xref: /openbmc/qemu/hw/i386/x86.c (revision 64c033badda77d81d7c949fc6e3ed6c72dd5c92e)
1 /*
2  * Copyright (c) 2003-2004 Fabrice Bellard
3  * Copyright (c) 2019 Red Hat, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy
6  * of this software and associated documentation files (the "Software"), to deal
7  * in the Software without restriction, including without limitation the rights
8  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9  * copies of the Software, and to permit persons to whom the Software is
10  * furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21  * THE SOFTWARE.
22  */
23 #include "qemu/osdep.h"
24 #include "qemu/error-report.h"
25 #include "qemu/option.h"
26 #include "qemu/cutils.h"
27 #include "qemu/units.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/qmp/qerror.h"
31 #include "qapi/qapi-visit-common.h"
32 #include "qapi/visitor.h"
33 #include "sysemu/qtest.h"
34 #include "sysemu/numa.h"
35 #include "sysemu/replay.h"
36 #include "sysemu/sysemu.h"
37 #include "trace.h"
38 
39 #include "hw/i386/x86.h"
40 #include "target/i386/cpu.h"
41 #include "hw/i386/topology.h"
42 #include "hw/i386/fw_cfg.h"
43 #include "hw/intc/i8259.h"
44 
45 #include "hw/acpi/cpu_hotplug.h"
46 #include "hw/irq.h"
47 #include "hw/nmi.h"
48 #include "hw/loader.h"
49 #include "multiboot.h"
50 #include "elf.h"
51 #include "standard-headers/asm-x86/bootparam.h"
52 #include "config-devices.h"
53 #include "kvm_i386.h"
54 
55 #define BIOS_FILENAME "bios.bin"
56 
57 /* Physical Address of PVH entry point read from kernel ELF NOTE */
58 static size_t pvh_start_addr;
59 
60 /*
61  * Calculates initial APIC ID for a specific CPU index
62  *
63  * Currently we need to be able to calculate the APIC ID from the CPU index
64  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
65  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
66  * all CPUs up to max_cpus.
67  */
68 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
69                                     unsigned int cpu_index)
70 {
71     MachineState *ms = MACHINE(x86ms);
72     X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms);
73     uint32_t correct_id;
74     static bool warned;
75 
76     correct_id = x86_apicid_from_cpu_idx(x86ms->smp_dies, ms->smp.cores,
77                                          ms->smp.threads, cpu_index);
78     if (x86mc->compat_apic_id_mode) {
79         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
80             error_report("APIC IDs set in compatibility mode, "
81                          "CPU topology won't match the configuration");
82             warned = true;
83         }
84         return cpu_index;
85     } else {
86         return correct_id;
87     }
88 }
89 
90 
91 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
92 {
93     Object *cpu = NULL;
94     Error *local_err = NULL;
95     CPUX86State *env = NULL;
96 
97     cpu = object_new(MACHINE(x86ms)->cpu_type);
98 
99     env = &X86_CPU(cpu)->env;
100     env->nr_dies = x86ms->smp_dies;
101 
102     object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
103     object_property_set_bool(cpu, true, "realized", &local_err);
104 
105     object_unref(cpu);
106     error_propagate(errp, local_err);
107 }
108 
109 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
110 {
111     int i;
112     const CPUArchIdList *possible_cpus;
113     MachineState *ms = MACHINE(x86ms);
114     MachineClass *mc = MACHINE_GET_CLASS(x86ms);
115 
116     x86_cpu_set_default_version(default_cpu_version);
117 
118     /*
119      * Calculates the limit to CPU APIC ID values
120      *
121      * Limit for the APIC ID value, so that all
122      * CPU APIC IDs are < x86ms->apic_id_limit.
123      *
124      * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
125      */
126     x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
127                                                       ms->smp.max_cpus - 1) + 1;
128     possible_cpus = mc->possible_cpu_arch_ids(ms);
129     for (i = 0; i < ms->smp.cpus; i++) {
130         x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
131     }
132 }
133 
134 CpuInstanceProperties
135 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
136 {
137     MachineClass *mc = MACHINE_GET_CLASS(ms);
138     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
139 
140     assert(cpu_index < possible_cpus->len);
141     return possible_cpus->cpus[cpu_index].props;
142 }
143 
144 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
145 {
146    X86CPUTopoInfo topo;
147    X86MachineState *x86ms = X86_MACHINE(ms);
148 
149    assert(idx < ms->possible_cpus->len);
150    x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
151                             x86ms->smp_dies, ms->smp.cores,
152                             ms->smp.threads, &topo);
153    return topo.pkg_id % ms->numa_state->num_nodes;
154 }
155 
156 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
157 {
158     X86MachineState *x86ms = X86_MACHINE(ms);
159     int i;
160     unsigned int max_cpus = ms->smp.max_cpus;
161 
162     if (ms->possible_cpus) {
163         /*
164          * make sure that max_cpus hasn't changed since the first use, i.e.
165          * -smp hasn't been parsed after it
166          */
167         assert(ms->possible_cpus->len == max_cpus);
168         return ms->possible_cpus;
169     }
170 
171     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
172                                   sizeof(CPUArchId) * max_cpus);
173     ms->possible_cpus->len = max_cpus;
174     for (i = 0; i < ms->possible_cpus->len; i++) {
175         X86CPUTopoInfo topo;
176 
177         ms->possible_cpus->cpus[i].type = ms->cpu_type;
178         ms->possible_cpus->cpus[i].vcpus_count = 1;
179         ms->possible_cpus->cpus[i].arch_id =
180             x86_cpu_apic_id_from_index(x86ms, i);
181         x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
182                                  x86ms->smp_dies, ms->smp.cores,
183                                  ms->smp.threads, &topo);
184         ms->possible_cpus->cpus[i].props.has_socket_id = true;
185         ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
186         if (x86ms->smp_dies > 1) {
187             ms->possible_cpus->cpus[i].props.has_die_id = true;
188             ms->possible_cpus->cpus[i].props.die_id = topo.die_id;
189         }
190         ms->possible_cpus->cpus[i].props.has_core_id = true;
191         ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
192         ms->possible_cpus->cpus[i].props.has_thread_id = true;
193         ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
194     }
195     return ms->possible_cpus;
196 }
197 
198 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
199 {
200     /* cpu index isn't used */
201     CPUState *cs;
202 
203     CPU_FOREACH(cs) {
204         X86CPU *cpu = X86_CPU(cs);
205 
206         if (!cpu->apic_state) {
207             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
208         } else {
209             apic_deliver_nmi(cpu->apic_state);
210         }
211     }
212 }
213 
214 static long get_file_size(FILE *f)
215 {
216     long where, size;
217 
218     /* XXX: on Unix systems, using fstat() probably makes more sense */
219 
220     where = ftell(f);
221     fseek(f, 0, SEEK_END);
222     size = ftell(f);
223     fseek(f, where, SEEK_SET);
224 
225     return size;
226 }
227 
228 /* TSC handling */
229 uint64_t cpu_get_tsc(CPUX86State *env)
230 {
231     return cpu_get_ticks();
232 }
233 
234 /* IRQ handling */
235 static void pic_irq_request(void *opaque, int irq, int level)
236 {
237     CPUState *cs = first_cpu;
238     X86CPU *cpu = X86_CPU(cs);
239 
240     trace_x86_pic_interrupt(irq, level);
241     if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
242         CPU_FOREACH(cs) {
243             cpu = X86_CPU(cs);
244             if (apic_accept_pic_intr(cpu->apic_state)) {
245                 apic_deliver_pic_intr(cpu->apic_state, level);
246             }
247         }
248     } else {
249         if (level) {
250             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
251         } else {
252             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
253         }
254     }
255 }
256 
257 qemu_irq x86_allocate_cpu_irq(void)
258 {
259     return qemu_allocate_irq(pic_irq_request, NULL, 0);
260 }
261 
262 int cpu_get_pic_interrupt(CPUX86State *env)
263 {
264     X86CPU *cpu = env_archcpu(env);
265     int intno;
266 
267     if (!kvm_irqchip_in_kernel()) {
268         intno = apic_get_interrupt(cpu->apic_state);
269         if (intno >= 0) {
270             return intno;
271         }
272         /* read the irq from the PIC */
273         if (!apic_accept_pic_intr(cpu->apic_state)) {
274             return -1;
275         }
276     }
277 
278     intno = pic_read_irq(isa_pic);
279     return intno;
280 }
281 
282 DeviceState *cpu_get_current_apic(void)
283 {
284     if (current_cpu) {
285         X86CPU *cpu = X86_CPU(current_cpu);
286         return cpu->apic_state;
287     } else {
288         return NULL;
289     }
290 }
291 
292 void gsi_handler(void *opaque, int n, int level)
293 {
294     GSIState *s = opaque;
295 
296     trace_x86_gsi_interrupt(n, level);
297     if (n < ISA_NUM_IRQS) {
298         /* Under KVM, Kernel will forward to both PIC and IOAPIC */
299         qemu_set_irq(s->i8259_irq[n], level);
300     }
301     qemu_set_irq(s->ioapic_irq[n], level);
302 }
303 
304 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
305 {
306     DeviceState *dev;
307     SysBusDevice *d;
308     unsigned int i;
309 
310     if (kvm_ioapic_in_kernel()) {
311         dev = qdev_create(NULL, TYPE_KVM_IOAPIC);
312     } else {
313         dev = qdev_create(NULL, TYPE_IOAPIC);
314     }
315     if (parent_name) {
316         object_property_add_child(object_resolve_path(parent_name, NULL),
317                                   "ioapic", OBJECT(dev), NULL);
318     }
319     qdev_init_nofail(dev);
320     d = SYS_BUS_DEVICE(dev);
321     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
322 
323     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
324         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
325     }
326 }
327 
328 struct setup_data {
329     uint64_t next;
330     uint32_t type;
331     uint32_t len;
332     uint8_t data[0];
333 } __attribute__((packed));
334 
335 
336 /*
337  * The entry point into the kernel for PVH boot is different from
338  * the native entry point.  The PVH entry is defined by the x86/HVM
339  * direct boot ABI and is available in an ELFNOTE in the kernel binary.
340  *
341  * This function is passed to load_elf() when it is called from
342  * load_elfboot() which then additionally checks for an ELF Note of
343  * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
344  * parse the PVH entry address from the ELF Note.
345  *
346  * Due to trickery in elf_opts.h, load_elf() is actually available as
347  * load_elf32() or load_elf64() and this routine needs to be able
348  * to deal with being called as 32 or 64 bit.
349  *
350  * The address of the PVH entry point is saved to the 'pvh_start_addr'
351  * global variable.  (although the entry point is 32-bit, the kernel
352  * binary can be either 32-bit or 64-bit).
353  */
354 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
355 {
356     size_t *elf_note_data_addr;
357 
358     /* Check if ELF Note header passed in is valid */
359     if (arg1 == NULL) {
360         return 0;
361     }
362 
363     if (is64) {
364         struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
365         uint64_t nhdr_size64 = sizeof(struct elf64_note);
366         uint64_t phdr_align = *(uint64_t *)arg2;
367         uint64_t nhdr_namesz = nhdr64->n_namesz;
368 
369         elf_note_data_addr =
370             ((void *)nhdr64) + nhdr_size64 +
371             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
372     } else {
373         struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
374         uint32_t nhdr_size32 = sizeof(struct elf32_note);
375         uint32_t phdr_align = *(uint32_t *)arg2;
376         uint32_t nhdr_namesz = nhdr32->n_namesz;
377 
378         elf_note_data_addr =
379             ((void *)nhdr32) + nhdr_size32 +
380             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
381     }
382 
383     pvh_start_addr = *elf_note_data_addr;
384 
385     return pvh_start_addr;
386 }
387 
388 static bool load_elfboot(const char *kernel_filename,
389                          int kernel_file_size,
390                          uint8_t *header,
391                          size_t pvh_xen_start_addr,
392                          FWCfgState *fw_cfg)
393 {
394     uint32_t flags = 0;
395     uint32_t mh_load_addr = 0;
396     uint32_t elf_kernel_size = 0;
397     uint64_t elf_entry;
398     uint64_t elf_low, elf_high;
399     int kernel_size;
400 
401     if (ldl_p(header) != 0x464c457f) {
402         return false; /* no elfboot */
403     }
404 
405     bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
406     flags = elf_is64 ?
407         ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
408 
409     if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
410         error_report("elfboot unsupported flags = %x", flags);
411         exit(1);
412     }
413 
414     uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
415     kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
416                            NULL, &elf_note_type, &elf_entry,
417                            &elf_low, &elf_high, 0, I386_ELF_MACHINE,
418                            0, 0);
419 
420     if (kernel_size < 0) {
421         error_report("Error while loading elf kernel");
422         exit(1);
423     }
424     mh_load_addr = elf_low;
425     elf_kernel_size = elf_high - elf_low;
426 
427     if (pvh_start_addr == 0) {
428         error_report("Error loading uncompressed kernel without PVH ELF Note");
429         exit(1);
430     }
431     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
432     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
433     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
434 
435     return true;
436 }
437 
438 void x86_load_linux(X86MachineState *x86ms,
439                     FWCfgState *fw_cfg,
440                     int acpi_data_size,
441                     bool pvh_enabled,
442                     bool linuxboot_dma_enabled)
443 {
444     uint16_t protocol;
445     int setup_size, kernel_size, cmdline_size;
446     int dtb_size, setup_data_offset;
447     uint32_t initrd_max;
448     uint8_t header[8192], *setup, *kernel;
449     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
450     FILE *f;
451     char *vmode;
452     MachineState *machine = MACHINE(x86ms);
453     struct setup_data *setup_data;
454     const char *kernel_filename = machine->kernel_filename;
455     const char *initrd_filename = machine->initrd_filename;
456     const char *dtb_filename = machine->dtb;
457     const char *kernel_cmdline = machine->kernel_cmdline;
458 
459     /* Align to 16 bytes as a paranoia measure */
460     cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
461 
462     /* load the kernel header */
463     f = fopen(kernel_filename, "rb");
464     if (!f) {
465         fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
466                 kernel_filename, strerror(errno));
467         exit(1);
468     }
469 
470     kernel_size = get_file_size(f);
471     if (!kernel_size ||
472         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
473         MIN(ARRAY_SIZE(header), kernel_size)) {
474         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
475                 kernel_filename, strerror(errno));
476         exit(1);
477     }
478 
479     /* kernel protocol version */
480     if (ldl_p(header + 0x202) == 0x53726448) {
481         protocol = lduw_p(header + 0x206);
482     } else {
483         /*
484          * This could be a multiboot kernel. If it is, let's stop treating it
485          * like a Linux kernel.
486          * Note: some multiboot images could be in the ELF format (the same of
487          * PVH), so we try multiboot first since we check the multiboot magic
488          * header before to load it.
489          */
490         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
491                            kernel_cmdline, kernel_size, header)) {
492             return;
493         }
494         /*
495          * Check if the file is an uncompressed kernel file (ELF) and load it,
496          * saving the PVH entry point used by the x86/HVM direct boot ABI.
497          * If load_elfboot() is successful, populate the fw_cfg info.
498          */
499         if (pvh_enabled &&
500             load_elfboot(kernel_filename, kernel_size,
501                          header, pvh_start_addr, fw_cfg)) {
502             fclose(f);
503 
504             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
505                 strlen(kernel_cmdline) + 1);
506             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
507 
508             fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
509             fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
510                              header, sizeof(header));
511 
512             /* load initrd */
513             if (initrd_filename) {
514                 GMappedFile *mapped_file;
515                 gsize initrd_size;
516                 gchar *initrd_data;
517                 GError *gerr = NULL;
518 
519                 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
520                 if (!mapped_file) {
521                     fprintf(stderr, "qemu: error reading initrd %s: %s\n",
522                             initrd_filename, gerr->message);
523                     exit(1);
524                 }
525                 x86ms->initrd_mapped_file = mapped_file;
526 
527                 initrd_data = g_mapped_file_get_contents(mapped_file);
528                 initrd_size = g_mapped_file_get_length(mapped_file);
529                 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
530                 if (initrd_size >= initrd_max) {
531                     fprintf(stderr, "qemu: initrd is too large, cannot support."
532                             "(max: %"PRIu32", need %"PRId64")\n",
533                             initrd_max, (uint64_t)initrd_size);
534                     exit(1);
535                 }
536 
537                 initrd_addr = (initrd_max - initrd_size) & ~4095;
538 
539                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
540                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
541                 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
542                                  initrd_size);
543             }
544 
545             option_rom[nb_option_roms].bootindex = 0;
546             option_rom[nb_option_roms].name = "pvh.bin";
547             nb_option_roms++;
548 
549             return;
550         }
551         protocol = 0;
552     }
553 
554     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
555         /* Low kernel */
556         real_addr    = 0x90000;
557         cmdline_addr = 0x9a000 - cmdline_size;
558         prot_addr    = 0x10000;
559     } else if (protocol < 0x202) {
560         /* High but ancient kernel */
561         real_addr    = 0x90000;
562         cmdline_addr = 0x9a000 - cmdline_size;
563         prot_addr    = 0x100000;
564     } else {
565         /* High and recent kernel */
566         real_addr    = 0x10000;
567         cmdline_addr = 0x20000;
568         prot_addr    = 0x100000;
569     }
570 
571     /* highest address for loading the initrd */
572     if (protocol >= 0x20c &&
573         lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
574         /*
575          * Linux has supported initrd up to 4 GB for a very long time (2007,
576          * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
577          * though it only sets initrd_max to 2 GB to "work around bootloader
578          * bugs". Luckily, QEMU firmware(which does something like bootloader)
579          * has supported this.
580          *
581          * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
582          * be loaded into any address.
583          *
584          * In addition, initrd_max is uint32_t simply because QEMU doesn't
585          * support the 64-bit boot protocol (specifically the ext_ramdisk_image
586          * field).
587          *
588          * Therefore here just limit initrd_max to UINT32_MAX simply as well.
589          */
590         initrd_max = UINT32_MAX;
591     } else if (protocol >= 0x203) {
592         initrd_max = ldl_p(header + 0x22c);
593     } else {
594         initrd_max = 0x37ffffff;
595     }
596 
597     if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
598         initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
599     }
600 
601     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
602     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
603     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
604 
605     if (protocol >= 0x202) {
606         stl_p(header + 0x228, cmdline_addr);
607     } else {
608         stw_p(header + 0x20, 0xA33F);
609         stw_p(header + 0x22, cmdline_addr - real_addr);
610     }
611 
612     /* handle vga= parameter */
613     vmode = strstr(kernel_cmdline, "vga=");
614     if (vmode) {
615         unsigned int video_mode;
616         int ret;
617         /* skip "vga=" */
618         vmode += 4;
619         if (!strncmp(vmode, "normal", 6)) {
620             video_mode = 0xffff;
621         } else if (!strncmp(vmode, "ext", 3)) {
622             video_mode = 0xfffe;
623         } else if (!strncmp(vmode, "ask", 3)) {
624             video_mode = 0xfffd;
625         } else {
626             ret = qemu_strtoui(vmode, NULL, 0, &video_mode);
627             if (ret != 0) {
628                 fprintf(stderr, "qemu: can't parse 'vga' parameter: %s\n",
629                         strerror(-ret));
630                 exit(1);
631             }
632         }
633         stw_p(header + 0x1fa, video_mode);
634     }
635 
636     /* loader type */
637     /*
638      * High nybble = B reserved for QEMU; low nybble is revision number.
639      * If this code is substantially changed, you may want to consider
640      * incrementing the revision.
641      */
642     if (protocol >= 0x200) {
643         header[0x210] = 0xB0;
644     }
645     /* heap */
646     if (protocol >= 0x201) {
647         header[0x211] |= 0x80; /* CAN_USE_HEAP */
648         stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
649     }
650 
651     /* load initrd */
652     if (initrd_filename) {
653         GMappedFile *mapped_file;
654         gsize initrd_size;
655         gchar *initrd_data;
656         GError *gerr = NULL;
657 
658         if (protocol < 0x200) {
659             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
660             exit(1);
661         }
662 
663         mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
664         if (!mapped_file) {
665             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
666                     initrd_filename, gerr->message);
667             exit(1);
668         }
669         x86ms->initrd_mapped_file = mapped_file;
670 
671         initrd_data = g_mapped_file_get_contents(mapped_file);
672         initrd_size = g_mapped_file_get_length(mapped_file);
673         if (initrd_size >= initrd_max) {
674             fprintf(stderr, "qemu: initrd is too large, cannot support."
675                     "(max: %"PRIu32", need %"PRId64")\n",
676                     initrd_max, (uint64_t)initrd_size);
677             exit(1);
678         }
679 
680         initrd_addr = (initrd_max - initrd_size) & ~4095;
681 
682         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
683         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
684         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
685 
686         stl_p(header + 0x218, initrd_addr);
687         stl_p(header + 0x21c, initrd_size);
688     }
689 
690     /* load kernel and setup */
691     setup_size = header[0x1f1];
692     if (setup_size == 0) {
693         setup_size = 4;
694     }
695     setup_size = (setup_size + 1) * 512;
696     if (setup_size > kernel_size) {
697         fprintf(stderr, "qemu: invalid kernel header\n");
698         exit(1);
699     }
700     kernel_size -= setup_size;
701 
702     setup  = g_malloc(setup_size);
703     kernel = g_malloc(kernel_size);
704     fseek(f, 0, SEEK_SET);
705     if (fread(setup, 1, setup_size, f) != setup_size) {
706         fprintf(stderr, "fread() failed\n");
707         exit(1);
708     }
709     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
710         fprintf(stderr, "fread() failed\n");
711         exit(1);
712     }
713     fclose(f);
714 
715     /* append dtb to kernel */
716     if (dtb_filename) {
717         if (protocol < 0x209) {
718             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
719             exit(1);
720         }
721 
722         dtb_size = get_image_size(dtb_filename);
723         if (dtb_size <= 0) {
724             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
725                     dtb_filename, strerror(errno));
726             exit(1);
727         }
728 
729         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
730         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
731         kernel = g_realloc(kernel, kernel_size);
732 
733         stq_p(header + 0x250, prot_addr + setup_data_offset);
734 
735         setup_data = (struct setup_data *)(kernel + setup_data_offset);
736         setup_data->next = 0;
737         setup_data->type = cpu_to_le32(SETUP_DTB);
738         setup_data->len = cpu_to_le32(dtb_size);
739 
740         load_image_size(dtb_filename, setup_data->data, dtb_size);
741     }
742 
743     memcpy(setup, header, MIN(sizeof(header), setup_size));
744 
745     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
746     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
747     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
748 
749     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
750     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
751     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
752 
753     option_rom[nb_option_roms].bootindex = 0;
754     option_rom[nb_option_roms].name = "linuxboot.bin";
755     if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
756         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
757     }
758     nb_option_roms++;
759 }
760 
761 void x86_bios_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw)
762 {
763     char *filename;
764     MemoryRegion *bios, *isa_bios;
765     int bios_size, isa_bios_size;
766     int ret;
767 
768     /* BIOS load */
769     if (bios_name == NULL) {
770         bios_name = BIOS_FILENAME;
771     }
772     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
773     if (filename) {
774         bios_size = get_image_size(filename);
775     } else {
776         bios_size = -1;
777     }
778     if (bios_size <= 0 ||
779         (bios_size % 65536) != 0) {
780         goto bios_error;
781     }
782     bios = g_malloc(sizeof(*bios));
783     memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
784     if (!isapc_ram_fw) {
785         memory_region_set_readonly(bios, true);
786     }
787     ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
788     if (ret != 0) {
789     bios_error:
790         fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
791         exit(1);
792     }
793     g_free(filename);
794 
795     /* map the last 128KB of the BIOS in ISA space */
796     isa_bios_size = MIN(bios_size, 128 * KiB);
797     isa_bios = g_malloc(sizeof(*isa_bios));
798     memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
799                              bios_size - isa_bios_size, isa_bios_size);
800     memory_region_add_subregion_overlap(rom_memory,
801                                         0x100000 - isa_bios_size,
802                                         isa_bios,
803                                         1);
804     if (!isapc_ram_fw) {
805         memory_region_set_readonly(isa_bios, true);
806     }
807 
808     /* map all the bios at the top of memory */
809     memory_region_add_subregion(rom_memory,
810                                 (uint32_t)(-bios_size),
811                                 bios);
812 }
813 
814 static void x86_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
815                                              const char *name, void *opaque,
816                                              Error **errp)
817 {
818     X86MachineState *x86ms = X86_MACHINE(obj);
819     uint64_t value = x86ms->max_ram_below_4g;
820 
821     visit_type_size(v, name, &value, errp);
822 }
823 
824 static void x86_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
825                                              const char *name, void *opaque,
826                                              Error **errp)
827 {
828     X86MachineState *x86ms = X86_MACHINE(obj);
829     Error *error = NULL;
830     uint64_t value;
831 
832     visit_type_size(v, name, &value, &error);
833     if (error) {
834         error_propagate(errp, error);
835         return;
836     }
837     if (value > 4 * GiB) {
838         error_setg(&error,
839                    "Machine option 'max-ram-below-4g=%"PRIu64
840                    "' expects size less than or equal to 4G", value);
841         error_propagate(errp, error);
842         return;
843     }
844 
845     if (value < 1 * MiB) {
846         warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
847                     "BIOS may not work with less than 1MiB", value);
848     }
849 
850     x86ms->max_ram_below_4g = value;
851 }
852 
853 bool x86_machine_is_smm_enabled(X86MachineState *x86ms)
854 {
855     bool smm_available = false;
856 
857     if (x86ms->smm == ON_OFF_AUTO_OFF) {
858         return false;
859     }
860 
861     if (tcg_enabled() || qtest_enabled()) {
862         smm_available = true;
863     } else if (kvm_enabled()) {
864         smm_available = kvm_has_smm();
865     }
866 
867     if (smm_available) {
868         return true;
869     }
870 
871     if (x86ms->smm == ON_OFF_AUTO_ON) {
872         error_report("System Management Mode not supported by this hypervisor.");
873         exit(1);
874     }
875     return false;
876 }
877 
878 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name,
879                                void *opaque, Error **errp)
880 {
881     X86MachineState *x86ms = X86_MACHINE(obj);
882     OnOffAuto smm = x86ms->smm;
883 
884     visit_type_OnOffAuto(v, name, &smm, errp);
885 }
886 
887 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name,
888                                void *opaque, Error **errp)
889 {
890     X86MachineState *x86ms = X86_MACHINE(obj);
891 
892     visit_type_OnOffAuto(v, name, &x86ms->smm, errp);
893 }
894 
895 static void x86_machine_initfn(Object *obj)
896 {
897     X86MachineState *x86ms = X86_MACHINE(obj);
898 
899     x86ms->smm = ON_OFF_AUTO_AUTO;
900     x86ms->max_ram_below_4g = 0; /* use default */
901     x86ms->smp_dies = 1;
902 }
903 
904 static void x86_machine_class_init(ObjectClass *oc, void *data)
905 {
906     MachineClass *mc = MACHINE_CLASS(oc);
907     X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
908     NMIClass *nc = NMI_CLASS(oc);
909 
910     mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
911     mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
912     mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
913     x86mc->compat_apic_id_mode = false;
914     x86mc->save_tsc_khz = true;
915     nc->nmi_monitor_handler = x86_nmi;
916 
917     object_class_property_add(oc, X86_MACHINE_MAX_RAM_BELOW_4G, "size",
918         x86_machine_get_max_ram_below_4g, x86_machine_set_max_ram_below_4g,
919         NULL, NULL, &error_abort);
920     object_class_property_set_description(oc, X86_MACHINE_MAX_RAM_BELOW_4G,
921         "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
922 
923     object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto",
924         x86_machine_get_smm, x86_machine_set_smm,
925         NULL, NULL, &error_abort);
926     object_class_property_set_description(oc, X86_MACHINE_SMM,
927         "Enable SMM", &error_abort);
928 }
929 
930 static const TypeInfo x86_machine_info = {
931     .name = TYPE_X86_MACHINE,
932     .parent = TYPE_MACHINE,
933     .abstract = true,
934     .instance_size = sizeof(X86MachineState),
935     .instance_init = x86_machine_initfn,
936     .class_size = sizeof(X86MachineClass),
937     .class_init = x86_machine_class_init,
938     .interfaces = (InterfaceInfo[]) {
939          { TYPE_NMI },
940          { }
941     },
942 };
943 
944 static void x86_machine_register_types(void)
945 {
946     type_register_static(&x86_machine_info);
947 }
948 
949 type_init(x86_machine_register_types)
950