xref: /openbmc/qemu/hw/i386/pc.c (revision 8692aa29798e0f2cb5069f2460bbe19ff538fc71)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "hw/i386/pc.h"
27 #include "hw/char/serial.h"
28 #include "hw/i386/apic.h"
29 #include "hw/i386/topology.h"
30 #include "sysemu/cpus.h"
31 #include "hw/block/fdc.h"
32 #include "hw/ide.h"
33 #include "hw/pci/pci.h"
34 #include "hw/pci/pci_bus.h"
35 #include "hw/nvram/fw_cfg.h"
36 #include "hw/timer/hpet.h"
37 #include "hw/smbios/smbios.h"
38 #include "hw/loader.h"
39 #include "elf.h"
40 #include "multiboot.h"
41 #include "hw/timer/mc146818rtc.h"
42 #include "hw/timer/i8254.h"
43 #include "hw/audio/pcspk.h"
44 #include "hw/pci/msi.h"
45 #include "hw/sysbus.h"
46 #include "sysemu/sysemu.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/kvm.h"
49 #include "sysemu/qtest.h"
50 #include "kvm_i386.h"
51 #include "hw/xen/xen.h"
52 #include "sysemu/block-backend.h"
53 #include "hw/block/block.h"
54 #include "ui/qemu-spice.h"
55 #include "exec/memory.h"
56 #include "exec/address-spaces.h"
57 #include "sysemu/arch_init.h"
58 #include "qemu/bitmap.h"
59 #include "qemu/config-file.h"
60 #include "qemu/error-report.h"
61 #include "hw/acpi/acpi.h"
62 #include "hw/acpi/cpu_hotplug.h"
63 #include "hw/boards.h"
64 #include "hw/pci/pci_host.h"
65 #include "acpi-build.h"
66 #include "hw/mem/pc-dimm.h"
67 #include "qapi/visitor.h"
68 #include "qapi-visit.h"
69 #include "qom/cpu.h"
70 #include "hw/nmi.h"
71 
72 /* debug PC/ISA interrupts */
73 //#define DEBUG_IRQ
74 
75 #ifdef DEBUG_IRQ
76 #define DPRINTF(fmt, ...)                                       \
77     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
78 #else
79 #define DPRINTF(fmt, ...)
80 #endif
81 
82 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
83 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
84 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
85 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
86 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
87 
88 #define E820_NR_ENTRIES		16
89 
90 struct e820_entry {
91     uint64_t address;
92     uint64_t length;
93     uint32_t type;
94 } QEMU_PACKED __attribute((__aligned__(4)));
95 
96 struct e820_table {
97     uint32_t count;
98     struct e820_entry entry[E820_NR_ENTRIES];
99 } QEMU_PACKED __attribute((__aligned__(4)));
100 
101 static struct e820_table e820_reserve;
102 static struct e820_entry *e820_table;
103 static unsigned e820_entries;
104 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
105 
106 void gsi_handler(void *opaque, int n, int level)
107 {
108     GSIState *s = opaque;
109 
110     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
111     if (n < ISA_NUM_IRQS) {
112         qemu_set_irq(s->i8259_irq[n], level);
113     }
114     qemu_set_irq(s->ioapic_irq[n], level);
115 }
116 
117 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
118                            unsigned size)
119 {
120 }
121 
122 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
123 {
124     return 0xffffffffffffffffULL;
125 }
126 
127 /* MSDOS compatibility mode FPU exception support */
128 static qemu_irq ferr_irq;
129 
130 void pc_register_ferr_irq(qemu_irq irq)
131 {
132     ferr_irq = irq;
133 }
134 
135 /* XXX: add IGNNE support */
136 void cpu_set_ferr(CPUX86State *s)
137 {
138     qemu_irq_raise(ferr_irq);
139 }
140 
141 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
142                            unsigned size)
143 {
144     qemu_irq_lower(ferr_irq);
145 }
146 
147 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
148 {
149     return 0xffffffffffffffffULL;
150 }
151 
152 /* TSC handling */
153 uint64_t cpu_get_tsc(CPUX86State *env)
154 {
155     return cpu_get_ticks();
156 }
157 
158 /* IRQ handling */
159 int cpu_get_pic_interrupt(CPUX86State *env)
160 {
161     X86CPU *cpu = x86_env_get_cpu(env);
162     int intno;
163 
164     intno = apic_get_interrupt(cpu->apic_state);
165     if (intno >= 0) {
166         return intno;
167     }
168     /* read the irq from the PIC */
169     if (!apic_accept_pic_intr(cpu->apic_state)) {
170         return -1;
171     }
172 
173     intno = pic_read_irq(isa_pic);
174     return intno;
175 }
176 
177 static void pic_irq_request(void *opaque, int irq, int level)
178 {
179     CPUState *cs = first_cpu;
180     X86CPU *cpu = X86_CPU(cs);
181 
182     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
183     if (cpu->apic_state) {
184         CPU_FOREACH(cs) {
185             cpu = X86_CPU(cs);
186             if (apic_accept_pic_intr(cpu->apic_state)) {
187                 apic_deliver_pic_intr(cpu->apic_state, level);
188             }
189         }
190     } else {
191         if (level) {
192             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
193         } else {
194             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
195         }
196     }
197 }
198 
199 /* PC cmos mappings */
200 
201 #define REG_EQUIPMENT_BYTE          0x14
202 
203 int cmos_get_fd_drive_type(FloppyDriveType fd0)
204 {
205     int val;
206 
207     switch (fd0) {
208     case FLOPPY_DRIVE_TYPE_144:
209         /* 1.44 Mb 3"5 drive */
210         val = 4;
211         break;
212     case FLOPPY_DRIVE_TYPE_288:
213         /* 2.88 Mb 3"5 drive */
214         val = 5;
215         break;
216     case FLOPPY_DRIVE_TYPE_120:
217         /* 1.2 Mb 5"5 drive */
218         val = 2;
219         break;
220     case FLOPPY_DRIVE_TYPE_NONE:
221     default:
222         val = 0;
223         break;
224     }
225     return val;
226 }
227 
228 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
229                          int16_t cylinders, int8_t heads, int8_t sectors)
230 {
231     rtc_set_memory(s, type_ofs, 47);
232     rtc_set_memory(s, info_ofs, cylinders);
233     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
234     rtc_set_memory(s, info_ofs + 2, heads);
235     rtc_set_memory(s, info_ofs + 3, 0xff);
236     rtc_set_memory(s, info_ofs + 4, 0xff);
237     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
238     rtc_set_memory(s, info_ofs + 6, cylinders);
239     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
240     rtc_set_memory(s, info_ofs + 8, sectors);
241 }
242 
243 /* convert boot_device letter to something recognizable by the bios */
244 static int boot_device2nibble(char boot_device)
245 {
246     switch(boot_device) {
247     case 'a':
248     case 'b':
249         return 0x01; /* floppy boot */
250     case 'c':
251         return 0x02; /* hard drive boot */
252     case 'd':
253         return 0x03; /* CD-ROM boot */
254     case 'n':
255         return 0x04; /* Network boot */
256     }
257     return 0;
258 }
259 
260 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
261 {
262 #define PC_MAX_BOOT_DEVICES 3
263     int nbds, bds[3] = { 0, };
264     int i;
265 
266     nbds = strlen(boot_device);
267     if (nbds > PC_MAX_BOOT_DEVICES) {
268         error_setg(errp, "Too many boot devices for PC");
269         return;
270     }
271     for (i = 0; i < nbds; i++) {
272         bds[i] = boot_device2nibble(boot_device[i]);
273         if (bds[i] == 0) {
274             error_setg(errp, "Invalid boot device for PC: '%c'",
275                        boot_device[i]);
276             return;
277         }
278     }
279     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
280     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
281 }
282 
283 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
284 {
285     set_boot_dev(opaque, boot_device, errp);
286 }
287 
288 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
289 {
290     int val, nb, i;
291     FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
292                                    FLOPPY_DRIVE_TYPE_NONE };
293 
294     /* floppy type */
295     if (floppy) {
296         for (i = 0; i < 2; i++) {
297             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
298         }
299     }
300     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
301         cmos_get_fd_drive_type(fd_type[1]);
302     rtc_set_memory(rtc_state, 0x10, val);
303 
304     val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
305     nb = 0;
306     if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
307         nb++;
308     }
309     if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
310         nb++;
311     }
312     switch (nb) {
313     case 0:
314         break;
315     case 1:
316         val |= 0x01; /* 1 drive, ready for boot */
317         break;
318     case 2:
319         val |= 0x41; /* 2 drives, ready for boot */
320         break;
321     }
322     rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
323 }
324 
325 typedef struct pc_cmos_init_late_arg {
326     ISADevice *rtc_state;
327     BusState *idebus[2];
328 } pc_cmos_init_late_arg;
329 
330 typedef struct check_fdc_state {
331     ISADevice *floppy;
332     bool multiple;
333 } CheckFdcState;
334 
335 static int check_fdc(Object *obj, void *opaque)
336 {
337     CheckFdcState *state = opaque;
338     Object *fdc;
339     uint32_t iobase;
340     Error *local_err = NULL;
341 
342     fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
343     if (!fdc) {
344         return 0;
345     }
346 
347     iobase = object_property_get_int(obj, "iobase", &local_err);
348     if (local_err || iobase != 0x3f0) {
349         error_free(local_err);
350         return 0;
351     }
352 
353     if (state->floppy) {
354         state->multiple = true;
355     } else {
356         state->floppy = ISA_DEVICE(obj);
357     }
358     return 0;
359 }
360 
361 static const char * const fdc_container_path[] = {
362     "/unattached", "/peripheral", "/peripheral-anon"
363 };
364 
365 /*
366  * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
367  * and ACPI objects.
368  */
369 ISADevice *pc_find_fdc0(void)
370 {
371     int i;
372     Object *container;
373     CheckFdcState state = { 0 };
374 
375     for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
376         container = container_get(qdev_get_machine(), fdc_container_path[i]);
377         object_child_foreach(container, check_fdc, &state);
378     }
379 
380     if (state.multiple) {
381         error_report("warning: multiple floppy disk controllers with "
382                      "iobase=0x3f0 have been found");
383         error_printf("the one being picked for CMOS setup might not reflect "
384                      "your intent");
385     }
386 
387     return state.floppy;
388 }
389 
390 static void pc_cmos_init_late(void *opaque)
391 {
392     pc_cmos_init_late_arg *arg = opaque;
393     ISADevice *s = arg->rtc_state;
394     int16_t cylinders;
395     int8_t heads, sectors;
396     int val;
397     int i, trans;
398 
399     val = 0;
400     if (ide_get_geometry(arg->idebus[0], 0,
401                          &cylinders, &heads, &sectors) >= 0) {
402         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
403         val |= 0xf0;
404     }
405     if (ide_get_geometry(arg->idebus[0], 1,
406                          &cylinders, &heads, &sectors) >= 0) {
407         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
408         val |= 0x0f;
409     }
410     rtc_set_memory(s, 0x12, val);
411 
412     val = 0;
413     for (i = 0; i < 4; i++) {
414         /* NOTE: ide_get_geometry() returns the physical
415            geometry.  It is always such that: 1 <= sects <= 63, 1
416            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
417            geometry can be different if a translation is done. */
418         if (ide_get_geometry(arg->idebus[i / 2], i % 2,
419                              &cylinders, &heads, &sectors) >= 0) {
420             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
421             assert((trans & ~3) == 0);
422             val |= trans << (i * 2);
423         }
424     }
425     rtc_set_memory(s, 0x39, val);
426 
427     pc_cmos_init_floppy(s, pc_find_fdc0());
428 
429     qemu_unregister_reset(pc_cmos_init_late, opaque);
430 }
431 
432 void pc_cmos_init(PCMachineState *pcms,
433                   BusState *idebus0, BusState *idebus1,
434                   ISADevice *s)
435 {
436     int val;
437     static pc_cmos_init_late_arg arg;
438 
439     /* various important CMOS locations needed by PC/Bochs bios */
440 
441     /* memory size */
442     /* base memory (first MiB) */
443     val = MIN(pcms->below_4g_mem_size / 1024, 640);
444     rtc_set_memory(s, 0x15, val);
445     rtc_set_memory(s, 0x16, val >> 8);
446     /* extended memory (next 64MiB) */
447     if (pcms->below_4g_mem_size > 1024 * 1024) {
448         val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
449     } else {
450         val = 0;
451     }
452     if (val > 65535)
453         val = 65535;
454     rtc_set_memory(s, 0x17, val);
455     rtc_set_memory(s, 0x18, val >> 8);
456     rtc_set_memory(s, 0x30, val);
457     rtc_set_memory(s, 0x31, val >> 8);
458     /* memory between 16MiB and 4GiB */
459     if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
460         val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
461     } else {
462         val = 0;
463     }
464     if (val > 65535)
465         val = 65535;
466     rtc_set_memory(s, 0x34, val);
467     rtc_set_memory(s, 0x35, val >> 8);
468     /* memory above 4GiB */
469     val = pcms->above_4g_mem_size / 65536;
470     rtc_set_memory(s, 0x5b, val);
471     rtc_set_memory(s, 0x5c, val >> 8);
472     rtc_set_memory(s, 0x5d, val >> 16);
473 
474     /* set the number of CPU */
475     rtc_set_memory(s, 0x5f, smp_cpus - 1);
476 
477     object_property_add_link(OBJECT(pcms), "rtc_state",
478                              TYPE_ISA_DEVICE,
479                              (Object **)&pcms->rtc,
480                              object_property_allow_set_link,
481                              OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
482     object_property_set_link(OBJECT(pcms), OBJECT(s),
483                              "rtc_state", &error_abort);
484 
485     set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
486 
487     val = 0;
488     val |= 0x02; /* FPU is there */
489     val |= 0x04; /* PS/2 mouse installed */
490     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
491 
492     /* hard drives and FDC */
493     arg.rtc_state = s;
494     arg.idebus[0] = idebus0;
495     arg.idebus[1] = idebus1;
496     qemu_register_reset(pc_cmos_init_late, &arg);
497 }
498 
499 #define TYPE_PORT92 "port92"
500 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
501 
502 /* port 92 stuff: could be split off */
503 typedef struct Port92State {
504     ISADevice parent_obj;
505 
506     MemoryRegion io;
507     uint8_t outport;
508     qemu_irq a20_out;
509 } Port92State;
510 
511 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
512                          unsigned size)
513 {
514     Port92State *s = opaque;
515     int oldval = s->outport;
516 
517     DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
518     s->outport = val;
519     qemu_set_irq(s->a20_out, (val >> 1) & 1);
520     if ((val & 1) && !(oldval & 1)) {
521         qemu_system_reset_request();
522     }
523 }
524 
525 static uint64_t port92_read(void *opaque, hwaddr addr,
526                             unsigned size)
527 {
528     Port92State *s = opaque;
529     uint32_t ret;
530 
531     ret = s->outport;
532     DPRINTF("port92: read 0x%02x\n", ret);
533     return ret;
534 }
535 
536 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
537 {
538     qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, *a20_out);
539 }
540 
541 static const VMStateDescription vmstate_port92_isa = {
542     .name = "port92",
543     .version_id = 1,
544     .minimum_version_id = 1,
545     .fields = (VMStateField[]) {
546         VMSTATE_UINT8(outport, Port92State),
547         VMSTATE_END_OF_LIST()
548     }
549 };
550 
551 static void port92_reset(DeviceState *d)
552 {
553     Port92State *s = PORT92(d);
554 
555     s->outport &= ~1;
556 }
557 
558 static const MemoryRegionOps port92_ops = {
559     .read = port92_read,
560     .write = port92_write,
561     .impl = {
562         .min_access_size = 1,
563         .max_access_size = 1,
564     },
565     .endianness = DEVICE_LITTLE_ENDIAN,
566 };
567 
568 static void port92_initfn(Object *obj)
569 {
570     Port92State *s = PORT92(obj);
571 
572     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
573 
574     s->outport = 0;
575 
576     qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
577 }
578 
579 static void port92_realizefn(DeviceState *dev, Error **errp)
580 {
581     ISADevice *isadev = ISA_DEVICE(dev);
582     Port92State *s = PORT92(dev);
583 
584     isa_register_ioport(isadev, &s->io, 0x92);
585 }
586 
587 static void port92_class_initfn(ObjectClass *klass, void *data)
588 {
589     DeviceClass *dc = DEVICE_CLASS(klass);
590 
591     dc->realize = port92_realizefn;
592     dc->reset = port92_reset;
593     dc->vmsd = &vmstate_port92_isa;
594     /*
595      * Reason: unlike ordinary ISA devices, this one needs additional
596      * wiring: its A20 output line needs to be wired up by
597      * port92_init().
598      */
599     dc->cannot_instantiate_with_device_add_yet = true;
600 }
601 
602 static const TypeInfo port92_info = {
603     .name          = TYPE_PORT92,
604     .parent        = TYPE_ISA_DEVICE,
605     .instance_size = sizeof(Port92State),
606     .instance_init = port92_initfn,
607     .class_init    = port92_class_initfn,
608 };
609 
610 static void port92_register_types(void)
611 {
612     type_register_static(&port92_info);
613 }
614 
615 type_init(port92_register_types)
616 
617 static void handle_a20_line_change(void *opaque, int irq, int level)
618 {
619     X86CPU *cpu = opaque;
620 
621     /* XXX: send to all CPUs ? */
622     /* XXX: add logic to handle multiple A20 line sources */
623     x86_cpu_set_a20(cpu, level);
624 }
625 
626 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
627 {
628     int index = le32_to_cpu(e820_reserve.count);
629     struct e820_entry *entry;
630 
631     if (type != E820_RAM) {
632         /* old FW_CFG_E820_TABLE entry -- reservations only */
633         if (index >= E820_NR_ENTRIES) {
634             return -EBUSY;
635         }
636         entry = &e820_reserve.entry[index++];
637 
638         entry->address = cpu_to_le64(address);
639         entry->length = cpu_to_le64(length);
640         entry->type = cpu_to_le32(type);
641 
642         e820_reserve.count = cpu_to_le32(index);
643     }
644 
645     /* new "etc/e820" file -- include ram too */
646     e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
647     e820_table[e820_entries].address = cpu_to_le64(address);
648     e820_table[e820_entries].length = cpu_to_le64(length);
649     e820_table[e820_entries].type = cpu_to_le32(type);
650     e820_entries++;
651 
652     return e820_entries;
653 }
654 
655 int e820_get_num_entries(void)
656 {
657     return e820_entries;
658 }
659 
660 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
661 {
662     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
663         *address = le64_to_cpu(e820_table[idx].address);
664         *length = le64_to_cpu(e820_table[idx].length);
665         return true;
666     }
667     return false;
668 }
669 
670 /* Enables contiguous-apic-ID mode, for compatibility */
671 static bool compat_apic_id_mode;
672 
673 void enable_compat_apic_id_mode(void)
674 {
675     compat_apic_id_mode = true;
676 }
677 
678 /* Calculates initial APIC ID for a specific CPU index
679  *
680  * Currently we need to be able to calculate the APIC ID from the CPU index
681  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
682  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
683  * all CPUs up to max_cpus.
684  */
685 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
686 {
687     uint32_t correct_id;
688     static bool warned;
689 
690     correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
691     if (compat_apic_id_mode) {
692         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
693             error_report("APIC IDs set in compatibility mode, "
694                          "CPU topology won't match the configuration");
695             warned = true;
696         }
697         return cpu_index;
698     } else {
699         return correct_id;
700     }
701 }
702 
703 static void pc_build_smbios(FWCfgState *fw_cfg)
704 {
705     uint8_t *smbios_tables, *smbios_anchor;
706     size_t smbios_tables_len, smbios_anchor_len;
707     struct smbios_phys_mem_area *mem_array;
708     unsigned i, array_count;
709 
710     smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
711     if (smbios_tables) {
712         fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
713                          smbios_tables, smbios_tables_len);
714     }
715 
716     /* build the array of physical mem area from e820 table */
717     mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
718     for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
719         uint64_t addr, len;
720 
721         if (e820_get_entry(i, E820_RAM, &addr, &len)) {
722             mem_array[array_count].address = addr;
723             mem_array[array_count].length = len;
724             array_count++;
725         }
726     }
727     smbios_get_tables(mem_array, array_count,
728                       &smbios_tables, &smbios_tables_len,
729                       &smbios_anchor, &smbios_anchor_len);
730     g_free(mem_array);
731 
732     if (smbios_anchor) {
733         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
734                         smbios_tables, smbios_tables_len);
735         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
736                         smbios_anchor, smbios_anchor_len);
737     }
738 }
739 
740 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
741 {
742     FWCfgState *fw_cfg;
743     uint64_t *numa_fw_cfg;
744     int i, j;
745 
746     fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
747 
748     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
749      *
750      * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
751      * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
752      * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
753      * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
754      * may see".
755      *
756      * So, this means we must not use max_cpus, here, but the maximum possible
757      * APIC ID value, plus one.
758      *
759      * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
760      *     the APIC ID, not the "CPU index"
761      */
762     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
763     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
764     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
765                      acpi_tables, acpi_tables_len);
766     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
767 
768     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
769                      &e820_reserve, sizeof(e820_reserve));
770     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
771                     sizeof(struct e820_entry) * e820_entries);
772 
773     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
774     /* allocate memory for the NUMA channel: one (64bit) word for the number
775      * of nodes, one word for each VCPU->node and one word for each node to
776      * hold the amount of memory.
777      */
778     numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
779     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
780     for (i = 0; i < max_cpus; i++) {
781         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
782         assert(apic_id < pcms->apic_id_limit);
783         for (j = 0; j < nb_numa_nodes; j++) {
784             if (test_bit(i, numa_info[j].node_cpu)) {
785                 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
786                 break;
787             }
788         }
789     }
790     for (i = 0; i < nb_numa_nodes; i++) {
791         numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
792             cpu_to_le64(numa_info[i].node_mem);
793     }
794     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
795                      (1 + pcms->apic_id_limit + nb_numa_nodes) *
796                      sizeof(*numa_fw_cfg));
797 
798     return fw_cfg;
799 }
800 
801 static long get_file_size(FILE *f)
802 {
803     long where, size;
804 
805     /* XXX: on Unix systems, using fstat() probably makes more sense */
806 
807     where = ftell(f);
808     fseek(f, 0, SEEK_END);
809     size = ftell(f);
810     fseek(f, where, SEEK_SET);
811 
812     return size;
813 }
814 
815 static void load_linux(PCMachineState *pcms,
816                        FWCfgState *fw_cfg)
817 {
818     uint16_t protocol;
819     int setup_size, kernel_size, initrd_size = 0, cmdline_size;
820     uint32_t initrd_max;
821     uint8_t header[8192], *setup, *kernel, *initrd_data;
822     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
823     FILE *f;
824     char *vmode;
825     MachineState *machine = MACHINE(pcms);
826     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
827     const char *kernel_filename = machine->kernel_filename;
828     const char *initrd_filename = machine->initrd_filename;
829     const char *kernel_cmdline = machine->kernel_cmdline;
830 
831     /* Align to 16 bytes as a paranoia measure */
832     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
833 
834     /* load the kernel header */
835     f = fopen(kernel_filename, "rb");
836     if (!f || !(kernel_size = get_file_size(f)) ||
837         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
838         MIN(ARRAY_SIZE(header), kernel_size)) {
839         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
840                 kernel_filename, strerror(errno));
841         exit(1);
842     }
843 
844     /* kernel protocol version */
845 #if 0
846     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
847 #endif
848     if (ldl_p(header+0x202) == 0x53726448) {
849         protocol = lduw_p(header+0x206);
850     } else {
851         /* This looks like a multiboot kernel. If it is, let's stop
852            treating it like a Linux kernel. */
853         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
854                            kernel_cmdline, kernel_size, header)) {
855             return;
856         }
857         protocol = 0;
858     }
859 
860     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
861         /* Low kernel */
862         real_addr    = 0x90000;
863         cmdline_addr = 0x9a000 - cmdline_size;
864         prot_addr    = 0x10000;
865     } else if (protocol < 0x202) {
866         /* High but ancient kernel */
867         real_addr    = 0x90000;
868         cmdline_addr = 0x9a000 - cmdline_size;
869         prot_addr    = 0x100000;
870     } else {
871         /* High and recent kernel */
872         real_addr    = 0x10000;
873         cmdline_addr = 0x20000;
874         prot_addr    = 0x100000;
875     }
876 
877 #if 0
878     fprintf(stderr,
879             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
880             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
881             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
882             real_addr,
883             cmdline_addr,
884             prot_addr);
885 #endif
886 
887     /* highest address for loading the initrd */
888     if (protocol >= 0x203) {
889         initrd_max = ldl_p(header+0x22c);
890     } else {
891         initrd_max = 0x37ffffff;
892     }
893 
894     if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
895         initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
896     }
897 
898     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
899     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
900     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
901 
902     if (protocol >= 0x202) {
903         stl_p(header+0x228, cmdline_addr);
904     } else {
905         stw_p(header+0x20, 0xA33F);
906         stw_p(header+0x22, cmdline_addr-real_addr);
907     }
908 
909     /* handle vga= parameter */
910     vmode = strstr(kernel_cmdline, "vga=");
911     if (vmode) {
912         unsigned int video_mode;
913         /* skip "vga=" */
914         vmode += 4;
915         if (!strncmp(vmode, "normal", 6)) {
916             video_mode = 0xffff;
917         } else if (!strncmp(vmode, "ext", 3)) {
918             video_mode = 0xfffe;
919         } else if (!strncmp(vmode, "ask", 3)) {
920             video_mode = 0xfffd;
921         } else {
922             video_mode = strtol(vmode, NULL, 0);
923         }
924         stw_p(header+0x1fa, video_mode);
925     }
926 
927     /* loader type */
928     /* High nybble = B reserved for QEMU; low nybble is revision number.
929        If this code is substantially changed, you may want to consider
930        incrementing the revision. */
931     if (protocol >= 0x200) {
932         header[0x210] = 0xB0;
933     }
934     /* heap */
935     if (protocol >= 0x201) {
936         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
937         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
938     }
939 
940     /* load initrd */
941     if (initrd_filename) {
942         if (protocol < 0x200) {
943             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
944             exit(1);
945         }
946 
947         initrd_size = get_image_size(initrd_filename);
948         if (initrd_size < 0) {
949             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
950                     initrd_filename, strerror(errno));
951             exit(1);
952         }
953 
954         initrd_addr = (initrd_max-initrd_size) & ~4095;
955 
956         initrd_data = g_malloc(initrd_size);
957         load_image(initrd_filename, initrd_data);
958 
959         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
960         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
961         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
962 
963         stl_p(header+0x218, initrd_addr);
964         stl_p(header+0x21c, initrd_size);
965     }
966 
967     /* load kernel and setup */
968     setup_size = header[0x1f1];
969     if (setup_size == 0) {
970         setup_size = 4;
971     }
972     setup_size = (setup_size+1)*512;
973     if (setup_size > kernel_size) {
974         fprintf(stderr, "qemu: invalid kernel header\n");
975         exit(1);
976     }
977     kernel_size -= setup_size;
978 
979     setup  = g_malloc(setup_size);
980     kernel = g_malloc(kernel_size);
981     fseek(f, 0, SEEK_SET);
982     if (fread(setup, 1, setup_size, f) != setup_size) {
983         fprintf(stderr, "fread() failed\n");
984         exit(1);
985     }
986     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
987         fprintf(stderr, "fread() failed\n");
988         exit(1);
989     }
990     fclose(f);
991     memcpy(setup, header, MIN(sizeof(header), setup_size));
992 
993     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
994     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
995     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
996 
997     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
998     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
999     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1000 
1001     option_rom[nb_option_roms].name = "linuxboot.bin";
1002     option_rom[nb_option_roms].bootindex = 0;
1003     nb_option_roms++;
1004 }
1005 
1006 #define NE2000_NB_MAX 6
1007 
1008 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1009                                               0x280, 0x380 };
1010 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1011 
1012 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1013 {
1014     static int nb_ne2k = 0;
1015 
1016     if (nb_ne2k == NE2000_NB_MAX)
1017         return;
1018     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1019                     ne2000_irq[nb_ne2k], nd);
1020     nb_ne2k++;
1021 }
1022 
1023 DeviceState *cpu_get_current_apic(void)
1024 {
1025     if (current_cpu) {
1026         X86CPU *cpu = X86_CPU(current_cpu);
1027         return cpu->apic_state;
1028     } else {
1029         return NULL;
1030     }
1031 }
1032 
1033 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1034 {
1035     X86CPU *cpu = opaque;
1036 
1037     if (level) {
1038         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1039     }
1040 }
1041 
1042 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
1043                           Error **errp)
1044 {
1045     X86CPU *cpu = NULL;
1046     Error *local_err = NULL;
1047 
1048     cpu = cpu_x86_create(cpu_model, &local_err);
1049     if (local_err != NULL) {
1050         goto out;
1051     }
1052 
1053     object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
1054     object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
1055 
1056 out:
1057     if (local_err) {
1058         error_propagate(errp, local_err);
1059         object_unref(OBJECT(cpu));
1060         cpu = NULL;
1061     }
1062     return cpu;
1063 }
1064 
1065 void pc_hot_add_cpu(const int64_t id, Error **errp)
1066 {
1067     X86CPU *cpu;
1068     MachineState *machine = MACHINE(qdev_get_machine());
1069     int64_t apic_id = x86_cpu_apic_id_from_index(id);
1070     Error *local_err = NULL;
1071 
1072     if (id < 0) {
1073         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1074         return;
1075     }
1076 
1077     if (cpu_exists(apic_id)) {
1078         error_setg(errp, "Unable to add CPU: %" PRIi64
1079                    ", it already exists", id);
1080         return;
1081     }
1082 
1083     if (id >= max_cpus) {
1084         error_setg(errp, "Unable to add CPU: %" PRIi64
1085                    ", max allowed: %d", id, max_cpus - 1);
1086         return;
1087     }
1088 
1089     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1090         error_setg(errp, "Unable to add CPU: %" PRIi64
1091                    ", resulting APIC ID (%" PRIi64 ") is too large",
1092                    id, apic_id);
1093         return;
1094     }
1095 
1096     cpu = pc_new_cpu(machine->cpu_model, apic_id, &local_err);
1097     if (local_err) {
1098         error_propagate(errp, local_err);
1099         return;
1100     }
1101     object_unref(OBJECT(cpu));
1102 }
1103 
1104 void pc_cpus_init(PCMachineState *pcms)
1105 {
1106     int i;
1107     X86CPU *cpu = NULL;
1108     MachineState *machine = MACHINE(pcms);
1109 
1110     /* init CPUs */
1111     if (machine->cpu_model == NULL) {
1112 #ifdef TARGET_X86_64
1113         machine->cpu_model = "qemu64";
1114 #else
1115         machine->cpu_model = "qemu32";
1116 #endif
1117     }
1118 
1119     /* Calculates the limit to CPU APIC ID values
1120      *
1121      * Limit for the APIC ID value, so that all
1122      * CPU APIC IDs are < pcms->apic_id_limit.
1123      *
1124      * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1125      */
1126     pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1127     if (pcms->apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1128         error_report("max_cpus is too large. APIC ID of last CPU is %u",
1129                      pcms->apic_id_limit - 1);
1130         exit(1);
1131     }
1132 
1133     pcms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1134                                     sizeof(CPUArchId) * max_cpus);
1135     for (i = 0; i < max_cpus; i++) {
1136         pcms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
1137         pcms->possible_cpus->len++;
1138         if (i < smp_cpus) {
1139             cpu = pc_new_cpu(machine->cpu_model, x86_cpu_apic_id_from_index(i),
1140                              &error_fatal);
1141             pcms->possible_cpus->cpus[i].cpu = CPU(cpu);
1142             object_unref(OBJECT(cpu));
1143         }
1144     }
1145 
1146     /* tell smbios about cpuid version and features */
1147     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1148 }
1149 
1150 static
1151 void pc_machine_done(Notifier *notifier, void *data)
1152 {
1153     PCMachineState *pcms = container_of(notifier,
1154                                         PCMachineState, machine_done);
1155     PCIBus *bus = pcms->bus;
1156 
1157     if (bus) {
1158         int extra_hosts = 0;
1159 
1160         QLIST_FOREACH(bus, &bus->child, sibling) {
1161             /* look for expander root buses */
1162             if (pci_bus_is_root(bus)) {
1163                 extra_hosts++;
1164             }
1165         }
1166         if (extra_hosts && pcms->fw_cfg) {
1167             uint64_t *val = g_malloc(sizeof(*val));
1168             *val = cpu_to_le64(extra_hosts);
1169             fw_cfg_add_file(pcms->fw_cfg,
1170                     "etc/extra-pci-roots", val, sizeof(*val));
1171         }
1172     }
1173 
1174     acpi_setup();
1175     if (pcms->fw_cfg) {
1176         pc_build_smbios(pcms->fw_cfg);
1177     }
1178 }
1179 
1180 void pc_guest_info_init(PCMachineState *pcms)
1181 {
1182     int i;
1183 
1184     pcms->apic_xrupt_override = kvm_allows_irq0_override();
1185     pcms->numa_nodes = nb_numa_nodes;
1186     pcms->node_mem = g_malloc0(pcms->numa_nodes *
1187                                     sizeof *pcms->node_mem);
1188     for (i = 0; i < nb_numa_nodes; i++) {
1189         pcms->node_mem[i] = numa_info[i].node_mem;
1190     }
1191 
1192     pcms->machine_done.notify = pc_machine_done;
1193     qemu_add_machine_init_done_notifier(&pcms->machine_done);
1194 }
1195 
1196 /* setup pci memory address space mapping into system address space */
1197 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1198                             MemoryRegion *pci_address_space)
1199 {
1200     /* Set to lower priority than RAM */
1201     memory_region_add_subregion_overlap(system_memory, 0x0,
1202                                         pci_address_space, -1);
1203 }
1204 
1205 void pc_acpi_init(const char *default_dsdt)
1206 {
1207     char *filename;
1208 
1209     if (acpi_tables != NULL) {
1210         /* manually set via -acpitable, leave it alone */
1211         return;
1212     }
1213 
1214     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1215     if (filename == NULL) {
1216         fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1217     } else {
1218         QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1219                                           &error_abort);
1220         Error *err = NULL;
1221 
1222         qemu_opt_set(opts, "file", filename, &error_abort);
1223 
1224         acpi_table_add_builtin(opts, &err);
1225         if (err) {
1226             error_reportf_err(err, "WARNING: failed to load %s: ",
1227                               filename);
1228         }
1229         g_free(filename);
1230     }
1231 }
1232 
1233 void xen_load_linux(PCMachineState *pcms)
1234 {
1235     int i;
1236     FWCfgState *fw_cfg;
1237 
1238     assert(MACHINE(pcms)->kernel_filename != NULL);
1239 
1240     fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1241     rom_set_fw(fw_cfg);
1242 
1243     load_linux(pcms, fw_cfg);
1244     for (i = 0; i < nb_option_roms; i++) {
1245         assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1246                !strcmp(option_rom[i].name, "multiboot.bin"));
1247         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1248     }
1249     pcms->fw_cfg = fw_cfg;
1250 }
1251 
1252 void pc_memory_init(PCMachineState *pcms,
1253                     MemoryRegion *system_memory,
1254                     MemoryRegion *rom_memory,
1255                     MemoryRegion **ram_memory)
1256 {
1257     int linux_boot, i;
1258     MemoryRegion *ram, *option_rom_mr;
1259     MemoryRegion *ram_below_4g, *ram_above_4g;
1260     FWCfgState *fw_cfg;
1261     MachineState *machine = MACHINE(pcms);
1262     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1263 
1264     assert(machine->ram_size == pcms->below_4g_mem_size +
1265                                 pcms->above_4g_mem_size);
1266 
1267     linux_boot = (machine->kernel_filename != NULL);
1268 
1269     /* Allocate RAM.  We allocate it as a single memory region and use
1270      * aliases to address portions of it, mostly for backwards compatibility
1271      * with older qemus that used qemu_ram_alloc().
1272      */
1273     ram = g_malloc(sizeof(*ram));
1274     memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1275                                          machine->ram_size);
1276     *ram_memory = ram;
1277     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1278     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1279                              0, pcms->below_4g_mem_size);
1280     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1281     e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1282     if (pcms->above_4g_mem_size > 0) {
1283         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1284         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1285                                  pcms->below_4g_mem_size,
1286                                  pcms->above_4g_mem_size);
1287         memory_region_add_subregion(system_memory, 0x100000000ULL,
1288                                     ram_above_4g);
1289         e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1290     }
1291 
1292     if (!pcmc->has_reserved_memory &&
1293         (machine->ram_slots ||
1294          (machine->maxram_size > machine->ram_size))) {
1295         MachineClass *mc = MACHINE_GET_CLASS(machine);
1296 
1297         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1298                      mc->name);
1299         exit(EXIT_FAILURE);
1300     }
1301 
1302     /* initialize hotplug memory address space */
1303     if (pcmc->has_reserved_memory &&
1304         (machine->ram_size < machine->maxram_size)) {
1305         ram_addr_t hotplug_mem_size =
1306             machine->maxram_size - machine->ram_size;
1307 
1308         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1309             error_report("unsupported amount of memory slots: %"PRIu64,
1310                          machine->ram_slots);
1311             exit(EXIT_FAILURE);
1312         }
1313 
1314         if (QEMU_ALIGN_UP(machine->maxram_size,
1315                           TARGET_PAGE_SIZE) != machine->maxram_size) {
1316             error_report("maximum memory size must by aligned to multiple of "
1317                          "%d bytes", TARGET_PAGE_SIZE);
1318             exit(EXIT_FAILURE);
1319         }
1320 
1321         pcms->hotplug_memory.base =
1322             ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
1323 
1324         if (pcmc->enforce_aligned_dimm) {
1325             /* size hotplug region assuming 1G page max alignment per slot */
1326             hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1327         }
1328 
1329         if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1330             hotplug_mem_size) {
1331             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1332                          machine->maxram_size);
1333             exit(EXIT_FAILURE);
1334         }
1335 
1336         memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1337                            "hotplug-memory", hotplug_mem_size);
1338         memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1339                                     &pcms->hotplug_memory.mr);
1340     }
1341 
1342     /* Initialize PC system firmware */
1343     pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1344 
1345     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1346     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1347                            &error_fatal);
1348     vmstate_register_ram_global(option_rom_mr);
1349     memory_region_add_subregion_overlap(rom_memory,
1350                                         PC_ROM_MIN_VGA,
1351                                         option_rom_mr,
1352                                         1);
1353 
1354     fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1355 
1356     rom_set_fw(fw_cfg);
1357 
1358     if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) {
1359         uint64_t *val = g_malloc(sizeof(*val));
1360         PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1361         uint64_t res_mem_end = pcms->hotplug_memory.base;
1362 
1363         if (!pcmc->broken_reserved_end) {
1364             res_mem_end += memory_region_size(&pcms->hotplug_memory.mr);
1365         }
1366         *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30));
1367         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1368     }
1369 
1370     if (linux_boot) {
1371         load_linux(pcms, fw_cfg);
1372     }
1373 
1374     for (i = 0; i < nb_option_roms; i++) {
1375         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1376     }
1377     pcms->fw_cfg = fw_cfg;
1378 }
1379 
1380 qemu_irq pc_allocate_cpu_irq(void)
1381 {
1382     return qemu_allocate_irq(pic_irq_request, NULL, 0);
1383 }
1384 
1385 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1386 {
1387     DeviceState *dev = NULL;
1388 
1389     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1390     if (pci_bus) {
1391         PCIDevice *pcidev = pci_vga_init(pci_bus);
1392         dev = pcidev ? &pcidev->qdev : NULL;
1393     } else if (isa_bus) {
1394         ISADevice *isadev = isa_vga_init(isa_bus);
1395         dev = isadev ? DEVICE(isadev) : NULL;
1396     }
1397     rom_reset_order_override();
1398     return dev;
1399 }
1400 
1401 static const MemoryRegionOps ioport80_io_ops = {
1402     .write = ioport80_write,
1403     .read = ioport80_read,
1404     .endianness = DEVICE_NATIVE_ENDIAN,
1405     .impl = {
1406         .min_access_size = 1,
1407         .max_access_size = 1,
1408     },
1409 };
1410 
1411 static const MemoryRegionOps ioportF0_io_ops = {
1412     .write = ioportF0_write,
1413     .read = ioportF0_read,
1414     .endianness = DEVICE_NATIVE_ENDIAN,
1415     .impl = {
1416         .min_access_size = 1,
1417         .max_access_size = 1,
1418     },
1419 };
1420 
1421 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1422                           ISADevice **rtc_state,
1423                           bool create_fdctrl,
1424                           bool no_vmport,
1425                           uint32_t hpet_irqs)
1426 {
1427     int i;
1428     DriveInfo *fd[MAX_FD];
1429     DeviceState *hpet = NULL;
1430     int pit_isa_irq = 0;
1431     qemu_irq pit_alt_irq = NULL;
1432     qemu_irq rtc_irq = NULL;
1433     qemu_irq *a20_line;
1434     ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1435     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1436     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1437 
1438     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1439     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1440 
1441     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1442     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1443 
1444     /*
1445      * Check if an HPET shall be created.
1446      *
1447      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1448      * when the HPET wants to take over. Thus we have to disable the latter.
1449      */
1450     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1451         /* In order to set property, here not using sysbus_try_create_simple */
1452         hpet = qdev_try_create(NULL, TYPE_HPET);
1453         if (hpet) {
1454             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1455              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1456              * IRQ8 and IRQ2.
1457              */
1458             uint8_t compat = object_property_get_int(OBJECT(hpet),
1459                     HPET_INTCAP, NULL);
1460             if (!compat) {
1461                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1462             }
1463             qdev_init_nofail(hpet);
1464             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1465 
1466             for (i = 0; i < GSI_NUM_PINS; i++) {
1467                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1468             }
1469             pit_isa_irq = -1;
1470             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1471             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1472         }
1473     }
1474     *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1475 
1476     qemu_register_boot_set(pc_boot_set, *rtc_state);
1477 
1478     if (!xen_enabled()) {
1479         if (kvm_pit_in_kernel()) {
1480             pit = kvm_pit_init(isa_bus, 0x40);
1481         } else {
1482             pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1483         }
1484         if (hpet) {
1485             /* connect PIT to output control line of the HPET */
1486             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1487         }
1488         pcspk_init(isa_bus, pit);
1489     }
1490 
1491     serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
1492     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1493 
1494     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1495     i8042 = isa_create_simple(isa_bus, "i8042");
1496     i8042_setup_a20_line(i8042, &a20_line[0]);
1497     if (!no_vmport) {
1498         vmport_init(isa_bus);
1499         vmmouse = isa_try_create(isa_bus, "vmmouse");
1500     } else {
1501         vmmouse = NULL;
1502     }
1503     if (vmmouse) {
1504         DeviceState *dev = DEVICE(vmmouse);
1505         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1506         qdev_init_nofail(dev);
1507     }
1508     port92 = isa_create_simple(isa_bus, "port92");
1509     port92_init(port92, &a20_line[1]);
1510 
1511     DMA_init(isa_bus, 0);
1512 
1513     for(i = 0; i < MAX_FD; i++) {
1514         fd[i] = drive_get(IF_FLOPPY, 0, i);
1515         create_fdctrl |= !!fd[i];
1516     }
1517     if (create_fdctrl) {
1518         fdctrl_init_isa(isa_bus, fd);
1519     }
1520 }
1521 
1522 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1523 {
1524     int i;
1525 
1526     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1527     for (i = 0; i < nb_nics; i++) {
1528         NICInfo *nd = &nd_table[i];
1529 
1530         if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1531             pc_init_ne2k_isa(isa_bus, nd);
1532         } else {
1533             pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1534         }
1535     }
1536     rom_reset_order_override();
1537 }
1538 
1539 void pc_pci_device_init(PCIBus *pci_bus)
1540 {
1541     int max_bus;
1542     int bus;
1543 
1544     max_bus = drive_get_max_bus(IF_SCSI);
1545     for (bus = 0; bus <= max_bus; bus++) {
1546         pci_create_simple(pci_bus, -1, "lsi53c895a");
1547     }
1548 }
1549 
1550 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1551 {
1552     DeviceState *dev;
1553     SysBusDevice *d;
1554     unsigned int i;
1555 
1556     if (kvm_ioapic_in_kernel()) {
1557         dev = qdev_create(NULL, "kvm-ioapic");
1558     } else {
1559         dev = qdev_create(NULL, "ioapic");
1560     }
1561     if (parent_name) {
1562         object_property_add_child(object_resolve_path(parent_name, NULL),
1563                                   "ioapic", OBJECT(dev), NULL);
1564     }
1565     qdev_init_nofail(dev);
1566     d = SYS_BUS_DEVICE(dev);
1567     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1568 
1569     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1570         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1571     }
1572 }
1573 
1574 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1575                          DeviceState *dev, Error **errp)
1576 {
1577     HotplugHandlerClass *hhc;
1578     Error *local_err = NULL;
1579     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1580     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1581     PCDIMMDevice *dimm = PC_DIMM(dev);
1582     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1583     MemoryRegion *mr = ddc->get_memory_region(dimm);
1584     uint64_t align = TARGET_PAGE_SIZE;
1585 
1586     if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) {
1587         align = memory_region_get_alignment(mr);
1588     }
1589 
1590     if (!pcms->acpi_dev) {
1591         error_setg(&local_err,
1592                    "memory hotplug is not enabled: missing acpi device");
1593         goto out;
1594     }
1595 
1596     pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1597     if (local_err) {
1598         goto out;
1599     }
1600 
1601     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1602     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1603 out:
1604     error_propagate(errp, local_err);
1605 }
1606 
1607 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1608                                    DeviceState *dev, Error **errp)
1609 {
1610     HotplugHandlerClass *hhc;
1611     Error *local_err = NULL;
1612     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1613 
1614     if (!pcms->acpi_dev) {
1615         error_setg(&local_err,
1616                    "memory hotplug is not enabled: missing acpi device");
1617         goto out;
1618     }
1619 
1620     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1621     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1622 
1623 out:
1624     error_propagate(errp, local_err);
1625 }
1626 
1627 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1628                            DeviceState *dev, Error **errp)
1629 {
1630     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1631     PCDIMMDevice *dimm = PC_DIMM(dev);
1632     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1633     MemoryRegion *mr = ddc->get_memory_region(dimm);
1634     HotplugHandlerClass *hhc;
1635     Error *local_err = NULL;
1636 
1637     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1638     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1639 
1640     if (local_err) {
1641         goto out;
1642     }
1643 
1644     pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1645     object_unparent(OBJECT(dev));
1646 
1647  out:
1648     error_propagate(errp, local_err);
1649 }
1650 
1651 static int pc_apic_cmp(const void *a, const void *b)
1652 {
1653    CPUArchId *apic_a = (CPUArchId *)a;
1654    CPUArchId *apic_b = (CPUArchId *)b;
1655 
1656    return apic_a->arch_id - apic_b->arch_id;
1657 }
1658 
1659 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1660                         DeviceState *dev, Error **errp)
1661 {
1662     CPUClass *cc = CPU_GET_CLASS(dev);
1663     CPUArchId apic_id, *found_cpu;
1664     HotplugHandlerClass *hhc;
1665     Error *local_err = NULL;
1666     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1667 
1668     if (!dev->hotplugged) {
1669         goto out;
1670     }
1671 
1672     if (!pcms->acpi_dev) {
1673         error_setg(&local_err,
1674                    "cpu hotplug is not enabled: missing acpi device");
1675         goto out;
1676     }
1677 
1678     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1679     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1680     if (local_err) {
1681         goto out;
1682     }
1683 
1684     /* increment the number of CPUs */
1685     rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
1686 
1687     apic_id.arch_id = cc->get_arch_id(CPU(dev));
1688     found_cpu = bsearch(&apic_id, pcms->possible_cpus->cpus,
1689         pcms->possible_cpus->len, sizeof(*pcms->possible_cpus->cpus),
1690         pc_apic_cmp);
1691     assert(found_cpu);
1692     found_cpu->cpu = CPU(dev);
1693 out:
1694     error_propagate(errp, local_err);
1695 }
1696 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
1697                                      DeviceState *dev, Error **errp)
1698 {
1699     HotplugHandlerClass *hhc;
1700     Error *local_err = NULL;
1701     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1702 
1703     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1704     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1705 
1706     if (local_err) {
1707         goto out;
1708     }
1709 
1710  out:
1711     error_propagate(errp, local_err);
1712 
1713 }
1714 
1715 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
1716                              DeviceState *dev, Error **errp)
1717 {
1718     HotplugHandlerClass *hhc;
1719     Error *local_err = NULL;
1720     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1721 
1722     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1723     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1724 
1725     if (local_err) {
1726         goto out;
1727     }
1728 
1729     /*
1730      * TODO: enable unplug once generic CPU remove bits land
1731      * for now guest will be able to eject CPU ACPI wise but
1732      * it will come back again on machine reset.
1733      */
1734     /*  object_unparent(OBJECT(dev)); */
1735 
1736  out:
1737     error_propagate(errp, local_err);
1738 }
1739 
1740 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1741                                       DeviceState *dev, Error **errp)
1742 {
1743     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1744         pc_dimm_plug(hotplug_dev, dev, errp);
1745     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1746         pc_cpu_plug(hotplug_dev, dev, errp);
1747     }
1748 }
1749 
1750 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1751                                                 DeviceState *dev, Error **errp)
1752 {
1753     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1754         pc_dimm_unplug_request(hotplug_dev, dev, errp);
1755     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1756         pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
1757     } else {
1758         error_setg(errp, "acpi: device unplug request for not supported device"
1759                    " type: %s", object_get_typename(OBJECT(dev)));
1760     }
1761 }
1762 
1763 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
1764                                         DeviceState *dev, Error **errp)
1765 {
1766     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1767         pc_dimm_unplug(hotplug_dev, dev, errp);
1768     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1769         pc_cpu_unplug_cb(hotplug_dev, dev, errp);
1770     } else {
1771         error_setg(errp, "acpi: device unplug for not supported device"
1772                    " type: %s", object_get_typename(OBJECT(dev)));
1773     }
1774 }
1775 
1776 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1777                                              DeviceState *dev)
1778 {
1779     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1780 
1781     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
1782         object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1783         return HOTPLUG_HANDLER(machine);
1784     }
1785 
1786     return pcmc->get_hotplug_handler ?
1787         pcmc->get_hotplug_handler(machine, dev) : NULL;
1788 }
1789 
1790 static void
1791 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v,
1792                                           const char *name, void *opaque,
1793                                           Error **errp)
1794 {
1795     PCMachineState *pcms = PC_MACHINE(obj);
1796     int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
1797 
1798     visit_type_int(v, name, &value, errp);
1799 }
1800 
1801 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
1802                                             const char *name, void *opaque,
1803                                             Error **errp)
1804 {
1805     PCMachineState *pcms = PC_MACHINE(obj);
1806     uint64_t value = pcms->max_ram_below_4g;
1807 
1808     visit_type_size(v, name, &value, errp);
1809 }
1810 
1811 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
1812                                             const char *name, void *opaque,
1813                                             Error **errp)
1814 {
1815     PCMachineState *pcms = PC_MACHINE(obj);
1816     Error *error = NULL;
1817     uint64_t value;
1818 
1819     visit_type_size(v, name, &value, &error);
1820     if (error) {
1821         error_propagate(errp, error);
1822         return;
1823     }
1824     if (value > (1ULL << 32)) {
1825         error_setg(&error,
1826                    "Machine option 'max-ram-below-4g=%"PRIu64
1827                    "' expects size less than or equal to 4G", value);
1828         error_propagate(errp, error);
1829         return;
1830     }
1831 
1832     if (value < (1ULL << 20)) {
1833         error_report("Warning: small max_ram_below_4g(%"PRIu64
1834                      ") less than 1M.  BIOS may not work..",
1835                      value);
1836     }
1837 
1838     pcms->max_ram_below_4g = value;
1839 }
1840 
1841 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
1842                                   void *opaque, Error **errp)
1843 {
1844     PCMachineState *pcms = PC_MACHINE(obj);
1845     OnOffAuto vmport = pcms->vmport;
1846 
1847     visit_type_OnOffAuto(v, name, &vmport, errp);
1848 }
1849 
1850 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
1851                                   void *opaque, Error **errp)
1852 {
1853     PCMachineState *pcms = PC_MACHINE(obj);
1854 
1855     visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
1856 }
1857 
1858 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
1859 {
1860     bool smm_available = false;
1861 
1862     if (pcms->smm == ON_OFF_AUTO_OFF) {
1863         return false;
1864     }
1865 
1866     if (tcg_enabled() || qtest_enabled()) {
1867         smm_available = true;
1868     } else if (kvm_enabled()) {
1869         smm_available = kvm_has_smm();
1870     }
1871 
1872     if (smm_available) {
1873         return true;
1874     }
1875 
1876     if (pcms->smm == ON_OFF_AUTO_ON) {
1877         error_report("System Management Mode not supported by this hypervisor.");
1878         exit(1);
1879     }
1880     return false;
1881 }
1882 
1883 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
1884                                void *opaque, Error **errp)
1885 {
1886     PCMachineState *pcms = PC_MACHINE(obj);
1887     OnOffAuto smm = pcms->smm;
1888 
1889     visit_type_OnOffAuto(v, name, &smm, errp);
1890 }
1891 
1892 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
1893                                void *opaque, Error **errp)
1894 {
1895     PCMachineState *pcms = PC_MACHINE(obj);
1896 
1897     visit_type_OnOffAuto(v, name, &pcms->smm, errp);
1898 }
1899 
1900 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
1901 {
1902     PCMachineState *pcms = PC_MACHINE(obj);
1903 
1904     return pcms->acpi_nvdimm_state.is_enabled;
1905 }
1906 
1907 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
1908 {
1909     PCMachineState *pcms = PC_MACHINE(obj);
1910 
1911     pcms->acpi_nvdimm_state.is_enabled = value;
1912 }
1913 
1914 static void pc_machine_initfn(Object *obj)
1915 {
1916     PCMachineState *pcms = PC_MACHINE(obj);
1917 
1918     object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
1919                         pc_machine_get_hotplug_memory_region_size,
1920                         NULL, NULL, NULL, &error_abort);
1921 
1922     pcms->max_ram_below_4g = 0xe0000000; /* 3.5G */
1923     object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
1924                         pc_machine_get_max_ram_below_4g,
1925                         pc_machine_set_max_ram_below_4g,
1926                         NULL, NULL, &error_abort);
1927     object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
1928                                     "Maximum ram below the 4G boundary (32bit boundary)",
1929                                     &error_abort);
1930 
1931     pcms->smm = ON_OFF_AUTO_AUTO;
1932     object_property_add(obj, PC_MACHINE_SMM, "OnOffAuto",
1933                         pc_machine_get_smm,
1934                         pc_machine_set_smm,
1935                         NULL, NULL, &error_abort);
1936     object_property_set_description(obj, PC_MACHINE_SMM,
1937                                     "Enable SMM (pc & q35)",
1938                                     &error_abort);
1939 
1940     pcms->vmport = ON_OFF_AUTO_AUTO;
1941     object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
1942                         pc_machine_get_vmport,
1943                         pc_machine_set_vmport,
1944                         NULL, NULL, &error_abort);
1945     object_property_set_description(obj, PC_MACHINE_VMPORT,
1946                                     "Enable vmport (pc & q35)",
1947                                     &error_abort);
1948 
1949     /* nvdimm is disabled on default. */
1950     pcms->acpi_nvdimm_state.is_enabled = false;
1951     object_property_add_bool(obj, PC_MACHINE_NVDIMM, pc_machine_get_nvdimm,
1952                              pc_machine_set_nvdimm, &error_abort);
1953 }
1954 
1955 static void pc_machine_reset(void)
1956 {
1957     CPUState *cs;
1958     X86CPU *cpu;
1959 
1960     qemu_devices_reset();
1961 
1962     /* Reset APIC after devices have been reset to cancel
1963      * any changes that qemu_devices_reset() might have done.
1964      */
1965     CPU_FOREACH(cs) {
1966         cpu = X86_CPU(cs);
1967 
1968         if (cpu->apic_state) {
1969             device_reset(cpu->apic_state);
1970         }
1971     }
1972 }
1973 
1974 static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index)
1975 {
1976     X86CPUTopoInfo topo;
1977     x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index,
1978                           &topo);
1979     return topo.pkg_id;
1980 }
1981 
1982 static CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *machine)
1983 {
1984     PCMachineState *pcms = PC_MACHINE(machine);
1985     int len = sizeof(CPUArchIdList) +
1986               sizeof(CPUArchId) * (pcms->possible_cpus->len);
1987     CPUArchIdList *list = g_malloc(len);
1988 
1989     memcpy(list, pcms->possible_cpus, len);
1990     return list;
1991 }
1992 
1993 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
1994 {
1995     /* cpu index isn't used */
1996     CPUState *cs;
1997 
1998     CPU_FOREACH(cs) {
1999         X86CPU *cpu = X86_CPU(cs);
2000 
2001         if (!cpu->apic_state) {
2002             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2003         } else {
2004             apic_deliver_nmi(cpu->apic_state);
2005         }
2006     }
2007 }
2008 
2009 static void pc_machine_class_init(ObjectClass *oc, void *data)
2010 {
2011     MachineClass *mc = MACHINE_CLASS(oc);
2012     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2013     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2014     NMIClass *nc = NMI_CLASS(oc);
2015 
2016     pcmc->get_hotplug_handler = mc->get_hotplug_handler;
2017     pcmc->pci_enabled = true;
2018     pcmc->has_acpi_build = true;
2019     pcmc->rsdp_in_ram = true;
2020     pcmc->smbios_defaults = true;
2021     pcmc->smbios_uuid_encoded = true;
2022     pcmc->gigabyte_align = true;
2023     pcmc->has_reserved_memory = true;
2024     pcmc->kvmclock_enabled = true;
2025     pcmc->enforce_aligned_dimm = true;
2026     /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2027      * to be used at the moment, 32K should be enough for a while.  */
2028     pcmc->acpi_data_size = 0x20000 + 0x8000;
2029     pcmc->save_tsc_khz = true;
2030     mc->get_hotplug_handler = pc_get_hotpug_handler;
2031     mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id;
2032     mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2033     mc->default_boot_order = "cad";
2034     mc->hot_add_cpu = pc_hot_add_cpu;
2035     mc->max_cpus = 255;
2036     mc->reset = pc_machine_reset;
2037     hc->plug = pc_machine_device_plug_cb;
2038     hc->unplug_request = pc_machine_device_unplug_request_cb;
2039     hc->unplug = pc_machine_device_unplug_cb;
2040     nc->nmi_monitor_handler = x86_nmi;
2041 }
2042 
2043 static const TypeInfo pc_machine_info = {
2044     .name = TYPE_PC_MACHINE,
2045     .parent = TYPE_MACHINE,
2046     .abstract = true,
2047     .instance_size = sizeof(PCMachineState),
2048     .instance_init = pc_machine_initfn,
2049     .class_size = sizeof(PCMachineClass),
2050     .class_init = pc_machine_class_init,
2051     .interfaces = (InterfaceInfo[]) {
2052          { TYPE_HOTPLUG_HANDLER },
2053          { TYPE_NMI },
2054          { }
2055     },
2056 };
2057 
2058 static void pc_machine_register_types(void)
2059 {
2060     type_register_static(&pc_machine_info);
2061 }
2062 
2063 type_init(pc_machine_register_types)
2064