xen to powerdown the domain. 1093 */ 1094 if (runstate_is_running()) { 1095 ShutdownCause request; 1096 1097 if (qemu_shutdown_requested_get()) { 1098 destroy_hvm_domain(false); 1099 } 1100 request = qemu_reset_requested_get(); 1101 if (request) { 1102 qemu_system_reset(request); 1103 destroy_hvm_domain(true); 1104 } 1105 } 1106 1107 req->state = STATE_IORESP_READY; 1108 xenevtchn_notify(state->xce_handle, 1109 state->ioreq_local_port[state->send_vcpu]); 1110 } 1111 } 1112 1113 static void xen_main_loop_prepare(XenIOState *state) 1114 { 1115 int evtchn_fd = -1; 1116 1117 if (state->xce_handle != NULL) { 1118 evtchn_fd = xenevtchn_fd(state->xce_handle); 1119 } 1120 1121 state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io, 1122 state); 1123 1124 if (evtchn_fd != -1) { 1125 CPUState *cpu_state; 1126 1127 DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__); 1128 CPU_FOREACH(cpu_state) { 1129 DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n", 1130 __func__, cpu_state->cpu_index, cpu_state); 1131 state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state; 1132 } 1133 qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state); 1134 } 1135 } 1136 1137 1138 static void xen_hvm_change_state_handler(void *opaque, int running, 1139 RunState rstate) 1140 { 1141 XenIOState *state = opaque; 1142 1143 if (running) { 1144 xen_main_loop_prepare(state); 1145 } 1146 1147 xen_set_ioreq_server_state(xen_domid, 1148 state->ioservid, 1149 (rstate == RUN_STATE_RUNNING)); 1150 } 1151 1152 static void xen_exit_notifier(Notifier *n, void *data) 1153 { 1154 XenIOState *state = container_of(n, XenIOState, exit); 1155 1156 xenevtchn_close(state->xce_handle); 1157 xs_daemon_close(state->xenstore); 1158 } 1159 1160 static void xen_read_physmap(XenIOState *state) 1161 { 1162 XenPhysmap *physmap = NULL; 1163 unsigned int len, num, i; 1164 char path[80], *value = NULL; 1165 char **entries = NULL; 1166 1167 snprintf(path, sizeof(path), 1168 "/local/domain/0/device-model/%d/physmap", xen_domid); 1169 entries = xs_directory(state->xenstore, 0, path, &num); 1170 if (entries == NULL) 1171 return; 1172 1173 for (i = 0; i < num; i++) { 1174 physmap = g_malloc(sizeof (XenPhysmap)); 1175 physmap->phys_offset = strtoull(entries[i], NULL, 16); 1176 snprintf(path, sizeof(path), 1177 "/local/domain/0/device-model/%d/physmap/%s/start_addr", 1178 xen_domid, entries[i]); 1179 value = xs_read(state->xenstore, 0, path, &len); 1180 if (value == NULL) { 1181 g_free(physmap); 1182 continue; 1183 } 1184 physmap->start_addr = strtoull(value, NULL, 16); 1185 free(value); 1186 1187 snprintf(path, sizeof(path), 1188 "/local/domain/0/device-model/%d/physmap/%s/size", 1189 xen_domid, entries[i]); 1190 value = xs_read(state->xenstore, 0, path, &len); 1191 if (value == NULL) { 1192 g_free(physmap); 1193 continue; 1194 } 1195 physmap->size = strtoull(value, NULL, 16); 1196 free(value); 1197 1198 snprintf(path, sizeof(path), 1199 "/local/domain/0/device-model/%d/physmap/%s/name", 1200 xen_domid, entries[i]); 1201 physmap->name = xs_read(state->xenstore, 0, path, &len); 1202 1203 QLIST_INSERT_HEAD(&state->physmap, physmap, list); 1204 } 1205 free(entries); 1206 } 1207 1208 static void xen_wakeup_notifier(Notifier *notifier, void *data) 1209 { 1210 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0); 1211 } 1212 1213 void xen_hvm_init(PCMachineState *pcms, MemoryRegion **ram_memory) 1214 { 1215 int i, rc; 1216 xen_pfn_t ioreq_pfn; 1217 xen_pfn_t bufioreq_pfn; 1218 evtchn_port_t bufioreq_evtchn; 1219 XenIOState *state; 1220 1221 state = g_malloc0(sizeof (XenIOState)); 1222 1223 state->xce_handle = xenevtchn_open(NULL, 0); 1224 if (state->xce_handle == NULL) { 1225 perror("xen: event channel open"); 1226 goto err; 1227 } 1228 1229 state->xenstore = xs_daemon_open(); 1230 if (state->xenstore == NULL) { 1231 perror("xen: xenstore open"); 1232 goto err; 1233 } 1234 1235 if (xen_domid_restrict) { 1236 rc = xen_restrict(xen_domid); 1237 if (rc < 0) { 1238 error_report("failed to restrict: error %d", errno); 1239 goto err; 1240 } 1241 } 1242 1243 xen_create_ioreq_server(xen_domid, &state->ioservid); 1244 1245 state->exit.notify = xen_exit_notifier; 1246 qemu_add_exit_notifier(&state->exit); 1247 1248 state->suspend.notify = xen_suspend_notifier; 1249 qemu_register_suspend_notifier(&state->suspend); 1250 1251 state->wakeup.notify = xen_wakeup_notifier; 1252 qemu_register_wakeup_notifier(&state->wakeup); 1253 1254 rc = xen_get_ioreq_server_info(xen_domid, state->ioservid, 1255 &ioreq_pfn, &bufioreq_pfn, 1256 &bufioreq_evtchn); 1257 if (rc < 0) { 1258 error_report("failed to get ioreq server info: error %d handle=%p", 1259 errno, xen_xc); 1260 goto err; 1261 } 1262 1263 DPRINTF("shared page at pfn %lx\n", ioreq_pfn); 1264 DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn); 1265 DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn); 1266 1267 state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid, 1268 PROT_READ|PROT_WRITE, 1269 1, &ioreq_pfn, NULL); 1270 if (state->shared_page == NULL) { 1271 error_report("map shared IO page returned error %d handle=%p", 1272 errno, xen_xc); 1273 goto err; 1274 } 1275 1276 rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn); 1277 if (!rc) { 1278 DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn); 1279 state->shared_vmport_page = 1280 xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE, 1281 1, &ioreq_pfn, NULL); 1282 if (state->shared_vmport_page == NULL) { 1283 error_report("map shared vmport IO page returned error %d handle=%p", 1284 errno, xen_xc); 1285 goto err; 1286 } 1287 } else if (rc != -ENOSYS) { 1288 error_report("get vmport regs pfn returned error %d, rc=%d", 1289 errno, rc); 1290 goto err; 1291 } 1292 1293 state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid, 1294 PROT_READ|PROT_WRITE, 1295 1, &bufioreq_pfn, NULL); 1296 if (state->buffered_io_page == NULL) { 1297 error_report("map buffered IO page returned error %d", errno); 1298 goto err; 1299 } 1300 1301 /* Note: cpus is empty at this point in init */ 1302 state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *)); 1303 1304 rc = xen_set_ioreq_server_state(xen_domid, state->ioservid, true); 1305 if (rc < 0) { 1306 error_report("failed to enable ioreq server info: error %d handle=%p", 1307 errno, xen_xc); 1308 goto err; 1309 } 1310 1311 state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t)); 1312 1313 /* FIXME: how about if we overflow the page here? */ 1314 for (i = 0; i < max_cpus; i++) { 1315 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid, 1316 xen_vcpu_eport(state->shared_page, i)); 1317 if (rc == -1) { 1318 error_report("shared evtchn %d bind error %d", i, errno); 1319 goto err; 1320 } 1321 state->ioreq_local_port[i] = rc; 1322 } 1323 1324 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid, 1325 bufioreq_evtchn); 1326 if (rc == -1) { 1327 error_report("buffered evtchn bind error %d", errno); 1328 goto err; 1329 } 1330 state->bufioreq_local_port = rc; 1331 1332 /* Init RAM management */ 1333 xen_map_cache_init(xen_phys_offset_to_gaddr, state); 1334 xen_ram_init(pcms, ram_size, ram_memory); 1335 1336 qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state); 1337 1338 state->memory_listener = xen_memory_listener; 1339 QLIST_INIT(&state->physmap); 1340 memory_listener_register(&state->memory_listener, &address_space_memory); 1341 state->log_for_dirtybit = NULL; 1342 1343 state->io_listener = xen_io_listener; 1344 memory_listener_register(&state->io_listener, &address_space_io); 1345 1346 state->device_listener = xen_device_listener; 1347 device_listener_register(&state->device_listener); 1348 1349 /* Initialize backend core & drivers */ 1350 if (xen_be_init() != 0) { 1351 error_report("xen backend core setup failed"); 1352 goto err; 1353 } 1354 xen_be_register_common(); 1355 xen_read_physmap(state); 1356 1357 /* Disable ACPI build because Xen handles it */ 1358 pcms->acpi_build_enabled = false; 1359 1360 return; 1361 1362 err: 1363 error_report("xen hardware virtual machine initialisation failed"); 1364 exit(1); 1365 } 1366 1367 void destroy_hvm_domain(bool reboot) 1368 { 1369 xc_interface *xc_handle; 1370 int sts; 1371 1372 xc_handle = xc_interface_open(0, 0, 0); 1373 if (xc_handle == NULL) { 1374 fprintf(stderr, "Cannot acquire xenctrl handle\n"); 1375 } else { 1376 sts = xc_domain_shutdown(xc_handle, xen_domid, 1377 reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff); 1378 if (sts != 0) { 1379 fprintf(stderr, "xc_domain_shutdown failed to issue %s, " 1380 "sts %d, %s\n", reboot ? "reboot" : "poweroff", 1381 sts, strerror(errno)); 1382 } else { 1383 fprintf(stderr, "Issued domain %d %s\n", xen_domid, 1384 reboot ? "reboot" : "poweroff"); 1385 } 1386 xc_interface_close(xc_handle); 1387 } 1388 } 1389 1390 void xen_register_framebuffer(MemoryRegion *mr) 1391 { 1392 framebuffer = mr; 1393 } 1394 1395 void xen_shutdown_fatal_error(const char *fmt, ...) 1396 { 1397 va_list ap; 1398 1399 va_start(ap, fmt); 1400 vfprintf(stderr, fmt, ap); 1401 va_end(ap); 1402 fprintf(stderr, "Will destroy the domain.\n"); 1403 /* destroy the domain */ 1404 qemu_system_shutdown_request(SHUTDOWN_CAUSE_HOST_ERROR); 1405 } 1406 1407 void xen_hvm_modified_memory(ram_addr_t start, ram_addr_t length) 1408 { 1409 if (unlikely(xen_in_migration)) { 1410 int rc; 1411 ram_addr_t start_pfn, nb_pages; 1412 1413 if (length == 0) { 1414 length = TARGET_PAGE_SIZE; 1415 } 1416 start_pfn = start >> TARGET_PAGE_BITS; 1417 nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS) 1418 - start_pfn; 1419 rc = xen_modified_memory(xen_domid, start_pfn, nb_pages); 1420 if (rc) { 1421 fprintf(stderr, 1422 "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n", 1423 __func__, start, nb_pages, rc, strerror(-rc)); 1424 } 1425 } 1426 } 1427 1428 void qmp_xen_set_global_dirty_log(bool enable, Error **errp) 1429 { 1430 if (enable) { 1431 memory_global_dirty_log_start(); 1432 } else { 1433 memory_global_dirty_log_stop(); 1434 } 1435 } 1436